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A B S T R A C T

Action allows us to shape the world around us. But to act effectively we need to accurately sense what we can and
cannot control. Classic theories across cognitive science suppose that this ‘sense of agency’ is constructed from
the sensorimotor signals we experience as we interact with our surroundings. But these sensorimotor signals are
inherently ambiguous, and can provide us with a distorted picture of what we can and cannot influence. Here we
investigate one way that agents like us might overcome the inherent ambiguity of these signals: by combining
noisy sensorimotor evidence with prior beliefs about control acquired through explicit communication with
others. Using novel tools to measure and model control decisions, we find that explicit beliefs about the
controllability of the environment alter both the sensitivity and bias of agentic choices; meaning that we are both
better at detecting and more biased to feel control when we are told to expect it. These seemingly paradoxical
effects on agentic choices can be captured by a computational model where expecting to be in control exag-
gerates the sensitivity or ‘gain’ of the mechanisms we use to detect our influence over our surroundings – making
us increasingly sensitised to both true and illusory signs of agency. In combination, these results reveal a
cognitive and computational mechanism that allows public communication about what we can and cannot in-
fluence to reshape our private sense of control.

1. Introduction

Human beings are agents. Through our actions we shape the world
around us, manipulating our environments to suit our needs and desires.
But to interact with our surroundings effectively, agents like us need to
discover the causal structure of the environments we inhabit – learning
which parts of the external world we can shape through action, and
which parts lay outside our sphere of control.

Neuroscientists and psychologists interested in how we construct this
‘sense of control’ have tended to emphasise the role of direct experience
(Haggard, 2017; Haggard & Chambon, 2012; Press, Thomas, & Yon,
2023). For instance, the comparator model of agency supposes that we
formulate feelings of control by tracking directly experienced sensori-
motor signals –inferring that we are in control of our environments when
we experience strong contingencies between the actions we perform and
the outcomes that ensue (Frith, 1987; Frith, Blakemore, & Wolpert,
2000; see Fig. 1). A rich vein of evidence supports the idea that we are

exquisitely sensitive to matches and mismatches between action and
outcome as we judge what we can and cannot control, and even subtle
spatiotemporal disturbances can dramatically disrupt feelings of agency
(Blakemore, Frith, & Wolpert, 1999; Penton, Wang, Catmur, & Bird,
2022; Perrykkad, Lawson, Jamadar, & Hohwy, 2021).

However, relying on sensorimotor signals alone to construct feelings
of control presents brains like ours with a problem. The ambiguous,
noise-ridden signals emanating from our sensorimotor circuits can
provide a misleading picture of whether we are truly in control or not.
For example, felt correlations between action and outcome are not al-
ways a signal of true agency (Alloy & Abramson, 1979), and we can
readily experience ‘illusions of control’ over objectively uncontrollable
objects when their behaviour spuriously aligns with our own (Yon,
Bunce,& Press, 2020). For instance, we might press a ‘placebo button’ at
a pedestrian crossing everyday on our morning commute, experiencing a
sense that our actions stop the traffic, while unbeknownst to us the lights
are programmed by a timer and the button is entirely inert (Luo, 2004).
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Since direct sensorimotor signals can be misleading, models of our own
agency crafted from these signals have the potential to mislead us too
(Fig. 1).

Bayesian models of perception are preoccupied with a very similar
problem: how can we construct an accurate perceptual image of the
world around us given the noise and ambiguity that corrupts the sensory
signals we sample? (de Lange, Heilbron,& Kok, 2018; Summerfield& de
Lange, 2014). Bayesian models of perception propose that the inherent
ambiguity of our sensory signals can be overcome by combining noisy
sensory evidence with prior beliefs about what the world is likely to
contain (Yuille& Kersten, 2006). Biasing our perception in line with our
expectations will tend to render a more veridical picture of the outside
world, because what we expect to occur (by definition) usually does.

These prior beliefs could emerge slowly, as we integrate our direct
experiences through trial-and-error to learn about what we can and
can’t control. But direct experience is not the only window humans have
onto our environments. Other domains of cognitive science have
increasingly come to appreciate that while it is often very challenging to
discover the causal structure of our environments from direct experience
alone, the ambiguity inherent in noisy experiences can be finessed by
explicit communication. For example, work in reinforcement learning
has found that human agents virtually never discover the structure of
some reward environments when left to their own devices, but can
rapidly become ‘model-based’ learners when given explicit instructions
about how the learning environment is arranged (Castro-Rodrigues
et al., 2022).

Explicit communication with others could also allow us to form more
accurate models of our own agency. By sharing beliefs about action and
influence, we may discover what we can and cannot control in ways that
would be challenging based on direct experience alone. For instance, it
might be hard to discover through direct experience that our traffic
crossing is wired up to a placebo button – but if somebody tells us the
button has been disconnected for years, we can immediately stop
pushing it.

It seems intuitive that our sociocultural world is a rich source of
information about what we can control and what we are responsible for.
Since antiquity philosophers have speculated that explicitly teaching
children about the consequences of their actions is central to endowing
them with a sense of agency (Bobzien, 2006), and human societies
codify expectations about responsibility, credit and blame in legal texts
and in social norms. But it remains mysterious how beliefs about control
acquired through this kind of explicit communication become integrated
into the sense of control that we feel.

The influence of instructions has been formulated in more Bayesian
terms by other cognitive scientists, suggesting that explicit communi-
cation can directly inject prior beliefs into agents’ heads without the
need for direct learning (Lindström, Golkar, Jangard, Tobler, & Olsson,
2019). But how does explicit communication allow us to directly inject
prior beliefs from one head into another? And how could these
communicated priors shape feelings of control?

One way this predictive biasing can be achieved in perceptual

systems is through ‘sharpening’: reshaping patterns of sensory gain so
that our sensory systems are particularly sensitised to the signals that we
expect to occur (de Lange et al., 2018; Press & Yon, 2019). In neural
circuits, this kind of sharpening creates higher fidelity representations of
sensory events when they conform with prior expectations (Kok, Jehee,
& de Lange, 2012; Yon et al., 2023; Yon, Gilbert, de Lange, & Press,
2018), and in perceptual terms, exaggerating sensory gain in this way
renders agents better able to detect the perceptual events they expect to
occur. At the same time, observers become more likely to ‘hallucinate’
the events they expect even when they are truly absent – as manipu-
lating the gain on sensory circuits in this way also makes it easier to
mistake spurious noise for genuine signal (Wyart, Nobre, & Summer-
field, 2012).

In this paper, we investigated whether explicit prior beliefs lead to a
similar kind of predictive biasing in the sense of control. We present a
new model which casts the detection of control as analogous to a
perceptual decision, where evidence sampled from sensorimotor circuits
is used to make inferences about what we can and cannot control – just
as classic comparator models of agency suggest (Frith, 1987; Frith et al.,
2000). Crucially though, our theory supposes that prior beliefs can
percolate into these inferences, controlling how experienced sensori-
motor signals are mapped onto inferences about controllability (see
Fig. 1). In this way, our model allows agents to filter their perception of
noisy sensorimotor signals through prior beliefs about what they can
and cannot control – becoming more sensitive to control-like evidence
when we believe we are likely to be causal agents, and becoming less
sensitive to this same evidence when we believe we are not.

Here we present a series of experiments testing this hypothesis, using
recently developed motion-tracking and modelling tools to measure how
explicit prior knowledge alters the sensitivity and bias of agentic de-
cisions (Yon et al., 2020). These experiments reveal that expecting a
high level of control exaggerates both the sensitivity and bias of agency
judgements – such that we become better able to distinguish control
from its absence, but also more likely to experience illusions of con-
trolling things we cannot. Crucially, a computational model imple-
menting our new theory can explain the emergence of these seemingly
incompatible effects – by assuming that explicit beliefs about our causal
power reshape our sensitivity to the noisy sensorimotor evidence we use
to judge what we can and cannot control. In so doing, our results reveal a
cognitive and computational mechanism that allows public communi-
cation with other people to reshape private feelings of agency.

2. Methods

2.1. Participants

We conducted two experiments. Experiment 2 was a replication of
Experiment 1, and procedural details were identical. Both were pre-
registered on AsPredicted.org (Exp 1: https://aspredicted.org/9jq7s.pd
f, Exp 2: https://aspredicted.org/d7wj5.pdf). Twenty-four separate
participants took part in each experiment. A further ten participants

Fig. 1. Estimating control with sensorimotor signals and prior beliefs. a) Classic theories suggest that we track sensorimotor signals to infer what we can and
cannot control. For instance, when we are controlling our bodies (e.g., when we reach for a coffee cup) we will usually experience tight correlations between action
and outcome (top). However, these signals can also be misleading. For instance, we can experience spurious correlations between our actions and outcomes (e.g.,
when we press ‘placebo buttons’) and these correlations can lead us to experience illusory feelings of control (bottom). b) One way to improve inferences about
agency is to combine sensorimotor experience with prior beliefs about control. Here we propose a model where agents track the correlations between actions and
outcomes to generate ‘bottom up’ evidence about what they can and cannot control (blue) – as in classic comparator accounts. This sensorimotor evidence is mapped
onto feelings of control by an agency kernel (purple) – with stronger felt correlations mapping onto stronger feelings of control. However, our model assumes that the
shape of this kernel is also influenced ‘top-down’ by beliefs that agents hold about the probability of control (red). c) This model offers a way of conceptualising how
explicit communication about control might alter inferences of agency. In particular, if we are explicitly told to expect a high level of control (left) this prior belief
could ‘sharpen’ an agent’s decision kernel – such that modest-to-strong correlations are mapped onto strong inferences of agency. In contrast, if we are explicitly told
to expect a low level of control (right) this prior belief could ‘dampen’ an agent’s decision kernel – meaning that modest correlations fail to ‘ignite’ feelings of agency.
This kind of biasing would be adaptive, since if we expect not to be in control, modest correlations between action and outcome are likely to be spurious (cf. placebo
buttons, Luo, 2004). NB: This kind of biasing is indeed found in the present work (see Computational Modelling). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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were tested (five each in both Experiments 1 and 2) but excluded from
the final sample, as they failed to complete at least 200 valid trials of the
main task (see below). This sample size and this exclusion criterion were
pre-registered for both studies. Experimental methods and task-based
statistical analyses were also pre-registered, but computational model-
ling analyses (see below) were not.

All participants were healthy adults, fluent English speakers, resident
in the United Kingdom, with normal or corrected vision and no current
neurological or psychiatric illness. Participants had a mean age of 32.6
± 8.6 years, including 31 of whom identified as female, 16 as male, and
1 as outside the gender binary. Participants were recruited via Prolific,
completed the experimental task online, and were paid a small hono-
rarium for taking part. All procedures were approved by local ethics
committees.

2.2. Experimental task

Participants completed a ‘control detection task’ closely modelled on
techniques introduced by Yon et al. (2020) – implemented in PsychoPy
(Fig. 2). On each trial, participants executed a circular mouse movement
and observed a small dot move around a ‘bagel’ on screen (2000 ms). On
control trials, the movement of the dot cursor was yoked to the partici-
pant’s actions, while on no control trials the cursor followed a pre-
programmed trajectory, repeating the path of a previous movement.
On both trial types, a small amount of random jitter was added to the
drawn trajectory. At the end of each trial, participants had to report
whether they controlled the trajectory of the moving dot (‘yes’ or ‘no’)
and their confidence in this decision (‘confident’ or ‘guess’) on a four-
point scale. There was no enforced time limit on decisions, and the
response screen remained until a choice was registered.

Over different blocks of the experiment, participants received
explicit instructions about the levels of control to expect. In expect high
blocks, participants were explicitly informed (by on-screen instructions)
that this was a ‘high control block’ and told “on most trials, you will

control the dot’s path” In contrast, in expect low blocks, participants were
instructed that the upcoming was a “low control block” and were told
“on most trials, you will not control the dot’s path”. These instructions were
valid, and in expect high blocks 70 % of trials were control trials and 30 %
were no control trials (vice versa for expect low blocks). Comparing
participant decisions between these different blocks thus allows us to
examine how probabilistic expectations about the controllability of the
environment influence judgements of control.

The main experiment comprised 240 trials. This was divided into
four expectation blocks – two expect high, two expect low – of 60 trials
each. Block expectation alternated within participants (e.g., high-low-
high-low) and block order was counterbalanced across participants.
Participants also completed short practice sessions before the main
blocks where they practiced moving the dot around the ring (10 trials),
and practiced making control judgements (10 trials), before beginning
the main experiment. Breaks were offered every 20 trials.

2.3. Inclusion criteria and statistical analysis

The decision screen at the end of each trial only appeared when
movements were successful (i.e., the dot cursor moved counter clock-
wise around the ring, and stayed within the bounds of the bagel). If
participants made movement errors, the decision screen was replaced
with warning feedback (“Stay in the ring”, “Move round the ring
counter-clockwise”) and no decision was recorded. These trials were not
included in subsequent analyses, and participants who contributed
fewer than 200 valid trials across the experiment were excluded entirely,
as small trial counts limit the sensitivity of subsequent analyses. This
exclusion criterion was pre-registered for both experiments.

We used participants’ choices to compute signal detection theoretic
measures of sensitivity (d’) and bias (c) (Green & Swets, 1974). Both d’
and c are calculated from hit rates (HR) and false alarm rates (FAR)
where d’ = z(HR) – z(FR) and c = − 0.5(z(HR) + z(FR)). Thus, higher
values of d’ indicate a superior ability to objectively distinguish control

Fig. 2. Control detection task. a) Participants completed a task where they made a counter-clockwise hand movement and observed similar movements of an
onscreen cursor. They were asked to judge whether they controlled the path of the dot or not, and report their confidence (confident or guess). b) Sometimes these
onscreen movements were entirely yoked to the participant’s movements (control trials) and other times the cursor followed a trajectory from a previous trial (no
control trials). C) We manipulated participant’s expectations about the probability of control in upcoming blocks with explicit cues, allowing us to determine how
prior beliefs about controllability influence the sensitivity and bias of agency judgements.
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from no control trials. Lower values of c indicate more liberal responding
– such that agents are more likely to report ‘control’ over the dot,
whether they truly influenced it or not.

We also used participants’ confidence ratings to compute measures

of metacognitive sensitivity (meta-d’) and bias (confidence level;
Fleming & Lau, 2014; Maniscalco & Lau, 2012). Higher values of meta-
d’ indicate more accurate introspection, such that agents tend to feel
more confident in their control judgements where their decisions are

Fig. 3. Empirical results and computational modelling. Signal detection theoretic analyses revealed that expecting high (rather than low) levels of control,
exaggerated both sensitivity to control (d’ – panels a and c) and bias to feel control (c – panels b and d) in both experiments. Larger dots indicate means with bars
displaying 95 % within-subjects confidence intervals, reflecting the magnitude of differences between conditions(Loftus & Masson, 1994). Effects of these expec-
tations measures of metacognition were present in each experiment, but inconsistent across studies (panels e-h). We modelled feelings of control as arising from
‘agency kernels’ which transform sampled sensorimotor evidence into inferences of agency. Our data was best fit by a model where expectations about control change
the slope (σ – sigma, panel i) but not bias (μ – mu, panel j) of these kernels. Analysing the best-fitting sigma parameters found that kernels had a more exaggerated
slope when agents expected higher levels of control (panel k) and simulating data from the model recreated the empirical effects observed – i.e., when the model
performs the task it is also more sensitive to control (panel l), and biased to hallucinate control (panel m), when higher levels of control are expected.
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correct, and less confident when they err. In contrast, confidence level
simply reflects metacognitive bias – and is calculated as the proportion
of trials where participants report high (rather than low) confidence in
their choices. Meta-d values were calculated using single-subject
Bayesian estimation with the HMetad package (Fleming, 2017).

To evaluate how expectations alter these objective and subjective
dimensions of the sense of agency, we compared these measures be-
tween expect high control and expect low control trials. Participants were
considered statistical outliers if their individual effect scores (i.e., dif-
ference between expect high and expect low trials) was >2.5 SDs from the
sample mean. For the purposes of inferential tests, we winsorised these
effect scores to be equivalent of +/− 2.5 SDs. This planned adjustment
was pre-registered for both experiments, and was applied to one
participant in the confidence level comparison in Experiment 1, and to
two participants who were outliers in the comparison of sigma values in
the computational modelling analyses – though in no case did this
change any statistical patterns observed.

3. Results

Across both experiments, expectations altered the decisions agents
made about what they could and could not control. Agents showed
greater perceptual sensitivity (d’) in Expect High Control blocks than
Expect Low Control blocks – Exp 1: t23 = 3.995, p < .001, dz = 0.816, Exp
2: t23 = 2.448, p = .022, dz = 0.500 (see Fig. 3a & 3c) – indicating a
better ability to objectively distinguish true control from it’s absence.
But at the same time, both experiments revealed that agents were also
biased (c) to report control more often when high levels of control were
expected - Exp 1: t23 = 3.525, p = .002, dz = 0.720, Exp 2: t23 = 3.393, p
= .002, dz = 0.693 (see Fig. 3b & 3d) – consistent with the idea that
expecting to be in control causes agents to more readily hallucinate
control over objectively uncontrollable events.

We also conducted analyses of agentic metacognition, and how
introspection about agency might be influenced by these expectations
too – but patterns were inconsistent across studies. In Experiment 1,
agents showed superior metacognitive insight (meta-d’) into their
agency judgements when control was expected -: t23 = 3.801, p < .001,
dz = 0.776 (see Fig. 3e) – but this effect was not replicated in Experiment
2 – p = .687 (see Fig. 3g). Likewise, in Experiment 2 agents reported
generally higher confidence in their control judgements when control
was expected - t23 = 4.094, p < .001, dz = 0.836 (See Fig. 3h) - but this
effect was not found in Experiment 1 – p = .662 (see Fig. 3f).

Traditionally in signal detection theory, shifts in sensitivity and bias
have been thought to be governed by separate processes. For instance,
changes in sensitivity might arise because of improvements in percep-
tual precision, while shifts in bias might reflect strategic changes in
decision making without any changes in what observers perceive (Swets,
Tanner, & Birdsall, 1961). But while it may seem counterintuitive, a
range of studies have found that top-down shifts in sensory gain (e.g.,
through attention) can simultaneously improve detection sensitivity and
generate more liberal detection biases (Cheadle, Egner, Wyart, Wu, &
Summerfield, 2015; Wyart et al., 2012). Indeed, recently we have shown
that ‘illusions’ of control in agency tasks could arise if otherwise unbi-
ased agents are especially sensitive to spurious correlations between
action and outcome – mistaking this ‘noise’ for ‘signal’ (Yon et al.,
2020). Thus – in principle – it is possible that a single mechanism could
explain why agents become both more sensitive to control and more
biased to report agency when control is expected.

3.1. Computational modelling

We used computational modelling to investigate this possibility. Our
model assumes that agents begin to judge whether they are in control of
their surroundings by tracking the sensorimotor correspondence be-
tween actions they perform and outcomes that ensue – just as in
comparator models of agency (Frith, 1987; Frith et al., 2000). However,

our model then assumes that the sensorimotor evidence generated by
this process is passed through an agency kernel, which translates senso-
rimotor signals into feelings of control. The shape of this kernel de-
termines which kinds of sampled sensorimotor signals lead to inferences
of control, and how strong sensorimotor evidence must be before feel-
ings of agency are ‘ignited’.

Thus, our model generates feelings of control in two steps. First, the
model assumes that agents have access to moment-by-moment infor-
mation about the actions they are performing in the task, and the tra-
jectory of the moving dot that appears on-screen. This allows agents, on
each trial, to compute a sensorimotor correlation between action and
outcome – which we take as the two-dimensional correlation between
the executed and observed motion trajectories (Yon et al., 2020). Higher
values of this sensorimotor correlation denote a strong coupling between
actions and outcomes – where 1 is perfect contingency and 0 is complete
independence. Naturally, correlations tend to be higher when agents are
truly in control than when they are truly not – but substantial trial-by-
trial variability means that agents experience a wide range of action-
outcome correlations throughout the task.

In the next step, the model passes this sensorimotor correlation value
through an agency kernel. This kernel is modelled as a cumulative
gaussian function mapping sampled correlations onto inferences of
control. The shape of this function is controlled by two parameters sigma
- σ and mu - μ. Sigma controls the slope or sensitivity of the function –
with lower values of sigma leading to sharper, exaggerated kernels and
higher values of sigma leading to a shallower, noisier mapping between
sampled correlations and decisions (Fig. 3i). In contrast, mu controls the
bias of the function: as mu decreases, it becomes more likely that agents
feel a sense of agency over weaker and weaker correlations (i.e.,
becoming more liberal in detecting control), while conversely as mu
increases agents become less likely to feel a sense of control even when
experienced correlations are relatively high (i.e., detection becomes
more conservative; see Fig. 3j).

We explored whether explicit prior beliefs alter the way agents
translate experienced sensorimotor signals into feelings of control. In
our model, this reshaping could happen in one of two ways. Prior ex-
pectations could alter the slope the agency kernel (σ), such that agents
are more sensitive to the distinction between strong and weak correla-
tions when high levels of control are expected. Alternatively, expecta-
tions could induce a general bias that shifts the decision kernel (μ), such
that agents are generally more biased to report control when it is ex-
pected, with the overall sensitivity or ‘slope’ of the kernel remaining
unchanged.

Intuitively, one might expect that both kinds of reshaping would be
needed to account for our empirical findings – where expectations
change both perceptual sensitivity (d’) and bias (c). From the point of
view of traditional signal detection theory, changes in the actual or
expected probability of a signal (in our case, ‘control’) should primarily
influence measures of bias (like c) – as the optimal criterion is affected
by the relative probabilities of ‘signal’ and ‘noise’ trials, and this can
lead to symmetric changes in both hit rates and false alarm rates (Swets
et al., 1961). In contrast, measures of sensitivity (like d’) are tradition-
ally thought of as bias-free, and largely independent of these changes in
criterion (Swets et al., 1961).

However, it may be possible to create both enhanced sensitivity and
exaggerated illusions of control by exaggerating only the slope or
sensitivity of the decision kernel (σ) – rather than introducing tonic
biases or ‘criterion shifts’ in decision making. This is because a sharp-
ened kernel is both more likely to generate feelings of agency when
observers experience a moderate correlation between action and
outcome – which increases an agent’s ability to detect instances of true
control (‘hits’) – and also more likely to hallucinate an illusory sense of
control when correlations are spurious (‘false alarms’).

To compare these possibilities, we modelled kernels to participant
agency decisions, allowing the kernels to vary in three different ways. In
the slope model, we fit separate slope parameters to the kernel for each
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expectation condition – allowing, for example, kernels to have steeper
slopes on Expect High than Expect Low trials – but estimated a single
value of μ – meaning that the bias of kernel did not change as a function
of expectations. The second bias model was the opposite to slope model,
meaning that we fit separate bias parameters Expect High and Expect Low
trials but estimated only a single value of σ – meaning that the slope of
the kernel did not change as a function of expectations. In the final slope
+ bias model, we allowed both σ and μ of the kernel to varying according
to expectations. In both cases, best fitting parameter values of the
gaussian kernels were found using a Python implementation of the
Levenberg-Marquardt algorithm for non-linear least squares fitting.

First, we examined whether each of these three models could
reproduce the empirical results obtained in Experiments 1 and 2, since a
failure to capture key results effectively ‘falsifies’ a model as a candidate
explanation (Palminteri, Wyart, & Koechlin, 2017). This revealed that
while the slope and slope + bias models could reproduce shifts in d’ and c
according to expectations, the bias model could not reproduce shifts in d’
(see Supplementary Material) – ruling out this model as a potential
explanation.

We adjudicated between the remaining slope and slope + bias models
by comparing model fits, computing R2 values that reflect the error
between participants’ empirical decisions and decisions simulated from
their best fitting kernel. This analysis revealed that decisions simulated
from the slope + bias model had slightly better fit (R2 = 0.81) than the
slope model (R2 = 0.80) - though the benefit of including these addi-
tional μ parameters was marginal. Indeed, analysing μ values in the slope
+ bias model found that values estimated for μ Expect High and μ Expect Low
did not significantly differ (p = .186). This suggests that, even when we
allow the μ parameter (bias) of the agency kernels to vary with expec-
tations about control, the parameters do not consistently differ. Given
this, we concluded that the simpler slope model provided the better
account of our empirical data. And indeed, analysing parameter values
of the slope model revealed that sigma values were significantly lower on
Expect High than Expect Low trials – t47 = 3.807, p < .001, dz = 0.55 –
indicating that decision kernels were indeed sharpened when agents
expect to be control. (NB: The same difference between σ Expect High and σ
Expect Low parameters was also found in the slope + bias model – p= .003).

To further investigate whether the slope model could reproduce our
empirical results, we simulated decisions from these agency kernels and
analysed these in the same way as the real data. In effect, these simu-
lations involve having the model perform the same task as the partici-
pants – exposing the model to the sensorimotor correlation a participant
experienced on a given trial, and passing it through the parametrised
kernel to create a simulated decision about whether the cursor on that
trial was controllable or not. By repeating this process for every trial in
the experiment, we can create simulated hit rates and false alarm rates
that can be analysed to yield signal detection theoretic measures like d’
and c in the same way as the real empirical data.

As shown in Fig. 3l andm, data simulated from the model in this way
recapitulates our empirical results: the model is more sensitive to
objective facts about control (higher d’) when control is expected –- t47
= 4.048, p < .001, dz = 0.584 – but also biased to experience more ‘il-
lusions of control’ when control is expected too - t47 = 5.170, p < .001,
dz = 0.746. As well as reproducing these effects at the group level,
correlational analyses also show the model does a good job of capturing
variability in effects between participants - with a strong correlation
between empirical effects of expectation on of d’ and c for each partic-
ipant and the effect simulated for them by the model – r48 = 0.583, p <

.001 and r48 = 0.636, p < .001, respectively (see Fig. 3n & o). In com-
bination, these results lend support to our model where explicit priors
alter the sensitivity and bias of agency judgements by reshaping the
slope or gain of the function that transforms sampled sensorimotor ev-
idence into feelings of control.

4. Discussion

To effectively interact with the world around us we need an accurate
sense of control, but the sensorimotor signals we use to judge our agency
over our surroundings are riven with ambiguity and noise. One way we
might overcome this ambiguity is explicitly communicating with others
– forming prior beliefs that help to optimise our inferences about what
we can and cannot influence.

Here, across two experiments, we find that explicit instructions
about what we can and cannot control alter both the sensitivity and bias
of agentic judgements. When we are told to expect high levels of control
over the environment we become better able to distinguish control from
its absence, but also biased to hallucinate a sense of control over un-
controllable outcomes. Computational modelling revealed that this
seemingly counterintuitive combination of effects could be captured by
a model where priors only change a single parameter of the decision
process – the slope or gain of the function mapping sensorimotor signals
onto inferences of control.

These results reveal how explicit communication with others can
help to refine our sense of control. Exaggerating our sensitivity to
sensorimotor signs of control when we expect a high degree of agency is
adaptive, as it enables us to more readily detect signs of our influence
over events that we probably do control. Likewise, dampening our
sensitivity to control-like evidence when control is more improbable is
also adaptive, as if we have strong prior beliefs that we are not influ-
encing our surroundings, experienced correlations are likely to be
spurious coincidences rather than signs of genuine agency (Yon et al.,
2020).

Our combination of signal detection methods and computational
modelling provide evidence that explicit beliefs about control alter the
sensitivity of agentic judgements. Some past work has explored how
implicit measures of agentic experience – like intentional binding illu-
sions or sensory attenuation – change when agents believe they are (not)
authors of an outcome (Desantis, Roussel, & Waszak, 2011; Desantis,
Weiss, Schütz-Bosbach, & Waszak, 2012; Dogge, Schaap, Custers,
Wegner, & Aarts, 2012). But by design, such measures of agentic
experience are indirect, making it difficult to probe how prior beliefs are
integrated into the computations our brains use to furnish the sense of
control. In contrast, our psychophysical methods and modelling
approach allow us to diagnose how prior beliefs alter experiences of
control – by altering our sensitivity to control-like evidence depending
on whether we believe we are agents or not.

It may seem initially counterintuitive that this kind of ‘gain control’
mechanism can simultaneously improve the accuracy of control judge-
ments (d’) and lead to exaggerated biases (c) in the control that we feel.
Classic accounts like signal detection theory have tended to assume that
separate underlying mechanisms are responsible for a perceiver’s
sensitivity and their bias (Swets et al., 1961). However, our findings join
an extant literature which shows that explicit instructions – such as in-
structions to attend – can simultaneously improve perceptual sensitivity
and engender perceptual biases (Hawkins et al., 1990). One way that
perceptual scientists have explained these joint effects is to assume that
top-down gain control exaggerates a perceiver’s sensitivity to signals
and signal-like noise – rendering us more sensitive to true signals but
also more prone to overinterpret spurious noise (Wyart et al., 2012).
Here we have found an analogous mechanism can account for the ways
that explicit communication about controllability sharpens or dampens
our sensitivity to genuine and spurious signals of agency over our sur-
roundings – altering both sensitivity and bias in our sense of control.

Here we have used a signal detection approach to study feelings of
control (Yon et al., 2020), building on the classic idea from perception
research that these tools allow us to separately quantify an individual’s
sensitivity and bias. However, as noted above, a fertile approach in sense
of agency research has also contrasted methods that involve explicit
judgements of control (like the present study) with implicit markers of
agentic feelings – like the intentional binding illusion (Haggard, Clark,&

G. Blackburne et al. Cognition 254 (2025) 105969 

7 



Kalogeras, 2002). Theorists have likewise fruitfully distinguished be-
tween non-conceptual feelings of control and conceptual judgements of
control (Synofzik, Vosgerau, & Newen, 2008), which may be particu-
larly important given that judgements and feelings of control can track
similar quantities (Dickinson, Shanks, & Evenden, 1984; Moore, Lag-
nado, Deal, & Haggard, 2009) but also sometimes decouple (Dewey &
Knoblich, 2014). As we have not used any implicit measures, it is
possible in principle that the influences of control priors we describe
here primarily reflect changes in beliefs about control rather than
changes in the control that agents experience. However, our results do
reveal that priors about controllability don’t simply induce generic
biases in control judgement, but deeper changes in our sensitivity to
sensorimotor evidence. Such effects are more redolent of changes seen in
low-level perception than high-level judgement (Wyart et al., 2012), and
our theory and model predict that prior beliefs about control should
shape feelings and judgements in equivalent ways. Testing this model
prediction is a promising avenue for future work.

In any case, these findings reveal a cognitive and computational
mechanism that can explain how our background beliefs about agency,
responsibility and control alter agentic feelings. For example, when
somebody else coerces us into generating a particular outcome (e.g.,
pressing a button to deliver an electric shock), feelings of agency over
and neural responses to the outcome become attenuated (Caspar,
Christensen, Cleeremans, & Haggard, 2016), even though objective
sensorimotor contingencies are unchanged by coercion (e.g., it remains
our button press that causes the shock to occur). These kinds of distor-
tions in the sense of agency are somewhat mysterious if feelings of
control simply depend on direct sensorimotor experience, but can be
readily accommodated by our model, where prior beliefs alter our
sensitivity to control-like evidence. For example, if sociocultural
learning means that we believe that we have less influence when we are
only following orders, such priors may ‘dampen’ our agency kernels,
rendering us less sensitive to evidence that we remain truly in control.

Here we have drawn inspiration from Bayesian models of perception,
which assume that our subjective experience of the sensory world un-
folds as we combine incoming evidence with prior beliefs. A key
component of Bayesian models is the notion of ‘precision’ (Yon & Frith,
2021). These accounts suggest that, as we make inferences about the
world around us, the weight we afford to different sources of informa-
tion is proportional to their reliability or uncertainty. For instance, in
vision perceivers rely more on prior expectations when progressively
more noise is added to incoming signals i.e., as the sensory evidence
becomes relatively less ‘precise’ (Olkkonen, McCarthy, & Allred, 2014).
If our sense of control is constructed in a similarly Bayesian way (Moore
& Fletcher, 2012) – depending on similar estimates of uncertainty
(Constant, Salomon, & Filevich, 2022) - we ought to find that the in-
fluence of prior beliefs on feelings of agency is exaggerated when
sensorimotor signals are most ambiguous – leaning more on prior
knowledge when the evidence provided by our senses is most uncertain.
For instance, humans (Bloom, Venard, Harden, & Seetharaman, 2007)
and other animals (Skinner, 1948) can experience ‘superstitious asso-
ciations’ between actions and outcomes in the absence of any true causal
relation - particularly when there are many possible actions agents
might take and the timing between action and outcome becomes more
delayed or more variable. These situations can be usefully thought of as
cases where our sensorimotor experiences are objectively more uncer-
tain or ‘imprecise’.

However, from a Bayesian point of view, this objective ambiguity
and variability in our sensorimotor experience is not the entire story.
Recent Bayesian models suggest that the balance between expectations
and evidence doesn’t only depend on the objective uncertainty in the
different sources of information being monitored, but on what agents
believe about their precision (Friston, 2018; Yon & Frith, 2021). For
instance, in perceptual decision making, observers come to have exag-
gerated sense of confidence in their percepts when they expect incoming
sensory signals to be more reliable, even if objective perceptual

precision remains unchanged (Olawole-Scott& Yon, 2023). If inferences
about our own agency unfold in a similar way, we would expect that the
balance agents strike between incoming evidence and prior beliefs will
depend on their beliefs about the reliability of sensorimotor signals and
prior expectations.

Thinking about how these weights are calibrated could allow us to
develop and test new hypotheses about how disturbances in the sense of
control arise and persist. For instance, in psychotic illnesses like
schizophrenia patients can experience delusions that their bodies are
controlled by an alien force, or that they possess grandiose powers to
influence features of their surroundings which they – objectively
speaking – cannot (Isham et al., 2021; Mellor, 1970). In controlled ex-
periments, patients with psychosis show reduced sensitivity to sensori-
motor evidence about what they can and cannot influence (Blakemore,
Smith, Steel, Johnstone, & Frith, 2000), and poorer insight into the
reliability of the sensorimotor signals they sample (Krugwasser, Stern,
Faivre, Harel, & Salomon, 2022). A key clinical feature of these de-
lusions is that these strange beliefs about action are resistant to revision
when challenged by other people. In the context of our model, we could
speculate that such anomalous experiences arise because patients do not
give appropriate weight to explicitly communicated beliefs – meaning
that noisy sensorimotor evidence is not appropriately ‘filtered’ through
the expectations provided by other people. This way of thinking may
thus explain not only how social communication shapes feelings of
control in general, but also how some of us become detached from social
influence (Baptista, Jacquet, Sidarus, Cohen, & Chambon, 2021).

Our findings suggest that it is possible to implant explicit models
about agency and control directly into the minds of others through
explicit communication. Though we have focused on how these models
shape the subjective experience of control, inheriting models about our
agency from others could have other consequences for cognition about
control (Yon & Corlett, 2022). For example, entertaining causal models
about our own agency makes it possible to engage in “hypothesis
testing” behaviour that probes our level of control over the environment
(Wen et al., 2020) and allows us to become sensitive to counterfactual
information about what we can and cannot influence (Kulakova, Kha-
lighinejad, & Haggard, 2017). Future work may probe whether explicit
communication about what we can control also shapes these features of
agentic behaviour too.

Our capacity for goal-directed action hinges on our ability to track
what we can control. But the sensorimotor signals served up by direct
experience are inherently ambiguous, and can provide us with an un-
realistic picture of what we can and cannot influence. Here we have
revealed a cognitive and computational mechanism that allows agents
like us to overcome this ambiguity, by allowing prior beliefs about
control to retune the mechanisms we use to construct agentic experi-
ences. This mechanism in turn reveals one way that the ideas we inherit
from others about action and control can shape our personal sense of
agency.
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