
BIROn - Birkbeck Institutional Research Online

Enabling Open Access to Birkbeck’s Research Degree output

Generalised endogenous switching regression mod-
els and multiple imputation with applications in health
economics

https://eprints.bbk.ac.uk/id/eprint/54363/

Version: Full Version

Citation: Camarena Brenes, Jose Maria (2024) Generalised endoge-
nous switching regression models and multiple imputation with appli-
cations in health economics. [Thesis] (Unpublished)

c© 2020 The Author(s)

All material available through BIROn is protected by intellectual property law, including copy-
right law.
Any use made of the contents should comply with the relevant law.

Deposit Guide
Contact: email

https://eprints.bbk.ac.uk/id/eprint/54363/
https://eprints.bbk.ac.uk/theses.html
mailto:lib-eprints@bbk.ac.uk


Generalised endogenous switching

regression models and multiple

imputation with applications in health

economics

Jose Maria Camarena Brenes

A thesis submitted for the degree of Doctor of Philosophy

Department of Economics, Mathematics and Statistics

Birkbeck, University of London

September, 2023



Declaration

I hereby declare that, except where specific reference is made to the work of others, the contents

of this thesis are my own and have not been submitted in whole or in part for consideration for any

other degree or qualification at Birkbeck, University of London, or any other university.

At the time of writing, a working paper based on the contents of Chapters 2 and 3 was made

available online through the Birkbeck repository (BIROn) and was subject to a claim of plagia-

rism by Professor Giampiero Marra and Professor Rosalba Radice. The issue was regulated by

Professor Ron Smith and he can confirm that the claim was resolved and suitably comprehensive

references to their work have been included in the text.

The contents of Chapter 4 are based on a joint work published in the following paper: "Gomes,

M, Radice, R, Camarena Brenes, J, Marra, G. - Copula selection models for non-Gaussian out-

comes that are missing not at random. Statistics in Medicine. 2019; 38: 480-496". I participated

in the draft and publication of the paper. Specifically, my contribution to the paper was the MI

approach presented in the chapter, completed under the supervision of Professor Rosalba Radice

and Professor Giampiero Marra.

i



Abstract

In this thesis, we present extensions of the endogenous switching regression (ESR) model with

an application in health economics; and an approach to multiple imputation (MI) for variables

assumed to be missing not a random.

We first specify a semi-parametric ESR model where the predictors are represented using pe-

nalized regression splines, while retaining the distributional assumptions of the classical approach.

We then present copula-based ESR models where the bivariate joint distributions in the model are

specified using copula functions and their univariate components are specified in terms of para-

metric distributions. Parameter estimation and inference utilise a well-established penalized likeli-

hood framework. We investigate insurance uptake to cover out-of-pocket expenses of prescription

drugs in over 65 years olds from the United States. Our findings using the semi-parametric ap-

proach reveal evidence of self-selection into insurance and that some of the determinant factors of

expenditures exhibit varying degrees of non-linear associations. An assessment of the dependence

structures using the copula-based approach suggests that large values of out-of-pocket expendi-

tures are accompanied by higher chances of having supplementary insurance however, low expen-

ditures do not necessarily imply lower chances of having extra insurance. These features cannot

be adequately captured using the classical model specification.

We also present a MI approach that obtains plausible imputed values for a variable assumed

to be missing not a random and not restricted to be Gaussian. The approach is derived from a

copula-based specification of the sample selection model. We re-examine the non-randomised

component of the REFLUX study to evaluate the effect of surgery on patient’s health status under

several modelling assumptions. We find that estimates of the effect of surgery are significant,

regardless of the modelling approach. Estimates obtained using MI are very similar to those based

on the copula model and, in some instances, they have slightly smaller standard errors.
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Chapter 1

Introduction

Statistical analyses of non-randomised studies subject to sample selection are common in research.

The problem of sample selection appears when the data to be analysed consist of a non-random

sample of the population under study which, if not accounted for, leads to biased inferences.

Selected samples may appear as a consequence of self-selection or of non-random selection

and their analysis usually requires to model the selection mechanism explicitly. For instance, indi-

viduals may self-select into a treatment or join a programme in order to obtain some benefit from

doing so based on characteristics that are observed as well as unobserved by the researcher. In this

situation, the assignment mechanism becomes non-ignorable and the treatment is usually referred

to as endogenous1. Non-random selection arises, for example, in situations where the researcher

observes a response of interest only for individuals that take part in a study and participation is

driven by some observed and unobserved individual characteristics. The missing data literature

refers to the outcome of interest as being missing not at random.

The most popular models that correct for the bias arising from the analysis of selected sam-

ples are sample selection (SS; Heckman, 1974, 1976, 1979), dummy endogenous variable (DEV;

Heckman, 1978), and endogenous switching regression (ESR; Roy, 1951).

The ESR model was proposed by Roy (1951) to study the factors that influence individuals

when choosing between hunting or fishing as a profession, and can be understood as a generaliza-

tion of SS and DEV models. In SS models, the outcome of interest is partially observed and the

selection mechanism determines whether the response is observed or missing. In DEV models, the

outcome of interest is fully observed and the selection or assignment mechanism determines the
1In a broad sense, the concept of endogeneity in a statistical model is attributed to describing situations where an

explanatory variable is correlated with the random component of the model, for example, due to omitted variables that
are unaccounted for, predictors measured with errors, or simultaneity (Wooldridge, 2010, p. 54).

1



2

level of the treatment. In contrast, in ESR models the researcher observes the outcome of interest

at both levels of the treatment however, unlike DEV models, ESR allows for the effects of all the

covariates that explain the outcome to vary according to the treatment variable, and not just the

intercept. These models were originally specified using a system of linear regression equations

where the error terms are assumed to be multivariate normally distributed. Throughout this thesis,

we will refer to models using this specification as the classical approaches.

Generalizations and extensions of the aforementioned models stem from criticisms to their

lack of robustness to distributional and/or functional form misspecification. Most of these exten-

sions have been proposed in the context of SS and EDV models, using non- or semi-parametric

methods, modelling the joint distribution using flexible multivariate distributions, or using copula

functions (see, for example, Pigini, 2015; Puhani, 2000; Vella, 1998, for reviews).

The contents of this thesis revolve around some aspects of ESR and SS models: extensions of

the ESR model and their application to data from the health economics literature; and the inclusion

of flexible SS models into the multiple imputation framework (Rubin, 1977, 1978, 1987) to deal

with variables assumed to be missing not at random. Specifically, the objectives of this thesis are:

(i) Present extensions of the ESR model that relax the functional form specification of the

predictors and the distributional assumptions of the classical approach.

(ii) Investigate the effects of insurance uptake, and other socio-economic and health-related

characteristics, on out-of-pocket expenditures for prescribed drugs in individuals that are

over 65 years old in the United Stated using data from the Medical Expenditure Panel Survey

(MEPS).

(iii) Present a multiple imputation method, derived from a copula-based specification of the SS

model, that obtains plausible values for a partially observed continuous variable assumed to

be missing not at random and not restricted to be Gaussian.

To relax the functional form specification of the predictors, the ESR model is formulated using

a penalized regression spline framework where the deterministic components are defined using

a semi-parametric GAM-style specification (Generalized Additive Models; Hastie & Tibshirani,

1990; Wood, 2017). The distributional assumptions are relaxed by embedding the model into

a distributional regression framework and specifying the stochastic model components in terms

of parametric bivariate copula functions and their univariate margins. The marginal distributions

are specified using the GAMLSS framework (Generalized Additive Models for Location, Scale,
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and Shape; Rigby & Stasinopoulos, 2005), where each distribution parameter can be modelled

using a flexible additive predictor of explanatory variables. Parameter estimation utilises a well-

established penalized likelihood framework and inference follows from the Bayesian interpretation

of the penalization process (Marra et al., 2017; Marra & Radice, 2019; Wojtyś et al., 2018).

We investigate insurance uptake in individuals over 65 years of age to cover for out-of-pocket

prescribed drugs expenditures first by using the semi-parametric model under the classical distri-

butional assumptions and then using the copula-based approach. The semi-parametric framework

intends to capture and correct for self-selection into insurance while accounting for several con-

tinuous covariates such as age, income, and number of chronic conditions, which may have a

non-linear association with out-of-pocket expenditures. Using the copula-based models, we also

intent to assess whether the response of interest is best described by several parametric distribu-

tions that are used to model healthcare expenditures (Deb & Norton, 2018; Manning et al., 2005;

Manning & Mullahy, 2001; Mullahy, 2009), and whether the dependence structure in the data can

be best captured by using several copula functions other than the Gaussian.

The multiple imputation approach draws plausible values of a variable subject to missingness

from a density derived from a copula-based specification of the SS model. The procedure al-

lows to impute values that are suspected to be missing not at random under several distributional

assumptions and constitutes a valuable method that can be incorporated into a fully conditional

specification strategy to multiple imputation. We re-examine the non-randomised component of

the REFLUX study (Grant et al., 2008, 2013; Gomes et al., 2019, 2020) in order to evaluate the

effect of surgery on health status among individuals with gastro-oesophageal reflux disease, using

several assumptions about the missingness mechanism and the distribution of the response.

Using simulations, we find that the semi-parametric and copula-based extensions of the ESR

model and the multiple imputation approach obtain parameter estimates that are near their true

values and are less variable as the sample size increases. In particular, the semi-parametric ap-

proach appears to mitigate the effects of residual confounding that result from not modelling the

continuous covariates flexibly (Benedetti & Abrahamowicz, 2004; Radice et al., 2016; Slama &

Werwatz, 2005); the copula-based models provide reasonable results under mild model misspec-

ification; and the multiple imputation approach performs similarly to the copula-based SS model

that is based on, and appears to yield parameter estimates that are slightly less variable under mild

model misspecification.

In the application to insurance uptake using the MEPS data, we find that adopting the semi-
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parametric or copula-based modelling approaches provide more reliable estimates and reveal char-

acteristics of the data that cannot be captured using the classical models. Specifically, relaxing the

functional form of the deterministic model components results in parameter estimates that are,

overall, more precise (in terms of obtaining smaller standard errors and narrower confidence inter-

vals) than those obtained using the classical approach. Furthermore, the semi-parametric model

reveals covariate effects with different degrees of non-linearity that cannot be captured using the

classical model. Using the copula-based approach, we find that the dependence structure between

insurance status and expenditures is not symmetric. The analysis suggests that large values of

expenditures are associated with higher chances of obtaining supplementary insurance however,

low expenditures do not necessarily imply lower chances of having insurance. This is also a fea-

ture that cannot be captured using the classical distributional assumptions. In the analysis of the

REFLUX study, we find that estimates of the effect of surgery are significant, regardless of the

modelling approach. The MI estimates for the effect of surgery and other model parameters are

very similar to those obtained using the copula-based SS model and, in some instances, they have

slightly smaller standard errors.

The remainder of this thesis is structured as follows: Chapter 2 presents a semi-parametric ESR

model. We describe two approaches to parameter estimation that follow from a well-established

penalized regression framework. We also discuss the main inferential results and conduct a simu-

lation study. In an application, we study insurance uptake of individuals over 65 years old in the

US to cover for out-of-pocket expenditures of prescription drugs. Chapter 3 presents copula-based

ESR models for continuous responses. The models are specified using copula functions where

their univariate marginals are represented using the GAMLSS framework. Parameter estimation

and inference follow from the methods described in Chapter 2. We perform a simulation study

to evaluate the empirical properties of the approach. We then revisit the application on insurance

uptake in order to make an assessment of the dependence structures in the data, and evaluate the

univariate marginal distributions of out-of-pocket expenditures using several parametric distribu-

tions. In Chapter 4, we first provide an overview of the main terminology used in the missing data

literature and the role of the missing data mechanism in statistical modelling. We also review the

specification of the classical SS model, a flexible copula-based extension, and the multiple impu-

tation framework. We then present a multiple imputation approach for variables assumed to be

missing not at random and assess its performance in a simulation study. Lastly, we use data from

the REFLUX study to re-evaluate the robustness of the results obtained under different modelling
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assumptions about the missing data mechanism and the distribution of the response.



Chapter 2

A semi-parametric endogenous

switching regression model with an

application in health economics

This chapter presents a semi-parametric endogenous switching regression model that extends the

classical modelling approach by introducing flexible covariate effects in the model predictors.

Specifically, we use a GAM-style specification of the predictors, where associations between the

continuous covariates and the response are represented via penalized regression splines. Parameter

estimation utilises a well-established penalized regression framework and inference follows from

the Bayesian interpretation of the smoothing process. In an application, we investigate insurance

uptake to cover out-of-pocket expenses related to prescription drugs in individuals over 65 years

old from the United States. Our findings reveal evidence of individual self-selection into insurance

and that some of the determinant factors of out-of-pocket expenditures exhibit varying degrees of

non-linearity, which are not adequately captured by the classical approach.

2.1 Introduction

A typical question of interest in applied research is to examine the effect of a binary variable (or

treatment) on an outcome of interest, and to determine whether the effects of other covariates differ

across treatment levels.

In regression analysis of experimental studies, treatment assignment to individuals or statisti-

cal units is known and controlled by the researcher. It is common to assume that this mechanism

6



7 2.1. Introduction

is unconfounded, also known as ignorable treatment assignment, or the conditional independence

assumption (Imbens & Rubin, 2015). This assumption rules out the possibility of unobserved con-

founders that affect both the treatment and the outcome, and allows for individuals with similar

characteristics to be compared at different treatment levels. With observational data, the assign-

ment mechanism is not generally known or controlled by the researcher since random allocation

of individuals may not be possible, ethical or simply, subjects may fail to adhere to the study re-

quirements (Stuart et al., 2009). Furthermore, the conditional independence assumption may be

restrictive or untenable since individuals may self-select into treatment based on particular unob-

served characteristics, for example, to gain from the expected benefits of receiving the treatment.

As anticipated in Chapter 1, this situation makes the treatment assignment non-ignorable and in-

dividual characteristics associated with the response may be systematically different at both levels

of the treatment, due to the correlation between the unobserved individual characteristics that in-

fluence the choice of treatment and the response. Statistical analyses that do not account for a

non-ignorable assignment mechanism result in biased parameter estimates.

We consider individuals who are 65 or older from the Medical Expenditure Panel Survey

(MEPS) in order to assess the effects of their insurance status, and several other socio-economic

factors, on their out-of-pocket prescribed medicines expenditures1. The subjects considered in the

analysis are enrolled in Medicare (a federal health insurance programme that covers for specific

healthcare services) which, at the time of data collection, did not include prescribed drugs coverage

unless they obtained some form of additional insurance (employer-sponsored or union-based) to

cover against certain out-of-pocket expenses (for further details, we refer the reader to Cameron

& Trivedi, 2009).

The relationships between insurance status and healthcare utilization have long been studied

in economics. For instance, Arrow (1978), Phelps (1973), Newhouse & Phelps (1974), and Man-

ning et al. (1987) discuss the plausibility of endogeneity of insurance in observational data and

the role of adverse selection and moral hazard effects in health care utilization. Cameron et al.

(1988) develop a formal economic model from an utilitarian perspective to address the mutual

dependency between the demand for health insurance and health care use. The authors argue that

individuals self-select into insurance is partly based on future expected health care consumption

(which is not observed), making insurance status endogenous. Deb et al. (2006) further discuss

that an individual’s decision to uptake insurance is based on their observed and unobserved charac-
1We use the subset of the MEPS data available in Cameron & Trivedi (2009).
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teristics such as their future healthcare needs, their risk aversion, health status, and several socio-

economic characteristics, all of which may also affect healthcare use. In the application, individual

self-selection into insurance raises concerns about the endogeneity of insurance status, since it is

plausible that there are some unobserved individual characteristics, such as private information or

life-style choices, that affect simultaneously prescribed drugs expenditures and obtaining supple-

mentary insurance (Deb et al., 2006). For instance, individuals might have chosen to work in a

particular industry or joined a union during their working life expecting they would benefit from

the extra coverage this would provide after retirement (Cameron & Trivedi, 2009; French & Jones,

2011).

Two popular models that address the problem of endogeneity of a treatment arising from self-

selection are the treatment effects or dummy endogenous variable (DEV; Heckman, 1978), and

endogenous switching regression (ESR; Roy, 1951). The particular specifications of each model

depend on the structure of the data at hand and the assumptions made by the researcher. Details

on how these models can be motivated from an utilitarian perspective can be found, for example,

in Borjas (1987), Cameron et al. (1988), and Heckman & Leamer (2007).

The ESR model has its origins on the conceptual framework proposed by Roy (1951) to study

the factors that influence individuals when choosing between hunting or fishing as a profession,

and can be thought of an extension of sample selection and DEV models. The model aims to

(i) account for the effects of endogeneity arising from self-selection in order to obtain parameter

estimates that vary at each level of the treatment; (ii) estimate the extent to which unobserved

confounders influence both the treatment and the outcome; and (iii) counterfactual analysis (Mare

& Winship, 1988). Applications can be found in labour economics (Lee, 1978; Sakamoto & Chen,

1991), sociology and education (Gamoran & Mare, 1989; Willis & Rosen, 1979; Mare & Winship,

1988), agriculture (Wilde & Ranney, 2000), and health economics (Deb et al., 2006) among others.

The econometric formulation of the classical ESR model requires the specification of three

jointly normal regression equations: one for the selection or switching mechanism, and one for

each of the two regimes individuals may enter, depending on the observed value of the binary

endogenous variable (see, for instance, Maddala, 1986c). In the application, the switching mech-

anism models the individual’s choice of obtaining supplementary insurance, whereas the regime

equations model out-of-pocket prescribed drug expenditures for individuals with extra insurance

and for individuals using Medicare only. Note that the literature distinguishes among several types

of switching regression models depending on whether (i) the selection variable and the regimes
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are correlated, (ii) the sample separation is known or unknown, or (iii) the sample separation is

known but observed imperfectly (for further details, we refer the reader to Maddala, 1986a). In the

context of the thesis, we observed the switching variable perfectly and we assume an association

between the switching and regime variables.

The model has been extended in several ways to relax the classical distributional assumptions,

for instance, Choi & Min (2009) replaced the normality assumption with a multivariate version

of the SU -normal distribution (Johnson, 1949a,b) to account for asymmetry and excess kurtosis

in the distribution of the response. Smith (2005) specified the model using Archimedean copulas

with non-normal continuous marginals. From a Bayesian perspective, Deb et al. (2006) proposed

an extension for discrete outcomes.

The aforementioned extensions are not exempt from the consequences that may arise from

functional form misspecification of the deterministic components of the model. For instance,

modelling the effects of continuous covariates linearly, by categorisation, or using pre-specified

fixed-order polynomials may result in residual confounding (Benedetti & Abrahamowicz, 2004;

Radice et al., 2016; Slama & Werwatz, 2005), which may distort the distribution of the response

and result in departures from the normality assumptions in the classical model specification (Pig-

ini, 2015).

To that end, and based on the sample selection modelling approach of Marra & Radice (2013a),

we present an extension of the classical ESR model that flexibly models the covariate effects, while

maintaining the classical distributional assumptions. Specifically, non-linear associations between

the continuous explanatory variables and the response are modelled using penalized regression

splines via a GAM-style (Hastie & Tibshirani, 1990; Wood, 2017) specification of the model

predictors; parameter estimation utilise the procedure introduced in Marra et al. (2017) and Marra

& Radice (2019); and inference follows from the Bayesian interpretation of the smoothing process

(Marra et al., 2017; Marra & Radice, 2019; Wahba, 1978; Silverman, 1985; Wood, 2017).

The rest of this chapter is structured as follows: Section 2.2 describes a semi-parametric ESR

model, in particular, we present the model specification, the modelling assumptions, and the struc-

ture of the semi-parametric additive predictors. Section 2.3 explains in detail approaches to pa-

rameter estimation, while Section 2.4 considers the main inferential results from the penalized

regression framework relevant to our context. In Section 2.6 we analyse the effects of insurance

status, and other socio-economic and health related factors, on out-of-pocket prescribed medicines

using data from the MEPS. Lastly, in Section 2.7 we discuss the modelling approach and its limi-
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tations.

2.2 Specification of a semi-parametric ESR model

Let Y1i, Y2i, Y3i, for i = 1, . . . , n, denote three random variables generated using the following

rules

Y1i = 1Y ∗1i>0(Y ∗1i), Y2i = Y1iY
∗

2i, Y3i = (1− Y1i)Y
∗

3i. (2.1)

The Bernoulli random variable Y1i represents a treatment, switch, or switching variable (suspected

to be endogenous) that is determined by the sign of the continuous latent variable Y ∗1i through the

indicator function 1Y ∗1i>0(·). 2 The continuous variables Y2i and Y3i are determined by Y1i and

their latent counterparts Y ∗2i and Y ∗3i, that is, when Y1i = 1 we observe Y2i = Y ∗2i otherwise, we

observe Y3i = Y ∗3i. Note that Y2i and Y3i are never observed simultaneously and represent the

two possible states where a variable of interest, say Yi, can be observed at. Dummy zero values

are generally assigned to Y2i and Y3i accordingly (Smith, 2003, 2005). In our context, Y ∗1 is

an unobserved continuous variable that captures individual’s propensity to obtain supplementary

insurance, beyond using Medicare only. From an utilitarian perspective, Y ∗1 can be thought of

as the difference in expected utility between individuals with supplementary insurance and those

using Medicare only. The continuous variables Y ∗2 and Y ∗3 represent out-of-pocket expenditures

for individuals with supplementary insurance and for individuals with Medicare only, respectively.

Individual’s choice on insurance uptake will determine whether we observe one or the other.

Given these observation rules, a semi-parametric ESR model can be defined using the follow-

ing system of equations

Y ∗1i = vT
1iα1 +

P̄1∑
p̄1=1

s1p̄1(w1p̄1i) + ε1i = η1i + ε1i, (2.2)

Y ∗2i = vT
2iα2 +

P̄2∑
p̄2=1

s2p̄2(w2p̄2i) + ε2i = η2i + ε2i, (2.3)

Y ∗3i = vT
3iα3 +

P̄3∑
p̄3=1

s3p̄3(w3p̄3i) + ε3i = η3i + ε3i, (2.4)

where vmi = (1, vm2i, . . . , vmPmi)
T is a vector of binary and/or categorical variables (including

an intercept), αm ∈ RPm is a commensurate vector of regression coefficients, and each smp̄m(·)
2An indicator function 1A(a) is equal to 1 when a ∈ A and 0 otherwise.
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corresponds to an unknown smooth function of the continuous covariate wmp̄m , for m = 1, 2, 3,

and p̄m = 1, . . . , P̄m. The particular representation of the smooth functions is described in Section

2.2.1.

As in the classical ESR model, the semi-parametric specification makes fully parametric assump-

tions on the error terms, that is, the error terms ε1i, ε2i, and ε3i are assumed to follow a trivariate

normal distribution, i.e.,


ε1i

ε2i

ε3i

 ∼ N



0

0

0

 ,


σ2

1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3



 ,

where σ1, σ2, and σ3 are standard deviations, and ρ12, ρ13, ρ23 denote correlation coefficients.

Note that the deterministic model components, encapsulated in ηmi, for m = 1, 2, 3, correspond

to the well-known specification of semi-parametric additive predictors in GAMs.

Equation (2.2) represents a model for the switching mechanism or selection process, while

Equations (2.3) and (2.4) correspond to models for the two states that the outcome of interest

can be observed at, and are usually known as the regimes or regime equations. In our context,

Equation (2.2) models the process by which individuals decide whether to obtain supplementary

insurance to cover for out-of-pockets expenditures, whereas Equations (2.3) and (2.4) model the

two possible regimes for out-of-pocket expenditures, based on individual’s insurance status. If

ρ1m = 0, for m = 2, 3, the switching regression model is called exogenous and parameters can

be consistently estimated by fitting two separate regressions. However, if ρ1m 6= 0, for m =

2, 3, the switching regression model is called endogenous and parameters cannot be consistently

estimated using separate univariate regression models since E[ε2i | ε1i > −η1i] 6= 0 and E[ε3i |

ε1i ≤ −η1i] 6= 0. Further distinctions can be made depending on whether Y1 is unobserved,

perfectly observed, or observed with error (for details, see, for example Maddala, 1986a). The

endogenous switching regression model accounts for dependence between the error terms in the

switching mechanism and each regime through the correlation coefficients ρ12 and ρ13, which can

be attributed to unobserved confounders that affect both, the probability of treatment assignment

and the outcome of interest.

Identification of the model parameters is subject to certain restrictions. Since the latent vari-

able Y ∗1 is not observed, there is no information in the data to estimate σ1, and the regression
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coefficients in Equation (2.2) can only be identified up to a factor of 1/σ1. Without loss of gen-

erality, we can assume σ1 = 1. Note that the latent variable specification of Equation (2.2) leads

to a probit model for the observed binary variable Y1. Similarly, because we do not observe Y2

and Y3 simultaneously, there is no information in the data to identify the correlation coefficient

ρ23, which is usually left unspecified or set to zero (Smith, 2005). When the additive predictors in

Equations (2.2)-(2.4) contain more than one smooth function, their overall level is not identified

and a sum-to-zero constraint is imposed on all non-linear terms, that is,
∑n

i=1 smp̄m(wmp̄mi) = 0,

for m = 1, 2, 3, and p̄m = 1, . . . , P̄m (Wood, 2017, pp. 174-175).

Potential collinearity problems may arise during estimation due to a complete overlap among

the covariates in the predictors ηmi, for m = 1, 2, 3. In practice, it is common to assume that

an exclusion restriction assumption on the covariates holds. A valid exclusion restriction requires

the predictor η1i to contain at least one covariate that is not included in η2i and η3i. Such co-

variate is usually known as an instrumental variable, which must be relevant to predicting Y1i and

conditionally independent of Y2i and Y3i.

2.2.1 Smooth function representation

The smooth functions of continuous covariates in the model are represented using a penalized re-

gression spline framework (Eilers & Marx, 1996; Wahba, 1980; Wood, 2017). In essence, the ap-

proach consists of modelling the covariate effects using regression splines together with a penalty

component that controls for smoothness of the fit and prevents over-fitting.

Assume that each of the smooth functions specified in Equations (2.2)-(2.4) can be written

using basis functions expansions as follows

smp̄m(wmp̄mi) =

Jp̄m∑
jp̄m=1

bmp̄mjp̄m (wmp̄mi)α̃mp̄mjp̄m = bT
mp̄m(wmp̄mi)α̃mp̄m , (2.5)

where bmp̄m(wmp̄mi) = (bmp̄m1(wmp̄mi), . . . , bmp̄mJp̄m (wmp̄mi))
T is a vector that contains Jp̄m

basis functions evaluated at the continuous covariate wmp̄mi, and α̃mp̄m ∈ RJp̄m is a vector of

regression coefficients, for m = 1, 2, 3, and p̄m = 1, . . . P̄m. The number of basis functions is

generally chosen to be ‘large enough’ to capture the effect of the particular covariate. In practice,

using between 10 and 20 bases works well in many situations (Wood, 2017, pp. 242–243).

In addition, each smooth function has an associated penalty term λmp̄mJ (smp̄m), where

λmp̄m ≥ 0 is an unknown parameter that determines the smoothness of the estimated function



13 2.2. Specification of a semi-parametric ESR model

by controlling the influence of a quadratic roughness measure J (smp̄m) on the fit, given by

J (smp̄m) = α̃T
mp̄mSmp̄mα̃mp̄m , (2.6)

for some known Jmp̄m × Jmp̄m penalty matrix Smp̄m . Provided that the number of basis func-

tions Jp̄m used to model smp̄m(wmp̄mi) is large enough, smoothness is ultimately controlled by

λmp̄m and the particular number of basis functions becomes irrelevant (Green & Silverman, 1993).

When λmp̄m → ∞, the penalty on the coefficients α̃mp̄m becomes notable, which results in the

estimated function being closer to linear. On the other hand, when λmp̄m → 0, the penalty term

becomes negligible resulting in a wigglier function estimate. A key modelling issue in the penal-

ized regression framework consists of choosing the optimal smoothing parameter that obtains the

best description of the data based on a particular criterion (see Section 2.3 for further details).

Comprehensive surveys of the penalized regression framework and several specifications of

the splines basis functions can be found in Fahrmeir et al. (2013), Green & Silverman (1993), and

Wood (2017).

Given the aforementioned smooth function representation, each of the equations in the semi-

parametric ESR model can be written succinctly as

Y ∗mi = xT
miβm + εmi = ηmi + εmi, m = 1, 2, 3,

where xmi = (vT
mi,b

T
mi)

T contains an overall intercept and the binary and/or categorical variables

encapsulated in vmi = (1, vm2i, . . . , vmPmi)
T, and a vector of spline basis functions evaluated

at the ith observation of each of the continuous covariates, given by bmi = {bT
m1(wm1i), . . . ,

bT
mP̄m

(wmP̄mi)}
T. The corresponding vector of regression coefficients is βm = (αT

m, α̃
T
m)T ∈

Rpm , where αm = (αm1 , . . . , αmPm )T and α̃m = (α̃T
m1, . . . , α̃

T
mP̄m

)T are the regression coeffi-

cients associated with the fully parametric and the non-parametric elements of the additive predic-

tor, and pm = Pm+
∑P̄m

p̄m=1 Jmp̄m . The overall penalty term associated with themth linear predic-

tor is defined as
∑P̄m

p̄m=1 λmp̄mα̃
T
mp̄mSmp̄mα̃mp̄m , which can be expressed in terms of the overall

vector of regression coefficients as βT
mS̄mβm, where S̄m = diag(0T

Pm
, λm1Sm1, . . . , λmP̄mSmP̄m)

and 0T
Pm

represents a vector of Pm zeroes. The smoothing parameters contained in the over-

all penalty term can also be encapsulated into an overall smoothing parameter vector as λm =

(λm1, . . . , λmP̄m)T. Lastly, note that each of the model additive predictors can be further written

in vector-matrix form as ηm = Xmβm, where ηm = (ηm1, . . . , ηmn)T and Xm is the n × pm
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design matrix associated with equation m (for further details see, for example, Marra & Radice,

2013a,b, 2021; Wood, 2017). The specification of the semi-parametric ESR model is completed

by defining the structure of the error terms, which we assume to be jointly normal with zero mean

and variance-covariance matrix already defined in page 11. Therefore, we maintain the distribu-

tional assumptions of the classical approach but extend the functional form of the predictors in

order to capture non-linear effects of the continuous covariates.

Models that correct for self-selection are known to be sensitive to distributional and/or func-

tional form misspecification. Identification also relies on the distributional assumptions being

met (Pigini, 2015; Maddala, 1986b). The main criticisms of the ESR model are that the joint

normality and the constant variance assumptions can be restrictive or inappropriate in empirical

applications. Additionally, the association between the switching and regime variables is tied to

the correlation coefficient, whose use as a measure of association has also been subject to criticism

(Embrechts et al., 2002). Assuming the distributional assumptions hold, parameter estimates of

models subject to self-selection are consistently estimated using a 2-step approach or maximum

likelihood (see Section 2.3) however, departures from normality yield inconsistent parameter es-

timates (Vella, 1998; van der Klaauw & Koning, 2003). In the absence of exclusion restrictions,

the maximum likelihood estimator is generally preferred over the 2-step approach since the latter

obtains unreliable parameter estimates due to their dependence on the non-linearity of the inverse

Mill’s ratio (Puhani, 2000). A further issue relates to functional form misspecification, which may

result in residual confounding, causing departures from the distributional assumptions and biasing

the results (Benedetti & Abrahamowicz, 2004; Pigini, 2015; Radice et al., 2016; Slama & Wer-

watz, 2005). To address this issue, the semi-parametric ESR model intents to model the effects of

continuous covariates flexibly, using the described penalized regression framework.

Following the penalized regression spline literature (for example, Green & Silverman, 1993;

Wahba, 1990; Wood, 2017), we describe next two of the most popular combinations of spline basis

functions and penalty terms used in practice, namely, penalized B-splines and thin plate splines.

To simplify the notation and aid the exposition, we omit the sub-scripts m and p̄m that refer to the

model equation and the particular covariate within the equation, respectively.

Penalized B-splines

B-spline basis functions (DeBoor, 1978) are made up of piecewise polynomials which are joined

continuously at some given points (or knots) in the support of the variable. B-splines are numer-
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ically stable and are implemented in most statistical software. Given a set of k fixed equidistant

knots w∗1 < w∗2 < . . . < w∗k in the support of a continuous covariate w, the B-spline basis

functions of order r are obtained as follows

brj(w) =
w − w∗j−r
w∗j − w∗j−r

br−1
j−1(w) +

w∗j+1 − w
w∗j+1 − w∗j+1−r

br−1
j (w)

and

b0j (w) =


1 w∗j ≤ w < w∗j+1,

0 otherwise.
j = 1, . . . , J − 1.

In practice, it is common to set r = 3, since this obtains a representations of cubic spline basis

(Eilers & Marx, 2021). Once the bases are constructed, a smooth function s(w) can be represented

as a linear combination of J = k + r − 1 B-spline basis functions and regression coefficients as

given in (2.5).

B-splines can be combined with different types of roughness measures that lead to the quadratic

form in the regression coefficients given in (2.6). For instance, Eilers & Marx (1996) provided the

B-spline basis with a discrete roughness measure based on the differences of adjacent elements

of the parameter vector α̃, known as P-splines. The dth-order difference is defined recursively as

∆d(α̃j) = ∆d−1(α̃j)−∆d−1(α̃j−1) and ∆1(α̃j) = α̃j − α̃j−1. The measure of roughness on the

smooth function s(w) is then based on the sum of the squares of differences of order d given by

J (s) =

J∑
j=1+d

{∆d(α̃j)}2 = α̃TDT
dDdα̃ = α̃TSdα̃,

where Dd is a (J−d)×J difference matrix and Sd = DT
dDd is a J×J penalty matrix. In practice,

the order of the difference is usually set to d = 2, since this obtains a good balance between

smoothness and fidelity to the data (Eilers & Marx, 1996). As an example, penalizing the squared

second-order differences between two neighbour parameters leads to the following band diagonal
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matrices

D2 =



1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1


and S2 =



1 −2 1

−2 5 −4 1

1 −4 6 −4 1

. . . . . . . . . . . . . . .

1 −4 6 −4 1

1 −4 5 −2

1 −2 1



.

A comprehensive review of P-splines, the mathematical properties that make them suitable for

statistical modelling, and their applications can be found in Eilers & Marx (2021).

Alternatively, the roughness penalty can be based on a measure that quantifies the smoothness

of a function such as the integrated squared second-order derivative of the smooth function, i.e.,∫
{s′′(w)}2dw (O’Sullivan, 1986). Using the smooth function representation given in (2.5), the

penalty term can also be written as a quadratic form in the parameter vector α̃ as follows

J (s) =

∫
{s′′(w)}2dw =

∫ {
α̃Tb′′(w)

}2
dw = α̃T

{∫
b′′(w)b′′(w)Tdw

}
α̃ = α̃TSsα̃,

(2.7)

where b′′(w) is a J × 1 vector that contains the second-order derivative of the basis functions

and the (j1, j2)th element of the J × J penalty matrix Ss is given by
∫
b′′j1(w)b′′j2(w)dw, for

j1, j2 = 1, . . . J . In fact, the roughness measure in (2.7) is commonly used with different types of

basis functions, not just B-splines (see, for example, Green & Silverman, 1993).

Thin plate splines

Thin plate splines (TPS; Duchon, 1977) arise as the solution of the penalized least squares problem

for finding the estimate of a smooth function s(w) of c ≥ 1 covariates in which the penalty term

consists of a multivariate integrated squared dth-order derivative (see, for example, Wahba, 1990;

Wood, 2003, for details on the problem formulation). Compared to other choices of bases, TPS

allow representing smooth functions of more than one covariate and their formulation does not

depend on the choice of knot locations.

A smooth function of several continuous covariates, say w = (w1, . . . , wc) ∈ Rc, can be
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represented using thin plate splines as follows

s(w) =

L̃∑
l̃=1

b0
l̃
(w)α̃0

l̃
+

n∑
i=1

b+i (w)α̃+
i (2.8)

where α̃0
l̃

and α̃+
i are unknown regression coefficients, b0

l̃
(·) are polynomials of degree up to d−1

that span the null space of the penalty3, and b+j (·) are radial functions defined as

b+i (w) = b+i
(
‖w −wi‖

)
=


(−1)c/2+d+1

22d−1πc/2(d−1)!(d−c/2)!
‖w −wi‖2d−c log

(
‖w −wi‖

)
c even,

Γ(c/2−d)

22dπc/2(d−1)!
‖w −wi‖2c−d c odd,

(2.9)

where ‖ · ‖ denotes the Euclidean distance, and wi is the ith data point. Note that writing

α̃ = (α̃T
0, α̃

T
+)T, such that α̃0 = (α̃0

1, . . . , α̃
0
L̃

)T and α̃+ = (α̃+
1 , . . . , α̃

+
n )T; and b(w) =

(b0(w)T,b+(w)T)T, such that b0(w) = (b01(w)T, . . . , b0
L̃

(w)T)T and b+(w) = (b+1 (w)T, . . . , b+n (w)T)T,

obtains the smooth function representation given in (2.5). To ensure identifiability while esti-

mating the regression coefficients, the constraint TTα̃+ = 0 is imposed on α̃+, where T is a

n × L̃ matrix whose (i, l̃)th element is given by b0
l̃
(wi), for i = 1, . . . , n, and l̃ = 1, . . . , L̃ (see

Wood, 2017, p. 216 for details). Furthermore, the vector of evaluations of s(w) at wi, given by

s = (s(w1), . . . , s(wn))T, can be written as s = Tα̃0 + Eα̃+, where the E is a n×n matrix with

(i, j)th element given by b+
(
‖wi −wj‖

)
.

The roughness measure on the smooth function is defined by the following d-variate integral

Jcd(s) =

∫∫∫
Rc

∑
ν1+...+νc=d

r!

ν1! . . . νc!

(
∂ds(w)

∂wν1
1 . . . ∂wνcc

)2

dw1 . . . dwc, (2.10)

which can be understood as a generalization of the one-dimensional integrated squared second

derivative that appears in Equation (2.7). Moreover, using the results shown in, for example,

Green & Silverman (1993, pp. 143) or Wahba (1990, pp. 33), the roughness measure can also be

written as α̃T
+Eα̃+.

As an example, the TPS representation of a smooth function of two predictors s(w1, w2),

together with a roughness penalty based on second order derivatives can be written as

s(w1, w2) = α̃0
1 + α̃0

2w1 + α̃0
3w2 +

n∑
i=1

α̃+
i b

+
i (w),

3the space of functions where the roughness measure is zero with dimension L̃ =
(
c+d−1
c

)
.
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where b+i
(
‖w −wi‖

)
= 1

8π‖w−wi‖2 log(‖w−wi‖), subject to TTα̃+ = 0, where T is a n×3

matrix whose ith row is (1, w1i, w2i), for i = 1, . . . n. The roughness penalty in Equation (2.10)

reduces to

J22(s) =

∫ ∫ (
∂2s(w1, w2)

∂w1∂w1

)2

+ 2

(
∂2s(w1, w2)

∂w1∂w2

)2

+

(
∂2s(w1, w2)

∂w2∂w2

)2

dw1dw2.

The main disadvantage of using TPS in practical terms is that they are computationally costly,

since they require the estimation of as many parameters as observations. Further details on TPS,

their construction, and their theoretical and numerical properties can be found in Green & Silver-

man (1993), Wahba (1990), and Wood (2017).

Thin plate regression splines (TPRS; Wood, 2003) are a low rank approximation to TPS that

retain their good mathematical properties but are computationally efficient, since the number of

operations needed to determine the smooth function is significantly lower than using TPS. The

idea behind the construction of TPRS consists of keeping the bases contained in the first term on

the right-hand side of (2.8), while truncating to a lower dimension k̃, with L̃ < k̃ < n, the n radial

basis functions within the second term on the right-hand side of (2.8). Furthermore, the resulting

approximation has a minimal impact on the formulation of the smoothing problem, that is, on both

the model fit and the penalty functional that determines the shape of the smooth function. To see

this, consider the eigenvalue decomposition of the matrix E given by E = UTΛU, where Λ is

a diagonal matrix of eigenvalues arranged in descending order of magnitude and U is the matrix

containing the corresponding eigenvectors. Wood (2003) then shows that, for a given value k̃, the

truncated matrix Ek̃ = UT
k̃
Λk̃Uk̃, where Uk̃ contains the first k̃ columns of U and Λk̃ the first

k̃ largest eigenvalues of Λ, obtains the best approximation to E in the sense of minimising the

spectral norm ‖E− Ek̃‖2. His results allow to reformulate the smoothing problem in terms of the

truncated matrices and to obtain a k̃ rank approximation to the TPS with a small approximation

error. The value of k̃ is chosen by the analyst and should be larger than what is believed to be

needed to model the data at hand. For further details, we refer the reader to Wood (2003) and

Wood (2017, pp. 215–219). TPRS are the default splines basis in the popular mgcv (Wood, 2020)

R package.

As anticipated earlier in this section, the semi-parametric ESR model intents to model the ef-

fects of continuous covariates flexibly, without setting a pre-specified assumption about the form

of the effect, using the described penalized regression framework. The flexible specification of the
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additive predictors addresses the problem of residual confounding, which may cause departures

from the distributional assumptions and induced bias in the results (Benedetti & Abrahamowicz,

2004; Pigini, 2015; Radice et al., 2016; Slama & Werwatz, 2005). In the application, it can be

argued that variables such as age, income, and chronic conditions may affect the choice of in-

surance and out-of-pocket expenditures with some degree of non-linearity since they encapsulate

life-cycles effects (Radice et al., 2016; Winkelmann, 2012; Wojtyś et al., 2018). Our findings

in Section 2.6 reveal that these variables exhibit varying degrees of non-linearity, which are not

adequately captured by the classical approach.

2.3 Parameter estimation

In this section, we describe two approaches to estimate the parameters of the semi-parametric ESR

model. In particular, we place into to the current context the penalized two-step formulation of the

SS model presented in Marra & Radice (2013a) and the penalized maximum likelihood estimation

framework of Marra et al. (2017) and Marra & Radice (2019).

Similarly to Heckman’s two-step estimation approach for SS models (Heckman, 1976), Lee

(1976, 1978) proposed a two-step approach for the classical ESR model in which both regime

equations are augmented with correction terms and estimated separately via least squares. Marra

& Radice (2013a) adapted Heckman’s approach to the penalized regression context. Using the

same rationale, the semi-parametric ESR model equations given in Section 2.2 can be re-written

as follows

Y ∗1i = η1i + ε1i, (2.11)

Y ∗2i = η2i + λ(η1i)βλ2 + ζ2i if Y ∗1i > 0, (2.12)

Y ∗3i = η3i − λ(−η1i)βλ3 + ζ3i if Y ∗1i ≤ 0. (2.13)

Equation (2.11) represents the model for the switching mechanism and it has the same specification

as Equation (2.2) in the semi-parametric ESR model. The terms ηmi, for m = 1, 2, 3, correspond

to the additive predictors that appear in Equations (2.2)-(2.4), whereas the second terms on the

right-hand side of Equations (2.12) and (2.13) represent the expressions for E[ε2i | ε1i > −η1i] and

E[ε3i | ε1i ≤ −η1i], respectively. The regression coefficients βλm = ρ1mσm, for m = 2, 3, are as-

sociated with λ(·) = φ(·)/Φ(·), the inverse Mill’s ratio (IMR), where φ(·) and Φ(·) are the density
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function (pdf) and distribution function (cdf) of the standard normal. Note that the conditional vari-

ances of the latent variables are given by Var[Y ∗2i | Y ∗1i > 0] = σ2
2 − (ρ12σ2)2λ(η1i)[λ(η1i) + η1i]

and Var[Y ∗3i | Y ∗1i ≤ 0] = σ2
3 − (ρ13σ3)2λ(−η1i)[λ(−η1i)− η1i] (see, for instance, Greene, 2014,

and references therein). Furthermore, the error terms in Equations (2.12) and (2.13), denoted as

ζ2i and ζ3i, have zero conditional mean and are uncorrelated with the covariates encapsulated in

the predictors η2i, η3i, and with λ(·) (see Lee, 1978, for further details).

Estimation proceeds in two steps: the first stage estimates the parameters in Equation (2.11)

using a GAM with a probit link on the observed switching variable to obtain estimates of the

regression coefficients and construct η̂1i = xT
1iβ̂1; the second stage inserts η̂1i into Equations

(2.12) and (2.13) and fits two separate GAMs to obtain estimates of the corresponding regression

coefficients. Given the expressions for the conditional variances above, estimates for σ2 and σ3

can be obtained using (Maddala, 1986c)

σ̂2 =
√
ζ̂T

2 ζ̂2/n2 + β̂2
λ2
λ(η̂1)T

[
λ(η̂1) + η̂1

]
/n2

σ̂3 =
√
ζ̂T

3 ζ̂3/n3 + β̂2
λ3
λ(−η̂1)T

[
λ(−η̂1)− η̂1

]
/n3,

respectively, where ζ̂m represents a vector of residuals from the second stage, nm denotes the

number of observations in the mth model equation, and β̂λm corresponds to the estimated regres-

sion coefficient associated with the IMR, for m = 2, 3. Furthermore, estimates of the correlation

coefficients can be obtained using ρ̂12 = β̂λ2/σ̂2 and ρ̂13 = −β̂λ3/σ̂3 (see, for example, Cameron

& Trivedi, 2005; Maddala, 1986c; Toomet & Henningsen, 2008a).4

Two-stage approaches in models subject to self-selectivity are easy to implement using avail-

able software and yield consistent estimators under the classical assumptions however, they present

certain drawbacks (see, for example, Puhani (2000) for a review, and Marra & Radice (2013a,b)

for the relevant aspects in the penalized regression context). For instance, estimation of Equa-

tions (2.12) and (2.13) does not take into account the variability associated with estimating the

parameters in the switching equation, leading to incorrect standard errors. Corrections to obtain

the appropriate standard errors are given in Heckman (1979). In the context of binary response in

a semi-parametric SS model, Marra & Radice (2013b) proposed an approach to account for such

variability based on posterior simulation. In Section 2.5, we investigate some of the empirical

properties of the two-stage estimator however, nowadays the two-step method is generally used to

obtain initial values for maximum likelihood approaches.
4Estimates of ρ1m, for m = 2, 3, are not restricted to the [−1, 1] range and are truncated in practice.
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Assuming the model is correctly specified, consistent parameter estimates and standard errors

for the binary and the continuous model components can be obtained simultaneously via maximum

likelihood. Given n independent observations, the log-likelihood function of the semi-parametric

ESR model can be written as follows

`(β) =

n∑
i=1

y1i

log σ−12 + log

[
φ

(
y2i − η2i

σ2

)]
+ log

Φ

(
η1i + ρ12 (y2i − η2i) /σ2√

1− ρ212

)
+

n∑
i=1

(1− y1i)

log σ−13 + log

[
φ

(
y3i − η3i

σ3

)]
+ log

1− Φ

(
η1i + ρ13 (y3i − η3i) /σ3√

1− ρ213

) ,

(2.14)

where ηmi, for m = 1, 2, 3, are the semi-parametric additive predictors defined in the previous

section and the overall parameter vector is given by β = (βT
1 ,β

T
2 ,β

T
3 , σ2, σ3, ρ12, ρ13)T ∈ Rp,

where p = 4 +
∑3

m=1 pm and βm ∈ Rpm . Note that the parameters σm and ρ1m are transformed

for optimization to keep their domain on the real line, specifically, σ∗m = log σm and ρ∗1m =

tanh−1(ρ1m) = 1
2 log

(
1+ρ1m

1−ρ1m

)
, for m = 2, 3 (Marra & Radice, 2013a). Also note that the

trivariate normality assumption given in Section 2.2 is not actually needed for estimation since the

likelihood function can be derived assuming bivariate normality of the pairs (ε1i, ε2i) and (ε1i, ε3i)

(Smith, 2003). The derivation of the likelihood function is given in Appendix A.1.

Simply maximising the log-likelihood function in a penalized regression context will result

in over-fitting of the smooth terms and the likelihood is regularized by imposing a roughness

term that penalizes the fit (Green & Silverman, 1993; Marra & Radice, 2013a; Marra et al., 2017;

Wood, 2017). The penalized maximum likelihood estimate (PMLE) is the value that maximises

the penalized log-likelihood, that is,

β̂ = arg max
β∈Rp

`p(β) = arg max
β∈Rp

{
`(β)− P(β,λ)

}
,

where `p(β) represents the penalized log-likelihood and P(β,λ) denotes an overall quadratic

penalty given by P(β,λ) = 1
2β

TSλβ. The matrix Sλ is a block-diagonal overall penalty matrix

which contains each of the penalty matrices associated with the mth model equation, given in

Section 2.2.1, written as Sλ = diag(S̄1, S̄2, S̄3, 0, 0, 0, 0). The smoothing parameters embedded

into the matrices S̄m, for m = 1, 2, 3, can also be assembled into an overall penalty vector given

by λ = (λ̄T
1, λ̄

T
2, λ̄

T
3)T. For further details on setting up the penalty terms in a penalized regression

context see, for example, Marra & Radice (2013a,b, 2021) and Wood (2017).
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The model penalized gradient and penalized Hessian are defined as follows

gp(β) =
∂`p(β)

∂β
= g(β)− Sλβ

and

Hp(β) =
∂2`p(β)

∂β∂βT = H(β)− Sλ,

where the vector g(β) and the matrix H(β) correspond to the gradient and Hessian of the unpe-

nalized log-likelihood given by

g(β) =

(
∂`(β)

∂β1

T

,
∂`(β)

∂β2

T

,
∂`(β)

∂β3

T

,
∂`(β)

∂σ∗2
,
∂`(β)

∂σ∗3
,
∂`(β)

∂ρ∗12

,
∂`(β)

∂ρ∗13

)T

and

H(β) =



∂2`(β)

∂β1∂βT
1

∂2`(β)

∂β1∂βT
2

∂2`(β)

∂β1∂βT
3

∂2`(β)
∂β1∂σ∗2

∂2`(β)
∂β1∂σ∗3

∂2`(β)
∂β1∂ρ∗12

∂2`(β)
∂β1∂ρ∗13

· ∂2`(β)

∂β2∂βT
2

0 ∂2`(β)
∂β2∂σ∗2

0 ∂2`(β)
∂β2∂ρ∗12

0

· · ∂2`(β)

∂β3∂βT
3

0 ∂2`(β)
∂β3∂σ∗3

0 ∂2`(β)
∂β3∂ρ∗13

· · · ∂2`(β)
∂σ∗2∂σ

∗
2

0 ∂2`(β)
∂σ∗2∂ρ

∗
12

0

· · · · ∂2`(β)
∂σ∗3∂σ

∗
3

0 ∂2`(β)
∂σ∗3∂ρ

∗
13

· · · · · ∂2`(β)
∂ρ∗12∂ρ

∗
12

0

· · · · · · ∂2`(β)
∂ρ∗13∂ρ

∗
13


respectively. Their analytical expressions are derived in Appendix A.2.

Estimation of the vectors β and λ proceeds by using the iterative approach proposed by Marra

et al. (2017) and Marra & Radice (2019), implemented in the SemiparBIV.fit function and

several internal routines of the GJRM package (Marra & Radice, 2021). At iteration a, the first

step holds the smoothing parameter vector fixed at λ[a] and optimises the penalized log-likelihood

using a trust-region procedure to obtain β[a+1]; the second step holds the overall parameter vector

fixed at β[a+1] and minimises a prediction error criterion to obtain λ[a+1]. These two steps are

iterated until |`(β
[a+1])−`(β[a])|

0.1+|`(β[a+1])| < 10−7 is satisfied. Initial values for the overall parameter vector

are obtained using the penalized two-stage method described earlier in this section. The following

two subsections describe their estimation approach in detail.
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Step 1: Estimation of β

Given some initial values β[0], the trust-region procedure is an iterative approach that obtains

a sequence of guess-estimates β[1], . . . ,β[a], . . . that converges to an estimate for the parameter

vector β based on the assumption that there is a ‘suitable neighbourhood’ or region around the

current guess-estimate β[a] in which the penalized log-likelihood is adequately represented by a

quadratic approximation.

In contrast to line search methods, which first determine the search direction and then com-

pute the step length that obtains the best improvement, the procedure first establishes an upper

bound in the step length and then finds an improvement within that region. As pointed out by

Braun (2014), restricting the search for the next guess-estimate this way makes the trust-region

approach appropriate for optimizing non-concave functions or those that contain regions that are

nearly flat. The procedure is then particularly suitable in this context since the log-likelihood func-

tion of models with self-selectivity are not globally concave in general (Toomet & Henningsen,

2008a; Pigini, 2015). Furthermore, the absence of a variable that fulfils the exclusion restriction

assumption may lead to a near-flat likelihood function over a relatively wide interval around its

mode (Marra & Radice, 2011, 2013a). Trust-region algorithms have been successfully applied to

graphical models (Hunter et al., 2008), beta-binomial regressions (Martin et al., 2020), difference-

in-differences methods (Sant’Anna & Zhao, 2020), and in several models that fit simultaneous

systems of equations (for example, Gomes et al., 2019; Marra & Radice, 2013a; Wojtyś et al.,

2018, among others).

To fix ideas, at iteration a the trust-region approach proceeds on the basis of the following

quadratic approximation of the penalized log-likelihood around the current parameter vector β[a]

Q[a](q) = `p(β[a]) + qTgp(β[a]) +
1

2
qTHp(β[a])q, (2.15)

where gp(β[a]) =
∂`p(β)
∂β

∣∣∣
β=β[a]

and Hp(β[a]) =
∂2`p(β)
∂β∂βT

∣∣∣
β=β[a]

are the penalized gradient and

penalized Hessian evaluated at the current guess-estimate of the parameter vector, and q = β −

β[a] ∈ Rp. The ‘suitable neighbourhood’ around β[a] corresponds to the trust-region at iteration

a, which is defined as a ball of radius r[a] centred at β[a], i.e., T [a] = {β : ‖β−β[a]‖ ≤ r[a]}. The

radius r[a] can be understood as the bound of the trial step at the current iteration, and is updated

at each iteration.
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The algorithm then solves the following constrained optimization sub-problem

q̃[a] = arg min
q∈T [a]

−Q[a](q),

that is, q̃[a] is the value that minimises the quadratic approximation of the penalized negative log-

likelihood within the trust-region T [a] at the current iteration a.

The acceptance of the trial step q̃[a] and the update of the trust-region radius are based on the

evaluation of the following ratio (Nocedal & Wright, 2006)

r̆[a] =
`p(β[a])− `p(β[a] + q̃[a])

Q[a](β[a])−Q[a](β[a] + q̃[a])
,

where the numerator reflects the reduction in the penalized log-likelihood, and the denominator

shows the reduction in the penalized log-likelihood when approximated by the quadratic function

given in (2.15). Values of r̆[a] close to 1 indicate that the current best solution β[a+1] = β[a] +

q̃[a] provides a satisfactory decrease in the value of the penalized negative log-likelihood (that

is, Q[a](β[a]) is a good representation of `p(β[a])), the trial step is accepted, and the radius of

the trust-region can be increased at the next iteration. When r̆[a] is negative or close to zero, the

approximation Q[a](β[a]) is a poor representation of `p(β[a]), the trial step q̃[a] is discarded, and

the radius of the trust-region r[a] is reduced. In other cases, r[a] is not modified and the algorithm

proceeds to the next iteration. Note that, for a sufficiently large number of iterations, Nocedal &

Wright (2006, pp. 92) show that the bound set by the trust-region constraint becomes irrelevant

and the algorithm behaves as the classic Newton-Raphson approach.

A graphical illustration of the main ideas behind trust-region methods applied to an objective

function of two variables is given in Figure 2.1 (Nocedal & Wright, 2006, pp. 67). Further in-

formation and theoretical details of the approach can be found in Conn et al. (2000) and Nocedal

& Wright (2006, chapter 4). The R implementation is provided by the trust package (Geyer,

2015).

Step 2: Estimation of λ

As anticipated in Section 2.2.1, efficient estimation of the smoothing parameters is a pivotal step

in the penalized regression framework. Without being exhaustive, and following Wood (2017),

automatic smoothing parameter estimation can be approached by choosing either a likelihood- or

a model selection-based criterion which can then be applied to the model itself, or to a working
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











Figure 2.1: Graphical illustration of the trust-region approach applied to an objective function of two variables (black
line ). The trust-region algorithm constructs a region of trust (dotted red line ) around the current guess-
estimate where it is believed that a quadratic approximation (dashed blue line ) represents well the objective
function. Bounding the step-length to be contained within the trust-region avoids searching too far from the current
guess-estimate and generally provides a better progress towards the minimum. Figure adapted from Nocedal & Wright
(2006).

model derived from the previous estimation step. Likelihood-based methods result from taking the

mixed model representation of the penalization process, where smooth functions are understood

as random effects and smoothing parameters as variance components, and estimation proceeds via

maximum likelihood or restricted maximum likelihood (see, for example, Ruppert et al., 2003;

Wood et al., 2016). On the other hand, model selection-based approaches estimate the smoothing

parameters by minimising a particular prediction error criterion that quantifies the model perfor-

mance, usually based on an estimate of the mean squared error, such as generalized cross valida-

tion (GCV) or the unbiased risk estimator (UBRE; Craven & Wahba, 1978). A thorough review

of these approaches can be found in Wood (2017).

In the present context, the smoothing parameter vector λ is estimated using an UBRE-like cri-

terion based on a parametrization of the working model that results from the trust-region iteration

using the approach of Marra et al. (2017) and Marra & Radice (2019) as described next.

First, note that at convergence of the previous step, a first order Taylor series expansion of

the penalized gradient gp(β[a+1]) about β[a] obtains the following expression for the next guess-

estimate of the parameter vector (Marra et al., 2017; Marra & Radice, 2019)

β[a+1] =
{
−H(β[a]) + Sλ[a]

}−1 {
−H(β[a])

}1/2
z[a], (2.16)

where

z[a] =
{
−H(β[a])

}1/2
β[a] +

{
−H(β[a])

}−1/2
g(β[a]) (2.17)
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is a pseudo-data vector or working variable, and the matrices
{
−H(β[a])

}1/2
and

{
−H(β[a])

}−1/2

denote the square root of the observed information matrix and its inverse, respectively. It is tacitly

assumed that the Hessian matrix is positive definite or that it can be perturbed to positive definite-

ness during the fitting process (see, supplementary material A of Marra et al., 2017).

Using results from likelihood theory (for example, Pawitan, 2013, p. 92) note that
{
−H(β)

}−1/2 g(β) ∼

N (0, I), where I is an identity matrix. This result implies that the pseudo-data vector is normally

distributed with expectation E[z] =
{
−H(β)

}1/2
β = µz and variance Var[z] = I.

Letting µ̂z =
{
−H(β̂)

}1/2
β̂ = Aλz be the predicted value ofµz, where Aλ =

{
−H(β̂)

}1/2

{
−H(β̂) + Sλ

}−1 {
−H(β̂)

}1/2
corresponds to an influence matrix, the smoothing parameter

vector λ is estimated by minimising the following expected mean squared error criterion (Marra

et al., 2017; Marra & Radice, 2019)

E

(
1

n
‖µz − µ̂z‖2

)
= n−1E ‖z− Aλz‖2 + 2n−1tr(Aλ)− n−1K̄, (2.18)

where tr(Aλ) = tr

{
−H(β̂)

{
−H(β̂) + Sλ

}−1
}

defines the model effective degrees of free-

dom (edf ), and K̄ is the total number of parameters. Note that this definition of edf can be used to

obtain the Akaike information criterion (AIC) and Bayesian Information Criterion (BIC) defined

as AIC = −2`(β̂) + 2edf and BIC = −2`(β̂) + log(n)edf (Hastie & Tibshirani, 1990; Marra &

Radice, 2019; Wood, 2017, pp. 301).

In practical terms, given the guess-estimate β[a+1] from Step 1, the smoothing parameters are

obtained by minimizing an estimate of the expression in Equation (2.18), that is,

λ[a+1] = arg min
λ

V(λ) = arg min
λ

‖z[a+1] − Aλz[a+1]‖2 + 2tr(Aλ)− K̄, (2.19)

which is solved using the Newton approach proposed by Wood (2004) and implemented by the

magic function of the mgcv package (Wood, 2020). As explained in Marra et al. (2017), this

approach to smoothing parameter selection is efficient and computationally stable. Furthermore,

minimising the mean squared error criterion V(λ) is also equivalent to minimising an approximate

Akaike information criterion (Marra & Radice, 2019).
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2.4 Some inferential results

We describe next some inferential results that stem from the Bayesian interpretation of the smooth-

ing process (Marra et al., 2017; Marra & Radice, 2019; Wahba, 1978; Wood, 2017; Silverman,

1985) and can be applied to the current context. Under this view, the overall penalty term βTSλβ

corresponds to the assumption of setting a prior density on β, that is, f(β) ∝ exp(−1
2β

TSλβ) or,

equivalently, β ∼ N (0,S−λ ), where S−λ denotes the pseudo-inverse of Sλ. The penalized maxi-

mum likelihood estimate β̂ corresponds to the posterior mode and, assuming a fixed value of λ,

inference proceeds using the large sample approximation to the posterior (Wood et al., 2016)

β | y ∼̇ N (β̂,Vβ) (2.20)

where Vβ =
{
−H(β̂) + Sλ

}−1
denotes the Bayesian posterior covariance matrix for the model

parameters (for further details see, for example, Wood, 2017; Wood et al., 2016, and references

therein). Assessments of uncertainty and tests of hypothesis about linear and non-linear functions

of the parameters are then derived based on the covariance matrix in (2.20) instead of its frequentist

counterpart as we describe next.

Point-wise Bayesian credible intervals (Wahba, 1983) for smooth model components can be

constructed using

(
ŝmp̄m(wmp̄mi)− zς/2

√
vmp̄mi, ŝmp̄m(wmp̄mi) + zς/2

√
vmp̄mi

)
i = 1, . . . , n,

where ŝmp̄m(wmp̄mi) = bT
mp̄m(wmp̄mi) ˆ̃αmp̄m is the estimated smooth function, zς/2 corresponds

to the 100(1−ς/2) percentile of the standard normal, and vmp̄mi = bT
mp̄m(wmp̄mi)Vα̃mp̄mbmp̄m(wmp̄mi),

where Vα̃mp̄m denotes the portion of the Bayesian covariance matrix corresponding to the regres-

sion parameters in the p̄th
m smooth term of the mth model equation. Nychka (1988), Marra &

Wood (2012), and Marra & Radice (2019) showed that intervals for the smooth model components

constructed using the Bayesian approach have closer to nominal coverage probabilities, when in-

terpreted ‘across-the-function’ rather than pointwise, than those constructed using the frequentist

results. Approximate credible intervals for non-linear functions of the parameters in the model

can be constructed using simulation via the following steps (Radice et al., 2016)

CI.1 draw n∗ vectors {β∗i }n
∗
i=1 from the posterior distribution in (2.20),

CI.2 compute the function of the parameters of interest {h(β∗i )}n
∗
i=1,
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CI.3 obtain the approximate 100(1 − ς)% credible intervals for h(β) using the lower

ς/2 and upper 1− ς/2 quantiles of {h(β∗i )}n
∗
i=1.

Hypothesis testing about model components being equal to zero follow from the results shown

in Wood (2012), Wood (2017, pp. 304-315), and the extension of Marra (2013). For instance,

letting αmpj denote a sub-vector of pj parametric components from the mth model predictor, and

Vα̂mpj the corresponding portion of the Bayesian covariance matrix then, under the null hypothesis

H0 : αmpj = 0, it holds that approximately,

α̂T
mpjV

−1
α̂mpj

α̂mpj ∼̇ χ2
pj

provided Vα̂mpj is not singular. Single-parameter hypothesis can also be re-written by using the

standard normal as the reference distribution for the test. Moreover, testing whether a smooth term

can be included in the model, i.e. H0 : smp̄m = 0, can be achieved using the following test statistic

(Wood, 2012)

ŝT
mp̄mV−smp̄m ŝmp̄m ∼̇ χ

2
rmp̄m

,

where ŝmp̄m = (ŝmp̄m(wmp̄m1), . . . , ŝmp̄m(wmp̄mn))T, the matrix V−smp̄m corresponds to the pseudo-

inverse of Vsmp̄m = X̃mp̄mVβX̃T
mp̄m , and X̃mp̄m is a matrix such that smp̄m = X̃mp̄mβ. The

degrees of freedom are computed as follows (Marra, 2013; Wood, 2012)

rmp̄m =


bedfmp̄mc if edfmp̄m − bedfmp̄mc < 0.05,

bedfmp̄mc+ 1 otherwise,

where b·c represents the floor function and edfmp̄m denotes the effective degrees of freedom asso-

ciated with the p̄m smooth term in the mth model equation. For further details on the justification

and construction of the test statistic, the derivation of its distribution, and the rationale behind the

calculation of rmp̄m , see Wood (2012).

The aforementioned inferential results are implemented in several routines from the GJRM

(Marra & Radice, 2021) and mgcv (Wood, 2020) packages.
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2.5 Simulation study

In this section, we perform several Monte Carlo experiments in order to (i) investigate the em-

pirical properties of the semi-parametric approaches to estimation and compare them to those

obtained using their classical parametric counterparts, (ii) assess the consequences of not account-

ing for non-linear effects flexibly, and (iii) evaluate the robustness of the results in the absence of

the exclusion restriction assumption.

We generate the data using the observation rules given in (2.1) and the following specification

of the switching mechanism and regime equations

y∗1i = β10 + β11vi + s11(w1i) + s12(w2i) + ε1i,

y∗2i = β20 + β21vi + s21(w1i) + ε2i,

y∗3i = β30 + β31vi + s31(w1i) + ε3i,

where β10 is set to either −3.05, −1.4, or −0.15 in order to assign, approximately, 20%, 40%,

or 60% of observations to the first regime, while the values of β11, β20, β21, β30 and β31 are

set to 1.2, 2.2, 1.3, 1.5, and 2.1, respectively. Following Marra & Radice (2011) and Marra

& Radice (2013a), the covariates entering each additive predictor are obtained by first drawing

(v∗∗i , w
∗∗
1i , w

∗∗
2i )

n
i=1 from a trivariate normal distribution with zero mean and correlation coefficients

equal to 0.5, and then transforming them into uniformly distributed variables on the unit interval,

using the cdf of the standard normal distribution, to obtain (v∗i , w1i, w2i)
n
i=1. Furthermore, the

variable v∗i is transformed into a binary variable using the following rule vi = 1(v∗i > 0.5),∀i.

Their procedure obtains a binary and two continuous on (0, 1) variables with correlation coeffi-

cients approximately equal to 0.5. Note that the variable w2 is used to fulfil the exclusion re-

striction assumption. We further set σ2 = σ3 = 1, while the correlation coefficients between

the selection equation and the two regimes, ρ12 and ρ13, are set to different combinations of

{0.2, 0.4, 0.6, 0.8}. Lastly, the non-linear associations in the model equations are given by

s11(w1) = 1− w3
1 − 2 exp(−180w2

1)− 2.3 sin(4.9w1),

s12(w2) = −0.2(−0.3− 1.3w2 + cos(5w2)),

s21(w1) = w1 + exp[−32(w1 − 0.5)2],

s31(w1) = 0.3 + w1 + exp[−30(w1 − 0.35)2],
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whose graphs are shown in Figure 2.2. The data generating process corresponds to an endogenous

switching regression model where the endogenous switching variable is observed without error.

Note that the simulation experiments and the construction of the data generating process are similar

to those that appear in Marra & Radice (2011) and Chib & Greenberg (2007) in the context of

endogenous dummy variable models; and in Marra & Radice (2013a) in the context of sample

selection models.
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Figure 2.2: Graphs of the smooth functions representing non-linear effects used in the simulation study. Top left:
s11(w1) = 1 − w3

1 − 2 exp(−180w2
1) − 2.3 sin(4.9w1). Top right: s12(w2) = −0.2(−0.3 − 1.3w2 + cos(5w2).

Bottom left: s21(w1) = w1 + exp[−32(w1 − 0.5)2]. Bottom right: s31(w1) = 0.3 + w1 + exp[−30(w1 − 0.35)2].

We perform N = 200 repetitions5 for all different combinations of the values assigned to

β10, ρ12, and ρ13 with sample sizes of n = {3000, 5000, 10000}, with and without the exclusion

restriction assumption. We then estimate the parameters using: the semi-parametric approaches

described in Section 2.3 via penalized maximum likelihood and penalized two-stage estimation,

denoted as SML and S2S; and the classical maximum likelihood and two-stage methods, denoted

as CML and 2S. The CML and 2S approaches are implemented in the sampleSelection

package (Toomet & Henningsen, 2008b), where we have used third-order polynomials to model

non-linear terms.

We summarise next a subset of the simulation experiments. In particular, we report the results

for scenarios where the switching mechanism assigns approximately 40% of observations to the
5The number of repetitions is based on previous simulation studies from the literature (see, for example, Marra &

Radice, 2011, 2013a). A more principled approach to choose the number of replications can be considered using the
guidelines from Morris et al. (2019) and Boos & Stefanski (2013). For instance, focusing on the bias as a performance
measure of the estimation method; using an initial run of N0 = 50 repetitions to compute the preliminary estimates of
the standard deviations for the estimated parameters of interest (say ρ12 and ρ13) for the simulation scenario where their
true values are ρ12 = 0.4 and ρ13 = 0.6 and the sample size is n = 10000; and aiming for a Monte Carlo standard
error of 0.003 yields N ≈ 135 and N ≈ 282 repetitions.
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first regime (β10 = −1.4), the parameter ρ12 takes values in {0.4, 0.6, 0.8} and the value of ρ13

is fixed to 0.6. Figures 2.3 and 2.5 show boxplots of the estimates of βm1, σm, and ρ1m, for

m = 2, 3, for experiments with and without an exclusion restriction. Figures 2.4 and 2.6 show

the true smooth functions and the average mean effect estimates (solid lines) of sm1(w1), for

m = 2, 3, together with the 5% and 95% point-wise quantiles (shaded areas), for experiments with

and without an exclusion restriction. For clarity, we only show the results of the estimated smooth

effects obtained using the semi-parametric methods since the classical approaches fail to capture

non-linearities adequately. In addition, Tables 2.1 and 2.2 summarise the subset of results in terms

of relative bias and root mean squared error (RMSE) for the aforementioned model components.6

The main findings are as follows:

• Overall, the boxplots show that estimates obtained using the semi-parametric methods are

close to their true values and are less variable as the sample size increases for experiments

with and without an exclusion restriction. Except for a few instances, the semi-parametric

approaches tend to outperform their parametric counterparts in terms of relative bias and

RMSE.

• In terms of the regression coefficients, β21 and β31, both semi-parametric approaches per-

form better than their classical counterparts in scenarios with and without an exclusion re-

striction. The best results in term of bias and RMSE are given by the SML method. More-

over, the classical approaches appear to underestimate β21 and overestimate β31 slightly.

This may be due to residual confounding since the effect of the continuous variable w1 is

not flexibly modelled in the CML and 2S approaches. The S2S method appears to obtain

similar, and in several occasions less biased, results than the CML. In experiments without

an exclusion restriction, estimates from the CML, S2S, and 2S are generally more biased,

in particular those for β21 with relatively low values of ρ12.

• In the case of the standard deviations, σ2 and σ3, and for experiments with and without

an exclusion restriction, both maximum likelihood approaches deliver less biased estimates

than their two-steps counterparts. The SML approach obtains the best overall results, except

in experiments with a relatively low correlation coefficient between the selection equation
6The bias and RMSE of ŝm1(w1),m = 2, 3, are obtained by evaluating the true and estimated smooth func-

tions on a 200 points grid over (0, 1) using bias{ŝm1(w1)} = 1
200

∑200
i=1

∣∣∣ 1
200

∑200
j=1 ŝm1,j(w1i)− sm1(w1i)

∣∣∣ and

RMSE{ŝm1(w1)} = 1
200

∑200
i=1

√
1

200

∑200
j=1[ŝm1,j(w1i)− sm1(w1i)]2, for m = 2, 3. (Marra & Radice, 2013a,

2019; Wiesenfarth & Kneib, 2010).
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and the first regime (ρ12 = 0.4), where the CML method performs slightly better in terms

of precision. Nevertheless, the CML approach appears to underestimate σ2 but overestimate

σ3, slightly. Lastly, the S2S method tends to perform better than its classical counterpart

in terms of relative bias, where the latter seems to underestimate the true values of both

parameters as the correlation values increase. However, the 2S approach tends to deliver

better RMSE results.

• With respect to the correlation coefficients, ρ12 and ρ13, the SML method obtains the best

results overall. Furthermore, the S2S approach generally performs better than both classical

approaches in terms of relative bias. Both CML and 2S methods appear to slightly under-

estimate the value of ρ12. Omitting the exclusion restriction does not seem to affect much

the estimates obtained using the semi-parametric approaches however, they are more biased

when obtained using the parametric methods.

• With regard to the smooth components, s21(w1) and s31(w1), Figures 2.4 and 2.6 show that

non-linear terms are appropriately recovered by the semi-parametric methods and that the

SML outperforms the S2S in terms of relative bias and RMSE. As expected, the classical

approaches fail to capture the true non-linear effects (not shown in the plots for clarity) and

the estimates are severely biased.

In summary, the simulation experiments suggest that (i) the semi-parametric approaches have

competitive empirical properties when compared with their parametric counterparts; (ii) the im-

portance of flexibly modelling non-linear effects and the detrimental effect that they may have in

the results; and (iii) the effect of the exclusion restriction on parameter estimates, in particular, for

the 2S framework. Similar results have also been reported in Chib & Greenberg (2007) and Marra

& Radice (2011, 2013a).
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Figure 2.3: Boxplots of the estimates of the regression parameters, β21, β31, standard deviations σ2, σ3, and correlations
coefficients, ρ12, ρ13, for experiments with an exclusion restriction where 40% of the observations are allocated to the
first regime, ρ12 takes values in {0.4, 0.6, 0.8}, ρ13 is fixed at 0.6, with sample sizes of n ∈ {3000, 5000, 10000}. The
real value of each parameter is indicated by a dashed line in each sub-plot. SML and S2S represent the semi-parametric
penalized maximum likelihood and penalized two-step approaches, whereas CML and 2S denote the maximum likeli-
hood and the two-stage classical approaches.
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Figure 2.4: Mean estimates of s21(w1) (top row) and s31(w1) (bottom row) obtained using the SML (semi-parametric
maximum likelihood, in red) and S2S (semi-parametric two-step, in blue) approaches for experiments with an exclusion
restriction with sample sizes of n = 3000 (left column), n = 5000 (middle column), and n = 10000 (right column).
The switching mechanism allocates 40% of the observations to the first regime, and the values of ρ12 and ρ13 are fixed
to 0.4 and 0.6, respectively. The solid lines represent the average of the estimated smooth effects, while the shaded
areas contain the 95% point-wise inner quantiles. The true functions are represented by dashed lines.
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Relative bias RMSE Relative bias RMSE

ρ12 method | n 3000 5000 10000 3000 5000 10000 3000 5000 10000 3000 5000 10000

β̂21 β̂31

0.4 SML 0.0093 0.0023 0.0022 0.0869 0.0699 0.0489 0.0028 -0.0006 0.0037 0.0612 0.0478 0.0309
CML -0.0376 -0.0431 -0.0396 0.1063 0.0942 0.0744 0.0033 0.0025 0.0082 0.0704 0.0496 0.0364
S2S 0.0234 0.0076 0.0079 0.1069 0.0801 0.0602 0.0038 0.0028 0.0083 0.0869 0.0745 0.0507
2S -0.0188 -0.0282 -0.0260 0.1094 0.0890 0.0696 0.0042 0.0070 0.0152 0.0973 0.0796 0.0615

0.6 SML 0.0024 0.0038 0.0053 0.0721 0.0579 0.0426 0.0015 0.0004 0.0029 0.0627 0.0457 0.0345
CML -0.0397 -0.0337 -0.0306 0.0977 0.0775 0.0625 0.0033 0.0037 0.0076 0.0684 0.0480 0.0390
S2S 0.0138 0.0118 0.0072 0.1014 0.0853 0.0589 -0.0004 0.0035 0.0058 0.0923 0.0734 0.0495
2S -0.0327 -0.0323 -0.0297 0.1141 0.0961 0.0737 0.0023 0.0069 0.0130 0.1008 0.0782 0.0578

0.8 SML 0.0011 -0.0001 0.0026 0.0701 0.0515 0.0363 0.0030 -0.0010 0.0017 0.0660 0.0466 0.0316
CML -0.0240 -0.0222 -0.0194 0.0788 0.0613 0.0462 0.0040 0.0019 0.0056 0.0723 0.0508 0.0379
S2S 0.0137 0.0089 0.0085 0.1058 0.0777 0.0546 0.0065 -0.0020 0.0040 0.0939 0.0717 0.0456
2S -0.0393 -0.0335 -0.0322 0.1187 0.0927 0.0679 0.0091 0.0040 0.0103 0.1006 0.0767 0.0545

σ̂2 σ̂3

0.4 SML 0.0019 0.0004 0.0005 0.0263 0.0191 0.0140 0.0003 -0.0011 0.0016 0.0201 0.0160 0.0116
CML -0.0010 -0.0021 -0.0025 0.0241 0.0177 0.0132 0.0141 0.0139 0.0180 0.0249 0.0219 0.0220
S2S 0.0105 0.0036 0.0032 0.0376 0.0240 0.0162 0.0043 0.0041 0.0065 0.0322 0.0274 0.0199
2S -0.0066 -0.0077 -0.0084 0.0225 0.0178 0.0139 -0.0156 -0.0157 -0.0136 0.0228 0.0212 0.0167

0.6 SML -0.0001 0.0021 0.0018 0.0238 0.0199 0.0145 0.0008 0.0008 0.0021 0.0206 0.0173 0.0118
CML -0.0080 -0.0059 -0.0054 0.0248 0.0212 0.0154 0.0149 0.0168 0.0181 0.0267 0.0249 0.0219
S2S 0.0099 0.0088 0.0039 0.0416 0.0322 0.0205 0.0028 0.0058 0.0056 0.0349 0.0277 0.0204
2S -0.0286 -0.0275 -0.0283 0.0346 0.0320 0.0306 -0.0157 -0.0140 -0.0136 0.0236 0.0198 0.0170

0.8 SML 0.0001 0.0010 0.0006 0.0241 0.0187 0.0126 0.0015 -0.0005 0.0000 0.0221 0.0176 0.0108
CML -0.0073 -0.0046 -0.0049 0.0267 0.0209 0.0142 0.0155 0.0143 0.0157 0.0281 0.0238 0.0197
S2S 0.0124 0.0087 0.0056 0.0465 0.0343 0.0236 0.0075 0.0009 0.0029 0.0362 0.0258 0.0169
2S -0.0599 -0.0579 -0.0587 0.0636 0.0601 0.0597 -0.0131 -0.0159 -0.0151 0.0230 0.0215 0.0177

ρ̂12 ρ̂13

0.4 SML 0.0633 0.0211 0.0231 0.1202 0.0953 0.0656 0.0200 0.0061 0.0158 0.0751 0.0583 0.0392
CML -0.3522 -0.3853 -0.3654 0.2118 0.1990 0.1704 -0.0608 -0.0547 -0.0306 0.1083 0.0743 0.0492
S2S 0.1572 0.0553 0.0637 0.1900 0.1331 0.0968 0.0190 0.0270 0.0525 0.1693 0.1420 0.1021
2S -0.1985 -0.2640 -0.2533 0.2197 0.1799 0.1467 -0.0237 0.0186 0.0699 0.2116 0.1687 0.1275

0.6 SML 0.0251 0.0153 0.0170 0.0774 0.0598 0.0417 0.0211 0.0153 0.0142 0.0779 0.0605 0.0399
CML -0.2260 -0.2210 -0.2104 0.1897 0.1607 0.1407 -0.0504 -0.0439 -0.0362 0.0983 0.0747 0.0511
S2S 0.0644 0.0471 0.0250 0.1733 0.1347 0.0903 -0.0101 0.0330 0.0349 0.1739 0.1460 0.1019
2S -0.1700 -0.1934 -0.1842 0.2415 0.2026 0.1563 -0.0290 0.0210 0.0520 0.2136 0.1736 0.1234

0.8 SML 0.0162 0.0067 0.0037 0.0397 0.0284 0.0215 0.0141 0.0061 0.0061 0.0773 0.0633 0.0434
CML -0.1174 -0.1177 -0.1200 0.1145 0.1063 0.1020 -0.0709 -0.0606 -0.0519 0.1117 0.0860 0.0613
S2S 0.0190 0.0132 0.0170 0.1013 0.0842 0.0691 0.0243 -0.0073 0.0233 0.1671 0.1412 0.0994
2S -0.1356 -0.1157 -0.1216 0.2063 0.1741 0.1422 0.0077 -0.0011 0.0325 0.2076 0.1706 0.1188

ŝ21(w1) ŝ31(w1)

0.4 SML 0.0394 0.0305 0.0234 0.1367 0.1117 0.0815 0.0150 0.0127 0.0094 0.1115 0.0843 0.0631
CML 0.2715 0.2686 0.2669 0.3176 0.3032 0.2861 0.1776 0.1744 0.1658 0.2226 0.1967 0.1802
S2S 0.0572 0.0387 0.0314 0.1739 0.1305 0.0961 0.0140 0.0139 0.0221 0.1568 0.1306 0.096
2S 0.2457 0.2479 0.2478 0.3170 0.2940 0.2763 0.1910 0.1785 0.1657 0.2765 0.2336 0.2014

0.6 SML 0.0398 0.0325 0.0178 0.1209 0.0931 0.0666 0.0175 0.0077 0.0105 0.1172 0.0873 0.0611
CML 0.2662 0.2608 0.2585 0.3119 0.2870 0.2744 0.1690 0.1680 0.1618 0.2165 0.1946 0.1753
S2S 0.0546 0.0440 0.0220 0.1695 0.1308 0.0909 0.0172 0.0138 0.0171 0.1729 0.1354 0.0944
2S 0.2588 0.2610 0.2597 0.3324 0.3087 0.2863 0.1886 0.1776 0.1663 0.2790 0.2381 0.1988

0.8 SML 0.0338 0.0262 0.0191 0.1024 0.0812 0.0604 0.0129 0.0114 0.0092 0.1151 0.0910 0.0602
CML 0.2463 0.2467 0.2442 0.2805 0.2686 0.2576 0.1668 0.1648 0.1664 0.2157 0.1934 0.1814
S2S 0.0499 0.0388 0.0282 0.1513 0.1175 0.0867 0.0185 0.0126 0.0089 0.1656 0.1308 0.0888
2S 0.2707 0.2658 0.2659 0.3306 0.3082 0.2904 0.1761 0.1794 0.1755 0.2621 0.2381 0.2075

Table 2.1: Relative bias and RMSE for β̂12, β̂13, σ̂2, σ̂3, ρ̂12, ρ̂13, and smooth functions estimates ŝ21(w1) and ŝ31(w1),
for experiments with an exclusion restriction where 40% of the observations allocated to the first regime, ρ12 takes
values in {0.4, 0.6, 0.8}, ρ13 is fixed at 0.6, with sample sizes n ∈ {3000, 5000, 10000}.The lowest relative bias
and RMSE values for each combination of the correlation coefficients and the sample sizes are in bold. SML and
S2S represent the semi-parametric penalized maximum likelihood and penalized two-step approaches, whereas CML
and 2S are the maximum likelihood and the two-stage classical approaches. The true values of the parameters are
β21 = 1.3, β31 = 2.1, σ2 = σ3 = 1, ρ12 ∈ {0.4, 0.6, 0.8}, and ρ13 = 0.6. The true smooth functions are s21(w1) =
w1 + exp[−32(w1 − 0.5)2] and s31(w1) = 0.3 + w1 + exp[−30(w1 − 0.35)2].
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Figure 2.5: Boxplots of the estimates of the regression parameters, β21, β31, standard deviations σ2, σ3, and correlations
coefficients, ρ12, ρ13, for experiments without an exclusion restriction where 40% of the observations are allocated to
the first regime, ρ12 takes values in {0.4, 0.6, 0.8}, ρ13 is fixed at 0.6, with sample sizes of n ∈ {3000, 5000, 10000}.
The real value of each parameter is indicated by a dashed line in each sub-plot. SML and S2S represent the semi-
parametric penalized maximum likelihood and penalized two-step approaches, whereas CML and 2S denote the maxi-
mum likelihood and the two-stage classical approaches.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

w1

s 2
1(w

1)

n = 3000

s 2
1(w

1)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

w1

s 2
1(w

1)

n = 5000

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

w1

s 2
1(w

1)

n = 10000

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

w1

s 3
1(w

1)
s 3

1(w
1)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

w1

s 3
1(w

1)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

w1

s 3
1(w

1)

0

0

SML S2S

Figure 2.6: Mean estimates of s21(w1) (top row) and s31(w1) (bottom row) obtained using the SML (semi-parametric
maximum likelihood, in red) and S2S (semi-parametric two-step, in blue) approaches for simulation experiments with-
out an exclusion restriction and sample sizes of n = 3000 (left column), n = 5000 (middle column), and n = 10000
(right column). The switching mechanism allocates 40% of the observations to the first regime, and the values of ρ12

and ρ13 are fixed to 0.4 and 0.6, respectively. The solid lines represent the average of the estimated smooth effects,
while the shaded areas contain the 95% point-wise inner quantiles. The true functions are represented by dashed lines.
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Relative bias RMSE Relative bias RMSE

ρ12 method | n 3000 5000 10000 3000 5000 10000 3000 5000 10000 3000 5000 10000

β̂21 β̂31

0.4 SML 0.0072 0.0000 0.0047 0.0967 0.0704 0.0534 0.0016 -0.0008 0.0032 0.0655 0.0483 0.0310
CML -0.0523 -0.0596 -0.0510 0.1267 0.1186 0.0922 0.0018 0.0019 0.0076 0.0729 0.0502 0.0353
S2S 0.0309 0.0129 0.0133 0.1221 0.0907 0.0713 0.0088 0.0027 0.0093 0.0975 0.0765 0.0539
2S -0.0297 -0.0385 -0.0370 0.1287 0.1092 0.0853 0.0040 0.0041 0.0141 0.1063 0.0850 0.0655

0.6 SML 0.0027 0.0049 0.0053 0.0721 0.0595 0.0433 0.0021 -0.0001 0.0023 0.0654 0.0440 0.0325
CML -0.0552 -0.0458 -0.0384 0.1303 0.1055 0.0719 0.0021 0.0028 0.0064 0.0793 0.0470 0.0363
S2S 0.0248 0.0231 0.0106 0.1144 0.1010 0.0687 0.0056 0.0058 0.0052 0.0928 0.0754 0.0497
2S -0.0425 -0.0388 -0.0431 0.1371 0.1122 0.0904 0.0022 0.0043 0.0093 0.1001 0.0826 0.0577

0.8 SML -0.0002 0.0015 0.0024 0.0705 0.0516 0.0371 0.0013 -0.0012 0.0017 0.0736 0.0466 0.0315
CML -0.0293 -0.0242 -0.0244 0.0871 0.0636 0.0513 0.0005 0.0008 0.0047 0.0817 0.0544 0.0372
S2S 0.0221 0.0164 0.0131 0.1191 0.0864 0.0617 0.0093 -0.0009 0.0067 0.1011 0.0735 0.0482
2S -0.0491 -0.0424 -0.0431 0.1402 0.1071 0.0837 0.0049 0.0021 0.0088 0.1095 0.0807 0.0563

σ̂2 σ̂3

0.4 SML 0.0020 0.0007 0.0010 0.0275 0.0194 0.0150 0.0006 -0.0020 0.0013 0.0200 0.0165 0.0117
CML -0.0028 -0.0033 -0.0049 0.0241 0.0179 0.0143 0.0148 0.0133 0.0183 0.0256 0.0219 0.0224
S2S 0.0162 0.0080 0.0056 0.0463 0.0279 0.0198 0.0118 0.0039 0.0082 0.0415 0.0297 0.0220
2S -0.0068 -0.0078 -0.0098 0.0233 0.0176 0.0149 -0.0146 -0.0164 -0.0135 0.0227 0.0221 0.0169

0.6 SML 0.0002 0.0023 0.0018 0.0247 0.0209 0.0144 0.0009 0.0008 0.0017 0.0208 0.0171 0.0119
CML -0.0109 -0.0086 -0.0086 0.0263 0.0230 0.0167 0.0154 0.0171 0.0180 0.0269 0.0252 0.0223
S2S 0.0176 0.0163 0.0065 0.0498 0.0414 0.0245 0.0081 0.0089 0.0058 0.0386 0.0304 0.0227
2S -0.0299 -0.0288 -0.0307 0.0361 0.0338 0.0328 -0.0156 -0.0140 -0.0139 0.0240 0.0201 0.0178

0.8 SML -0.0007 0.0009 0.0006 0.0246 0.0197 0.0129 0.0016 -0.0008 0.0003 0.0224 0.0182 0.0113
CML -0.0097 -0.0068 -0.0074 0.0286 0.0223 0.0155 0.0154 0.0143 0.0158 0.0284 0.0244 0.0200
S2S 0.0206 0.0139 0.0098 0.0579 0.0416 0.0301 0.0118 0.0024 0.006 0.0409 0.0293 0.0205
2S -0.0630 -0.0613 -0.0619 0.0668 0.0639 0.0631 -0.0136 -0.0159 -0.0151 0.0232 0.0219 0.0179

ρ̂12 ρ̂13

0.4 SML 0.0365 0.0163 0.0327 0.1514 0.0984 0.0730 0.0108 -0.0006 0.0118 0.1013 0.0606 0.0403
CML -0.4591 -0.4829 -0.4464 0.2656 0.2530 0.2123 -0.0695 -0.0625 -0.0335 0.1324 0.0795 0.0510
S2S 0.1893 0.1009 0.0906 0.2230 0.1617 0.1213 0.0514 0.0223 0.0621 0.1966 0.1501 0.1104
2S -0.2835 -0.3197 -0.3353 0.2742 0.2270 0.1889 -0.0225 -0.0103 0.0655 0.2505 0.1934 0.1462

0.6 SML 0.0244 0.0132 0.0152 0.0742 0.0612 0.0400 0.0188 0.0134 0.0085 0.0847 0.0576 0.0404
CML -0.2923 -0.2804 -0.2420 0.2644 0.2333 0.1633 -0.0688 -0.0482 -0.0434 0.1494 0.0763 0.0550
S2S 0.1016 0.0834 0.0358 0.1808 0.1652 0.1090 0.0345 0.0551 0.0303 0.1820 0.1540 0.1116
2S -0.2121 -0.2268 -0.2472 0.2789 0.2429 0.1982 -0.0373 0.0013 0.0223 0.2253 0.1938 0.1420

0.8 SML 0.0136 0.0059 0.0027 0.0388 0.0298 0.0204 -0.0016 0.0014 0.0070 0.1377 0.0630 0.0453
CML -0.1282 -0.1269 -0.132 0.1342 0.1137 0.1116 -0.1004 -0.0719 -0.0574 0.1774 0.1077 0.0656
S2S 0.0238 0.0211 0.0235 0.1147 0.0931 0.0770 0.0474 -0.0025 0.0478 0.1934 0.1568 0.1094
2S -0.1634 -0.1529 -0.1579 0.2577 0.2124 0.1816 -0.0308 -0.0217 0.0238 0.2455 0.1993 0.1373

ŝ21(w1) ŝ31(w1)

0.4 SML 0.0373 0.0309 0.0269 0.1547 0.1138 0.0872 0.0155 0.0133 0.0082 0.1177 0.0815 0.0593
CML 0.2963 0.2904 0.2876 0.3490 0.3303 0.3109 0.1716 0.1681 0.1600 0.2240 0.1896 0.1731
S2S 0.0632 0.0464 0.0375 0.2031 0.1460 0.1129 0.0248 0.0127 0.0251 0.1825 0.1325 0.0992
2S 0.2628 0.2600 0.2674 0.3517 0.3148 0.2994 0.1797 0.1756 0.1593 0.2886 0.2400 0.2017

0.6 CML 0.0409 0.0338 0.0189 0.1206 0.0967 0.0686 0.0180 0.0081 0.0090 0.1136 0.0823 0.0593
CML 0.2894 0.2822 0.2720 0.3493 0.3230 0.2886 0.1634 0.1622 0.1568 0.2255 0.1882 0.1709
S2S 0.0667 0.0552 0.0260 0.1841 0.1573 0.1053 0.0232 0.0235 0.0157 0.1737 0.1402 0.0979
2S 0.2729 0.2741 0.2816 0.3550 0.3306 0.3097 0.1774 0.1736 0.1643 0.2718 0.2439 0.2038

0.8 SML 0.0349 0.0270 0.0192 0.1043 0.0838 0.0592 0.0122 0.0117 0.0094 0.1359 0.0885 0.0569
CML 0.2499 0.2505 0.2492 0.2901 0.2737 0.2628 0.1682 0.1609 0.1605 0.2384 0.1967 0.175
S2S 0.0610 0.0458 0.0332 0.1697 0.1311 0.0966 0.0294 0.0119 0.0180 0.1833 0.1391 0.0934
2S 0.2854 0.2834 0.2836 0.3540 0.3318 0.3132 0.1778 0.1748 0.1683 0.2845 0.2437 0.2077

Table 2.2: Relative bias and RMSE for β̂12, β̂13, σ̂2, σ̂3, ρ̂12, ρ̂13, and smooth functions estimates ŝ21(w1) and ŝ31(w1),
for experiments without an exclusion restriction where 40% of the observations allocated to the first regime, ρ12 takes
values in {0.4, 0.6, 0.8}, ρ13 is fixed at 0.6, and sample sizes n ∈ {3000, 5000, 10000}.The lowest relative bias
and RMSE values for each combination of the correlation coefficients and the sample sizes are in bold. SML and
S2S represent the semi-parametric penalized maximum likelihood and penalized two-step approaches, whereas CML
and 2S are the maximum likelihood and the two-stage classical approaches. The true values of the parameters are
β21 = 1.3, β31 = 2.1, σ2 = σ3 = 1, ρ12 ∈ {0.4, 0.6, 0.8}, and ρ13 = 0.6. The true smooth functions are s21(w1) =
w1 + exp[−32(w1 − 0.5)2] and s31(w1) = 0.3 + w1 + exp[−30(w1 − 0.35)2].
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2.6 Empirical application

The Medical Expenditure Panel Survey (MEPS) is a large-scale survey, conducted by the Agency

for Healthcare Research and Quality in the United States, that contains information on families and

individuals such as their demographic and socio-economic characteristics, their use of healthcare,

and details on their health insurance coverage (further information about the survey can be found

at https://meps.ahrq.gov). In the analysis, we use a subset of the MEPS dataset, avail-

able in Cameron & Trivedi (2009), consisting of individuals over 65 years old, their out-of-pocket

prescribed drug expenditures, and several other socio-economic and health-related factors. Sub-

jects considered in the study are automatically enrolled in Medicare (a federal health insurance

programme) which, at the time of data collection, did not cover for any prescribed medicines.

As a consequence, individuals may choose to obtain supplementary private services, in the form

of employer-based or union-sponsored insurance, to cover against certain out-of-pocket expenses

(see Cameron & Trivedi, 2009, for further details). We focus on individuals with full information

on all the variables of interest and whose out-of-pocket prescribed drug expenditures are over a

hundred dollars per year. Zimmer (2013) provides the justification for concentrating on these indi-

viduals: first, models for healthcare demand in the US are usually based on the distinction of two

economic processes that are assumed to be statistically independent: one that determines whether

individuals spend, and one that governs how much they spend (see, for example, Pohlmeier & Ul-

rich, 1995). Second, from a government budget perspective, these individuals represent a priority

since the US Healthcare Financing Administration reports that approximately 10% of Medicare

users account for 70% of Medicare spending (see Zimmer, 2013, for further details).

The analysis aims to investigate the effects of having employer-based or union-sponsored sup-

plementary insurance on out-of-pocket prescribed drugs expenditures under different modelling

approaches while accounting for several other socio-economic and health-related factors, namely

age, gender, race, log(income), and their total number of chronic conditions. Infor-

mation on whether an individual has any extra form of insurance is given by the binary variable

supplementary, while the outcome of interest is the total amount of out-of-pocket expendi-

tures on prescribed medicines (for further details, see, Cameron & Trivedi, 2009). Since health-

care expenditures variables tend to be highly skewed (Deb & Norton, 2018; Manning & Mullahy,

2001), it is common to use the logarithm of out-of-pocket expenditures, log(expenditure),

as the response. Figure 2.7 shows the histograms of out-of-pocket prescribed drug expenditures

https://meps.ahrq.gov
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(left) together with the histograms of their log transformations (right) at both levels of the insur-

ance variable. Having supplementary insurance raises concerns of potential endogeneity, since it
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Figure 2.7: Histograms of expenditure (left) and log(expenditure) (right) by insurance status. For visual
presentation only, we have top coded individuals with expenditures greater than $7, 000 for the plots on the left hand-
side.

is plausible that there are some unobserved individual characteristics that affect simultaneously

prescribed drugs expenditures and obtaining supplementary insurance (Deb et al., 2006). For ex-

ample, individuals may had chosen to work in a job that would provide an extra coverage in order

to benefit from having lower medical expenses on retirement (Cameron & Trivedi, 2009).

Table 2.3 contains the description and summary statistics of all the variables considered in

the analysis, at sample level and by type of insurance. The proportion of individuals that have

some form of supplementary health insurance is about 38%, there is a slightly higher proportion

of females than males, 16% of the individuals self-identified as Black or Hispanic, and the av-

erage age is close to 75. Health-wise, the average number of chronic conditions in the sample is

under 2. Regarding individuals with or without supplementary health insurance we observe that,

overall, those with Medicare-only coverage have lower expenditures, are older, poorer, and have

a slightly lower average number of chronic conditions. There is also a higher proportion of fe-

males and Black or Hispanic individuals covered only by Medicare compared to those who have

supplementary insurance.
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Variable Description Full sample (n = 9113) Supplementary insurance ( n = 3509) Medicare only (n = 5604)

Mean SD Mean SD Mean SD

Utilization

log(expenditure) Logarithm of drug expenditures 6.789 0.997 6.828 0.999 6.765 0.996

Insurance

supplementary =1 if supplementary health insur-
ance

0.385 0.487 1 0 0 0

Socio-economic/health variables

gender =1 if female 0.583 0.493 0.518 0.5 0.624 0.484
race =1 if individual self-identified as

Black or Hispanic
0.160 0.367 0.131 0.337 0.178 0.383

age Age in years (> 65) 75.083 6.645 73.778 6.523 75.900 6.591
log(income) Logarithm of annual household in-

come in thousands of dollars
2.746 0.907 2.951 0.932 2.618 0.866

chronic Number of chronic conditions 1.959 1.287 1.964 1.307 1.956 1.275

Instruments

ssiratio ssiratio = social security income
total income 0.539 0.369 0.441 0.356 0.600 0.363

multloc =1 if firm has multiple locations 0.060 0.238 0.098 0.297 0.037 0.189

Table 2.3: Description and summary statistics of the variables for the full sample and by type of insurance.

Cameron & Trivedi (2009) propose and discuss the validity of several potential variables to

fulfil the exclusion restriction assumption based on individual and employer characteristics. For in-

stance, the ratio of a person’s social security income to their total income, denoted by ssiratio,

and the binary indicator multloc, which indicates whether the firm an individual worked for

has multiple locations. Recall that such variables must satisfy the conditions stated in Section

2.2, that is, ssiratio and/or multloc must be conditionally independent with respect to

log(expenditure), and have a high partial correlation with supplementary after ac-

counting for the rest of the covariates. The authors argue the validity and relevance of ssiratio

by assuming that income is included in each regime equation through the explanatory variable

log(income), and that ssiratio is expected to be negatively correlated with having extra

insurance. The variable multloc is potentially a week instrument, it captures employer-based

supplementary insurance but individuals in the sample are already retired. However, the literature

in health economics provides several case studies, in similar settings, where multloc has been

used as instrument, for example, Deb et al. (2006), Deb & Trivedi (2006), and Marra et al. (2020).

We proceed by specifying the following additive predictors for the selection mechanism and

regime equations

η1i = β10 + β11genderi + β12racei + β13multloci + s11(agei) + s12(log(income)i)

+ s13(chronici) + s14(ssiratioi),

η2i = β20 + β21genderi + β22racei + s21(agei) + s22(log(income)i) + s23(chronici),

η3i = β30 + β31genderi + β32racei + s31(agei) + s32(log(income)i) + s33(chronici).
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where sm1(·), sm2(·), and sm3(·), for m = 1, 2, 3, are smooth functions represented using thin

plate regression splines. We then fit univariate GAMs (denoted as 1GAM) to each regime sepa-

rately, the classical fully parametric (CML), and the semi-parametric (SML) ESR models. Pre-

liminary analyses using the CML approach, where the continuous covariates were modelled using

second order polynomials, failed to converge and did not provide values for the standard errors of

the estimates. We settled with specifying linear effects for all continuous covariates.

Table 2.4 contains the estimates of the parametric model components at each level of the

switching variable obtained using the aforementioned approaches, together with their 95% confi-

dence/credible intervals. The effects of gender and race have the same sign, for both regimes,

Model 1GAM CML SML

Estimates | Regimes Supplementary Medicare Supplementary Medicare Supplementary Medicare

(Intercept) 6.814 6.800 6.354 7.468 6.517 7.215
(6.769, 6.859) (6.759, 6.840) (5.962, 6.745) (7.086, 7.850) (6.352, 6.683) (7.176, 7.254)

gender:female 0.045 -0.023 -0.018 -0.103 -0.002 -0.098
(-0.016, 0.106) (-0.072, 0.027) (-0.084, 0.049) (-0.160, -0.047) (-0.071, 0.067) (-0.153, -0.044)

race:Black/Hispanic -0.075 -0.113 -0.129 -0.180 -0.108 -0.167
(-0.166, 0.016) (-0.176, -0.049) (-0.224, -0.034) (-0.250, -0.109) (-0.203, -0.014) (-0.236, -0.098)

age (smooth term) (smooth term) -0.010 -0.013 (smooth term) (smooth term)
- - (-0.015, -0.004) (-0.018, -0.009) - -

log(income) (smooth term) (smooth term) 0.065 0.058 (smooth term) (smooth term)
- - (0.024, 0.106) (0.024, 0.093) - -

chronic (smooth term) (smooth term) 0.307 0.309 (smooth term) (smooth term)
- - (0.282, 0.331) (0.289, 0.329) - -

σ̂2 0.908 - 0.989 - 0.960 -
(0.885, 0.932) - (0.936, 1.042) - (0.929, 0.985) -

σ̂3 - 0.902 - 1.016 - 1.020
- (0.883, 0.920) - (0.965,1.066) - (0.994,1.040)

ρ̂12 - - 0.458 - 0.371 -
- - (0.321, 0.595) - (0.111, 0.507) -

ρ̂13 - - - 0.588 - 0.616
- - - (0.470, 0.706) - (0.580,0.647)

Table 2.4: Parameter estimates and 95% confidence/credible intervals of the parametric model components obtained
after fitting a univariate generalized additive model (1GAM) for each regime, the classical (CML), and the semi-
parametric (SML) endogenous switching regression models.

when estimated using CML and SML but they appear to have a slightly higher magnitude when us-

ing the CML approach. This may be a result of the CML approach not modelling the effects of the

continuous variables flexibly. Overall, the results indicate that females have lower out-of-pocket

expenditures than men, and that Black or Hispanic individuals have lower expenditures compared

to White individuals, regardless of the type of insurance. The effect of gender appears to be sig-

nificant only for individuals in the Medicare-only regime, whereas the effect of race is stronger

for persons without extra insurance. In particular, estimates obtained using the SML approach

for those without supplementary insurance point out that females spend about 10% less than men,

and that Black or Hispanic individuals spends about 17% less than White individuals. The corre-
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sponding results using the 1GAM approach suggest that gender is not a determinant factor of

log(expenditure), and that race is significant only for individuals in the Medicare regime.

Estimates of σ2 and σ3 obtained via the CML and SML frameworks are very similar and

suggest a higher variability in the Medicare-only regime. On the other hand, these parameters

appear to be slightly under-estimated when using 1GAM models. In regard to the correlation

coefficients, their estimates have the same sign but a somewhat different magnitude under the

CML and SML approaches. The estimate of ρ12 obtained under the CML approach suggests a

stronger association between supplementary and log(expenditure) than that obtained

using the SML framework. The CML estimate of ρ13 suggest a lower strength of dependence than

the one estimated via the SML model. Both correlation coefficients are significant, suggesting

the presence of unobserved individual characteristics that influence the uptake of supplementary

health insurance.

Parametric CML estimates of age, log(income), and the number of chronic condi-

tions suggest that chronic is the main determinant of log(expenditure) followed by

log(income). Both effects are positive, significant, and have a similar magnitude in both

regimes. Individual’s age has a negative, but relatively low effect on the response for both levels

of insurance. Figure 2.8 (top row) shows the estimated smooth functions, and 95% credible in-

tervals, obtained by the SML approach for the supplementary (blue) and the Medicare-only (red)

regimes. The plots are centered around zero due to the identifiability constraint placed on the

smooth functions (see Section 2.2). The estimated non-linear effects on log(expenditure)

of age, chronic, and log(income) appear to be similar for individuals with extra insurance

and for those using only Medicare. The results show that the effect of age on the average of

log(expenditure) is non-linear, significant, and somewhat variable in both regimes, with an

overall downward trend, which suggests that individuals appear to spend less as they get older.

The effect of chronic shows an expected pattern and suggests that as the number of chronic

conditions increases, the average of log(expenditure) increases steeply for both regimes. In

terms of log(income), we observe an overall downward trend for individuals with low annual

income, which appears to be steeper for those without extra insurance, followed by an upward

trend for individuals with higher incomes. We also observe that log(income) has little effect

on the response for individuals with lower income levels. These results seem to be consistent with

the CML estimates in particular, chronic has the largest effect on log(expenditure), age

has a negative but weak effect, and log(income) has a slightly lower impact on the response
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for those with extra insurance. The estimated curves obtained using the 1GAM (not shown on

the same figures for clarity) are similar to those obtained using the SML however, the p-values

resulting from testing the significance of the smooth terms suggest that age and log(income)

are not significantly different from zero in the supplementary regime, while log(income) is

not significant in the Medicare regime.
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Figure 2.8: Top row: Estimated smooth functions and 95% pointwise credible intervals of age, log(income), and
chronic for individuals with and without supplementary insurance. The smooths estimates are vertically centered
about zero due to the identifiability restrictions placed on the smooths terms. Bottom row: Estimated smooth effects
and 95% pointwise credible intervals of age, log(income), and chronic on log(expenditure) with the
remaining of the covariates set at their mean/mode. Estimates in the supplementary regime are shown in blue whereas
those in the Medicare regime are shown in red. The jittered rug plot in the x-axis indicates the values of the covariates
in the data.

To aid further interpretation, the bottom row of Figure 2.8 shows the estimated smooth func-

tions in the scale of log(expenditure) where the rest of the covariates have been set to

their means or modes. In particular, they display the effect of the specific covariate on the mean

log(expenditure) for White females where the other two continuous covariates have been

set to their mean.

An estimate of the average treatment effect (ATE) of type of insurance on expenditure for a

randomly chosen individual can also be obtained using the model parameter estimates (see, for

example, Heckman et al., 2001). The CML ATE estimate is −1160.67. 7 In contrast the SML
7The sampleSelection package only provides the tools to obtain the conditional expectations to calculate the
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estimate, together with its 95% credible interval, is−1255.82(−1450.28,−1019.29). 8 The result

indicates that, on average, having supplementary insurance leaves a randomly chosen individual

about $1255 better off in terms of prescribed drugs expenditures.

2.7 Discussion

In this chapter, we have presented a semi-parametric ESR model that relaxes the functional form

specification of the deterministic model components using a well-established penalized regression

spline framework. We have also described two approaches to parameter estimation and several

inferential results from the penalized regression literature which are relevant to this context. The

simulation study has shown that the semi-parametric ESR model provides competitive results

when compared to the classical approaches, and it has also highlighted the importance of flexibly

modelling the relationships between the response of interest and the predictors.

In an application, we have investigated the effects of insurance, and several other socio-

economic and health-related factors, on prescribed drugs expenditures for US individuals over

65 years old. Our findings suggest individual self-selection into insurance, and that the main de-

terminants of expenditures are the number of individual’s chronic conditions, followed by race.

The semi-parametric approach also reveals that the continuous covariates affect the response with

different degrees of non-linearities. The estimated ATE indicates that having supplementary in-

surance constitutes a saving of about $1255.

The modelling approach presented in this chapter still suffers from some of the criticisms in-

troduced in Section 2.1. For instance, the joint normality, which also implies normally distributed

regimes, and the constant variance assumptions may be restrictive or inappropriate in empirical

applications. In Chapter 3, we explore extensions of the semi-parametric ESR model in several

ways. First, the joint distributions of the switching variable and each of the regime responses are

not restricted to bivariate Gaussian, and are specified using parametric bivariate copula functions.

Second, the regime responses are specified using several families of parametric distributions. And

third, each of the distribution parameters can be modelled using a flexible linear predictor of co-

variates that accounts for several types of effects.

ATE estimate but not to construct the confidence intervals.
8Credible intervals are constructed using the simulation steps described in Section 2.4 implemented in the GJRM

package.



Chapter 3

Copula-based endogenous switching

regression models with an application in

health economics

This chapter presents copula-based endogenous switching regression models for continuous re-

sponses. In an application, we study insurance uptake in the US to cover for out-of-pocket ex-

penditures of prescriptions drugs. The modelling approach allows for the joint distributions of

the switching variable and the regimes to be specified using copula functions, whereas the univari-

ate marginal components are specified employing parametric families of distributions. The models

are embedded into a distributional regression framework, where all the distribution parameters can

be defined using additive predictors that account for several types of covariate effects. Parameter

estimation and inference utilise a well-established penalized likelihood framework. The results ob-

tained from the copula-based approach suggest that large values of out-of-pocket prescribed drug

expenditures are accompanied by a higher chances of having supplementary insurance however,

low expenditures do not necessarily imply lower chances of having extra insurance. This feature

cannot be captured under the assumptions of the classical and semi-parametric approaches.

3.1 Introduction

As pointed out in Chapters 1 and 2, the normality assumption in the context of models subject to

sample selection has often been criticised since it limits the applicability of these models when the

researcher wants to consider more complex distributions for the response (Klein & Kneib, 2016;

44
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Pigini, 2015; Puhani, 2000; Smith, 2003). Furthermore, the association between the switching

and regime variables is tied to the correlation coefficient, which only measures linear dependence,

and whose use as a measure of association has also been subject to criticism (Embrechts et al.,

2002). Although there are multivariate alternatives to the normal, they tend to be restrictive in

applications, since they do not allow to specify different distributions for each of the marginals,

and measures of dependence appear in the specification of the marginal distributions (Frees &

Valdez, 1998; Kotz et al., 2004).

Some of the aforementioned limitations can be dealt with by using a copula-based approach.

The copula approach to modelling jointly determined random variables allows to separate the

specification of their marginal distributions from their dependence structure by specifying their

joint distribution in terms of their marginals and a copula function that joins them together. The

definition and properties of a copula function (an m-dimensional copula is a multivariate cdf with

m standard uniform margins) and the work of Sklar (1959) and Patton (2006) provide the most

important results for statistical modelling using copulas. Sklar shows that any multivariate dis-

tribution can be represented as a composition of a copula function and its univariate margins,

while Patton extends Sklar’s theorem to a situation where the univariate margins are conditional

distribution functions.

As a consequence of these results, and in the context of the chapter, statistical modelling using

copulas is approached in two steps: first, specifying a parametric model for each of the latent vari-

ables in the ESR model; second, choosing an appropriate copula function that links the univariate

components together and captures their dependence structure. The modelling approach permits

to relax the joint normality assumption between the switching and each regime variables, accom-

modates different types of marginal distributions, and accounts for several forms of dependence

structures (implied by the copula) between the model components.

Copula-based regression models are not new in the literature. Lee (1983) developed a SS

model, based on the bivariate Gaussian copula, in which the marginals could be assumed to be-

long to different families of distributions; Prieger (2002) proposed SS models based on the FGM

copula to model hospitalization stays; and Smith (2003, 2005) introduced SS and ESR models us-

ing Archimedean copulas with non-normal continuous margins. More recently, the copula-based

regression literature has focused on using flexible distributional specifications in which each of the

distribution parameters can be flexibly modelled using predictors that incorporate several types of

covariates effects. For example, bivariate regression models embedded into the GAM/GAMLSS



46 3.1. Introduction

frameworks from the Bayesian (Klein & Kneib, 2016) and frequentist perspectives (Marra &

Radice, 2017; Vatter & Chavez-Demoulin, 2015); and GAM- and GAMLSS-type specifications of

SS models (Marra et al., 2017; Wiemann et al., 2022; Wojtyś & Marra, 2015; Wojtyś et al., 2018).

In this chapter, and based on the modelling framework of Marra et al. (2017) and Wojtyś et al.

(2018), we present flexible copula-based ESR models for continuous regime responses. In an

application, we study insurance uptake in the US to cover for out-of-pocket expenses of prescrip-

tion drugs, and make an assessment of whether different univariate distributions and dependence

structures provide some insights that cannot be captured using the classical distributional assump-

tions of the ESR model. The adopted framework allows for the joint distributions of the switching

and each of the regime variables to be modelled using copula functions to capture their depen-

dence structure. The distributions of the variables that govern the switching mechanism and both

regimes are embedded into the GAMLSS framework (Rigby & Stasinopoulos, 2005). In particu-

lar, the distribution that models the switching mechanism is not restricted to be Gaussian, whereas

the distributions of the regime variables can be modelled using several parametric continuous dis-

tribution functions. Furthermore, all the distribution parameters can be modelled using a vector

of explanatory variables to accommodate various forms of covariate effects. Parameter estimation

and inference follow from the well-established penalized likelihood framework of Marra et al.

(2017) and Marra & Radice (2019) described in the previous chapter. At the time of writing, the

models presented here have become a subset of those that appear in Marra et al. (2022), imple-

mented in the GJRM package (Marra & Radice, 2022), which further allows for the distribution of

the regime variables to be binary or discrete and the copula parameters to be specified as a function

of covariates.

In the application, we find evidence of individual self-selection into insurance and that the

association between insurance uptake and out-of-pocket expenditures for prescribed drugs is best

described by the Joe and the Gumbel copula families. The dependence structures implied by

the copula functions suggest that individuals with higher expected out-of-pocket expenditures are

more likely to uptake supplementary insurance.

The rest of this chapter is structured as follows: Section 3.2 describes copula-based ESR mod-

els, the specification of the univariate and joint distributions functions, and the structure of the

generic predictor used to model each of the univariate distribution parameters. Section 3.3 consid-

ers parameter estimation, while Section 3.4 evaluates the empirical properties of the copula-based

approach via simulation. In Section 3.5, we analyse the effects of insurance status and several
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socio-economic and health related characteristics on out-of-pocket prescribed drug expenditures

using the copula-based specification of the ESR model. Lastly, in Section 3.6 we discuss the

modelling approach and the empirical results.

3.2 Specification of copula-based endogenous switching regression

models

In this section, we describe in detail the structure of copula-based ESR models. First, we revisit

the observation rules that govern the ESR model, and then we show how the model likelihood

function can be written in terms of the joint distribution functions that characterise the switching

and each regime variables, and their univariate marginals. In Section 3.2.1 we specify the marginal

distributions using the GAMLSS framework, whereas in Section 3.2.2 we specify the joint distri-

butions in terms of their marginals and bivariate copula functions that link them together. Section

3.2.3 describes the structure of the additive predictor associated with each of the parameters of the

marginal distributions.

Recall from Chapter 2 that observations from the ESR model are generated using the following

rules

Y1i = 1Y ∗1i>0(Y ∗1i), Y2i = Y1iY
∗

2i, Y3i = (1− Y1i)Y
∗

3i, i = 1, . . . , n. (3.1)

The Bernoulli random variable Y1i is determined by the sign of the continuous latent variable

Y ∗1i through the indicator function 1Y ∗1i>0(·). The continuous random variables Y2i and Y3i are

determined by Y1i and their latent counterparts Y ∗2i and Y ∗3i, that is, when Y1i = 1 we observe

Y2i = Y ∗2i otherwise, we observe Y3i = Y ∗3i.

Assume that each of the latent variables in the model can be described by parametric families

of distributions, conditional on covariates, and denote their pdfs and cdfs as fm(y∗m | θm) and

Fm(y∗m | θm), respectively, where θm ∈Rñm represents a vector of ñm distribution parameters,

for m = 1, 2, 3. Let us also denote the joint cdf of the pair of latent random variables (Y ∗1 , Y
∗
m) as

F1m(y∗1, y
∗
m | θ1m), where θ1m ∈ Rñ1m represents a vector of ñ1m of distribution parameters, for

m = 2, 3.

Given a random sample of observations, and omitting the distribution parameters and covari-

ates for simplicity, the likelihood function of the ESR model can be written in a generic form as a
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function of the univariate and bivariate distributions of the latent variables in (3.1). Conditioning

on the switching variable, note that when y1i = 1 we observe y2i and the contribution to the likeli-

hood corresponds to f(y2i | y∗1i > 0)P(Y ∗1i > 0). Otherwise, we observe y3i and the contribution

to the likelihood is f(y3i | y∗1i ≤ 0)P(Y ∗1i ≤ 0), that is,

n∏
i=1

{
f(y2i | y∗1i > 0)P(Y ∗1i > 0)

}y1i
{
f(y3i | y∗1i ≤ 0)P(Y ∗1i ≤ 0)

}1−y1i , (3.2)

where f(y2i | y∗1i > 0) and f(y3i | y∗1i ≤ 0) denote the conditional densities of Y ∗2i and Y ∗3i given

Y ∗1i > 0 and Y ∗1i ≤ 0, respectively. The conditional densities can be written as

f(y2i | y∗1i > 0) = f(y2i | y1i = 1) =
∂F (y2i | y1i = 1)

∂y2i

=
∂

∂y2i

[
F12(1, y2i)

1− F1(0)

]
=

1

1− F1(0)

∂

∂y2i

[
F2(y2i)− F12(0, y2i)

]
=

1

1− F1(0)

[
f2(y2i)−

∂F12(0, y2i)

∂y2i

]
,

(3.3)

and

f(y3i | y∗1i ≤ 0) = f(y3i | y1i = 0) =
∂F
(
y3i | y1i = 0

)
∂y3i

=
∂

∂y3i

[
F13 (0, y3i)

F1(0)

]
=

1

F1(0)

∂F13 (0, y3i)

∂y3i
.

(3.4)

Substituting expressions (3.3) and (3.4) back into (3.2) obtains (Smith, 2003, 2005)

n∏
i=1

{
f2(y2i)−

∂F12(0, y2i)

∂y2i

}y1i
{
∂F13(0, y3i)

∂y3i

}1−y1i

. (3.5)

The form of the likelihood function implies that it is not necessary to specify the joint distribution

of (Y ∗1i, Y
∗

2i, Y
∗

3i) in order to estimate the model parameters (Smith, 2005). Furthermore, the joint

cdf of the pair (Y ∗2i, Y
∗

3i) does not appear in the likelihood function and any plausible parameter(s)

measuring their dependence cannot be identified. Note that, assuming the joint distributions F12

and F13 are bivariate normal, the likelihood function given in (3.5) is equivalent to the likelihood

function of the classical ESR (see, for example, Smith, 2005).
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3.2.1 Specification of the marginal distributions: F1, F2 and F3

We now specify the marginal distribution for each of the latent variables using the GAMLSS

framework. This approach assumes that each of the conditional distributions in the model belongs

to a parametric family whose parameters represent several distributional characteristics such as

location, scale, and shape. Furthermore, each of the distribution parameters can be modelled as a

function of covariates.

The model for the switching mechanism is specified as follows

Y ∗1i ∼ F1(θ1i), i = 1, . . . , n,

such that θ1i = (µ1i, σ1i)
T, where µ1i and σ1i are location and scale parameters, respectively. The

location parameter is associated with an additive predictor of covariates and regression coefficients

as follows

µ1i = ηµ1
i

(
xµ1
i ,βµ1

)
= βµ1

0 +

Pµ1∑
pµ1=1

hµ1
pµ1

(
x̃µ1
pµ1 i

,βµ1
pµ1

)
, (3.6)

where xµ1
i is a vector of explanatory variables chosen to model µ1, βµ1 =

(
βµ1

0 ,βµ1T
1 , . . . ,βµ1T

Pµ1

)T

is a vector of regression coefficients, βµ1
0 is an overall intercept, and each hµ1

pµ1
(·) denotes particular

effects of a sub-vector of covariates x̃µ1
pµ1 i

contained in xµ1
i , for pµ1 = 1, . . . , Pµ1 . The specific

structure of the predictor will be described in Subsection 3.2.3. The scale parameter σ1i is set to 1

for the usual identification purposes.

Note that the model for the switching mechanism corresponds to a latent variable representation

of a binary model and F1 is usually chosen to be the normal, logistic, or Gumbel distributions

since they yield the typical probit, logit, or complementary log-log link functions to model the

probability of success of the observed variable Y1i.

In terms of the models for the regime variables Y ∗2i and Y ∗3i, we assume that their true distribu-

tions belong to parametric families with up to three parameters, that is,

Y ∗mi ∼ Fm(θmi), m = 2, 3, i = 1, . . . , n,

such that θmi = (µmi, σmi, νmi)
T, where the parameters µmi, σmi, and νmi (often representing
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location, scale, and shape) are associated with additive predictors of covariates as follows

gµm(µmi) = ηµmi
(
xµmi ,βµm

)
= βµm0 +

Pµm∑
pµm=1

hµmpµm

(
x̃µmpµm i,β

µm
pµm

)
,

gσm(σmi) = ησmi
(
xσmi ,βσm

)
= βσm0 +

Pσm∑
pσm=1

hσmpσm

(
x̃σmpσm i,β

σm
pσm

)
,

gνm(νmi) = ηνmi
(
xνmi ,βνm

)
= βνm0 +

Pνm∑
pνm=1

hνmpνm

(
x̃νmpνm i,β

νm
pνm

)
.

(3.7)

The functions gµm(·), gσm(·), and gνm(·) are known, monotonic, and differentiable link functions

that maintain the restrictions on the range of the distribution parameters. For instance, when µm

is restricted to the positive real numbers, one can choose a log link, i.e., gµm(µmi) = log(µmi) =

ηµmi . The rest of the components in (3.7) are defined similarly to those that appear in (3.6).

Subsection 3.2.3 describes in more detail the particular structure of these predictors.

3.2.2 Specification of the joint distributions: F12 and F13

We specify next the joint distributions of the pairs (Y ∗1 , Y
∗
m), for m = 2, 3, using bivariate para-

metric copula functions. The copula approach to modelling jointly determined random variables

allows to separate the univariate distributional components from the dependence structure by spec-

ifying the joint distribution of the random variables in terms of their marginals, and a copula

function that joins them together. In our context, the copula approach relaxes the joint normal-

ity assumption between the switching and each regime variables, accommodates different types

of marginal distributions, and accounts for several forms of dependence structures between the

model components.

A 2-dimensional copula is a bivariate cdf with standard uniform margins, i.e., a function

C : [0, 1]2 → [0, 1] defined by

C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2), where U1, U2 ∼ U(0, 1),

and satisfying the following conditions: (i) C(0, u) = C(u, 0) = 0, ∀u ∈ [0, 1]; (ii) C(1, u) =

C(u, 1) = u,∀u ∈ [0, 1]; (iii) C is 2−increasing. Conditions (i) and (ii) are called the boundary

conditions of the copula, whereas condition (iii) is the rectangle inequality.

The work of Sklar (1959) and Patton (2006) provide the most important results for statistical

modelling with copulas. The former obtains a representation of a multivariate distribution function
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as a composition of a copula and its univariate margins, while the latter extends Sklar’s theorem

to a situation where the univariate margins are conditional distribution functions. In the current

context, the aforementioned results allow to specify the joint cdfs F12 and F13 in terms of copula

functions linking the marginal distributions of the latent switching and regime variables, that is,

F1m(y∗1i, y
∗
mi | θ1mi) = C1m

(
F1(y∗1i | θ1i), Fm(y∗mi | θmi) | δ1m

)
, m = 2, 3, i = 1, . . . , n,

where the vector θ1mi = (θT
1i,θ

T
mi, δ1m)T encapsulates the distribution and copula parameters,

and C1m(·, ·) is a parametric bivariate copula function that captures the dependence between the

margins F1(·), and Fm(·) through the association parameter δ1m.

As a consequence of the copula-based specification, statistical modelling using the copula ap-

proach can be carried out in two steps: first, specify a GAMLSS model for each of the marginal

cdfs (that do not need to belong to the same family of distributions); second, choose an appro-

priate copula function that links its univariate components together and captures their dependence

structure. The literature provides a large number of parametric copula families, describing differ-

ent types of dependence structures, that can be used for modelling (see, for example, Joe, 2014;

Nelsen, 2006). The interpretation of the dependence parameter δ1m is copula-specific and not

comparable across different copulas. In practical applications, it is common to transform it to

rank-based measures of dependence restricted to the [−1, 1] interval such as the Kendall’s tau (τ )

or the Spearman’s rho (ρs).

For further details in copula-based modelling, we refer the reader to Appendix B.1, which

summarises the main results from the copula literature that are relevant to this thesis.

3.2.3 Structure of the additive predictors

Following the literature in distributional regression (see, for example, Fahrmeir et al., 2004; Klein

et al., 2015; Marra & Radice, 2017) and omitting parameter-specific indices for clarity, each of

the additive predictors of explanatory variables used to model the parameters of the marginal

distributions in the model can be written as follows

ηi(xi,β) = β0 +
P∑
p=1

hp(x̃pi,βp) i = 1, . . . , n, (3.8)

where β0 ∈ R is an unknown regression coefficient denoting the overall level of the predictor,

each hp(·), for p = 1, . . . , P , corresponds to an effect-specific function of a particular sub-vector
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of covariates x̃pi contained in xi, and β = (β0,β1, . . . ,β
T
P )T is a vector of regression coefficients.

It is also assumed that each effect function can be written as

hp(x̃pi,βp) =

Jp∑
jp=1

bpjp(x̃pi)βpjp = bT
p(x̃pi)βp, p = 1, . . . , P, (3.9)

where bp(x̃pi) = [bp1(x̃1i), . . . , bpJp(x̃pi)]T is a vector of known functions evaluated at x̃pi (whose

particular form depends on the type of covariate(s) included in x̃pi), and βp = (βp1, . . . , βpJp)
T is

a vector of unknown regression coefficients. The linear combination of functions and regression

parameters in (3.9) allows for each effect-specific function to be written in vector-matrix notation

as X̃pβp, where X̃p is an (n × Jp)-matrix whose (i, jp)
th element is given by bpjp(x̃pi). Fur-

thermore, to ensure that β0 corresponds to an overall intercept, identifiability constraints must be

applied to each hp(·) in the overall predictor before fitting the model (Wood, 2017, pp. 250).

In addition, each effect-specific function admits a quadratic penalty term that enforces partic-

ular properties of the effect given by λpβT
pSpβp, for some unknown penalty parameter λp ≥ 0,

that needs to be estimated, and some penalty matrix Sp, whose particular structure depends on the

form of the vector bp(x̃pi).

The generic predictor described in Equation (3.8) provides the ESR model with a flexible

structure since each of the distribution parameters can be modelled using several types of covariate

effects, for example:

• Linear effects: when modelling parametric linear effects, the effect-specific function be-

comes hp(x̃pi,βp) = x̃T
piβp, that is, a classical linear regression setup where x̃pi is a sub-

vector of covariates (often binary or categorical) and βp a vector of regression coefficients.

Linear effects are not usually penalized so the corresponding penalty matrix Sp is made up

of zeroes (Marra et al., 2017).

• Non-linear effects: for non-parametric effects of continuous covariates, the effect-specific

functions in (3.9) are represented using the penalized regression spline framework described

in Section 2.2.1 of Chapter 2. That is, for a particular subset of continuous covariates,

hp(x̃pi,βp) = bT
p(x̃pi)βp, where bp is a vector of known basis functions evaluated at the

covariates and βp denotes a vector of regression parameters. The smoothing parameter

λp controls the trade-off between smoothness and goodness-of-fit of the function, and the

particular structure of the penalty matrix Sp depends on the type of basis functions chosen

to represent the effect.
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• Spatial effects: when the data provide some form of discrete geographic information, for

example locations or regions made up of L discrete adjacent units, the effect-specific func-

tion is written as hp(x̃pi,βp) = x̃T
piβp, where x̃pi is a vector whose lth element is equal to 1

if observation i belongs to unit l and 0 otherwise, for l = 1, . . . , L. The regression coeffi-

cient vector βp represents the location/region effects. Assuming that neighbouring locations

are likely to share similar effects, the penalty matrix Sp corresponds to an adjacency matrix

whose (i, j)th element is defined as −1 if i 6= j and locations i and j are adjacent; 0 if

i 6= j and locations i and j are not adjacent; and Ni if i = j, where Ni is the total number

of neighbours for region i. For further details see, for example, Stasinopoulos et al. (2017,

pp. 293-296) and references therein.

The aforementioned specification allows to write all the additive predictors in the model using

a vector-matrix notation. For example, the additive predictor related to the location parameter µ1 in

(3.2.1) can be written as ηµ1 = X̄µ1βµ1 ,where X̄µ1 = (1, X̃µ1

1 , . . . , X̃µ1

Pµ1
) is an overall design ma-

trix, 1 denotes a vector of ones, each X̃µ1

pµ1
represents an (n×Jpµ1

)-matrix that contains the effect-

specific functions evaluated at the pth subset of covariates contained in xµ1 , for pµ1 = 1, . . . , Pµ1 ;

and βµ1 =
(
βµ1

0 ,βµ1T
1 , . . . ,βµ1T

Pµ1

)T
is the corresponding vector of unknown regression coeffi-

cients. In addition, the overall quadratic penalty associated with ηµ1 can be written as βT
µ1

S̄µ1βµ1

where S̄µ1 is a block diagonal penalty matrix given by S̄µ1 = diag(0, λµ1
1 Sµ1

1 , . . . , λµ1

Pµ1
Sµ1

Pµ1
). An

overall penalty vector λ̄µ1 , made up of all the penalty parameters included in S̄µ1 , can be written

as λ̄µ1 = (λµ1
1 , . . . , λµ1

Pµ1
)T.

3.3 Parameter Estimation

Given a set of n independent observations and using the results given in Section 3.2, the log-

likelihood function of the copula-based ESR is given by

`(β) =
n∑
i=1

y1i

log f2(y2i | θ2i) + log

(
1−

∂ C12

(
F1(0 | θ1i), F2(y2i | θ2i) | δ12

)
∂F2(y2i | θ2i)

)
+

n∑
i=1

(1− y1i)

log f3(y3i | θ3i) + log

(
∂ C13

(
F1(0 | θ1i), F3(y3i | θ3i) | δ13

)
∂F3(y3i | θ3i)

) .

(3.10)

The vectors of distribution parameters are defined as θ1i = (µ1i, σ1i)
T =

(
g−1
µ1

(
ηµ1
i (βµ1)

)
, 1
)T
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and θmi = (µmi, σmi, νmi)
T =

(
g−1
µm

(
ηµmi (βµm)

)
, g−1
σm

(
ησmi (βσm)

)
, g−1
νm

(
ηνmi (βνm)

))T
, for

m = 2, 3, where the functions g−1(·) are the inverses of the link functions defined in Subsec-

tion 3.2.1, and each ηi represents an additive predictor, as described in Subsection 3.2.3, that

depends on a vector of regression coefficients. The regression coefficients together with both cop-

ula parameters are encapsulated into the overall vector β = (βT
µ1
,βT

µ2
,βT

µ3
,βT

σ2
,βT

σ3
,βT

ν2
,βT

ν3
,

δ12, δ13)T ∈ Rp, where p =
∑7

κ=1 pκ + 2 and pκ = dim(βκ), for κ ∈ {µ1, µ2, µ3, σ2, σ3, ν2, ν3}.

Due to the flexible structures introduced in the additive predictors, directly maximising the

log-likelihood function will result in over-fitting and a penalty term is added in order to control

the fit (Green & Silverman, 1993; Marra et al., 2017; Wood, 2017). The penalized maximum

likelihood estimator (PMLE) is defined as

β̂ = arg max
β

`p(β) = arg max
β

{
`(β)− P(β,λ)

}
, (3.11)

where `p(β) represents the penalized log-likelihood and P(β,λ) is a quadratic penalty defined

as P(β,λ) = 1
2β

TSλβ. The matrix Sλ is block diagonal and contains the penalty matrices as-

sociated with the additive predictors related to each of the distribution parameters, that is, Sλ =

diag(S̄µ1 , S̄µ2 , S̄µ3 , S̄σ2 , S̄σ3 , S̄ν2 , S̄ν3 , 0, 0). The unknown penalty vectors contained in each S̄ ma-

trix can also be collected into an overall vector as followsλ = (λ̄T
µ1
, λ̄T

µ2
, λ̄T

µ3
, λ̄T

σ2
, λ̄T

σ3
, λ̄T

ν2
, λ̄T

ν3
)T.

Estimation of β and λ proceeds by using the approach of Marra et al. (2017) and Marra &

Radice (2019), already described in Chapter 2. To avoid repetition, we limit the exposition to an

outline of the steps of the procedure and to defining the elements that are needed for estimation in

the current context.

Step 1: At iteration a, and holding λ fixed, the trust-region method obtains and update of the

parameter vector of the form β[a+1] = β[a] + q[a], where q[a] corresponds to the solution of the

following constrained optimization problem

q[a] = arg min
q∈T [a]

−
{
`p(β[a]) + qTgp(β

[a]) +
1

2
qTHp(β

[a])q
}
, (3.12)

such that T [a] = {q ∈ Rp : ‖q‖ ≤ r[a]} represents the region of trust with radius r[a] > 0

at iteration a. The objective function in (3.12) is a quadratic approximation of the model neg-

ative penalized log-likelihood within a suitable neighbourhood of β[a], the vector gp(β[a]) =

∂`(β)
∂β

∣∣∣
β=β[a]

− Sλ[a]β[a] = g(β[a]) − Sλ[a]β[a] denotes the penalized gradient, and the matrix
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Hp(β
[a]) = ∂2`(β)

∂β∂βT

∣∣∣
β=β[a]

− Sλ[a] = H(β[a]) − Sλ[a] the penalized Hessian, both evaluated at

the current guess-estimate of the parameter vector. The gradient and Hessian of the (unpenalized)

model log-likelihood are defined as

g(β) =

(
∂`(β)
∂βµ1

T
, ∂`(β)
∂βµ2

T
, ∂`(β)
∂βµ3

T
, ∂`(β)
∂βσ2

T
, ∂`(β)
∂βσ3

T
, ∂`(β)
∂βν2

T
, ∂`(β)
∂βν3

T
, ∂`(β)
∂δ12

, ∂`(β)
∂δ13

)T

, and

H(β) =



∂2`(β)
∂βµ1∂β

T
µ1

∂2`(β)
∂βµ1∂β

T
µ2

∂2`(β)
∂βµ1∂β

T
µ3

∂2`(β)
∂βµ1∂β

T
σ2

∂2`(β)
∂βµ1∂β

T
σ3

∂2`(β)
∂βµ1∂β

T
ν2

∂2`(β)
∂βµ1∂β

T
ν3

∂2`(β)
∂βµ1∂δ12

∂2`(β)
∂βµ1∂δ13

· ∂2`(β)
∂βµ2∂β

T
µ2

0 ∂2`(β)
∂βµ2∂β

T
σ2

0 ∂2`(β)
∂βµ2∂β

T
ν2

0 ∂2`(β)
∂βµ2∂δ12

0

· · ∂2`(β)
∂βµ3∂β

T
µ3

0 ∂2`(β)
∂βµ3∂β

T
σ3

0 ∂2`(β)
∂βµ3∂β

T
ν3

0 ∂2`(β)
∂βµ3∂δ13

· · · ∂2`(β)
∂βσ2∂β

T
σ2

0 ∂2`(β)
∂βσ2∂β

T
ν2

0 ∂2`(β)
∂βσ2∂δ12

0

· · · · ∂2`(β)
∂βσ3∂β

T
σ3

0 ∂2`(β)
∂βσ3∂β

T
ν3

0 ∂2`(β)
∂βσ3∂δ13

· · · · · ∂2`(β)
∂βν2∂β

T
ν2

0 ∂2`(β)
∂βν2∂δ12

0

· · · · · · ∂2`(β)
∂βν3∂β

T
ν3

0 ∂2`(β)
∂βν3∂δ13

· · · · · · · ∂2`(β)
∂δ12∂δ12

0

· · · · · · · · ∂2`(β)
∂δ13∂δ13



,

respectively. Both g(β) and H(β) have been derived analytically in Appendix B.2.

Step 2: In the second step, the parameter vector is held fixed and λ is estimated by minimising

the following criterion

λ[a+1] = arg min
λ

V(λ) = arg min
λ

‖z[a+1] − Aλ[a]z[a+1]‖2 − K̄ + 2tr
(
Aλ[a]

)
,

where z[a+1] =
{
−H(β[a+1])

}1/2
β[a+1]+

{
−H(β[a+1])

}−1/2
g(β[a+1]) corresponds to a pseudo-

data vector, Aλ[a] =
{
−H(β[a+1])

}1/2 {
−H(β[a+1]) + Sλ[a]

}−1 {
−H(β[a+1])

}1/2
is the in-

fluence matrix, and K̄ is the total number of parameters (see, Marra et al., 2017, for further details).

Initial values are obtained by fitting two separate copula-based SS models, in the first instance for

observations where y1i = 1 and then for observations where y1i = 0 using the routines provided

by the GJRM package (Marra & Radice, 2021).

Inference proceeds from the results already described in Chapter 2, and references therein,

which we do not include here to avoid repetition.

3.4 Simulation study

In this section, we perform a Monte Carlo experiment in order to (i) investigate the empirical

properties of the copula-based approach and (ii) assess the effect of copula misspecification on
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parameter estimates. Motivated by the empirical application presented in Section 3.5, we consider

a scenario where the switching and each of the regime variables are generated using the normal

and the log-normal distributions, respectively, and the copula functions that characterize their

joint distributions are from the Joe and Gumbel families. We assess the results under the correct

model specification and compare them with those obtained when one of the copula functions is

misspecified.

The simulated data consist of a set of independent observations (yi, xi)ni=1, where yi = (y1i, y2i, y3i)

are realizations of the random variables (Y1i, Y2i, Y3i), obtained using the observations rules given

in (3.1), and xi = (x1i, x2i) consists of a binary and a continuous variable generated using

the approach described in the simulation study of Chapter 2 (and references therein). The un-

derlying latent variables are generated as follows: the model for the switching mechanism is

given by Y ∗1i ∼ F1(θ1i), where F1 corresponds to the normal distribution with parameter vec-

tor θ1i = (µ1i, σ1i)
T, such that σ1 is set to one to ensure identifiability and the additive predictor

associated with µ1 is given by

ηµ1
i = βµ1

0 + βµ1
1 x1i + sµ1

1 (x2i).

The value of βµ1
0 is set to −1.15 in order to assign, approximately, 40% of observations to the

first regime, the value of βµ1
1 is set to 1.2, and the smooth function is given by sµ1

1 (x2i) = 1 −

x3
2i − 2 exp(−180x2

2i) − 2.3 sin(4.9x2i). The models for the regime variables are defined as

Y ∗mi ∼ Fm(θmi), where Fm corresponds to the log-normal distribution with parameter vector

θmi = (µmi, σmi)
T and associated additive predictors

ηµmi = βµm0 + βµm1 x1i + sµm1 (x2i),

ησmi = βσm0 ,

for m = 2, 3, where the values of βµ2
0 , βµ2

1 , and βσ2
0 are set to 2.2, 1.3 and 0.9, and the values of

βµ3
0 , βµ3

1 , and βσ3
0 are set to 1.5, 2.1, and 1.1, respectively. The smooth components are defined as

sµ2
1 (x2i) = x2i + exp[−32(x2i − 0.5)2] and sµ3

1 (x2i) = 0.3 + x2i + exp[−30(x2i − 0.35)2].

Lastly, the joint distributions of the pairs (Y ∗1i, Y
∗
mi) are defined as follows

F1m(y∗1i, y
∗
mi | θ1mi) = C1m

(
F1(y∗1i | θ1i), Fm(y∗mi | θmi) | δ1m

)
, m = 2, 3,
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where C12 is the Joe copula, C13 is the Gumbel copula, and the parameters δ12 and δ13 are set to

values corresponding to Kendall’s tau of τ12 = 0.2 and τ13 = 0.4, respectively. The simulation

settings are similar to those that appear in Wojtyś et al. (2018) in the context of copula-based SS

models.

We perform N = 300 repetitions1 with sample sizes of n = {3000, 5000, 10000} and esti-

mate the parameters of the correctly specified model (as described above) and of two misspecified

models in which C13 is assumed to belong to either the Joe or the Gaussian copula families.

Figure 3.1 shows boxplots of the estimates of βµm1 , βσm0 , and τ1m, for m = 2, 3, whereas

Figure 3.2 shows the true smooth functions (dashed lines) and the average effect estimates (solid

lines) of sµm1 (x2), together with the 5% and 95% point-wise quantiles (shaded areas), form = 2, 3,

and a sample size of n = 10000. In addition, Table 3.1 summarises the results in terms of relative

bias and root mean squared error (RMSE). Overall we observe that, under the correct marginal

and copula specification, estimates of the parametric and non-parametric components are near

their true values and are less variable as the sample size increases. On the other hand, when the

copula is misspecified, the parameter estimates that characterise the marginal distribution of Y ∗3

appear to be slightly under- or overestimated. In particular, when the model for C13 is based on

the Joe copula family βµ3 and τ13 are slightly underestimated but estimates of βσ3
0 are practically

unbiased. When C13 is based on the Gaussian copula, the true values of βµ3 and τ13 are slightly

overestimated whereas βσ3
0 is underestimated. In terms of the smooth terms, the misspecified

model based on the Gaussian copula recovers the shape of true function better than the one based

on the Joe copula.

3.5 Empirical application

We now revisit the empirical application from Chapter 2 and analyse the subset of the MEPS data

using copula-based ESR models. Recall that the study aims to investigate the effects of the uptake

of supplementary insurance on out-of-pocket prescribed drugs expenditures for individuals over

65 years old, while accounting for several other socio-economic and health-related factors. At the

time of data collection, Medicare did not cover for prescribed drug expenditures and individuals

may have chosen to obtain supplementary services to cover against certain out-of-pocket expenses.
1The number of repetitions is chosen based on the simulation study in Chapter 2 and references therein. Using the

principled approach described there on the scenario for the correctly specified model with n = 10000; an initial run
of N0 = 50; and focusing on the bias obtained for the Kendall’s tau parameters (τ12 and τ13) yields N ≈ 135 and
N ≈ 282 repetitions.
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Figure 3.1: Boxplots of the estimates of βµ2
1 , βµ3

1 , βσ20 , βσ30 , and τ12, τ13 for the correctly specified model (normal and
log-normal marginals linked by the Joe and Gumbel copulas) and when one of the copulas is misspecified (normal and
log-normal marginals linked by either the Joe and Joe copulas or the Joe and Gaussian copulas). The true values of the
parameters are βµ2

1 = 1.3, βµ3
1 = 2.1, βσ20 = 0.9, βσ30 = 1.1, τ12 = 0.2, and τ13 = 0.4 (indicated by a dashed line in

the plots). The sample size are n ∈ {3000, 5000, 10000}.
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Figure 3.2: Mean estimates of sµ2
1 (x2) (top row, blue line) and sµ3

1 (x2) (bottom row, red line) for a sample size of
n = 10000 under the correctly specified model (normal and log-normal marginals linked by the Joe and Gumbel
copulas) and when one of the copulas is misspecified (normal and log-normal marginals linked by either the Joe and
Joe copulas or the Joe and Gaussian copulas). The shaded areas correspond to the 5% and 95% point-wise quantiles.
The true functions are represented by dashed lines.
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Relative bias RMSE Relative bias RMSE

C12 − C13 | n 3000 5000 10000 3000 5000 10000 3000 5000 10000 3000 5000 10000

β̂µ2
1 β̂µ3

1

Joe-Gumbel 0.0072 0.0003 0.0003 0.0768 0.0563 0.0388 0.0023 0.0009 -0.0009 0.0559 0.0492 0.0313
Joe-Joe 0.0074 0.0005 0.0006 0.0770 0.0563 0.0388 -0.0234 -0.0254 -0.0277 0.0742 0.0718 0.0658
Joe-Gaussian 0.0056 -0.0015 -0.0015 0.0766 0.0560 0.0388 0.0022 0.0056 0.0054 0.087 0.0654 0.0351

β̂σ2
0 β̂σ3

0

Joe-Gumbel 0.0012 -0.0016 0.0001 0.0187 0.0146 0.0102 -0.0006 0.0001 -0.0008 0.0212 0.0163 0.0122
Joe-Joe 0.0011 -0.0017 0 0.0187 0.0146 0.0102 0.0005 0.0008 -0.0004 0.0224 0.0173 0.0123
Joe-Gaussian 0.0014 -0.0014 0.0002 0.0187 0.0146 0.0102 -0.0196 -0.0180 -0.0189 0.0311 0.0264 0.0245

τ̂12 τ̂13

Joe-Gumbel 0.0972 0.0257 0.0121 0.0475 0.0311 0.0220 0.0308 0.0153 0.0094 0.0577 0.0501 0.0338
Joe-Joe 0.0950 0.0236 0.0102 0.0473 0.031 0.0219 -0.2481 -0.2673 -0.2778 0.1146 0.1181 0.1156
Joe-Gaussian 0.1019 0.0302 0.0162 0.0479 0.0312 0.0220 0.0240 0.0547 0.0674 0.1439 0.0992 0.0485

ŝµ2
1 (x2) ŝµ3

1 (x2)

Joe-Gumbel 0.0498 0.0377 0.0276 0.1378 0.1043 0.0810 0.0131 0.0125 0.0091 0.1008 0.0818 0.0591
Joe-Joe 0.0496 0.0368 0.0266 0.1379 0.1040 0.0808 0.1572 0.1622 0.1619 0.1854 0.1807 0.1717
Joe-Gaussian 0.0497 0.0385 0.0289 0.1378 0.1047 0.0814 0.0710 0.0825 0.0928 0.1778 0.1446 0.1140

Table 3.1: Relative bias and RMSE for β̂µ2
1 , β̂µ3

1 , β̂σ20 , β̂σ30 , τ̂12, τ̂13, and smooth functions estimates ŝµ2
1 (x2) and

ŝµ3
1 (x2), obtained under different copula specifications, with sample sizes n ∈ {3000, 5000, 10000}. The true copulas
C12 and C13 are the Joe and the Gumbel, respectively. The misspecified models are those in which C13 corresponds
to either the Joe or the Gaussian copulas. The true values of the parameters are βµ2

1 = 1.3, βµ3
1 = 2.1, βσ20 =

0.9, βσ30 = 1.1, τ12 = 0.2 and τ13 = 0.4. The true smooth functions are sµ2
1 (x2) = x2 + exp[−32(x2 − 0.5)2] and

sµ3
1 (x2) = 0.3 + x2 + exp[−30(x2 − 0.35)2].

Having supplementary insurance raises then concerns of potential endogeneity, since it is plausible

that there are some unobserved individual characteristics that affect simultaneously prescribed

drugs expenditures and obtaining supplementary insurance. For further details, we refer the reader

to Section 2.6 of Chapter 2.

As pointed out by Mullahy (2009), healthcare expenditures distributions are generally right-

skewed and exhibit relatively ‘heavy’ upper tails. While the log transformation of the response

performed in Chapter 2 enables to proceed the analysis under the classical distributional assump-

tions, it is plausible that the distributions of the regime variables can be better described by other

parametric families. The copula-based approach allows to explore, besides the log-normal, several

other distributions that have been proposed to model healthcare expenditures such as the gamma,

Weibull, Dagum, and Sigh-Maddala (see, for example, Deb & Norton, 2018; Manning et al.,

2005; Manning & Mullahy, 2001; Mullahy, 2009). Moreover, the bivariate normality assumption

between the switching and the regimes variables is somewhat restrictive and may not reveal certain

characteristics of the data. For instance, the association between the variables, measured by the

correlation coefficients, is restricted to being linear and the Gaussian distribution does not capture

tail dependence. The copula approach enables to inspect several modelling assumptions, such as

the presence of tail dependence, in terms of the association structure implied by the copula.
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We start by making an assessment of potential candidate distributions to model the switching

mechanism and each of the regimes. Then, we explore several copula specifications to model the

association between having supplementary insurance and prescribed-drug expenditures for each

regime.

With respect to the switching mechanism, we investigate several models using the following

specification

supplementary∗i ∼ F1(µ1i, 1), i = 1, . . . , n,

where F1 is either the normal, logistic, or Gumbel distribution, and the location parameter is

related to the following additive predictor

µ1i = ηµ1
i = βµ1

0 + βµ1
1 genderi + βµ1

2 racei + βµ1
3 multloci + sµ1

1 (agei)

+ sµ1
2 (log(income)i) + sµ1

3 (chronici) + sµ1
4 (ssiratioi).

The effects of the continuous covariates are modelled using smooth functions, sµ1
j (·) for j =

1, . . . , 4, and are represented using thin plate regression splines (see Section 2.2.1). An assessment

of the results indicates that all the covariates included in the predictor are highly significant for the

three different specifications. Table 3.2 shows the AIC/BIC values obtained under the different

modelling options and suggest using the normal specification. A further sensitivity analysis was

carried out once the rest of the ESR model components were chosen and suggested that the final

results are robust to the three different specifications of the switching mechanism (not shown here).

F1 AIC BIC

Normal 11279.1 11469.4
Logistic 11281.6 11471.5
Gumbel 11280.9 11471.9

Table 3.2: AIC/BIC values obtained after fitting the switching mechanism using the normal, logistic and Gumbel
distributions.

In terms of the models for the regime variables, we consider the aforementioned parametric

families, that is, the log-normal, gamma, Weibull, Dagum, and Sigh-Maddala distributions (a ta-

ble containing the expressions of the pdf, cdf, expectation and variance of these distributions can

be found in Appendix B.3). We initially allow for all the covariates to enter the predictors that

model the distribution parameters and proceed by using a backward selection approach, based

on the AIC/BIC, to arrive at the final model specifications for each regime (see, for example,
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Stasinopoulos et al., 2017; Voudouris et al., 2012, for model selection approaches in the contexts

of GAMLSS). Univariate models were fitted using the gamlss function from the GJRM pack-

age (Marra & Radice, 2021). The goodness of fit of the candidate marginal distributions can be

assessed using the normalised quantile residuals (Dunn & Smyth, 1996), defined as

r̂mi = Φ−1
{
Fm(ymi | θ̂mi)

}
, m = 2, 3, i = 1, . . . , n,

where Φ−1(·) is the inverse of the cdf of the standard normal distribution, and θ̂mi is the vector of

estimated distribution parameters. Letting um = Fm(y | θm), it is well known that um ∼ U(0, 1)

and, assuming that the model is correctly specified, the quantile residuals r̂mi are approximately

standard normal. This implies that normal Q-Q plots of r̂mi can be used as graphical tools to assist

with modelling decisions and to detect lack of fit of the candidate distributions for each of the

regimes.

Table 3.3 contains the AIC/BIC values corresponding to the final specifications of each of the

considered modelling options for each regime, whereas Figures 3.3 and 3.4 show Q-Q plots of the

normalised quantile residuals. Based on the values of the selection criteria and on an assessment

of the Q-Q plots, the log-normal distribution appears to provide the best fit to the data for both

regimes.

Marginal distribution Candidate distribution AIC BIC

F2

Log-normal 57287.6 57390.8
Singh-Maddala 57388.5 57526.8
Dagum 57424.9 57518.1
Gamma 57575.3 57714.1
Weibull 57661.8 57847.1

F3

Log-normal 90711.2 90829.2
Singh-Maddala 90865.1 90997.4
Dagum 90914.3 91042.2
Gamma 91159.8 91280.3
Weibull 91308.9 91421.6

Table 3.3: AIC/BIC values corresponding to univariate GAMLSS based on the log-normal, Singh-Maddala, Dagum,
gamma, and Weibull distributions for each regime. The lowest AIC/BIC values are in bold.

The chosen models for each of the regime variables are specified as follows

expenditure∗mi ∼ F2(µmi, σmi), m = 2, 3, i = 1, . . . , n,

where Fm corresponds to the log-normal distribution and the location and scale parameters are
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Figure 3.3: Q-Q plots of the normalised quantile residuals obtained from univariate GAMLSS for individuals with
supplementary insurance based on the log-normal, Singh-Maddala, Dagum, Gamma, and Weibull distributions.
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Figure 3.4: Q-Q plots of the normalised quantile residuals obtained from univariate GAMLSS for individuals without
supplementary insurance based on the log-normal, Singh-Maddala, Dagum, Gamma, and Weibull distributions.

related to the following additive predictors

ηµmi = βµm0 + βµm1 genderi + βµm2 racei + sµm1 (agei) + sµm2 (log(income)i)

+ sµm3 (chronici),

ησmi = βσm0 + sσm1 (chronici).

The effects of the continuous covariates are modelled using smooth functions, sµmj (·) for j =
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1, . . . , 3, and sσm1 (·), which are represented using thin plate regression splines.

Given the univariate marginal models, the next stage consists of choosing candidate copula

functions to specify the joint distributions F1m(supplementary∗i ,expenditure
∗
mi | θ1mi),

for m = 2, 3. We first perform an assessment on the strength and direction of the association

parameters between the switching mechanism and each regime by fitting a model using Gaussian

copulas. The results (roughly equivalent to those obtained in Chapter 2) indicate a positive asso-

ciation between insurance status and prescribed-drug expenditures at both levels of insurance. We

then proceed by fitting several models using different combinations of copulas that allow for pos-

itive dependence, namely the Gaussian, Clayton, Gumbel, and Joe families. To choose among the

candidate models, the copula-based regression literature favours the use of the AIC/BIC (Gomes

et al., 2019; Zimmer, 2013) however, Brechmann & Schepsmeier (2013) also suggest the use of

formal hypothesis tests for non-nested models such as those proposed by Vuong (1989) and Clarke

(2007).

Table 3.4 reports the best three models in terms of AIC/BIC, the Gaussian-Gaussian specifi-

cation (included for reference) and the estimated values of τ12 and τ13. The model that obtains

C12 - C13 AIC BIC τ̂12 (95% CI) τ̂13 (95% CI)

Joe - Gumbel 159216.3 159683.9 0.187 (0.144,0.228) 0.399 (0.321,0.475)
Joe - Gaussian 159221.9 159694.2 0.187 (0.146,0.233) 0.449 (0.373,0.524)
Joe - Joe 159222.2 159677.3 0.185 (0.145,0.231) 0.280 (0.216,0.354)
Gaussian -Gaussian 159236.0 159712.0 0.260 (0.132,0.368) 0.446 (0.362,0.521)

Table 3.4: AIC/BIC values and estimated values of τ12 and τ13 (with 95% credible intervals) obtained using different
combinations of copula functions in the copula-based ESR model with marginals based on the normal and log-normal
distributions. C12 and C13 denote the copula families used to model the joint distributions F12 and F13, respectively.

the lowest AIC specifies the joint distributions F12 and F13 using the Joe and the Gumbel copulas,

respectively. In contrast, the model with the lowest BIC specifies both joint distributions using

the Joe copula. Performing a series of Vuong and Clarke tests to discern among the best three

specifications suggest that all models provide similar fits to the data. However, as pointed out

by Trivedi & Zimmer (2007), the main interest in many empirical applications lays on choosing

an appropriate distribution to model the response and determining the statistical significance of

association parameters, rather than on the particular form that the joint distributions F12 and F13

take. Furthermore, the dependence structures implied by the Gumbel and Joe copula families are

relatively similar. They both exhibit upper tail dependence but the Gumbel has a thinner upper tail

(see, for example, the contour density plots of the Gumbel and Joe copulas for different values of

the Kendall’s tau shown in Figure B.1 in Appendix B.1). This suggests that the interpretation of
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the dependence structure implied by the models with the best AIC and BIC are relatively similar.

In what follows we report the results using the Joe and Gumbel copula specifications.

Since the association parameters δ1m, for m = 2, 3, are copula specific, we provide estimates

(and 95% credible intervals) of the Kendall’s tau. Both estimated values τ̂12 = 0.187(0.144, 0.228)

and τ̂13 = 0.399(0.321, 0.475) capture individual self-selection into insurance. Similarly to the

results obtained in Chapter 2, the estimated values of τ12 (or τ13) suggest that on average, and

among individuals with extra insurance (or Medicare-only individuals), unobserved characteris-

tics that influence having supplementary coverage also influence out-of-pocket prescribed drug

expenditures. The copula-based approach also allows to make an assessment of the dependence

structure implied by the copula functions. The results suggest that large values of expenditures

are accompanied by a higher chances of having supplementary insurance however, low expendi-

tures do not necessarily imply lower chances of having extra insurance. This feature cannot be

captured using the models presented in Chapter 2 under the standard distributional assumptions.

Furthermore, these results seem to align with the literature (see, for example, Fang et al., 2008).

We now focus on the outcome of interest for each regime. As explained in Kneib et al. (2021),

interpretation of the results in the context of GAMLSS models is generally difficult since we

cannot directly assess the effects of the explanatory variables on the moments of the chosen dis-

tribution, the distributional parameters are subject to transformations, and the same covariate can

enter different additive predictors.

Table 3.5 summarises the parametric estimates obtained by applying the 2-step approach

(ESR-2-step), the classical fully parametric ESR (ESR - parametric ML), and the chosen copula-

based model (ESR - Copula: Joe-Gumbel). The 2-step approach did not yield standard errors for

the estimates. Estimates of the correlation coefficients for the 2-step and parametric ESR meth-

ods have been transformed to the Kendall’s tau, to allow for comparison with the copula-based

approach. Figure 3.5 summarises the estimates of the parametric and non-parametric model

components (and 95% credible intervals) related to the distribution parameters of the univariate

marginal models, for individuals with supplementary insurance (shown in blue) and for those us-

ing Medicare only (shown in red). The effects of gender and race on µ2 and µ3 are linear, as

it is the effect of the number of chronic conditions on log σ3. Individual’s gender is only a

significant contributing factor for µ2, whereas the effect of race is negative and significant for

both µ2 and µ3. The effect of age shows a high degree of non-linearity and, overall, affect µ2 and

µ3 negatively. The relationship of log(income) with µ2 and µ3 shows an overall downward
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Model ESR - 2-step ESR - parametric ML ESR - Copula: Joe-Gumbel

Estimates | Regimes Supplementary Medicare Supplementary Medicare Supplementary Medicare

(Intercept) 6.369 7.539 6.354 7.468 6.597 7.209
- - (5.962,6.745) (7.086,7.85) (6.532,6.662) (7.116,7.302)

gender:female -0.04 -0.108 -0.018 -0.103 -0.009 -0.086
- - (-0.084,0.049) (-0.16,-0.047) (-0.072,0.054) (-0.14,-0.033)

race:Black/Hispanic -0.15 -0.184 -0.129 -0.18 -0.128 -0.162
- - (-0.224,-0.034) (-0.25,-0.109) (-0.222,-0.034) (-0.23,-0.094)

age -0.01 -0.014 -0.01 -0.013
(smooth term) (smooth term)

- - (-0.015,-0.004) (-0.018,-0.009)

log(income) 0.09 0.064 0.065 0.058
(smooth term) (smooth term)

- - (0.024,0.106) (0.024,0.093)

chronic 0.309 0.31 0.307 0.309
(smooth term) (smooth term)

- - (0.282,0.331) (0.289,0.329)

σ̂2 1.007 - 0.989 - 0.934 -
- - (0.936,1.042) - (0.887, 0.956) -

σ̂3 - 0.979 - 1.016 - 1.023
- - - (0.965,1.066) - (0.973,1.068)

τ̂12 0.427 - 0.303 - 0.186 -
- - - - (0.144,0.228) -

τ̂13 - 0.455 - 0.400 - 0.399
- - - - - (0.321,0.475)

Table 3.5: Parameter estimates and 95% confidence/credible intervals obtained using the 2-step approach (ESR - 2-
step), the parametric ESR (ESR - parametric ML), and the copula-based model (ESR - Copula: Joe-Gumbel). The
2-step approach did not yield standard errors for the estimates. Smooth function estimates for the non-parametric terms
of the copula-based model are reported in Figure 3.5.
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Figure 3.5: Estimated parametric and non-parametric effects, and 95% credible intervals, for µm and log(σm), for
m = 2, 3. Estimates in the supplementary regime are shown in blue whereas those in the Medicare regime are shown
in red. The jittered rug plot in the x-axis indicates the values of the covariates in the data.
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trend for individuals with low annual income followed by an upward trend for individuals with

higher incomes. Lastly, the effect of chronic shows that as the number of chronic conditions

increases µ2 and µ3 increase but the effect is reversed for log σ2 and log σ3.

In order to provide further interpretation of the results, we follow the approach presented

in Kneib et al. (2021) and Stadlmann & Kneib (2022) and show visualisations of the marginal

influence of several covariates on the expected value of the response at each level of insurance.

In particular, Figure 3.6 shows effect displays (Fox, 2003) that depict the influence of individual’s

age, log(income), and number of chronic conditions on the predicted expected value of

the response, for individuals with and without supplementary insurance, while keeping the rest

of the covariates fixed at their mode/mean. The effects are shown in blue for individuals with

supplementary insurance and in red for those with Medicare only. The shaded areas represent

95% credible intervals. Plots on the left-hand side correspond to ‘average’ Black/Hispanic females

while those on the right-hand side correspond to ‘average’ White females. In terms of age, the

expected expenditure appears to decrease as the ‘average’ individual gets older, for both levels

of the insurance status and race. The effects displays of log(income) show that the expected

values of expenditure for the ‘average’ individual follow a somewhat downward trend for low

levels of income and a upward trend for higher incomes. Lastly, The effects of chronic on

expected expenditure for the ‘average’ individual increases non-linearly with the number of

chronic conditions, for both levels of insurance status and race.

The estimated average treatment effect of supplementary on expenditure, together

with a 95% credible interval2, for a randomly chosen individual is −1285(−1586,−997). The

result does not differ much from that obtained in Chapter 2 and suggests that, on average, having

supplementary insurance leaves a randomly chosen individual about $1285 better off in terms of

prescribed drugs expenditures.

3.6 Discussion

In this chapter, we have presented copula-based ESR models that relax the distributional assump-

tions of the classical framework. The modelling approach allows for the joint distributions of the

switching variable and each of the regime responses to be modelled using a range of parametric

bivariate copula functions. Furthermore, the regime responses are embedded into the GAMLSS
2Credible intervals are constructed using the simulation steps described in Section 2.4 implemented in the GJRM

package.
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Figure 3.6: Effects of age, log(income), and number of chronic conditions on the predicted expected value
of the response for individuals with and without supplementary insurance. Effects on the supplementary regime are
shown in blue, whereas those on the Medicare regime are shown in red. The shaded areas represent 95% credible
intervals. Plots on the left-hand side correspond to ‘average’ Black/Hispanic females while those on the right-hand side
correspond to ‘average’ White females.

framework, modelled using several two- and three-parameter continuous distributions, in which

each distribution parameter is associated with a flexible linear predictor of covariates that accounts

for linear, non-linear, and spatial effects. The approach to parameter estimation and inference is

well-established in the copula regression modelling literature. We have also performed a simula-

tion study to assess the empirical properties of the estimators and the effects of copula misspecifi-

cation on the estimates.

In an application, we have studied insurance uptake of individuals over 65 to cover out-of-

pocket prescription drug expenditures. Our findings suggest that, among several candidate dis-

tributions, the log-normal captures well the distribution of out-of-pocket prescribed drug expen-
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ditures at both levels of insurance. Furthermore, the modelling approach captures self-selection

at both levels of insurance and the dependence structures implied by the Joe and Gumbel fami-

lies suggest that individuals with higher expected out-of-pocket expenditures are more likely to

uptake supplementary insurance. The estimated average treatment effect indicates that having

supplementary insurance constitutes a saving of about $1285.



Chapter 4

A multiple imputation approach for

missing not at random variables with an

application in health economics

This chapter presents a multiple imputation (MI) approach that obtains plausible imputed values

for a continuous variable assumed to be missing not a random and not restricted to be Gaussian.

The approach is derived from a copula-based specification of the sample selection model and

allows to create imputations for a partially observed variable under different assumptions about the

distributions of the missingness mechanism and the variable subject to missing values. Similarly

to other MI approaches in the literature, the imputation scheme can be embedded into the fully

conditional specification strategy to MI.

In an application, we re-examine the non-randomised component of the REFLUX study1 in

which the response variable is missing for almost 50% of the participants and suspected to be

missing not at random. The aim of the analysis is to evaluate the effect of surgery on long-term

patient’s health status, among individuals with gastro-oesophageal reflux disease, using different

modelling strategies and assumptions about the missingness mechanism and the distribution of the

response. We find that estimates of the effect of surgery are significant, regardless of the modelling

approach. The MI estimates for the effect of surgery and other model parameters are very similar

to those obtained using a copula-based sample selection model and, in some instances, they have

slightly smaller standard errors.
1The REFLUX trial was funded by the NIHR Health Technology Assessment Programme (Project No 97/10/03)

and was published in full in Health Technology Assessment. Volume 17, issue 22.

69
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The contents and structure of this chapter are based on the following publication: "Gomes, M,

Radice, R, Camarena Brenes, J, Marra, G. - Copula selection models for non-Gaussian outcomes

that are missing not at random. Statistics in Medicine. 2019; 38: 480-496".

I participated in the draft and publication of the paper. Specifically, my contributions to the

paper were Section 4.4 "MI based on the copula selection model", where the MI approach is

presented; and appendices G, I, and J, which are related to the derivation of the copula-based

likelihood model, the conditional density of the missing values, and details about the rejection

algorithm used to obtain imputations. I did not contribute to the introduction, simulations, and the

empirical application in the paper. The work was carried out under the supervision of Professor

Rosalba Radice and Professor Giampiero Marra.

In relation to the contents of this chapter, Section 4.2 gives an overview of missing data ter-

minology and is not included in the publication; Section 4.3 reviews sample selection models and

is similar to Sections 4.1, 4.2, and 4.3 in the published paper; Section 4.4 expands on Section 4.4

from the publication. The simulation study in Section 4.5 has been carried out separately, and

complements the results of the published paper. The empirical application in Section 4.6, which

is the same as in the published paper, has also been carried out separately for this chapter, using

the data provided by Dr Manuel Gomes, and with the permission of the Centre for Healthcare

Randomised Trials unit from the University of Aberdeen.

4.1 Introduction

Missing data is a common problem encountered by researchers across different fields. For in-

stance, situations such as non-response in surveys, failure to return self-reported questionnaires

after interventions, or individual dropout in clinical studies are frequent (Grant et al., 2013; Little,

1982; Molenberghs & Kenward, 2007; Gomes et al., 2019). In the presence of partially observed

variables, the challenge is to obtain valid inferences about the process that generated the data using

only the observed data.

The formal framework to statistical modelling with missing data assumes that there is an un-

derlying process that determines whether data are observed or missing and, generally, requires the

specification of a joint model for the data and the missing data mechanism. Rubin (1976) defined

and classified the missingness mechanism as missing completely at random (MCAR), missing at

random (MAR), and missing not at random (MNAR). Without being exhaustive, the methodology
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for handling missing data can be categorized into likelihood-based methods (either from a frequen-

tist or a Bayesian point of view), weighting, and MI approaches (see, for example, Molenberghs

et al., 2014). In this chapter, we present a MI approach based on the sample selection (SS) mod-

elling framework that obtains plausible values for imputation of a partially observed continuous

variable assumed to be MNAR.

As anticipated in Chapter 1, SS models (Heckman, 1974, 1976, 1979) are frequently used in

situations where the researcher suspects that a partially observed outcome of interest is MNAR

(see, for example Bärnighausen et al., 2011; Genius & Strazzera, 2008; Gomes et al., 2020, 2019;

Sales et al., 2004). The classical specification of SS models consists of a simultaneous system

of regression equations describing the selection or missingness mechanism and the substantive

model of interest, where the error terms are assumed to be bivariate normal. Estimates of the

model parameters are usually obtained using a two-step approach or via maximum likelihood.

The classical framework has been extended in several directions, for example, based on semi- and

non-parametric frameworks (Ahn & Powell, 1993; Gallant & Nychka, 1987), using alternative dis-

tributional assumptions such as the t or the skew-normal (Marchenko & Genton, 2012; Ogundimu

& Hutton, 2016), or using copula functions to model the joint distribution of the selection and

response variables (Smith, 2003; Wojtyś et al., 2018). In the context of missing data, a drawback

of the SS framework is that the model only allows for missing values on the response and discards

all the observational units with missing values in any of the explanatory variables. This may lead

to biased and less precise parameter estimates (Carpenter & Smuk, 2021).

The MI framework was introduced by Rubin (1977, 1978, 1987) in the context of non-response

in surveys and has become a widely used strategy to deal with missing data in several disciplines

(King et al., 2001; Sterne et al., 2009; van Buuren et al., 1999). The MI approach can be understood

as a way of imitating the data generating process by filling in the missing values with multiple

plausible draws from appropriate imputation models in order to obtain several imputed data sets.

The completed data sets are then analysed, employing the methods that would have been used

in the absence of missing data, and the results are combined using what are commonly known

as Rubin’s rules. The main advantages of MI over other approaches are that the framework can

be applied to impute several partially observed variables in the data, the analyses carried out in

the completed data sets can generally be performed using standard software, and the combining

Rubin’s rules are generic and can be applied to estimates obtained from a wide range of analyses

(see, for example, Harel & Zhou, 2007; Rubin, 1996; Zhang, 2003, for reviews on MI).
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The two main strategies to MI when a data set contains several variables with missing values are

referred to as the joint and the fully conditional specifications. The former models the data jointly

using a multivariate distribution, usually the multivariate normal, and imputations are drawn from

this distribution once the parameters have been estimated (Schafer, 1997). The latter specifies

separate univariate conditional models for each variable subject to missingness given the observed

(or already imputed) data, and then impute the missing values sequentially (van Buuren, 2007).

MI approaches are usually constructed under the MAR assumption however, the framework

can also be employed when data is assumed to be MNAR (Gomes et al., 2019; Rubin, 1987;

Schafer, 1999). For instance, Galimard et al. (2016) proposed an imputation approach based

on Heckman’s two-step estimation method and Ogundimu & Collins (2019) proposed imputing

the missing values from an imputation model derived from a SS model based on the bivariate

t distribution. In contrast, the imputation approach presented in this chapter is derived from a

specification of the SS model using copula functions (Gomes et al., 2019; Smith, 2003; Wojtyś

et al., 2018). The copula modelling framework allows to specify the models for the missingness

mechanism and the MNAR variable using a wide range of distributions. This, in turn, permits

to construct imputation schemes under different modelling assumptions about the missingness

mechanism and the partially observed variable. The imputation model can be easily incorporated

into a fully conditional strategy to MI to deal with missing values in several variables in the data.

In an application, we re-examine the non-randomised component of the REFLUX study (Grant

et al., 2008, 2013; Gomes et al., 2019, 2020), a five year follow-up analysis of a clinical trial that

evaluates the effect of using surgery, compared to continuing medication, on long-term patient’s

health status among individuals with gastro-oesophageal reflux disease in the UK. The response

variable is constructed using participants’ self-reported questionnaires and is missing for almost

50% of the individuals due to patients not returning the questionnaires at some point during the

follow-up period. As pointed out by Gomes et al. (2019), the researchers in the study suspected

that it was plausible for the outcome to be MNAR. The aim of the analysis is to compare the

robustness of the conclusions of the study under different modelling strategies based on assump-

tions about the distributions of the missing mechanism and the response. We find that estimates

of the effect of surgery are significant, regardless of the approach used, but their magnitude differs

slightly depending on the modelling strategy. The MI estimates for the effect of surgery and other

model parameters are very similar to those obtained using a copula-based SS model and, in some

instances, they have slightly smaller standard errors.
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The remainder of this chapter is structured as follows: Section 4.2 gives a general overview of

the terminology used in the missing data literature, and the role of the mechanism governing the

missing data in statistical modelling. Section 4.3 describes the classical SS model and the copula-

based SS model proposed by Wojtyś et al. (2018). In Section 4.4, we present a MI approach

for variables assumed to be MNAR based on the aforementioned copula SS model. Section 4.5

contains a simulation experiment to study the empirical properties of the imputation approach.

Section 4.6 investigates the robustness of the conclusions from the non-randomised component of

the REFLUX study under different modelling assumptions. Lastly, in Section 4.7 we discuss the

MI approach and the empirical results.

4.2 An overview of missing data terminology

In this section, we provide an overview of the main terminology used in the missing data literature

and some of the notation we will use in this chapter. For simplicity, we focus the exposition on

likelihood-based approaches where a response variable is subject to missingness, given a fully

observed vector of covariates.

Let Y1 denote a missing data indicator such that Y1 = 1 when the outcome variable of interest

Y2 is observed and Y1 = 0 when missing, and let x correspond to a vector of fully observed

covariates. In the presence of missing data, likelihood-based approaches to inference are based on

the joint model for the missing data indicator and the response given the covariates with density

f(y1, y2 | x,θ), where θ denotes a vector of parameters.

Statistical analysis with missing data is tied to a problem of identification of the parameters

characterising f(y1, y2 | x,θ), which can be understood by inspecting the following factorization

of the joint density (Daniels & Hogan, 2008)

f(y1, y2 | x,θ) =
{
f(y2 | y1 = 1, x,θO)P

[
Y1 = 1 | x

]}y1

{
f(y2 | y1 = 0, x,θM )P

[
Y1 = 0 | x

]}1−y1

,

(4.1)

where f(y2 | y1 = 1, x,θO) and f(y2 | y1 = 0, x,θM ) correspond to the conditional densities of

the observed and missing values, characterized by the parameter vectors θO and θM , respectively.

Since we do not observed Y2 when Y1 = 0, the parameters in f(y2 | y1 = 0, x,θM ) cannot be

identified unless the researcher imposes parametric assumptions about either the distribution of

the missing values given the observed, or the joint model and/or the process governing the missing
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data, which are unverifiable from the data at hand (Molenberghs et al., 2014).

Given a sample of n incomplete observations (y1i, y2i, xi)ni=1, the observed data likelihood is

obtained by integrating out the missing values from the joint density, that is,

Lobs(θ) =

n∏
i=1

∫
{y2 : y1=0}

f(y1i, y2i | xi,θ)dy2

=
∏
y1i=1

f(y1i | y2i, xi,θ1)f(y2i | xi,θ2)

∏
y1i=0

∫
{y2 : y1=0}

f(y1i | y2i, xi,θ1)f(y2i | xi,θ2)dy2,

(4.2)

where f(y1i | y2i, xi,θ1) corresponds to a model for the missingness mechanism, f(y2i | xi,θ2)

corresponds to a model for partially observed variable, and θ1 and θ2 are parameter vectors.

Inference about the parameters of interest depends on the assumptions made about the process

characterising the relationship between the missing and observed data. Rubin (1976) categorised

these assumptions as follows:

• Data are assumed to be MCAR if the probability of the response being observed or miss-

ing does not depend on the response itself or any other variable. Under this assumption,

the model for the missingness mechanism can be written as follows f(y1i | y2i, xi,θ1) =

f(y1i | θ1).

• Data are said to be MAR if the probability of the response being observed or missing does

not depend on the missing values given the observed. That is, we write the model for the

missingness mechanism as follows f(y1i | y2i, xi,θ1) = f(y1i | xi,θ1).

• Data are thought to be MNAR if the missingness mechanism depends on the unobserved

components of Y2, which implies that the probability of the variable of interest being ob-

served or missing depends on the variable itself, even after accounting for other observed

variables. We write the model for the MNAR mechanism as f(y1i | y2i, xi,θ1).

The MAR assumption implies that the observed data likelihood in (4.2) can be written as

follows

Lobs(θ) =

n∏
i=1

f(y1i | xi,θ1)

∫
{y2 : y1=0}

f(y2i | xi,θ2)dy2.

A consequence of assuming data is MAR is that we implicitly make an assumption about the

conditional density of the missing values (given the observed data) that identifies the model pa-

rameters. MAR implies that Y1 and Y2 are conditionally independent and therefore the distribution
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of the response is the same regardless of whether Y2 is observed of not, i.e.,

f(y2i | y1i = 1, xi,θO) = f(y2i | xi,θ) = f(y2i | y1i = 0, xi,θM ).

Moreover, if in addition to MAR, θ1 and θ2 are disjoint or variation independent2, the missingness

mechanism is said to be ignorable and inference can proceed based on a model for the observed

data, ignoring the process that causes the missing data (Rubin, 1976). In a regression context, the

ignorability assumption implies that, under a correctly specified model, a complete-case analy-

sis (using only the observational units with fully observed variables) yields consistent parameter

estimates and valid inferences since the ith contribution to the observed data likelihood for an

individual with missing response is equal to 1 (see, for example, Carpenter & Kenward, 2012;

Carpenter & Smuk, 2021).

When data are thought to be MNAR, the missingness mechanism is called non-ignorable and

obtaining valid inferences about the parameters of interest requires specifying a joint model for

the pair of variables (Y1, Y2), for instance, using the SS framework which we describe next.

4.3 Sample selection models

Sample selection models (SS; Heckman, 1974, 1976, 1979) are frequently used in situations where

the researcher suspects that the outcome of interest is missing not at random (MNAR; see, for

example Bärnighausen et al., 2011; Genius & Strazzera, 2008; Gomes et al., 2020, 2019; Sales

et al., 2004). For instance, the response variable in the REFLUX study (Section 4.6) measures

long term patient’s health status and is missing for almost 50% of the individuals. The variable was

constructed using self-reported questionnaires and researchers in the study suspected that patients

in worse health were less likely to participate. This suggests that the missingness mechanism may

depend on the variable that is missing and raises concerns about the plausibility of the variable

being MNAR (see, Grant et al., 2008, 2013; Gomes et al., 2019, for further details).

The classical specification of SS models consists of a simultaneous system of regression equa-

tions describing the selection or missingness mechanism and the substantive model of interest,

where the error terms are assumed to be bivariate normal. SS models are sensitive to distributional

misspecification (Pigini, 2015) and the classical model has been extended in several directions,
2The parameter vectors θ1 and θ2 are said to be disjoint if the parameter space of θ is the product of the parameter

spaces of θ1 and θ2. This is also called the separability condition. From a Bayesian perspective, the condition also
requires that the parameters are a priori independent. (Rubin, 1976).
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for example, based on semi- and non-parametric approaches (Ahn & Powell, 1993; Gallant & Ny-

chka, 1987), using alternative distributional assumptions (Marchenko & Genton, 2012; Ogundimu

& Hutton, 2016), or using copula functions (Smith, 2003; Wojtyś et al., 2018). The copula ap-

proach provides a convenient framework to specify the distributions of the missingness/selection

mechanism and the outcome of interest separately from the copula function that captures the de-

pendence structure in the data. The framework also allows researchers to work under several

distributional assumptions and assess the robustness of their results. Furthermore, fully paramet-

ric copula approaches are usually less computationally intensive than non- and semi-parametric

methods (Wojtyś et al., 2018).

We describe next the specification and approaches to parameter estimation of the classical SS

model and the copula-based extension proposed by Wojtyś et al. (2018). The latter constitutes

the main building block for the MI approach presented in this chapter. Since the assumptions and

identifiability restrictions of these models are similar to those already discussed in Chapters 2 and

3, in order to avoid repetition, we restrict our exposition to model specification and to the main

concepts needed for this chapter.

Let (Y1i, Y2i) denote a pair of random variables generated using the following rules

Y1i = 1Y ∗1i>0(Y ∗1i), Y2i = Y1iY
∗

2i, i = 1, . . . , n. (4.3)

The Bernoulli random variable Y1i represents the missing data indicator and is determined by the

sign of the continuous latent variable Y ∗1i through the indicator function 1Y ∗1i>0(·). The variable

Y2i denotes the partially observed variable of interest and is determined by Y1i and its latent coun-

terpart Y ∗2i, that is, when Y1i = 1 we observe Y2i = Y ∗2i otherwise, Y2i is assigned a dummy value

of zero to represent that the variable is missing. Consider now that Y ∗1i and Y ∗2i can be described

by parametric families of distributions, conditional on covariates, and denote their pdfs and cdfs

as fm(y∗mi | θmi) and Fm(y∗mi | θmi), respectively, where θmi ∈Rñm represents a vector of ñm

distribution parameters, for m = 1, 2. Let us also denote the joint cdf as F (y∗1i, y
∗
2i | θi), where

θi ∈ Rñ represents a vector of ñ of distribution parameters.

The classical specification of the SS model follows from assuming that the joint distribution

of (Y ∗1i, Y
∗

2i) is bivariate normal, leading to univariate Gaussian specifications for the missing-

ness mechanism and the substantive model. The model is generally specified using the following
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system of equations

Y ∗1i = η1i + ε1i = xT
1iβ1 + ε1i,

Y ∗2i = η2i + ε2i = xT
2iβ2 + ε2i,

where ηmi denotes a linear predictor of covariates and unknown regression coefficients and εmi is

a normally distributed error term with zero mean and variance σm, for m = 1, 2. The correlation

coefficient between Y ∗1i and Y ∗2i is denoted by ρ12. Estimates of the model parameters can be

obtained using the Heckman’s two-step approach or maximum likelihood. The two-step approach

proceeds by fitting a probit model to the first equation in order to obtain estimates of β1 and

compute the estimated linear predictor η̂1i. In the second step, the second equation is augmented

with a correction term and parameters are estimated via least squares (further details can be found

in Section 2.3 in the context of the ESR model). On the other hand, the maximum likelihood

approach maximises the following log-likelihood function

`(θ) =

n∑
i=1

y1i

log σ−1
2 + log

[
φ

(
y2i − η2i

σ2

)]
+ log

Φ

(
η1i + ρ12 (y2i − η2i) /σ2√

1− ρ2
12

)


+

n∑
i=1

(1− y1i)
{

log
[
1− Φ (η1i)

]}
,

where θ = (βT
1 ,β

T
2 , σ2, ρ12)T. Further details and reviews of the classical SS modelling approach

can be found, for example, in Pigini (2015), Puhani (2000), and Vella (1998).

The copula-based SS framework specifies the joint cdf of the pair of latent variables (Y ∗1i, Y
∗

2i)

using a bivariate copula function as follows

F (y∗1i, y
∗
2i | θi) = C

(
F1(y∗1i | θ1i), F2(y∗2i | θ2i) | δ12

)
, (4.4)

where θi = (θT
1i,θ

T
2i, δ12)T is a vector of parameters, C(·, ·) is a parametric bivariate copula func-

tion, and δ12 corresponds to an association parameter that captures the strength of dependence

between its margins and induces the outcome of interest to be MNAR. Recall that an introduc-

tion to the copula-based modelling framework is provided in Section B.1 of Appendix B. Wojtyś

et al. (2018) specify the marginal distributions using the GAMLSS framework, which allows for

the distribution parameters to be associated with flexible additive predictors in order to account

for several types of covariate effects. For instance, the missingness mechanism is specified as
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Y ∗1i ∼ F1(θ1i) such that θ1i = (µ1i, σ1i)
T, where F1 corresponds to either the normal, logistic, or

Gumbel distributions. The location parameter is associated with an additive predictor as follows

µ1i = ηµ1
i

(
xµ1
i ,βµ1

)
= βµ1

0 +

Pµ1∑
pµ1=1

hµ1
pµ1

(
x̃µ1
pµ1 i

,βµ1
pµ1

)
, (4.5)

where xµ1
i is the vector of covariates chosen to model µ1, βµ1 =

(
βµ1

0 ,βµ1T
1 , . . . ,βµ1T

Pµ1

)T
is a

vector of regression coefficients, and each hµ1
pµ1

(
x̃µ1
pµ1 i

,βµ1
pµ1

)
denotes a function of a sub-vector

of explanatory variables contained in xµ1
i and regression coefficients whose particular structure

depends on the type of covariate effect, for pµ1 = 1, . . . , Pµ1 . The scale parameter σ1i is set

to 1 for the usual identification purposes. Recall that each of the functions in the additive pre-

dictor is associated with a quadratic penalty term that imposes particular properties of the effect,

say λpµ1
βT
µ1

Sµ1

λpµ1
βµ1 , where λpµ1

> 0 is the smoothing parameter and Sµ1

λpµ1
is a penalty ma-

trix. For further details on the structure of the predictor in (4.5) we refer the reader to Wojtyś

et al. (2018). On the other hand, the substantive model is specified as Y ∗2i ∼ F2(θ2i), such that

θ2i = (µ2i, σ2i, ν2i)
T, where F2 can be chosen from a range of two- and three-parameter fam-

ilies of distributions (see, for example, Table 2 in Marra & Radice, 2017, for the definition of

these distributions). Each distribution parameter is associated with a flexible additive predictor as

follows

gµ2(µ2i) = ηµ2
i

(
xµ2
i ,βµ2

)
= βµ2

0 +

Pµ2∑
pµ2=1

hµ2
pµ2

(
x̃µ2
pµ2 i

,βµ2
pµ2

)
,

gσ2(σ2i) = ησ2
i

(
xσ2
i ,βσ2

)
= βσ2

0 +

Pσ2∑
pσ2=1

hσ2
pσ2

(
x̃σ2
pσ2 i

,βσ2
pσ2

)
,

gν2(ν2i) = ην2
i

(
xν2
i ,βν2

)
= βν2

0 +

Pν2∑
pν2=1

hν2
pν2

(
x̃ν2
pν2 i

,βν2
pν2

)
,

where gµ2(·), gσ2(·), and gν2(·) are known, monotonic, and differentiable link functions that main-

tain the restrictions on the range of the distribution parameters, and the rest of the components are

defined equivalently to those in Equation (4.5).

Given a random sample of observations the log-likelihood function of the copula-based SS
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model can be written as follows

`(θ) =
n∑
i=1

y1i log

f2

(
y2i | θ2i

)1−
∂ C
(
F1(0 | θ1i), F2

(
y2i | θ2i

)
| δ12

)
∂F2

(
y2i | θ2i

)



+
n∑
i=1

(1− y1i) log
{
F1(0 | θ1i)

}
,

where the vectors of distribution parameters are defined as θ1i = (µ1i, σ1i)
T =

(
g−1
µ1

(
ηµ1
i (βµ1)

)
, 1
)T

and θ2i = (µ2i, σ2i, ν2i)
T =

(
g−1
µ2

(
ηµ2
i (βµ2)

)
, g−1
σ2

(
ησ2
i (βσ2)

)
, g−1
ν2

(
ην2
i (βν2)

))T
, and each

g−1(·) is the inverse of the link function mapping the distribution parameter to its associated

additive predictor. The overall parameter vector contains the regression coefficients together with

the copula association parameter, i.e., θ = (βT
µ1
,βT

µ2
,βT

σ2
,βT

ν2
, δ12)T. Estimates of the parameters

are obtained by maximising the penalized log-likelihood

θ̂ = arg max
θ

`p(θ) = arg max
θ

{
`(θ)− 1

2
θTSλθ

}
,

where 1
2θ

TSλθ is an overall penalty term and Sλ is a block-diagonal matrix that contains the

penalty terms associated with the model additive predictors. Inference about the model coefficients

is made from a Bayesian perspective by considering that the penalty term corresponds to the

assumption of setting a prior density on θ. The penalized maximum likelihood estimate θ̂ can

then be interpreted as the posterior mode and, assuming the smoothing parameters are fixed, the

inferential results are based on the large sample normal approximation to the posterior (Wood

et al., 2016)

θ | y ∼̇ N
(
θ̂,Vθ

)
, (4.6)

where Vθ =
(
−H(θ̂) + Sλ

)−1
and H(θ̂) denotes the Hessian matrix evaluated at the estimated

parameter vector. For further details of the framework we refer the reader to Wojtyś et al. (2018)

and Gomes et al. (2019).

4.4 Multiple imputation under MNAR

We present next a MI approach that obtains plausible values for a partially observed variable

suspected to be MNAR based on the copula SS model specification described in the previous

section. We start by giving a general overview of the MI process and describing the combination
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rules that produce overall MI estimates, and then we derive the imputation model adapted to our

context. The approach is implemented in the function imputeSS of the GJRM package.

4.4.1 The MI approach to missing data

The MI approach to missing data was introduced by Rubin (1977, 1978, 1987) in the context

of non-response in surveys. In order to reduce item non-response, and to preserve the privacy

of the respondents while avoiding distortions in the data, MI is generally used before releasing

surveys for public access (Kennickell, 2017). For instance, the Medical Expenditure Panel Survey,

the Survey of Consumer Finances, and the Consumer Expenditure Survey in the US, all contain

imputed values in several of their reported variables. MI can also be used by researchers when

the data to be analysed contain several partially observed variables. An introduction to MI in the

context of economics can be found in Cameron & Trivedi (2005).

The MI framework consists of three steps: (i) generate M > 1 completed data sets by filling

in the missing values with draws from an appropriate imputation model; (ii) perform the required

analysis on each of the M completed data sets to obtain estimates of the model parameters; (iii)

combine the results from the previous step to produce overall estimates that take into account

the imputation process. Recent studies recommend using a number of imputations that is at least

equal to the percentage of missing values (White et al., 2011; van Buuren, 2012; Molenberghs

et al., 2014).

The main advantages of MI over other approaches that deal with missing data are that the

framework can be applied to impute several partially observed variables in a data set under dif-

ferent assumptions about the missing data; the analyses carried out in the completed data sets can

be performed using standard software; and the combining Rubin’s rules are generic and can be

applied to estimates obtained from a wide range of analyses (see, for example, Harel & Zhou,

2007; Rubin, 1996; Zhang, 2003, for reviews on MI).

Until recently, most MI approaches in the literature assumed missing data to be missing at

random (MAR). When the researcher suspects that a partially observed outcome is missing not at

random (MNAR), sample selection models (SS; Heckman, 1974, 1976, 1979) are used however,

this approach only allows for missing values in the response and discards all the observational

units with missing values in any of the explanatory variables. Extending the MI framework to

impute variables suspected to be MNAR is an area of current research. For instance, Galimard

et al. (2016) proposed an imputation approach based on Heckman’s two-step estimation method



81 4.4. Multiple imputation under MNAR

and Ogundimu & Collins (2019) proposed an imputation scheme derived from a SS model based

on the bivariate t distribution.

The attractiveness of the MI approach presented in this chapter is in terms of flexibility. Al-

though fully parametric, the method allows to construct imputation schemes under different mod-

elling assumptions about the missingness mechanism, the distribution of the partially observed

variable, and the dependence structure. The approach also allows the researcher to contrast the

robustness of their results under different distributional assumptions, since it is not limited to ob-

tain plausible draws for imputation from the Gaussian or t distributions as in the aforementioned

developments. Furthermore, the approach can be embedded into a fully conditional strategy to MI

to deal with several partially observed variables in a data set.

Rubin (1977, 1978, 1987) derived the MI approach from a Bayesian point of view in order to

incorporate uncertainty about the missing data in the imputation process and to draw inferences

that reflect the additional variability due to missing data. From a Bayesian perspective, both the

parameter of interest and the missing values are thought of having a distribution given the observed

data. Letting Y2,obs and Y2,mis denote the observed and missing components of Y2 and dropping

the vector of covariates for simplicity, the posterior distribution of θ given the observed data is

given by

f(θ | y1, y2,obs) =

∫
f(θ, y2,mis | y1, y2,obs)dy2,mis

=

∫
f(θ | y2,obs, y2,mis)f(y2,mis | y1, y2,obs)dy2,mis

= E
[
f(θ | y2,obs, y2,mis) | y1, y2,obs

]
,

(4.7)

where the first element of the integral in the second line of (4.7) corresponds to the posterior of θ

given the ‘complete’ data, in the sense that it would correspond to the posterior of interest had all

the missing values been observed, and the second component represents the posterior predictive

distribution of the missing data given the observed. Furthermore, assuming the order of integration

can be exchanged, the posterior mean and variance of θ can be written as follows (Carpenter &

Kenward, 2012; Little & Rubin, 2019)

E
[
θ | y1, y2,obs

]
= E

{
E
[
θ | y2,obs, y2,mis

]
| y1, y2,obs

}
, (4.8)
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and

Var
[
θ | y1, y2,obs

]
= E

{
Var

[
θ | y2,obs, y2,mis

]
| y1, y2,obs

}
+ Var

{
E
[
θ | y2,obs, y2,mis

]
| y1, y2,obs

}
.

(4.9)

The main idea behind MI is that, provided a large number of draws, say y(1)
2,mis, . . . y

(M)
2,mis,

can be obtained from f(y2,mis | y1, y2,obs), the observed data posterior of θ can be approximated

by averaging the ‘completed’ data posterior f(θ | y2,obs, y
(m)
2,mis) over the repeated draws from

f(y2,mis | y1, y2,obs). Rubin’s rules to obtain the MI estimator for θ, and the corresponding

estimator for the covariance matrix, arise as approximations to the posterior mean and variance

in (4.8) and (4.9). Approximating the inner expectation and variance requires assuming that,

with complete data, the typical normal approximation to the posterior of θ holds, i.e, θ | y2 ∼̇

N (θ̂,Vθ), where θ̂ denotes the maximum likelihood estimator and Vθ the covariance matrix

evaluated at θ̂. In our context, this implies that the posterior mean and variance of θ given the

completed data can be approximated by the mean and variance of the normal approximation, that

is,

E
[
θ | y2,obs, y

(m)
2,mis

]
≈ θ̂(m) and Var

[
θ | y2,obs, y

(m)
2,mis

]
≈ V(m)

θ ,

where θ̂(m) and V(m)
θ are the estimators obtained from each imputed data set, for m = 1, . . . ,M .

The MI estimator corresponds to

θ̂MI =
1

M

M∑
m=1

θ̂(m) ≈ 1

M

M∑
m=1

E
[
θ | y2,obs, y

(m)
2,mis

]
≈ E

[
θ | y1, y2,obs

]
,
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whereas the estimator for the covariance of θ̂MI is

V̂MI = ŴMI + B̂MI

=
1

M

M∑
m=1

V(m)
θ +

1

M − 1

M∑
m=1

(θ̂(m) − θ̂MI)(θ̂
(m) − θ̂MI)

T

≈ 1

M

M∑
m=1

Var
[
θ | y2,obs, y

(m)
2,mis

]

+
1

M − 1

M∑
m=1

E
[
θ | y2,obs, y

(m)
2,mis

]
− 1

M

M∑
m′=1

E
[
θ | y2,obs, y

(m′)
2,mis

]
E

[
θ | y2,obs, y

(m)
2,mis

]
− 1

M

M∑
m′=1

E
[
θ | y2,obs, y

(m′)
2,mis

]T

≈ Var
[
θ | y1, y2,obs

]
.

The variance estimator is made up of two terms ŴMI and B̂MI, that correspond to the average and

variance of θ over the repeated draws from f(y2,mis | y1, y2,obs), respectively, and represent the

within- and between-imputation variability (Little & Rubin, 2019).

When the number of imputations is large, Rubin’s rules allow to carry out inference about

individual parameters the standard way, that is, confidence intervals and tests can be constructed

using the normal as the reference distribution (Molenberghs et al., 2014). For a small number

of imputations, Rubin adjusted the variance estimator by a factor of 1 + M−1 and inference is

based on a t distribution with degrees of freedom given by ς = (M − 1)(1 + r−1
M )2, where

rM = (1 + M−1)B̂
[kk]
MI /Ŵ

[kk]
MI , such that B̂[kk]

MI and Ŵ [kk]
MI are the between and within variances

for the kth element of θ̂MI. These adjustments were important at the time when the computational

cost of generating a large number of imputations (and storing the completed data sets) was high

however, they are less used in current research (Molenberghs et al., 2014). For further details in

the MI framework we refer the reader to Rubin (1987).

The MI approach tackles the problem of missing data using similar ideas to those from the

Expectation-Maximization algorithm (EM, Dempster et al., 1977) and its simulation-based exten-

sions, such as the stochastic EM (stEM, Celeux & Diebolt, 1985), the simulated EM (sEM, Ruud,

1991), and the Monte Carlo EM (MCEM, Wei & Tanner, 1990). The aforementioned strategies

all proceed by filling-in the missing values in some way, and then solving the estimation problem

using the methods that would have been used in the absence of missing values (Rubin, 1991). As

we have seen above, the MI framework is derived from a Bayesian perspective and computes the
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observed data posterior of θ by averaging the complete data posterior with respect to the posterior

predictive distribution of the missing values given the observed. Parameter estimates and their

covariance matrix are approximations to the posterior mean and posterior variance, respectively.

In contrast, EM approaches obtain the maximum likelihood estimate of θ by iteratively maximis-

ing the expected value of the log-likelihood with respect to the conditional density of the missing

values given the observed, and a current approximation to the maximum likelihood estimate. The

EM algorithm can be summarized as follows: at iteration j, given an estimate of the parameter of

interest, say θ(j), the following two steps are iterated until some convergence criterion is satisfied

(see, for example, McLachlan & Krishnan, 2008)

E-step: Q(θ | θ(j)) =

∫
{y2 : y1=0}

`(θ | y1, y2)f(y2 | y1 = 0,θ(j))dy2

= E
[
`(θ | y1, y2) | y1,θ

(j)
]
,

M-step: θ(j+1) = arg max
θ

Q(θ | θ(j)),

where `(θ | y1, y2) denotes the log-likelihood function, and f(y2 | y1 = 0,θ(j)) corresponds

to the density of the missing values given the observed and the current estimate of the parameter

vector. Dempster et al. (1977) showed that the value of the likelihood never decreases after each

iteration and, under regularity conditions, Wu (1983) proved that the approach yields a sequence

of values that converges to the maximum likelihood estimate of θ.

When the expectation in the E-step is analytically intractable, the simulation-based EM ap-

proaches replace the integral by an estimate using Monte Carlo simulation, i.e., the E-step be-

comes

Q̃(θ | θ(j)) =
1

M̃

M̃∑
m̃=1

`(θ | y1, y
(m̃)
2 )

where y(m̃)
2 represents the partially observed response variable where the missing values have been

replaced by draws from f(y2 | y1 = 0,θ(j)) at iteration j. The M-step consists of maximising

Q̃(θ | θ(j)) and both steps are iterated until convergence. The difference between stEM and

MCEM is that the former only obtains M̃ = 1 set of imputations per iteration, whereas the later

uses a large number of draws (Nielsen, 2000b). The MCEM and sEM approaches differ in the

way the random draws from f(y2 | y1 = 0,θ(j)) are obtained. MCEM obtains independent

realisations at each iteration, while sEM reuses the draws of values to impute in the first iteration

at later iterations (Wang & Robins, 1998; Nielsen, 2000a).
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The main drawback of the EM approaches is that convergence may be slow, in particular,

when the missingness mechanism is non-ignorable (Little & Rubin, 2002). Moreover, the Monte

Carlo step in the simulation-based approaches adds extra computational cost when M̃ is large.

Wang & Robins (1998) and Wei & Tanner (1990) suggest to start the iterations by allocating a

small number of imputations when the current estimate may be far from the true maximiser of

the log-likelihood, and increase it at later iterations. In addition, EM approaches require further

computation to obtain the covariance matrix of the estimates using, for example, bootstrapping or

Louis’ approach (Louis, 1982).

For further comparisons between these approaches we refer the reader to Nielsen (2000a,

2003), McLachlan & Krishnan (2008), Noghrehchi et al. (2021), Robins & Wang (2000), Wang &

Robins (1998), and Schafer (1997).

4.4.2 The imputation model

As anticipated in the previous section, the first step of the MI process involves obtainingM random

draws y(1)
2,mis, . . . , y

(M)
2,mis from the posterior predictive distribution of the missing values given the

observed, defined as

f(y2,mis | y1, y2,obs) =

∫
f(y2,mis | y1, y2,obs,θ)f(θ | y1, y2,obs)dθ, (4.10)

where f(θ | y1, y2,obs) represents the observed data posterior distribution of θ (or an approxi-

mation) and f(y2,mis | y1, y2,obs,θ) is the conditional density of the missing values given the

observed and θ.

Little & Rubin (2019) describe several approaches to draw plausible imputations from the

frequentist and Bayesian points of view. For instance, following a frequentist approach, one can

fix the value of θ to the maximum likelihood estimate of the observed data, say θ̃MLE, and obtain

the random draws from f(y2,mis | y1, y2,obs,θ = θ̃MLE). This approach fails to account for the

uncertainty in estimating θ since the same value of the estimated parameter vector is used to obtain

all imputations. Alternatively, following a Bayesian approach, random draws from f(y2,mis |

y1, y2,obs) can be obtained iteratively by first drawing θ̃(m) from f(θ | y1, y2,obs) and then drawing

y
(m)
2,mis from f(y2,mis | y1, y2,obs,θ = θ̃(m)), for m = 1, . . . ,M . In practical terms, a fully

Bayesian approach entails obtaining the posterior distribution of the parameters and the use of

Markov chain Monte Carlo methods, such as data augmentation (Tanner & Wong, 1987). This
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approach accounts for the uncertainty in estimating θ but it may be computationally costly in

complex models and convergence may be difficult to assess (Harel & Zhou, 2007). The strategy

we follow in this chapter samples iteratively from the two densities within the integral in (4.10)

however, instead of computing the posterior we use the large sample normal approximation to the

posterior of θ to draw θ̃(m).

Letting θ denote the parameter vector characterising the copula-based SS model described

in Section 4.3, that is, θ = (θT
1 ,θ

T
2 , δ12)T where θ1 = (βT

µ1
, 1)T and θ2 = (βT

µ2
,βT

σ2
,βT

ν2
)T,

realisations from the observed data posterior of θ are obtained using the large sample result given

in (4.6), i.e., θ | y ∼̇ N
(
θ̂,Vθ

)
, where θ̂ is the penalized maximum likelihood estimate and Vθ

the Bayesian covariance matrix evaluated at θ̂. The conditional distribution of the missing values

corresponds to the following conditional density, derived from the copula-based representation of

the joint distribution of (Y ∗1 , Y
∗

2 ) given in (4.4),

f(y2 | y1 = 0,θ) =
∂

∂y2
F (y2 | y1 = 0,θ)

=
∂

∂y2

[
F (0, y2 | θ)

F1(0 | θ1)

]
=

1

F1(0 | θ1)

∂ C(F1(0 | θ1), F2(y2 | θ2) | δ12)

∂F2(y2 | θ2)

∂F2(y2 | θ2)

∂y2
.

(4.11)

This imputation scheme is appealing since it propagates the uncertainty about the model param-

eters and reduces the computational complexity of a fully Bayesian approach. As pointed out

in Section 4.2, the parametric assumptions about the joint model using a copula function, and

the parametric distributions of the missingness mechanism and the response, help to identify the

parameters in the conditional distribution of the missing values.

Random draws from the target density in (4.11) are obtained using the acceptance/rejection

method (see, e.g., Robert & Casella, 2005). This sampling approach requires finding a proposal

or instrumental density, from which draws can be easily obtained, and finding a constant K that

bounds the ratio of the target to the proposal density from above. In our context, it is reasonable

to set the instrumental density to f2(y∗2 | θ2), the density of the latent variable Y ∗2 defined in

Section 4.3. The value of K is computed by maximising the ratio k(y2) = f(y2|y1=0,θ)
f2(y2|θ2) using a

trust-region approach. The acceptance/rejection algorithm then proceeds iteratively by drawing ỹ

from f2(y∗2 | θ2) and u ∼ U(0, 1) independently, and accepting ỹ if u ≤ f(ỹ|y1=0,θ)
Kf2(ỹ|θ2) . To avoid

constraints in the optimization problem that obtains the value of K, the candidate for imputation

ỹ is transformed using a differentiable and monotone function. For instance, when the support of
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the distribution is restricted to positive numbers ỹ is transformed using y̆ = log ỹ. Furthermore,

recall that trust-region methods require the analytical expressions for the first and second order

derivatives of the objective function given by

dk(ỹ)

dy̆
=

1

F1(0 | θ1)

∂2 C(F1

(
0 | θ1

)
, F2(ỹ | θ2))

∂F2(ỹ | θ2)∂F2(ỹ | θ2)
f2(ỹ | θ2)

dỹ

dy̆
,

and

d2k(ỹ)

dy̆2
=

1

F1(0 | θ1)

[
∂3 C(F1

(
0 | θ1

)
, F2(ỹ | θ2))

∂F2(ỹ | θ2)∂F2(ỹ | θ2)∂F2(ỹ | θ2)

(
f2(ỹ | θ2)

)2
+
∂2 C(F1

(
0 | θ1

)
, F2(ỹ | θ2))

∂F2(ỹ | θ2)∂F2(ỹ | θ2)

df2(ỹ | θ2)

dỹ

](
dỹ

dy̆

)2

+
dk(ỹ)

dỹ

d2ỹ

dy̆2
.

To summarise, the imputation scheme proceeds iteratively as follows, for m = 1, . . . ,M :

(i) draw θ̃(m) = (θ̃
(m)T
1 , θ̃

(m)T
2 , δ̃

(m)
12 )T from N (θ̂,Vθ),

(ii) draw u(m) ∼ U(0, 1) and y(m)
2,mis from f2(y∗2 | θ2 = θ̃

(m)
2 ) independently,

(iii) compute K(m) = arg max
f(y

(m)
2,mis|y1=0,θ̃(m))

f2(y
(m)
2,mis|θ̃

(m)
2 )

using a trust-region method,

(iv) accept y(m)
2,mis if

u(m) ≤
f(y

(m)
2,mis | y1 = 0,θ = θ̃(m))

K(m)f2(y
(m)
2,mis | θ2 = θ̃

(m)
2 )

.

Note that this approach to MI can also be easily adapted to impute missing values of a variable

believed to be MAR based on univariate GAMLSS models. As we indicated in Section 4.2, the

MAR assumption implies that the conditional density of the variable subject to missingness is the

same, regardless the variable is observed or not, since Y1 and Y2 are conditionally independent

given the observed data. Imputations from the posterior predictive distribution in (4.10) can be

obtained by drawing iteratively from large sample normal approximation to the posterior of the

parameter vector characterising the GAMLSS model, and the distribution of the partially observed

variable. A similar approach to imputation based on GAMLSS models under the assumption of

MAR was proposed by de Jong et al. (2016) however, they obtained draws from the observed data

posterior using a parametric bootstrap approach.



88 4.5. Simulation study

4.5 Simulation study

We conduct a Monte Carlo study in order to investigate the empirical properties of the MI approach

and compare the results with those obtained using a copula-based SS model. We have restricted

the scope of the study since the relative performance of the copula-based and MI approaches com-

pared to the classical SS methods has already been investigated by Gomes et al. (2019). Their

simulation study was mainly focused on the performance of the approaches in terms of estimating

the effect of a binary treatment variable on the response and did not include non-parametric com-

ponents to capture non-linear effects.

In this study, we consider a scenario in which the selection and the substantive models are gener-

ated using the normal and gamma distributions, respectively, where the additive predictors associ-

ated with the distribution parameters also contain non-parametric terms. The joint distribution is

specified using a copula function from the Gumbel family. We assess the results under the correct

specification and when the copula function is misspecified using the Joe family instead.

The simulated data consist of a set of independent observations (yi, xi)ni=1, where yi = (y1i, y2i)

are realizations of the pair or random variables (Y1i, Y2i) obtained using the observations rules

given in (4.3), and xi = (x1i, x2i) consists of a binary and a continuous variable generated using

the approach described in Chapters 2 and 3, and references therein. The model for the missing-

ness mechanism is given by Y ∗1i ∼ F1(θ1i), where F1 corresponds to the normal distribution with

parameters θ1i = (µ1i, σ1i)
T, σ1 is set to one to ensure identifiability, and the additive predictor

associated with µ1 is given by

ηµ1
i = βµ1

0 + βµ1
1 x1i + sµ1

1 (x2i),

where βµ1
0 = −0.55, βµ1

1 = 1.2, and sµ1
1 (x2i) = 1 − x3

2i − 2 exp(−180x2
2i) − 2.3 sin(4.9x2i).

The missingness mechanism generates approximately 50% of missing observations in the partially

observed variable. The substantive model is defined as Y ∗2i ∼ F2(θ2i), where F2 corresponds to

the gamma distribution with parameters θ2i = (µ2i, σ2i)
T and associated additive predictors

ηµ2
i = βµ2

0 + βµ2
1 x1i + sµ2

1 (x2i),

ησ2
i = βσ2

0 ,

where βµ2
0 = 2.2, βµ2

1 = 1.3, sµ2
1 (x2i) = x2i + exp(−32(x2i − 0.5)2), and βσ2

0 = 0.9. The joint
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distribution of (Y ∗1i, Y
∗

2i), is specified using the Gumbel copula family, where the copula parameter

δ12 has been set to values corresponding to Kendall’s tau of τ12 ∈ {0.2, 0.4, 0.6}.

We perform N = 200 repetitions3 with sample sizes of n = {500, 1000, 3000} and estimate

the parameters using the copula-based SS (SS-COP) and the imputation (MI) approaches for the

correctly specified model (scenario I) and for a misspecified model in which the joint distribution

is assumed to belong to the Joe copula family (scenario II). In terms of the imputation approach,

we set the number of imputations to M = 100.

Figure 4.1 shows boxplots of the estimates of βµ2
1 and βσ2

0 for both scenarios, whereas Figure

4.2 shows the true smooth functions (dashed lines) and the average effect estimates (solid lines) of

sµ2
1 (x2), together with the 5% and 95% point-wise quantiles (shaded areas), for a sample size of

n = 3000 and association parameter τ12 = 0.4. For brevity, we have omitted the plots of smooth

functions for other sample sizes and strengths of association since the results are similar and do

not change the conclusion of the simulation study. In addition, Table 4.1 summarises the results in

terms of relative bias and root mean squared error (RMSE).

Overall, we observe that MI obtains very similar performance, in terms of bias and RMSE, to

SS-COP and, in occasions, MI estimates are slightly less biased and more precise. In particular, MI

estimates of βσ2
0 appear to be slightly less biased and yield lower RMSE than those obtained using

SS-COP. Both approaches also perform relatively well when the copula is mildly misspecified.

These results are consistent with those shown by Gomes et al. (2019), who studied the performance

of the approaches using a wider range of MNAR settings. We conducted further experiments using

different marginal distributions, copula functions, and strengths of dependence and the results were

similar to those shown here.

4.6 Empirical application

The REFLUX study (Grant et al., 2008, 2013) evaluates the effect of using surgery, compared

to continuing medication, on long-term patient’s health status among individuals with gastro-

oesophageal reflux disease in the UK. The trial comprised a randomised arm, in which 357 indi-

viduals were randomised to either surgical or medical management, and a parallel non-randomised

arm, in which 453 participants were assigned to treatment based on their preferences. We focus
3The number of repetitions is chosen based on the simulation study in Chapter 2 and references therein. Using the

principled approach described there on the scenario for the correctly specified model with n = 3000; an initial run of
N0 = 50; and focusing on the bias obtained for βµ2

1 and βσ20 , we obtained N ≈ 297 and N ≈ 33.
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Figure 4.1: Boxplots of the estimates of βµ2
1 and βσ20 obtained using the copula-based (SS-COP) and multiple impu-

tation (MI) approaches for the correctly specified model (scenario I: normal-gamma marginals and Gumbel copula)
and when the copula is misspecified (scenario II: normal-gamma marginals and Joe copula). The sample sizes are
n ∈ {500, 1000, 3000}. The strength of association is given by Kendall’s tau values of τ12 ∈ {0.2, 0.4, 0.6}. The true
values of the parameters are βµ2

1 = 1.3 and βσ20 = 0.9 (indicated by a dashed line in the plot).
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Figure 4.2: Mean estimates of sµ2
1 (x2) obtained using the copula-based (SS-COP) and multiple imputation (MI) ap-

proaches with a sample size of n = 3000 and a strength of association of τ12 = 0.4, for the correctly specified model
(scenario I: normal-gamma marginals and Gumbel copula) and when the copula is misspecified (scenario II: normal-
gamma marginals and Joe copula). The shaded areas correspond to the 5% and 95% point-wise quantiles. The true
functions are represented by dashed lines.
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Scenario I Scenario II

Relative bias RMSE Relative bias RMSE

τ12 method | n 500 1000 3000 500 1000 3000 500 1000 3000 500 1000 3000

β̂µ2
1 β̂µ2

1

0.2
SS-COP 0.0162 0.0017 -0.0040 0.1439 0.0988 0.0535 0.0303 0.0084 -0.0019 0.1387 0.0927 0.0533

MI 0.0114 -0.0006 -0.0047 0.1425 0.0986 0.0532 0.0289 0.0073 -0.0008 0.1393 0.0932 0.0536

0.4
SS-COP 0.0064 -0.0011 -0.0037 0.1272 0.0849 0.0501 0.0122 0.0007 -0.0004 0.1247 0.0845 0.0486

MI 0.0036 -0.0023 -0.0038 0.1272 0.0845 0.0501 0.0128 0.0040 0.0044 0.1245 0.0844 0.0486

0.6
SS-COP 0.0002 -0.0067 -0.0031 0.1215 0.0883 0.0422 -0.0018 -0.0043 -0.0040 0.1141 0.0760 0.0428

MI -0.0041 -0.0078 -0.0030 0.1197 0.0888 0.0424 -0.0053 -0.0046 -0.0004 0.1118 0.0753 0.0423

β̂σ2
0 β̂σ2

0

0.2
SS-COP -0.0048 -0.0017 -0.0014 0.0419 0.0283 0.0158 -0.0212 -0.0171 -0.0141 0.0398 0.0301 0.0202

MI 0.0070 0.0052 0.0012 0.0413 0.0275 0.0157 -0.0106 -0.0108 -0.0117 0.0355 0.0269 0.0186

0.4
SS-COP -0.0074 -0.0037 -0.0010 0.0463 0.0300 0.0173 -0.0217 -0.0248 -0.0218 0.0446 0.0350 0.0257

MI -0.0008 -0.0007 -0.0001 0.0443 0.0293 0.0172 -0.0162 -0.0230 -0.0221 0.0416 0.0335 0.0258

0.6
SS-COP -0.0160 -0.0076 -0.0015 0.0761 0.0341 0.0176 -0.0295 -0.0238 -0.0238 0.0488 0.0382 0.0278

MI -0.0099 -0.0067 -0.0012 0.0497 0.0333 0.0176 -0.0280 -0.0242 -0.0256 0.0473 0.0384 0.0290

ŝµ2
1 (x2) ŝµ2

1 (x2)

0.2
SS-COP 0.0577 0.0437 0.0217 0.1772 0.1302 0.0753 0.0580 0.0460 0.0184 0.1764 0.1221 0.0774

MI 0.0615 0.0453 0.0220 0.1767 0.1303 0.0753 0.0575 0.0468 0.0194 0.1734 0.1224 0.0771

0.4
SS-COP 0.0477 0.0342 0.0178 0.1609 0.1091 0.0665 0.0483 0.0336 0.0164 0.1570 0.1055 0.0639

MI 0.0518 0.0361 0.0186 0.1595 0.1086 0.0666 0.0524 0.0345 0.0173 0.1537 0.1045 0.0635

0.6
SS-COP 0.0422 0.0301 0.0152 0.1710 0.1102 0.0576 0.0419 0.0300 0.0151 0.1345 0.0959 0.0583

MI 0.0453 0.0316 0.0159 0.1564 0.1100 0.0574 0.0435 0.0284 0.0140 0.1295 0.0935 0.0564

Table 4.1: Relative bias and RMSE for β̂µ2
1 , β̂σ20 , and smooth function estimate ŝµ2

1 (x2) obtained using the copula-
based (SS-COP) and multiple imputation (MI) approaches, for the correctly specified model (scenario I: normal-gamma
marginals and Gumbel copula) and when the copula is misspecified (scenario II: normal-gamma marginals and Joe
copula). The sample sizes are n ∈ {500, 1000, 3000}. The strength of association is given by Kendall’s tau values of
τ12 ∈ {0.2, 0.4, 0.6}. The true values of the parameters are βµ2

1 = 1.3 and βσ20 = 0.9. The true smooth function is
sµ2

1 (x2) = x2 + exp[−32(x2 − 0.5)2].

our interest in the analysis of the preference arm and refer the reader to Grant et al. (2008, 2013)

for further details on the randomized component.

The study gathered patient information using self-reported questionnaires before treatment,

three months after treatment, and yearly, together with hospital case notes reviews. We use the

variable QALY (5-year Quality-Adjusted life-years) as a measure of long-term patient’s health,

which was constructed using a combination of health related quality of life scores, obtained from

the questionnaires, and estimated length of life after treatment (see Gomes et al., 2019, 2020,

for further details). QALY has a total of 222 missing observations due to patients not returning

the questionnaires at some point during the follow-up period. As pointed out by Gomes et al.

(2019), the study investigators suspected that individuals in better health after treatment were more

likely to be engaged with the study and return the questionnaires. This indicates that the process

governing the missing values may depend on the variable that is missing, raising concerns about

the possibility of QALY being MNAR. A further concern relates to the plausibility of the normality

assumption about the response. The variable varies from −0.52 to 4.67 and the histogram in

Figure 4.3 shows that its distribution is left-skewed. Gomes et al. (2019) suggested that a Gumbel
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Figure 4.3: Histogram of 5-year quality-adjusted life-years (QALY)

distribution may provide a better fit.

Similarly to Gomes et al. (2019, 2020), the aim of the analysis is to investigate the effect of

treatment (surgical or medical management) on QALY under different assumptions about the

missingness mechanism, the distribution of the response, and the structure of their dependence,

while accounting for several baseline patient’s characteristics. Specifically, we compare the results

obtained assuming the missing mechanism is ignorable, using complete-case analyses based on

different distributional specifications for the response, with the results obtained under the MNAR

assumption, using the SS modelling framework and the MI approach presented in Section 4.4.

Table 4.2 contains a description and summary statistics of the response, the baseline patient’s

characteristics, and variables that are plausible to meet the criteria for the exclusion restriction

assumption that will be considered in the models under the MNAR assumption. We observe that

the overall QALY score after five years of treatment is higher for individual that opted for surgery

than for those that selected long-term medication. Furthermore, participants that chose surgery

were younger and with worse health-related symptoms (judged by the lower values in most of the

score variables) than patients than went through medical management. The potential variables that

are considered to fulfil the exclusion restriction assumption are csize, which refers to the number

of participants in each of the hospitals providing treatment, and belief1 to belief8, which are

related to patients’ opinions about medicine and doctors. Gomes et al. (2019, 2020), and references

therein, argue that centres with a higher number of patients may be more involved collecting

self-reported questionnaires, and that patient’s views about medicine are likely to influence their
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Variable Description Medical management (n = 192) Surgery ( n = 261)

Mean (SD)/Count (percentage) Mean (SD)/Count (percentage)

Response

QALY Quality-Adjusted Life-Years 3.594 (0.834) 3.777 (0.942)

Baseline patient’s characteristics

gender =1 if male 111 (58%) 170 (65%)
age age in years 49.89 (11.75) 44.45 (11.97)
EQ-5D European quality of life score 0.75 (0.22) 0.68 (0.26)
REFLUX-QoL REFLUX quality of life score 76.11 (19.84) 55.87 (22.82)
bmi Body mass index 27.42 (4.11) 27.72 (3.95)
heartburn Heartburn score 73.06 (21.29) 9.13 (24.44)
gastro1 Gastro symptom score 1 59.63 (22.68) 47.05 (21.39)
gastro2 Gastro symptom score 2 82.98 (17.68) 75.84 (22.04)
nausea Nausea symptom score 89.67 (13.61) 76.86 (19.90)
activity Activity score 86.82 (12.97) 74.36 (16.11)
hernia =1 if previous hiatus hernia 73 (38%) 76 (29%)
smoker =1 if smoker 39 (20%) 71 (27%)
asthma =1 if asthma 36 (19%) 30 (11%)
duration duration of prescribed medication (days) 45.79 (54.10) 55.96 (68.04)
Candidate instruments

csize Centre size (No. patients treated) 27 (11%) 28 (9%)
belief1 Doctors use too many medicines 32 (17%) 61(23%)
belief2 People should pause treatments 42 (22%) 76 (29% )
belief3 Medicines are addictive 22 (11%) 39 (15%)
belief4 Natural remedies are safer 30 (16%) 38 (15%)
belief5 Medicines do more harm than good 4 (2%) 5 (2%)
belief6 All medicines are poisons 13 (7%) 7 (3%)
belief7 Doctors trust medicines too much 26 (14%) 51 (20%)
belief8 Doctors should spend more time with patients 69 (36%) 94 (36%)

Table 4.2: Description and summary statistics of the response, baseline individual characteristics, and available can-
didates to meet the exclusion restriction criteria by treatment level. The continuous covariates are summarised using
the mean and standard deviation whereas the binary variables are reported using the number of patients and the corre-
sponding percentage.

engagement with the study. However, it does not seem obvious that these variables may have

a direct effect on the response given the baseline individual characteristics. Their analysis also

suggest that the aforementioned variables have a relatively low association with patients returning

the questionnaires, which indicate that they may be considered as ‘weak’ instruments.

To determine the effect of treatment under different modelling assumptions we consider

the following approaches: assuming the missingness mechanism is ignorable, we perform complete-

case analyses using the normal and the Gumbel distributions to model the response (denoted as

CC-N and CC-G, respectively). Under the MNAR assumption, we use the classical SS model

estimated via the two-step Heckman (2S) method and maximum likelihood (SS-ML), the copula-

based SS framework (SS-COP), and the multiple imputation (MI) approach.

For all the aforementioned modelling strategies, we specify a linear predictor associated with

the location parameter of the model of interest using several baseline patient’s characteristics re-
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ported in the REFLUX study, that is,

ηµi = β0 + β1treatmenti + β2genderi + β3agei + β4EQ-5Di + β5REFLUX-QoLi

+ β6bmii + β7heartburni + β8gastro1i + β9gastro2i + β10nauseai

+ β11activityi,

(4.12)

where β1 corresponds to the parameter of interest. In the approaches that assume QALY is MNAR,

the model for the missingness mechanism contains the same covariates that appear in the sub-

stantive model together with all the candidate variables that are believed to fulfil the exclusion

restriction assumption (see Gomes et al., 2019, and references therein).

In terms of the SS-COP approach, we first make an assessment using different marginal dis-

tributions to model the missingness mechanism and the response, and then investigate the depen-

dence structure employing several copula functions. Among the different model specifications, we

select the model with the lowest values of the AIC and BIC. Regarding the binary response model

for the missing data mechanism, we find that a complementary log-log link (which corresponds

to assuming a Gumbel distribution for the latent variable governing the missingness mechanism)

delivers the best fit. As for the substantive model, the chosen distribution is the Gumbel. Lastly,

in terms of their association, the Frank copula appears to deliver the best description of the depen-

dence structure.

With regard to the MI approach, we perform M = 100 imputations based on the SS-COP

model described above. The analysis of the completed data sets are carried out using a GAMLSS

model based on the Gumbel distribution and the resulting parameter estimates are combined using

the Rubin’s rules described in Section 4.4.

Table 4.3 contains the estimated parameters, together with their standard errors, obtained af-

ter fitting the different models to the data. We focus our attention on the parameter of interest.

The estimated effect of treatment is positive and significant across all modelling approaches

providing evidence that individuals that opted for surgical management of gastro-oesophageal

reflux disease had higher average quality of life than those that followed medical management.

These effects are larger for models under the classical distributional assumptions (CC-N, 2S, SS-

ML) compared to those that employ flexible distributional approaches (CC-G, SS-COP, MI). In

terms of the approaches that assume QALY is MNAR, we observe that the estimated effects are
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Estimates | models CC-N CC-G 2S SS-ML SS-COP MI

treatment 0.429∗∗∗ 0.362∗∗∗ 0.427∗∗∗ 0.427∗∗∗ 0.372∗∗∗ 0.372∗∗∗

(0.096) (0.072) (0.095) (0.095) (0.073) (0.075)

gender:male 0.262∗∗ 0.189∗∗ 0.237∗ 0.237∗ 0.143∗ 0.152∗

(0.095) (0.070) (0.096) (0.096) (0.073) (0.071)

age -0.005 -0.005∗ -0.004 -0.004 -0.003 -0.003
(0.004) (0.003) (0.005) (0.005) (0.003) (0.003)

EQ-5D 2.037∗∗∗ 1.360∗∗∗ 2.025∗∗∗ 2.026∗∗∗ 1.372∗∗∗ 1.361∗∗∗

(0.215) (0.161) (0.216) (0.215) (0.174) (0.151)

REFLUX-QoL -0.007∗ -0.002 -0.009∗∗ -0.009∗∗ -0.003 -0.003
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

bmi -0.010 -0.014 -0.010 -0.010 -0.017∗ -0.017
(0.012) (0.010) (0.013) (0.012) (0.010) (0.009)

heartburn 0.005∗ 0.003 0.005∗ 0.005∗ 0.002 0.003
(0.003) (0.002) (0.003) (0.003) (0.002) (0.002)

gastro1 0.005∗ 0.004∗ 0.005∗ 0.005∗ 0.005∗∗ 0.005∗∗

(0.002) (0.002) (0.002) ( 0.002) (0.002) (0.002)

gastro2 -0.002 0.001 -0.001 -0.001 0.001 0.001
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

nausea 0.001 0.003 0.002 0.002 0.005∗ 0.005∗

(0.003) (0.002) (0.003) (0.003) (0.003) (0.002)

activity 0.005 -0.002 0.006 0.006 -0.004 -0.003
(0.004) (0.003) (0.004) (0.004) (0.003) (0.003)

(Intercept) 1.864∗∗∗ 2.983∗∗∗ 1.706∗∗ 1.703∗∗ 2.757∗∗∗ 2.741∗∗∗

(0.485) (0.393) ( 0.545) (0.534) (0.419) (0.346)

Table 4.3: Parameter estimates and standard errors of the coefficients in the substantive model obtained under different
modelling assumptions. CC-N: complete-case analysis assuming a normal distribution; CC-G: complete-case analysis
assuming a Gumbel distribution; 2S: classical SS model using the Heckman’s two-step estimation approach; SS-ML:
classical SS model using maximum likelihood estimation; SS-COP: copula-based SS model; MI: multiple imputation
approach. Significance levels: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

similar to their complete-cases counterparts, which suggest a relatively weak strength of depen-

dence. In fact, the estimates of the correlation coefficients obtained using 2S and SS-ML, 0.07

and 0.08(−0.61, 0.77) respectively4, support the assumption that QALY is MAR. In contrast, the

estimated value of the Kendall’s tau in the copula-based SS model is positive and relatively sig-

nificant, 0.291(0.04, 0.48), providing some evidence in favour of the MNAR assumption. These

results suggest that the distributional assumptions in the CC-N, 2S, and ML-SS approaches may

not hold and the models appear to overestimate the effect of the treatment. As expected, the

MI approach yields estimates that are very similar to those obtained using the copula-based model

and, in some instances, provides slightly smaller standard errors of the regression coefficients.
4The 2S method did not provide a value for the standard error of the coefficient.
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4.7 Discussion

In this chapter, we have briefly reviewed some of the main concepts that are used in the miss-

ing data literature, discussed two SS modelling frameworks that deal with MNAR outcomes, and

presented a MI approach that obtains plausible draws for imputation of a continuous variable

assumed to be MNAR and not restricted to be Gaussian. The MI approach stems from a copula-

based specification of SS models and complements recent research that addresses MNAR variables

within the MI framework (Galimard et al., 2016; Ogundimu & Collins, 2019). The flexibility of

the approach, inherited from the copula-based SS models proposed by Wojtyś et al. (2018), al-

lows researchers to contrast the robustness of their results under different assumptions about the

missingness mechanism, the distribution of the partially observed variable, and the dependence

structure. Furthermore, the MI scheme can be embedded into a general fully conditional spec-

ification framework, such as that provided by the mice package, to deal with several partially

observed variables in a data set. In a simulation study, we have shown that the performance of the

MI approach is comparable to that of the copula-based SS model and that it performs relatively

well under mild misspecification. These results are also consistent with those obtained in Gomes

et al. (2019) using a wider range of MNAR settings.

In an application, we have re-examined data from the REFLUX study to evaluate the ro-

bustness of the conclusions under different assumptions regarding the missing mechanism, the

distribution of the response, and the shape of the association structure. Although the results are

significant under all modelling strategies, we find some evidence suggesting that models in which

the response variable is assumed to be normally distributed appear to overestimate the effect of

the treatment variable. In addition, the classical SS models do not appear to capture well the de-

pendence structure between the missingness indicator and the response. The MI approach obtains

results that are very similar to the copula-based SS model.
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Appendix A

Complements to Chapter 2

A.1 Derivation of the likelihood function

The likelihood function of the ESR model can be specified as follows: when y1i = 1 we observe

y2i and the contribution to the likelihood corresponds to

P
[
Y ∗1i > 0, Y2i

]
= f(y2i)P

[
Y ∗1i > 0 | y2i

]
= f(ε2i)P

[
ε1i > −η1i | ε2i

]
=

1

σ2
φ

(
y2i − η2i

σ2

)∫ +∞

−η1i

f(ε1i|ε2i)dε1i

=
1

σ2
φ

(
y2i − η2i

σ2

)∫ +∞

−η1i

1√
1− ρ2

12

φ

(
ε1i − ρ12(y2i − η2i)/σ2√

1− ρ2
12

)
dε1i

=
1

σ2
φ

(
y2i − η2i

σ2

)
Φ

(
η1i + ρ12 (y2i − η2i) /σ2√

1− ρ2
12

)
.

Similarly, when y1i = 0 we observe y3i, and the contribution to the likelihood corresponds to

P
[
Y ∗1i ≤ 0, Y3i

]
= f(y3i)P

[
Y ∗1i ≤ 0 | y3i

]
= f(ε3i)P

[
ε1i ≤ −η1i | ε3i

]
=

1

σ3
φ

(
y3i − η3i

σ3

)∫ −η1i

−∞
f(ε1i|ε3i)dε1i

=
1

σ3
φ

(
y3i − η3i

σ3

)∫ −η1i

−∞

1√
1− ρ2

13

φ

(
ε1i − ρ13(y3i − η3i)/σ3√

1− ρ2
13

)
dε1i

=
1

σ3
φ

(
y3i − η3i

σ3

)1− Φ

(
η1i + ρ13 (y3i − η3i) /σ3√

1− ρ2
13

) .
Combining both results obtains the likelihood function given in equation (2.14).
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A.2 Analytical gradient and Hessian of the semi-parametric ESR

model

Recall that the semi-parametric ESR model presented in Chapter 2 relaxes the functional form

specification of the deterministic model components using semi-parametric additive predictors

(in which the effects of continuous covariates are represented via penalized regression splines)

while retaining the distributional assumptions of the classical approach, that is, the error terms are

assumed to follow a trivariate normal distribution.

The model log-likelihood function is given by

`(β) =

n∑
i=1

y1i

{
− log σ2 + log φ(a2i) + log Φ(A2i)

}
+

n∑
i=1

(1− y1i)
{
− log σ3 + log φ(a3i) + log

[
Φ(−A3i)

]}
,

where β = (βT
1 ,β

T
2 ,β

T
3 , σ2, σ3, ρ12, ρ13)T is the parameter vector, ami = ymi−ηmi

σm
, Ami =

η1i+ρ1m(ymi−ηmi)/σm√
1−ρ2

1m

, φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, re-

spectively, for m = 2, 3, and ηmi = xT
miβm denotes the semi-parametric additive predictor de-

fined in Section 2.2.1, for m = 1, 2, 3. The analytical expressions of the gradient and Hessian are

derived using the properties of the standard normal distribution and the IMR. In particular, recall

that φ(x̃) = φ(−x̃) and φ′(x̃) = −x̃φ(x̃), and note that the first order derivative of the IMR is

given by λ′(ã) = −ãλ(ã)− λ2(ã).

The components of the gradient are

∂`(β)

∂β
1

=

n∑
i=1

y1i
[

λ(A2i)√
1− ρ212

]
+ (1− y1i)

[
−λ(−A3i)√

1− ρ213

] x1i,

∂`(β)

∂β2
=

n∑
i=1

y1i

{
a2i
σ2
− ρ12λ(A2i)

σ2
√

1− ρ212

}
x2i,

∂`(β)

∂β3
=

n∑
i=1

(1− y1i)

{
a3i
σ3

+
ρ13λ(−A3i)

σ3
√

1− ρ213

}
x3i,

∂`(β)

∂σ∗2
=

n∑
i=1

y1i

{
−1 + a22i −

a2iρ12λ(A2i)√
1− ρ212

}
,



109 A.2. Analytical gradient and Hessian of the semi-parametric ESR model

∂`(β)

∂σ∗3
=

n∑
i=1

(1− y1i)

{
−1 + a23i +

a3iρ13λ(−A3i)√
1− ρ213

}
,

∂`(β)

∂ρ∗12
=

n∑
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y1i
λ(A2i) [a2i + ρ12η1i]√

1− ρ212
,

and

∂`(β)

∂ρ∗13
=

n∑
i=1

(1− y1i)
−λ(−A3i) [a3i + ρ13η1i]√

1− ρ213
.

The expressions for the non-zero Hessian components are

∂2`(β)
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∂2`(β)
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2
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and

∂2`(β)

∂ρ∗13∂ρ
∗
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=
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Appendix B

Complements to Chapter 3

B.1 An overview of copula-based modelling

In this section we outline several results from the copula literature that serve as a general overview

of copula-based modelling. For completion, we repeat the definition of a bivariate copula function

and the main results in connection with statistical modelling. We then describe two measures of

association that summarise the dependence between two random variables and their representation

in terms of an underlying copula function. We conclude by reviewing the main characteristics of

several copula families. For an in-depth treatment, we refer the interested reader to standard

references from which this overview draws from such as Joe (1997) and Nelsen (2006) for a

theoretical treatment, and Trivedi & Zimmer (2007) for applications.

A 2-dimensional copula is a bivariate cdf with standard uniform margins, i.e., a function

C : [0, 1]2 → [0, 1] defined as

C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2), where U1, U2 ∼ U(0, 1),

satisfying the following conditions

(C.1) C(0, u) = C(u, 0) = 0, for every u ∈ [0, 1],

(C.2) C(1, u) = C(u, 1) = u, for every u ∈ [0, 1],

(C.3) C is 2−increasing.

Any bivariate copula is point-wise bounded by the Fréchet-Hoeffding bounds, defined by

max
{
u1 + u2 − 1, 0

}
≤ C (u1, u2) ≤ min{u1, u2}, for every (u1, u2) ∈ [0, 1]2.
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Given the univariate margins, both upper and lower bounds correspond to a bivariate cdf (and

therefore a copula) that describes perfect positive dependence and perfect negative dependence,

respectively.

The work of Sklar (1959) and Patton (2006) provide the most important results for statistical

modelling with copulas. The former obtains a general representation of a multivariate distribution

function as a composition of a copula and its univariate margins, while the latter extends Sklar’s

theorem to the situation where the univariate margins are conditional distribution functions. In a

bivariate context, their results state that, given a random vector (Y1, Y2) and a set of covariates

z = (zT
1, zT

2)T with joint cdf F (y1, y2 | z) and marginal cdfs F1(y1 | z1) and F2(y2 | z2), there

exists a 2-dimensional copula C such that

F (y1, y2 | z) = C
(
F1(y1 | z1), F2(y2 | z2) | δ

)
, (y1, y2) ∈ R2, (B.1)

where δ is a parameter that quantifies the dependence between the margins.

As a consequence of these results, statistical modelling using copula functions can be ap-

proached in two steps: first, specify a model for each of the marginal cdf of Y1 and Y2 (that do not

need to belong to the same family); second, choose an appropriate copula function that links its

univariate components together and captures their dependence structure.

Parameter estimation via maximum likelihood requires the derivation of the joint probability

density function from the joint cdf given in Equation (B.1), which can be written as follows

f(y1, y2 | z) =
∂ C
(
F1(y1 | z1), F2(y2 | z2) | δ

)
∂F1(y1 | z1)∂F2(y2 | z2)

f1(y1 | z1)f2(y2 | z2). (B.2)

The literature provides a large number of bivariate copula families. The main properties that

make certain copula families appealing for modelling are their interpretability, the range of their

dependence parameter, and whether they can be written in closed form. It is also desirable that

a copula family can describe independence, and at least one of the Fréchet-Hoeffding bounds,

usually through limiting cases of their dependence parameter (see, for example, Joe, 2014, for a

review of copula functions in terms of their properties).

For some copula families the interpretation of their dependence parameter is not straightfor-

ward and it is useful (and common in practice) to transform it to other measures of dependence

such as the Kendall’s tau (τ ) and/or the Spearman’s rho (ρs). Both measures depend only on the

underlying copula and not on the marginal cdfs, they are symmetric, invariant to increasing trans-
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formations of the variables, and their range varies from −1 to 1. A value of 1 indicates perfect

positive dependence (the copula coincides with the upper Fréchet bound), whereas a value of −1

implies perfect negative dependence (the copula coincides with the lower Fréchet bound). When

the margins are independent, both measures take a value of 0.

The Kendall’s τ is defined as the difference between the probabilities of concordance and

discordance of the random pairs (Y1, Y2) and (Ỹ1, Ỹ2) that is, τ = P[(Y1 − Ỹ1)(Y2 − Ỹ2) >

0] − P[(Y1 − Ỹ1)(Y2 − Ỹ2) < 0]. This measure of dependence can be expressed in terms of a

bivariate copula as follows

τ = 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1. (B.3)

Given a sample of observations (y1i, y2i)
n
i=1, an estimate of the Kendall’s τ is computed using

τ̂ =
1(
n
2

) ∑
1≤i≤j≤n

sign
(
(y1i − y1j)(y2i − y2j)

)
,

where sign(d̃) = −1 if d̃ > 0, sign(d̃) = 0 if d̃ = 0, and sign(d̃) = 1 if d̃ > 0.

The Spearman’s ρs is defined by the linear correlation coefficient of the random vector (F1(Y1), F2(Y2)),

that is, ρs = Cor(F1(Y1), F2(Y2)). In terms of a bivariate copula, the Spearman’s ρs can be written

as

ρs = 12

∫ 1

0

∫ 1

0

[
C (u1, u2)− u1u2

]
du1du2 − 3.

Given a sample (y1i, y2i)
n
i=1, an estimate of the Spearman’s ρs is computed using the rank of the

observations, i.e,

ρ̂s =

∑n
i=1(r1i − r̄1)(r2i − r̄2)√∑n

i=1(r1i − r̄1)2
√∑n

i=1(r2i − r̄2)2
,

where r1i and r2i represent the ranks, and r̄1 = r̄2 = (n+ 1)/2.

From a practical point of view, the Kendall’s τ is preferred over the Spearman’s ρs since

the former has explicit analytical expressions based on the copula parameter δ for several copula

families.

Lastly, we summarise the main characteristics of several copula families that are frequent in

the literature, namely, Ali-Mikhail-Haq (AMH; Ali et al., 1978), Frank (Frank, 1979), Gaussian,

Clayton (Clayton, 1978), Gumbel (Gumbel, 1960), and Joe (Joe, 1993). For each of these fami-

lies, Table B.1 shows the analytical expression, the range of the dependence parameter δ, and the

corresponding expression of the Kendall’s τ together with its range. In order to illustrate graph-
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ically the dependence structure implied by these copula families, Figure B.1 shows their contour

density plots based on standard normal univariate margins. The dependence parameters have been

set to corresponding values of Kendall’s τ similar to those that have been obtained in the empirical

applications presented in this thesis.

Copula C(u1, u2; δ) Range of δ Kendall’s τ Range of τ

AMH u1u2
1−δ(1−u1)(1−u2) δ ∈ [−1, 1] 1− 2

3δ2 {δ + (1− δ)2 log(1− δ)} −0.181 ≤ τ ≤ 1/3

Clayton
(
u−δ1 + u−δ2 − 1

)−1/δ
δ ∈ (0,∞) δ

δ+2 0 < τ < 1

Frank −δ−1 log
[
1 + (e−δu1 − 1)(e−δu2 − 1)/(e−δ − 1)

]
δ ∈ R\{0} 1− 4

δ

[
1−D1(δ)

]
−1 < τ < 1

Gaussian Φ2

(
Φ−1(u1),Φ−1(u2) | δ

)
δ ∈ [−1, 1] 2

π sin−1(δ) −1 ≤ τ ≤ 1

Gumbel exp

{
−
[
(− log u1)δ + (− log u2)δ

]1/δ
}

δ ∈ [1,∞) 1− 1
δ 0 ≤ τ < 1

Joe 1−
[
(1− u1)δ + (1− u2)δ − (1− u1)δ(1− u2)δ

]1/δ
δ ∈ [1,∞) 1 + 2

2−δ

(
ψ(2)− ψ(2

δ + 1)
)

0 < τ < 1

Table B.1: Analytical expressions, range of the association parameter δ, and expression and range of the Kendall’s τ
for several copula families. D1(x) = x−1

∫ x
0
t
(
et − 1

)−1
dt is known as the Debye function of order one, and ψ(·)

corresponds to the digamma function. The implementation of these copula families and their derivatives is available in
the GJRM package.

The AMH, Frank, and Gaussian families are symmetric and allow to model positive and neg-

ative dependence between their margins. Both Gaussian and Frank copulas achieve the Fréchet-

Hoeffding lower and upper bounds, and can describe independence however, the Gaussian copula

exhibits a stronger dependence in the tails when compared to the Frank copula. Due to the limited

range of the Kendall’s tau given by the AMH family, using this copula in applications is usually

restricted to situations where the dependence between the margins is modest (Trivedi & Zimmer,

2007). On the other hand, the Clayton, Joe, and Gumbel families are asymmetric and can only

model positive dependence due to the restrictions in the range of their association parameters.

They all obtain the upper Fréchet bound as δ → ∞, whereas independence is achieved as their

parameter reaches the lower end of its range. The Gumbel and Joe families are similar but the

former has a ‘thinner’ tail. A particular property of these three copula families is that they can

be rotated by 90, 180 or 270 degrees to allow modelling data that exhibit negative dependence

(Brechmann & Schepsmeier, 2013).
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Figure B.1: Contour density plots of the AMH, Clayton, Frank, Gaussian, Gumbel, and Joe copula families based on
standard normal margins. The dependence parameters have been set to corresponding values of Kendall’s τ similar to
those that have been obtained in the empirical applications.



117 B.2. Analytical gradient and Hessian of the copula-based ESR model

B.2 Analytical gradient and Hessian of the copula-based ESR model

Let us re-write the log-likelihood function of the copula-based ESR model given in (3.10) as

follows

`(β) =

n∑
i=1

y1i

{
log f2(y2i) + log

(
1− h(12)

i

)}
+ (1− y1i)

{
log f3(y3i) + log h

(13)
i

}
,

where

h
(1m)
i =

∂C1m

(
F1(0), Fm(ymi)

)
∂Fm(ymi)

, m = 2, 3.

Let us also denote ∂η$i
∂β$

= x̄$i, that is, the ith row of overall design matrix associated with the

additive predictor of each of the distribution parameters where $ ∈ {µ1, µ2, µ3, σ2, σ3, ν2, ν3}.

The analytical components of the gradient are given by

∂`(β)

∂βµ1

=
n∑
i=1

y1i
−1

1− h(12)
i

∂h
(12)
i

∂ηµ1
i

+ (1− y1i)
1

h
(13)
i

∂h
(13)
i

∂ηµ1
i

 x̄µ1i,

∂`(β)

∂βµ2

=

n∑
i=1

y1i

 1

f2(y2i)

∂f2(y2i)

∂ηµ2
i

− 1

1− h(12)
i

∂h
(12)
i

∂ηµ2
i

 x̄µ2i,

∂`(β)

∂βµ3

=
n∑
i=1

(1− y1i)

 1

f3(y3i)

∂f3(y3i)

∂ηµ3
i

+
1

h
(13)
i

∂h
(13)
i

∂ηµ3
i

 x̄µ3i,

∂`(β)

∂βσ2

=

n∑
i=1

y1i

 1

f2(y2i)

∂f2(y2i)

∂ησ2
i

− 1

1− h(12)
i

∂h
(12)
i

∂ησ2
i

 x̄σ2i,

∂`(β)

∂βσ3

=
n∑
i=1

(1− y1i)

 1

f3(y3i)

∂f3(y3i)

∂ησ3
i

+
1

h
(13)
i

∂h
(13)
i

∂ησ3
i

 x̄σ3i,
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∂`(β)

∂βν2

=

n∑
i=1

y1i

 1

f2(y2i)

∂f2(y2i)

∂ην2
i

− 1

1− h(12)
i

∂h
(12)
i

∂ην2
i

 x̄ν2i,

∂`(β)

∂βν3

=
n∑
i=1

(1− y1i)

 1

f3(y3i)

∂f3(y3i)

∂ην3
i

+
1

h
(13)
i

∂h
(13)
i

∂ην3
i

 x̄ν3i,

∂`(β)

∂δ12
=

n∑
i=1

y1i

 −1

1− h(12)
i

∂h
(12)
i

∂δ12

 ,

∂`(β)

∂δ13
=

n∑
i=1

(1− y1i)

 1

h
(13)
i

∂h
(13)
i

∂δ13

 ,
where, for $ ∈ {µ, σ, ν} and m = 2, 3,

∂h
(1m)
i

∂ηµ1
i

=
∂2C1m

(
F1(0), Fm(ymi)

)
∂F1(0)∂Fm(ymi)

∂F1(0)

∂ηµ1
i

,

∂h
(1m)
i

∂η$mi
=
∂2C1m

(
F1(0), Fm(ymi)

)
∂Fm(ymi)∂Fm(ymi)

∂Fm(ymi)

∂η$mi
,

and

∂h
(1m)
i

∂δ1m
=
∂2C1m

(
F1(0), Fm(ymi)

)
∂Fm(ymi)∂δ1m

.

The non-zero components of the Hessian matrix are

∂2`(β)

∂βµ1∂β
T
µ1

=

n∑
i=1

y1i
 −1

(1− h(12)i )2

(
∂h

(12)
i

∂ηµ1

i

)2

− 1

1− h(12)i

∂2h
(12)
i

∂ηµ1

i ∂ηµ1

i


+ (1− y1i)

 −1

(h
(13)
i )2

(
∂h

(13)
i

∂ηµ1

i

)2

+
1

h
(13)
i

∂2h
(13)
i

∂ηµ1

i ∂ηµ1

i

 x̄T
µ1ix̄µ1i,
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∂2`(β)

∂βµ1∂β
T
µ2

=

n∑
i=1

y1i

 −1

(1− h(12)
i )2

∂h
(12)
i

∂ηµ2
i

∂h
(12)
i

∂ηµ1
i

− 1

1− h(12)
i

∂2h
(12)
i

∂ηµ1
i ∂η

µ2
i
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µ1ix̄µ2i,
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T
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∂2`(β)
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i )2
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(12)
i

∂δ12

∂h
(12)
i

∂ηµ1
i
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The parametric distributions, copula functions, and their derivatives are implemented in the

GJRM package.

B.3 Summary of parametric distribution functions
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