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Abstract 
Executive functions (EFs) are a set of over-arching cognitive functions that act to that to coordinate 

other mental processes, enabling goal-directed behaviour to take place. The exact structural 

relationship between components of EFs is as yet unclear, and the relationships of EFs to other 

factors such as socio-economic status are also still to be fully explored. The developmental pathways 

of EF components and the structural relationships between them, in particular during adolescence, 

also remain unclear.  

This thesis uses data from the Study of Cognition, Adolescents and Mobile Phones - a longitudinal 

cohort study of over 6,600 high-school students across Greater London – to explore structure and 

development of EFs across adolescence. A computerised task battery was completed at two time 

points: baseline assessment took place during school Years 7-8 (ages approximately 10-13 years) and 

follow-up occurred during school Years 9-10 (ages approximately 13-16 years).  

The first experimental chapter investigates the relationship between EFs and socio-economic status 

(SES) at baseline assessment, finding significant associations between overall SES and EF, and 

between some specific EF measures and aspects of SES. In some cases these relationships remain 

significant even when accounting for fluid intelligence. The second chapter uses multiple regressions 

and multi-level modelling to explore developmental trajectories of EF and fluid intelligence across 

early adolescence, and finds significant associations with age and task score for most of the cognitive 

tasks. The final chapter uses exploratory factor analysis to explore structural relationships between 

EF components at the two assessment points, and finds evidence supporting a three-factor model of 

EF within our cohort. 
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Chapter 1.  
Introduction 
Executive functions (EFs) are over-arching cognitive processes that act to coordinate other mental 

processes. They allow goal-directed behaviour, including in novel or distracting situations (Diamond, 

2013). EFs may also be described as higher-level cognitive functions, and are generally associated 

with frontal lobe activity (Stuss & Levine, 2002; Miyake & Friedman, 2012). Despite the large volume 

of research into executive function (EF) in the neuropsychological literature, a single precise 

definition remains difficult to pin down, and is yet to be formally operationalised (Jurado & Rosselli, 

2007). Different researchers describe EF in terms of different cognitive functions, and many different 

terms are used in the literature for similar related concepts. A simpler definition may only include 

inhibition, working memory and switching, where more complex definitions may also encompass 

verbal reasoning, problem solving, planning, sequencing and / or multitasking (Chan et al., 2008a). 

EFs are approximately analogous to the activities carried out in Baddeley’s central executive in his 

working memory model, or the supervisory attention system (SAS) in Norman and Shallice’s work 

(Fournier-Vicente et al., 2008). By their nature as higher-level cognitive processes, EFs act to 

coordinate other cognitive process to achieve complex goal oriented actions. EFs are generally 

considered to be multifactorial, in that the overall EF umbrella consists of multiple separable 

components of cognitive functioning. These different components of EF must work together to 

complete complex tasks (Zelazo et al., 2008). 

EFs have prolonged developmental trajectories, in keeping with the protracted development of 

frontal brain regions. Behavioural and functional development of the EF system extends across 

adolescence. EFs tend to develop from being more general processes to more complex and specific 

ones across childhood and adolescence (Diamond, 2013). There is some debate in the literature as 

to whether EF capability reflects the working of a single system (unitary models, e.g. Duncan, 2013); 

or coordinated action of multiple dissociable, but related, sub-systems of both (also known as unity-

yet-diversity models, e.g. (Miyake et al., 2000). Factor analysis research has shown that structural 

models of EF change across development, and across adolescence in particular, with a general 

pattern of fewer, more general EF components earlier in childhood, with an increasing number of 

more specialised components in later adolescence. EFs are associated with a wide range of 

important life outcomes, such as wealth, academic achievement and health in adulthood.  

This thesis will investigate three key areas related to EFs in adolescence. The first empirical chapter 

(Chapter 3) considers the relationships between EF and socio-economic status. Chapter 4 explores 
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the development of specific EF abilities in terms of task performance across early adolescence. 

Chapter 5 uses factor analysis to explore the structure of EF at our two assessment time points in 

early adolescence, to investigate whether the factor structure matches those found in adulthood, 

and whether there are any developmental differences in EF structure across our assessment points.  

Models of Executive FunctionAt least two broad explanations of the structure of EFs are plausible. 

EFs may be undifferentiated and unitary in nature, with performance in EF tasks reflecting the work 

of one system; or they may be fractionated in structure, representing the work of multiple 

components or sub-systems (Diamond, 2013). Most models of EF take at least some account of both 

unity and diversity of EF in their explanations. 

1.1.1 Approaches in EF Research 

Research into executive functioning takes two broad approaches: the first investigates cognitive 

deficits in patients with frontal lobe damage, and the second uses cognitive tasks that tap putative 

executive control functions in normally functioning individuals. The work of Norman and Shallice 

(1986) is a typical example of the first approach. Various tasks were used to analyse the impact of 

frontal lobe injuries on patients’ cognitive functions. It was observed that patients showed specific 

difficulties in complex tasks involving planning and other EF functions, such as the Wisconsin Card 

Sort Task (WCST), while retaining ability to perform well in other cognitive tests including IQ tests 

(Norman & Shallice, 1986). The collection of the specific deficits in these patients was termed 

‘dysexecutive syndrome’. This work formed the basis for subsequent theories of the roles of the 

frontal lobes in EF activities. However, it has been noted that there is no simple 1:1 correspondence 

between specific lesion sites and pathology of individuals, meaning that the roles of frontal cortex in 

cognition are complex.  

A second approach is to focus on non-pathological individuals, and use cognitive testing and brain 

scanning methods to investigate cognitive control functions across different conditions. An example 

of this is the work of Baddeley and Hitch (1974), which explored components of working memory 

with experimental methods, and described the ‘central executive’ as being a key component in 

working memory processes, working to maintain information in mind and make action decisions 

based on relevant information. 

A wealth of theories of EF have been developed over the years since the earliest explorations of the 

central executive and dysexecutive syndrome. Some key theories of executive functioning arising out 

of these two broad methodological approaches, and of course combinations of these approaches, 

will now be discussed.  



16 
 

1.1.2 Supervisory Attentional System (SAS) 

Arising out of research with patients with frontal lobe injuries, the supervisory attentional system 

(SAS) model proposes that executive functions act to coordinate attentional processes to generate 

new response schemas in novel situations, initiate responses, and monitor accuracy (Norman & 

Shallice, 1986). There are four levels of thought and behaviour in this model. Firstly, simple 

“cognitive or action units” correspond to basic actions and low-level cognitive abilities (e.g. perceive 

a stimulus; press a button). Secondly, “schemata” are nests of actions or cognitive abilities that form 

closely related groups, which are repeatedly triggered at the same time (e.g. press the brake and put 

car into neutral when stopping). Thirdly, a process of “contingency scheduling” takes place to trigger 

action schemas where a well-rehearsed schema is appropriate – this process does not involve EF 

control (e.g. at a red light trigger the car stopping schema). Finally, EF control is a (usually) conscious 

process enacted by the “supervisory attentional system” to decide on appropriate actions, and 

initiate the relevant contingency schedule process (e.g. plan how to get to a Doctor’s appointment 

on time). 

This model suggests EFs are used in a wide range of situations and are not tied to any particular 

stimulus type. The conceptual framework of EFs in the SAS include a wide variety of cognitive 

processes such as working memory and inhibition of incorrect responses; wider attentional 

processes including shifting, maintenance, division and selection of attention; and wider EFs such as 

problem solving, novel responses, response monitoring and error correction, general decision 

making, priming of anticipated responses, and planning. 

The original SAS model could be critiqued as being largely descriptive in nature (Hommel et al., 

2002). There is little explanation of how these processes carried out by the SAS might occur. The 

cognitive control or EF portion of the SAS is largely unitary in nature – in that all of these complex 

cognitive functions are carried out broadly within the frontal lobes, with little differentiation 

between sub-types of EF present in the original model. However, some patient studies showed 

participants with deficits within specific types of EF tasks, rather than across all EFs in general 

(Shallice & Burgess, 1991). This led to further work to explore more specific aspects of EF control and 

specific frontal lobe regions in more detail, which produced more differentiated models within the 

original SAS framework, with EF becoming increasingly conceptualised as a group of differentiated 

control functions located within sub-regions of the frontal lobes.  

Gateway Hypothesis of Rostral Pre-frontal Cortex Function 
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Later work by Tim Shallice, Paul Burgess et al. has developed more detailed theories of frontal lobe 

function within the SAS framework, which has informed by studies of patients with specific cognitive 

deficits and by cognitive testing with non-pathological individuals. This work has attempted to 

identify the functions of more specific regions within frontal cortex, and expound theories of specific 

EF capabilities and relate these functions to regions of frontal cortex. One such theory is the 

“gateway hypothesis” of rostral PFC function (Burgess et al., 2007). Rostral PFC the very front section 

of the frontal cortex - anatomically defined as Brodmann area 10. It forms over 1% of the brain’s 

overall volume. Burgess et al. (2007) suggests that this region performs a cognitive control function, 

balancing attention paid to incoming stimuli and non-stimulus related thoughts while both 

performing tasks and at rest. Burgess suggests that this region is heavily involved in prospective 

memory, including priming of expected responses and in performing delayed response tasks. 

Patients with specific lesions in this region show specific deficits in real-world tasks involving multi-

tasking and in novel situations; and in the lab, tasks involving task-switching. Positron emission 

tomography (PET) studies indicate that regional cerebral blood flow (rCBF) is increased in rostral PFC 

when expecting a stimulus during prospective memory tasks (Burgess et al. 2007).  

The gateway hypothesis suggests rostral PFC acts to guide behaviour in situations where the optimal 

course of action is unclear, and where multi-tasking or switching between responses is required.  

This hypothesis expands on the original SAS model, by suggesting mechanisms of action supporting 

purported cognitive actions of this particular region of the frontal lobes. Rostral PFC has close 

anatomical connections with ventrolateral and dorsolateral PFC – the gateway hypothesis suggests 

rostral PFC performs a role of selecting and switching between inputs from these systems. It 

suggests rostral PFC acts as a gateway, similar to a switch-point on a train-track, to select attentional 

focus at any given moment. It synthesises inputs from stimulus-related and stimulus-independent 

thought systems. It's attention selection processes can be influenced by stimulus-independent or 

conscious thoughts (“I need to focus on x…”), and/or by salience of stimulus inputs (Red light = 

Stop). The function of the rostral PFC is then to activate or bias towards particular “schemata” or 

“contingency schedules” to be triggered, then the processes which are enacted by these lower-level 

systems will be monitored to ensure ongoing accuracy. Burgess et al. (2007) suggests the PFC 

operates across multiple domains, i.e. it is independent of stimulus or input type.  

This hypothesis goes some way to addressing the critique of the SAS being largely descriptive, in that 

it makes specific predictions as to how the system will operate in particular conditions. Evidence 

supporting this theory comes from fMRI studies which show increased rostral PFC activation in a task 

requiring switching between stimulus-oriented and stimulus-independent thought versus similar 

non-switching tasks (Gilbert et al., 2005). 
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1.1.3 Baddeley’s Central Executive 

An example of the second type of approach to EF research (i.e. using cognitive testing in non-

pathological individuals) focussed on the “central executive”, the control component of Baddeley 

and Hitch’s Working Memory Model (Baddeley & Hitch, 1974). The central executive was postulated 

as a central control unit, allocating attention and processing the inputs from other units of working 

memory such as the visuo-spatial scratchpad and phonological loop. Original conceptions of the 

central executive were largely unitary in nature.  

One criticism which could be levelled at the original description of the unitary central executive is 

that it appears to be little more than a ‘homunculus’, offering few specific explanations of 

mechanisms of action or testable predictions (Baddeley, 1996a). Baddeley revisited the working 

memory model and the central executive in 1996 (Baddeley, 1996a, 1996b). In this later work, he 

described fractionation in the working memory model overall, and suggested potential avenues for 

future research into the fractionation of central executive function. He suggested four potential 

components that central executive function might be differentiated into: dual task coordination; 

alternation between cognitive strategies (cognitive flexibility); selective attention; and activation and 

retrieval of information from the long-term memory. 

1.1.4 Posner’s Model of Attention and EF 

Another model of executive function is that it forms part a broader set of attentional control 

processes (Posner & Petersen, 1990; later updated in Petersen & Posner, 2012). In their original 

models, Posner and Petersen emphasise three concepts about attention. Firstly, attentional systems 

are anatomically separate from cognitive processing systems. Secondly, attentional processes make 

use of specific networks of interlinked brain regions. Thirdly, specific aspects of attentional processes 

are linked to distinct networks of brain regions. These distinct neural networks carry out specific 

aspects of attentional processes.  

Petersen and Posner (1990) describe three key attentional networks of brain regions: alerting, 

orientation and executive control. The alerting system is responsible for producing and maintaining 

vigilance and focus during tasks. The alerting neural network is largely right-lateralised; is based 

around projections of the locus coeruleus; and includes both cerebellar and right cerebral cortex 

regions. The orientation system allows particular sensory modality or locations to be prioritized, and 

for example, would be active in a location priming task where response times are reduced when 

stimulus locations are indicated prior to the event. The orienting neural network is based around the 

dorsal and ventral visuo-spatial attentional systems. The executive control system relates most 
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closely to the concept of executive functions explored in this thesis. In their original conception of 

attention, the executive control network was described as being responsible for focal attention and 

target detection during tasks, and the brain regions involved were largely midline regions of the 

medial frontal cortex and anterior cingulate.  

A later update of their models favours the conceptualisation of executive control as two separate 

sets of functions, with two separate neural networks. They suggest that top-down control and 

attention during tasks is controlled by the functional co-ordination and interaction of these two 

networks. Firstly, they describe a frontoparietal system which is related to noticing start-cues, task 

switching behaviour, initiation of task appropriate responses, and real-time monitoring and 

adjustment of performance during trials. A second network of midline structures and the anterior 

cingulate (ACC) allows maintenance of on-task focus across trials, and acts as a stable background 

for maintaining attentional focus throughout a task. This is in contrast to many cognitive control 

theories, which conceive of a single unified system of executive control in which lateral pre-frontal 

cortex is responsible for top-down control, while performance monitoring and maintenance of 

attention is guided by midline structures and the ACC, as part of a single attentional neural network.  

In favour of their dual network model of executive control, Petersen and Posner (2012) cite evidence 

from lesion studies. More laterally located lesions can result in perseveration on outdated task 

requirements, and an inability to switch sets when required, while ability to carry out tasks correctly 

within a single sustained set is preserved. This, they argue, means that lateral brain regions are 

responsible for task switching, rather than controlling all task performance per-se. They also argue 

that their dual system model is more consistent with research into timing of neural activity across 

neural networks during executive control tasks. They cite research where fronto-parietal regions of 

the control network activate early in trials, where ACC-related and midline regions activate later 

during trials and may even begin activity post-trial to enable post-trial understanding of 

performance. However, this evidence does not appear to be entirely exclusive of a single-network 

with dual-function conception, though they argue we might expect closer timing of activity across a 

single network than is being observed in the cited timing studies. Posner’s model has also been 

applied to childhood developmental processes, and used to explain development of attentional and 

executive function processes (Rueda et al., 2004).  

1.1.5 Duncan’s Multiple Demand Network  

The multiple demand (MD) network supports a wide variety of cognitive functions (Camilleri et al., 

2018). Duncan equates the function of the multiple demand network to general fluid intelligence 

(Gf). Gf refers to a general ability to perform a wide variety of cognitive functions, and is generally 
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tested by for example matrix completion tasks, and other logic tasks similar to those used in Cattell’s 

culture fair task (CFT) (Cattell & Cattell, 1960b). It can therefore be interpreted as a unitary 

explanation of EF – in that the same MD network acts to carry out various EF and cognitive tasks. 

Duncan et al. (2020) suggests that the multiple demand network is very similar to brain networks 

identified in other research, including task-positive network (Fox et al., 2005), cognitive control 

network (Niendam et al., 2012), or extrinsic mode networks (Hugdahl et al., 2015). Key brain regions 

shown to be active during executive control tasks in the MD network, and across all the above 

mentioned brain networks, include posterior-medial frontal cortex (pre-supplementary motor area 

and middle cingulate cortex), bilateral anterior insula, intraparietal sulcus, and posterior inferior 

frontal sulcus (Camilleri et al., 2018). Activity is sometimes also seen in the rostro-lateral PFC, but 

this is not as frequently observed across as many types of task (J. Duncan et al., 2020). 

A summary paper by Duncan (2010) sets out the MD network theory. The MD network is a system of 

brain regions which co-activate in many different situations. The MD network is central to general 

cognitive control. Beyond a narrow definition of EF consisting of isolated component operations e.g. 

inhibition, working memory, attentional bias or switching between tasks, the MD network also 

works to organise and structure the required actions and thoughts associates with complex multi-

step behaviour. Real world examples of this type of behaviour include things like cooking a meal or 

solving a maths problem. Goals are achieved by organising a series of sub-tasks, or multiple steps, 

which are each separately defined then sequenced together by activity in the MD network to form a 

coherent series of actions that work toward achieving an overarching goal. 

Duncan (2013) further suggests that cognition is structured in attentional episodes. During these 

episodes, the multiple demand network aligns attention to segment cognition into small steps 

required to complete a task at hand (i.e. breaks down the current goal into many smaller sub-goals 

that are needed to achieve it), then integrates the required steps to produce a complete outcome 

aligned with the task goal. These processes of segmenting and integrating attention to small 

component steps is influenced by things such as overarching goals, memories, and knowledge of 

required subgoals to meet the overarching goal. In this context, EFs would be necessary to maintain 

task goals and rules in working memory; for the ability to switch between different sets of rules and 

strategies to achieve goals as required; for monitoring progress and changing behaviour to fit 

current stage of the task; and inhibiting inaccurate responses based on this monitoring.  

In series of experiments using specific versions of matrix tasks combined with fMRI, Duncan et al. 

(2020) demonstrated that tasks requiring integration and segmentation of attention recruit regions 

of the multiple demand network, with different task types recruiting somewhat differing groups of 
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brain regions in the network. This recent work suggests that the MD network is not as unitary as first 

described, rather, it has differential patterns of activity in different types of EF and cognitive tasks. 

Although the original description of the multiple demand network was somewhat unitary in nature, 

in that it described the overall functions of this system across many areas of cognition, this has been 

adjusted to include aspects of differentiation of neural function.  

1.1.6 Unity-yet-diversity models of EF 

Unity-yet-diversity models suggest that EF is made up of multiple separable, though related, 

components of cognitive functionality. One influential model of this type was proposed by Miyake et 

al. (2000). They described EF as consisting of three dissociable yet correlated components: set-

shifting or switching ability; inhibitory control or inhibition; and updating working memory contents. 

This thesis uses a working definition of EF based on the unity-yet-diversity models of Miyake et al. 

(2000) and Diamond (2013), with EF conceptualised as three dissociable yet related components.  

A commonly used technique to explore unity-yet-diversity models is Confirmatory Factor Analysis 

(CFA). CFA is a statistical technique which enables researchers to identify latent variables that 

underlie complex cognitive performance, such as that required for tasks used to asses EF. To conduct 

CFA, sets of tasks are carefully selected to target specific proposed EF components. A variety of tasks 

will usually be used to address each hypothesised component. These tasks will have different surface 

features (i.e. different specific requirements, with different lower-level cognitive processes 

underlying their performance such as visual perception or motor control abilities), but will all tap 

into some common element of some EF component. Task scores are then analysed using CFA. Using 

this technique, common variance among groups of tasks is extracted statistically, in order to identify 

whether certain pre-planned latent structures adequately describe performance across multiple 

tasks which ostensibly tap the same component. Various models are then tested to see which 

combination of latent variables best explains the observed variance. These models will test whether 

the latent variables are related to each other, or whether each variable is statistically separable from 

the others. Miyake et al. (2000) used nine tasks, with three intended to tap each hypothesised EF 

factor. They used CFA to whether their proposed three-factor model was preferable to a one-factor 

(unitary) model, and with any two-factor models. They found that in adults, a three-factor model 

best explained the observed variance, but that the three latent variables were significantly 

correlated to each other. This research supports the idea that EFs are fractionated, and that the 

underlying components are also somewhat related to each other (unity-yet-diversity).   

Other studies have observed that a three-factor model of EFs is also present in atypical populations. 

CFA of data obtained from a questionnaire-based EF assessment (the Behavioural Rating Inventory 
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of Executive Function or BRIEF scale) in a clinical population revealed an underlying pattern of three 

dissociable latent variables (Gioia et al., 2002). A three-factor model was preferable to one- or two-

factor models. The observed latent structure was similar to that found by Miyake et al. (2000). This 

suggests that a model of EFs consisting of dissociable yet related components may be present in 

clinical populations also, and can be found by assessing participants using questionnaire measures of 

EF.   

Miyake et al.’s (2000) research does not rule out other alternative fractionated models, as tests were 

selected to specifically address the three factors of interest in their study. Other research has taken 

a broader view of EF, using CFA to look at other cognitive processes which may also be considered as 

part of EF. For example, Fournier-Vicente et al. (2008) found that a five-factor model explained EF 

data in adults. These five factors were labelled as: verbal storage-and-processing coordination; 

visuospatial storage-and-processing coordination; selective retrieval; selective attention; and 

shifting. The research had included many and more varied tasks than in the Miyake research, for 

example they included tasks involving dual-task co-ordination. They had expected to find dual-task 

coordination as an additional EF factor in their modelling, however a five-factor model best 

explained their data (Fournier-Vicente et al., 2008). The possible addition of dual-task functions as 

an additional, potentially separable EF component is also supported by a review by Miyake and 

Freidman (2012).  

Anderson (2002) also suggests that a unity-yet-diversity model explains executive function well. They 

discuss that EF in childhood develops across four key areas of flexibility, attentional control, goal 

setting and information processing. Anderson’s model is similar to Miyake et al.’s model, in that 

these components are considered to be functionally separable, but at the same time, correlated 

with each other. The fact Anderson includes four components to EF does suggest that other 

alternate models are possible beyond the widely accepted three component model, and that other 

types of activity than just inhibition, working memory and switching are also related to EF.  

Other tasks and areas of cognition could therefore be considered as being part of EF in this type of 

model, similar to other models of EF described above. In particular, real world examples of EF type 

cognitive control clearly requires more than just the three components of inhibition, working 

memory and switching – the need to identify appropriate actions and to plan an overarching 

approach to any real life task are also obviously important, and are not included in these types of 

model. Other factors than the three key components of EF that could be considered as being 

essential for EF may well exist, and including a wider variety of tasks in EF research might be able to 

identify these and the relationships they have to other EF components.   
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Current models take into account the idea of both unity and diversity of EFs (Miyake & Friedman, 

2012). In confirmatory factor analysis research in particular, relationships between latent variables 

can be examined by considering the correlations between any identified factors. These have been 

found to be moderate in size (Miyake et al., 2000). The existence of significant correlations between 

factors suggests the factors are related to distinct, but not entirely independent, cognitive 

components. The presence of correlations greater than zero between EF factors further suggests 

that EF component processes rely on some common EF ability (unity of EFs); but the fact that 

components are not perfectly correlated indicates the dissociable nature of the factors, meaning 

that they are to some extent independent processes (diversity of EFs).  

What is the shared variance between EF components in unity-yet-diversity models? 

One critique of the differentiation or diversity of EF components hypothesis in EF is similar to one 

that can be applied to the discussion of intelligence in general. General fluid intelligence, or G, is 

defined as the shared variance among different cognitive measures. However the underlying 

substantive meaning of this is concept vague and not well-defined (K. Lee et al., 2013). Similarly, in 

an EF context, components of EF have shared variance – i.e. the latent EF variables identified in 

factor analysis research are commonly found to have significant correlations with each other. The 

meaning of this shared variance is not clear. Various ideas have been proposed in the literature.  

The idea that common EF might reflect inhibition was proposed by Friedman and Miyake (2017). In 

this review paper, they described inhibition as underpinning the other two EF components, and 

rather than acting as a separate component at the same level of WM and switching. The idea that 

inhibition represents common EF processes has also been supported by the finding that inhibition 

processes are often necessary in order to successfully perform working memory tasks, so inhibition 

is thought to be underpinning other EF functions (Malagoli & Usai, 2015).  

An alternative suggestion is that shared variance between EFs represents processing speed. Rose, 

Feldman and Jankowski (2011) found that children who had been born preterm and with low 

birthweight had cognitive deficits in EF tests, compared to their non-preterm peers, at age 11. They 

found that this deficit in EF performance was fully mediated by inclusion of processing speed as a 

covariate using structural equation modelling. This led to the conclusion that processing speed is a 

fundamental process underpinning EF performance, and that processing speed can be described as 

the underlying shared variance between EF components.  

This type of unity-yet-diversity model is not incompatible with more neurally-based models, such as 

the SAS or multiple demand network theories of EF. Rather, these other theories can be used to 
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explain aspects of the neural underpinning of EF task performance, while working in a unity-yet-

diversity framework.  

1.1.7 Model of EF used in this thesis 

This thesis follows a unity-yet-diversity model of EFs, including inhibition, working memory and 

switching, as described by Miyake et al. (2000) and subsequently by Diamond (2013). The consensus 

in the literature currently is that a three-factor unity-yet-diversity model is probably the most 

plausible description of EF structure. However, the lack of a single, specific, operationalised 

definition of executive functioning remains an issue. For example, other elements of cognition may 

also be considered to be part of EF such as dual-task coordination (Baddeley, 1996b), or wider 

attentional processes (Norman & Shallice, 1986), but are not included in the Miyake et al. (2000) 

three-factor model.  

It is important to consider both the unity and diversity of EF components when investigating EF 

structure, as the factors identified in these three-factor models are not entirely independent of each 

other. That is to say, most factor analysis research has found significant correlations between the 

latent components of EF. The three-factor conception of EF structure, although widely accepted in 

the literature, have not have been sufficiently replicated to draw absolute conclusions about the 

structure of EF in general. Furthermore, the structure identified in adults may not apply to other age 

groups, in particular children, adolescents, or older adults; and also may not apply to specific 

populations such as people with specific learning difficulties, Down’s syndrome or other clinical 

populations. Of particular interest for this thesis, factor analysis research investigating the latent 

structure of EF during childhood and adolescence is reviewed in Chapter 5.  

1.2 Components of EF  

The fractionation of EFs into dissociable, but related, components is the generally accepted model in 

current EF research. As discussed above, factor analysis research characterises EFs as consisting of 

three inter-related, yet separable, component cognitive functions. This thesis uses a working 

definition of EF based on the unity-yet-diversity models of Miyake et al. (2000) and Diamond (2013), 

with EF conceptualised as three dissociable yet related components: inhibition, working memory and 

switching. These three factors will be discussed in turn below. 

1.2.1 Inhibition  

Inhibition or inhibitory control is the ability to prevent a dominant or prepotent response, where 

that response is not relevant or applicable to the current situation or task requirement (Diamond, 
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2013; Miyake et al., 2000). In a real-life example, a child could use inhibition to prevent his 

prepotent response to shout out an answer to a teacher’s question straight away, and put his hand 

up and wait instead.  

Inhibition can be conceptually subdivided into different types of inhibitory control. Response 

inhibition allows us to override automatic responses. The ability to inhibit automatic reactions allows 

us to carry out responses that are not usually required, for example, to look away from a presented 

stimulus rather than towards it in a Go/No Go task. Another form of inhibition would allow us to 

direct and focus attention on particular, selected external stimuli (e.g. tuning in to the voice of a 

particular person at a noisy cocktail party), and another would allow broader, and more long term, 

self-controlled behaviours (e.g. inhibiting a desire to eat unhealthily if we are trying to lose weight) 

(Diamond, 2013). These different aspects of inhibition are considered to reflect different specific 

cognitive components. One model of inhibition structure comes from Tiego et al. (2018), who 

proposed a hierarchical model of inhibitory control. Some aspects of inhibition, such as cognitive 

inhibition (ability to supress unwanted thoughts / memories) have been shown to be dissociable 

from other forms, such as inhibition of prepotent responses or avoiding external distractions 

(Friedman & Miyake, 2004). For a summary of some tasks that have been used to assess inhibition, 

see Table 1.1. 

Miyake and Friedman (2012) have also suggested that inhibition might represent the ‘common EF’ –

once covariance between EF components (the unity between EF factors) has been accounted for, 

there is no unique variance left for an inhibition-only factor to explain. This suggests that inhibition 

may be a common cognitive process underlying the other aspects of EFs, rather than a component  

of EF at the same ‘level’ as working memory or shifting. Further evidence supporting this view is that 

inhibitory control is required for WM performance, suggesting that inhibition may underpin other EF 

performance (Tiego et al., 2018).  

1.2.2 Working memory or Updating 

This is the ability to retain and manipulate information in mind over a short period of time, and to 

update what information is maintained as needed to address a given task (Diamond, 2013). Different 

researchers refer to this concept using different terms, for example updating (Miyake et al., 2000) or 

simply working memory (Purpura et al., 2017). Working memory is closely related to inhibition 

(Diamond, 2013). In order to complete tasks which require updating of working memory contents, it 

is necessary to inhibit automatic or prepotent responses to stimuli, and to inhibit other 

representations that might conflict with the required task information.  
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Tasks addressing the updating or working memory component generally involve some element of 

recalling information that is presented in a complex form, or monitoring information in a complex or 

continually altering situation. For example, the listening recall subtest of the AWMA (Automated 

Working Memory Assessment; Alloway et al., 2008) requires that participants recall the last words of 

a set of sentences, whilst also completing comprehension tasks (Purpura et al., 2017). See Table 1.1 

for other examples of WM tasks.  

1.2.3 Switching 

This is the ability to flexibly alter response patterns, perhaps in response to changing circumstances, 

or in order to try a new solution or strategy in problem-solving. This factor may be known as set-

shifting, switching or cognitive flexibility (Diamond, 2013; Miyake et al., 2000; Purpura et al., 2017) 

This kind of ability is essential in everyday life, for example, if while a student is writing an essay her 

phone rings, she may switch from one set of task requirements and behaviours to a new set in order 

to pay attention to the phone call and respond appropriately. Tasks used to address this aspect of EF 

have included plus-minus task and trail making tasks (e.g. Tamnes et al., 2010); and card sort tasks 

such as the Wisconsin Card Sort Task (WCST)  (Miyake et al., 2000) and the dimensional change card 

sort (DCCS) task (Purpura et al., 2017). Tasks generally involve switching between different sets of 

rules during the task (Monsell, 2003), with the rules either explicitly provided (DCCS) or not (WCST). 

See Table 1.1 for other examples of switching related tasks. 
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1.3 Assessment of EF 

A wide variety of tasks have been used to assess EF in empirical studies. Nyongesa et al. (2019) 

reviewed the literature to identify measures that have been used to assess EF during adolescence. 

Ten commonly used tasks make up close to half (44%) of reported EF measures, and a wide variety 

of over 300 different tasks make up the remaining 66%. This illustrates that a very wide variety of 

tasks have been used in the literature to assess EF. Digit span, trail making, and continuous 

performance tasks which are used in this thesis are amongst the ten commonly used paradigms.  

Table 1.1 describes some examples of commonly used paradigms used to assess EF in childhood and 

adulthood. The table includes the main component of EF that is assessed by each task paradigm, and 

gives some examples of EF studies that have used each task. 

In addition to task measures of EF, questionnaires have been used to assess EF. One example of this 

type of questionnaire is The Behavioural Rating Inventory of Executive Function (BRIEF; Gioia, 

Isquith, Guy, & Kenworthy, 2000). This questionnaire assesses EF in an everyday context, considering 

behaviours such as initiation, planning, inhibition, shifting, working memory and monitoring.   

The Strengths and Difficulties Questionnaire (SDQ) is a well-validated, normed behavioural 

questionnaire, used to assess mental health of children up to 17 years (A. Goodman & Goodman, 

2009). Scores on the difficulties portion of the questionnaire correlate with likelihood of 

psychological diagnosis (R. Goodman et al., 2000). The SDQ measures five subscales of behaviour: 

emotional symptoms, conduct problems, hyperactivity, peer relationship problems, and prosocial 

behaviours. Research using the SDQ alongside measures of EF has shown that SDQ scores correlate 

with results obtained from the BRIEF (Monnier et al., 2014), with self-regulation ability (Lakes, 2013), 

and EF capabilities in adolescence (Donati et al., 2021). This may indicate that the SDQ may act a 

proxy measure for real-life EF capabilities, or that childhood EF is related to mental health. This idea 

is further discussed in Chapter 5.  
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Table 1.1 Examples of Tasks Used to Assess Executive Functions 

Key  EF 

Component  

Task Name Brief Description Examples of studies using 

this task 

Complex EF Wisconsin Card Sort 

Task (WCST) 

Sort cards according to sets of rules, which change over time. Rule changes must 

be inferred from successes and failures. Used with adults.   

(Huizinga et al., 2006a) 

Complex EF Dimensional Change 

Card Sort (DCCS) 

Sort cards according to sets of rules, which change over time. Rule changes are 

explicitly stated. Used with children. 

(Purpura et al., 2017) 

(Rosen et al., 2020) 

(Alfonso & Lonigan, 2021) 

Complex EF  Towers of London / 

Towers of Hanoi 

Participants must move varying sized hoops into a prescribed pattern across three 

stands, following rules such as no larger item may be put on top of a smaller one. 

(Huizinga et al., 2006a) 

(De Luca et al., 2003) 

(Lehto et al., 2003) 

Inhibition Stroop Participants state the colour of ink words are presented in. The written word is to 

be ignored. Some items are incongruent colour words, which acts as a distractor. 

(Tamnes et al., 2010) 

(Alfonso & Lonigan, 2021) 

Inhibition Modified Stroop 

(Day/Night) 

Participants must say ‘day’ when presented with a moon, and ‘night’ when 

presented with a sun. Used with younger children.  

(Purpura et al., 2017); 

(Diamond et al., 2002) 

Inhibition Go/no-go Participants must make a certain response to a ‘Go’ stimulus. In a few trials, a ‘No-

go’ stimulus will appear instead, and the usual response should not be made.  

(Malagoli & Usai, 2015) 

Inhibition Flanker Participants must respond with the direction of a target item that appears on a 

screen. Incongruent distractors surround the target in distractor trials. 

(Eriksen & Eriksen, 1974; K. 

Lee et al., 2013) 

Inhibition Simon task Items appear in congruent or incongruent locations. In incongruent trials, the 

features, but not the location of item, must be attended to. 

(Davidson et al., 2006; K. Lee 

et al., 2013) 
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Key  EF 

Component  

Task Name Brief Description Examples of studies using 

this task 

Inhibition Simon says game Verbal instructions are given by the experimenter, but should only be carried out if 

they say “Simon says” first.   

(Rosen et al., 2020) 

Switching Intradimensional / 

Extradimensional Set 

Shifting task (ID/ED) 

Participants must choose the correct stimuli according to current rules while 

avoiding distractors. The rules change over time, and changes to rules must be 

inferred from trial successes and failures.  

(De Luca et al., 2003)  

Switching Trail making task Participants follow a trail of letter items, in alphabetical order, like a dot-to-dot 

puzzle. A switching version has number and letter items, and participants must 

alternate between numbers and letters in sequence.  

(Salthouse, 2011) 

Working 

memory 

Corsi block tapping 

task 

Blocks are tapped in an apparently random order by the experimenter.  

Participants must reproduce the order.  

(Corsi, 1972; De Luca et al., 

2003; Kessels et al., 2008) )  

Working 

memory 

Backward digit span A sequence of numbers is read aloud to participants. Participants repeat the 

sequence aloud, in reverse order.   

(Alfonso & Lonigan, 2021; 

Kessels et al., 2008; Rosen et 

al., 2020) 

Working 

memory 

Spatial working 

memory task 

Participants search for an occluded target by selecting from identical boxes. When 

they open the correct box, the target will move to a new location. Continues until 

the target has appeared and been found in each location. 

(De Luca et al., 2003) 
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1.3.1 Issues with EF Assessment 

The assessment of EFs is notoriously complex (Chan et al., 2008a). By their nature as higher-level 

cognitive functions, tasks intended to address EFs are necessarily embedded in some other lower-

level cognitive process (Diamond, 2013). For example, in the Stroop task (Table 1.1), abilities in 

cognitive processes such as visual perception, colour recognition, articulation speed (or rehearsal 

speed), reading ability and English language ability all introduce variance in performance. Scores in 

the task are therefore not a pure measure of inhibitory processes alone. Specific task paradigms can 

therefore result in significant variance between tasks ostensibly testing the same EF construct, 

perhaps due to individuals’ varying skill in the embedding task type (K. Lee et al., 2013). Variation in 

EF task results can also be caused by cognitive strategy use (Chan et al., 2008a). One example of this 

is in the spatial working memory task (Table 1.1), where the working memory load can be reduced 

by using an efficient strategy such as starting a search in the same location when searching for the 

next box within a set of trials. This kind of tactical strategy use by some participants raises a broader 

question around the construct validity of EF tests in general, i.e. whether a given task actually tests 

the same cognitive construct across participants if different people employ different strategies for 

completion (Meredith, 1993). Another potential interpretation of the same idea, that tactics and 

strategy use influence EF task scores, is that use of an efficient strategy is itself an example of using a 

higher-level EF skill such as planning, and the test is therefore a valid assessment of this construct, as 

people who have better planning skills and therefore employ an efficient strategy will score better in 

the task.  

The task impurity problem is a major issue in assessing EFs. Tasks designed to tap into a single 

putative EF factor may in fact require use of multiple EFs. A good example of this is the WCST, a 

commonly used assessment of adult EF (Table 1.1). EFs needed to succeed on a given trial include: 

inhibition of prior learning to avoid perseverating on old rule sets; updating working memory 

contents to recall features of cards which have been correctly and incorrectly placed when working 

out a new rule set; and shifting between behavioural strategies to successfully sort cards within rule 

sections, then shifting focus to work out new rules when the rule set changes. Confirmatory factor 

analysis (CFA) is a statistical technique which is used to minimize the effects of the task impurity 

problem. This technique looks for latent variables that represent shared variance between tasks, and 

can produce models of underlying functionality structures for complex cognitive components such as 

EFs. This will be discussed further in Chapter 5.  

When assessing task performance, different scoring techniques can also change the interpretation of 

results. For example, in the Tower of London task (Table 1.1), when considering total number of 
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errors as the outcome measure, performance continues to improve into adulthood. However, if 

reaction time is used as the outcome measure, adult-like levels of performance are seen by around 

13 years (Huizinga et al., 2006a).  

Ecological validity is also an issue in EF assessment, in that performance in tests in lab conditions 

may not predict scores of the individual in other tests, or importantly, in real-life situations (Chan et 

al., 2008a). Assessment of EF in a lab environment may not reflect EF deficiencies that may be 

present in a person’s real life. The lab testing environment is controlled by an experimenter, tasks 

are structured, assessment time is quite limited, and task requirements are clearly defined by an 

external source. Real-world EF is more complex, with multiple, flexible, on-going and short-term 

goals and no pre-defined way of achieving them, and is therefore not directly assessable through 

lab-based tasks. Furthermore, construct validity of certain EF tests is ill defined. It is not clear which 

aspect of EF is being assessed in some tasks, or whether they are more general assessments of some 

umbrella EF, or indeed of cognitive functioning more generally than EF. The Wisconsin Card Sort Task 

(WCST) is an example of an EF task that has this construct ambiguity, despite its common use as a 

measure of executive functioning (Nyhus & Barceló, 2009).  

Reliability of measures is also an issue in EF research. Some studies find good test-retest reliability in 

tasks such as anti-saccade and flanker tasks (Paap & Sawi, 2016). However, other studies report only 

moderate to poor test-retest reliability for a variety of response inhibition tasks, with significant task 

practice effects evident for some of these (Müller et al., 2012). Novelty is important in EF 

assessment (Diamond, 2013). Since novelty of the task is a requirement for many EF tests, results 

may be invalid if participants repeat the same tasks multiple times (Chan et al., 2008). In fact one 

view of EF is that it is the cognitive component which is recruited in novel situations where routine 

responses or actions are not sufficient. EF is generally considered to be most relevant when the task 

is novel, making assessments of for example test-retest reliability more complex (Diamond, 2013; 

Miyake et al., 2000). Another aspect to reliability of measures over time is that participants may 

develop strategies for tasks they have previously been exposed to. Strategy selection is known to 

influence measures of executive functioning (Chan et al., 2008a). Many published EF studies do not 

report psychometric properties (reliability and validity) of their tasks at all (Nyongesa et al., 2019). 

A review of the literature found that over 300 different tasks have been used to assess EF in 

adolescents, and that even within similar tasks, the exact paradigms and task measures also vary 

widely (Nyongesa et al., 2019). Of considerable concern for the field of research, they found scant 

evidence of reliability or validity of even commonly used EF measures. Studies often did not report 

psychometric properties (including reliability or validity estimates) of EF measures. For complex 
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tasks in particular, tasks often illustrated poor reliability where estimates were provided (Nyongesa 

et al., 2019). Previous research has also found poor test-retest reliability of EF measures (Miyake et 

al., 2000). It remains unclear what exactly EF measures are measuring (validity), and furthermore, 

whether they are consistently able to measure this (reliability). 

1.4 Development of EF Behavioural Capabilities 

Improvements in EF performance are observed throughout childhood and adolescence (Prencipe et 

al., 2011a). Broadly, there is a developmental shift from more general EF processes towards greater 

specialization and modularity of specific EF components (Hwang & Luna, 2013). The developmental 

period of EF is prolonged compared with that of other cognitive domains; adult-like levels of EF 

performance are not generally reached until late adolescence or young adulthood (Diamond et al., 

2002). The protracted period of behavioural EF development is functionally correlated with the 

similarly protracted period of neural development of the PFC and other key regions of the cognitive 

control network, as compared with other brain regions (Diamond, 2013). Firstly, I will discuss the 

behavioural development of EF abilities, focussing on the period of adolescence. The neural 

underpinning of EF in adulthood, and relationships between neural and behavioural development of 

EF, will be discussed later in this section. 

1.4.1 General EF development 

Earliest EF capabilities are present by around 6 months old (Diamond, 2013). EFs show rapid 

development through pre-school – and school readiness can be indicated by the ability to focus on 

tasks and inhibit distractions (Fitzpatrick et al., 2014). Continued development in EFs occurs through 

childhood. Younger children show similar deficits in performance on complex EF tasks (such as 

Towers of London tasks, see Table 1.1) as patients with PFC damage. Compared with typical adults, 

children require more moves to complete Tower of London tasks, and tend to perseverate on old 

rules in card sort tasks (Huizinga et al., 2006a). In a developmental study, peak performance in 

Towers of London task has been found to occur between age 15-19, with younger participants 

performing significantly worse than participants of this age group (De Luca et al., 2003).  

By young adulthood or late adolescence, most EFs have reached a peak of performance, with some 

task types maturing earlier than others (Diamond, 2013). Further to a general improvement in EF 

across childhood and adolescence, specific components of EF have been shown to have distinct 

developmental trajectories during this period (Huizinga et al., 2006a). The development during 

childhood and adolescence of the three EF components considered in this thesis, namely inhibition, 

working memory and switching ability, are discussed below. For more detail on prior work looking at 
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developmental trajectories of the specific EF tasks used in the SCAMP battery, see also the 

Introduction to Chapter 4. 

1.4.2 Development of Inhibition  

Inhibitory control is the earliest EF component to develop. Inhibitory control can be observed in pre-

school children, using tasks such as the Day/Night task to assess young children (Best et al., 2009). 

See Table 1.1 for a brief description of this paradigm. Inhibition performance improves through 

childhood. Inhibition has been found to reach a plateau in performance at adult-like levels in early to 

mid adolescence, depending on the specific paradigm and measures of inhibitory control considered.  

In one study, adult level performance in an anti-saccade inhibition task was seen by age 14 (Luna et 

al., 2004). In a latent variable analysis, performance in an underlying inhibition factor was found to 

improve with age across childhood, with peak performance reached by around age 11-12 (Brocki & 

Bohlin, 2004). This inhibition factor encompassed measures of a continuous performance task (CPT): 

CPT disinhibition errors, CPT impulsivity, CPT inattentive impulsivity, and also commission errors on a 

Go/No-go task. Developmental shifts were observed between their second (7.6-9.5) and third age 

groups (9.6-11.5), with no further improvement up to the oldest group (11.6-13.6). These findings 

are similar to another study, which found inhibition performance reached adult levels by around 12 

years (Huizinga et al., 2006a). Previous research has shown variation in the point at which 

performance maturity is reached – it is possible this is due to variation in development of specific 

aspects of inhibitory control that are being tapped by the different specific tasks or task measures 

being used in different studies. Taken together, these findings indicate that inhibitory control 

mechanisms reach adult-like performance levels at some point during early adolescence, with 

development in performance reaching a plateau some time between age 11 and 14. 

In younger children, inhibition appears to play a key role in EF in general – inhibition ability is 

strongly indicative of children’s performance in other EF tasks (Isquith et al., 2004). The 

development of inhibition skills are also strongly related to WM and processing speed development 

in children and adolescents (Luna et al., 2004; Urben et al., 2011). The relationship between 

inhibition and other EFs is not as strong in later childhood or adulthood as it is in early childhood 

however, suggesting that inhibition is of particular importance in young children’s EF abilities.  

1.4.3 Development of Working Memory 

The fundamentals of working memory are present by the age of six, and perhaps even earlier 

(Diamond, 2013). Research indicates that behavioural development of working memory ability 

occurs throughout childhood and adolescence, and perhaps extending into young adulthood for 
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some aspects of working memory. There is some debate over exactly how long WM development 

continues. Some studies have found that WM reaches adult-like levels in mid-adolescence, by 

around age 15. For example, performance in a backward digit span task (as measured by span 

capacity) reaches adult-like performance around age 15 (Huizinga et al., 2006a). However, in a study 

using factor analysis with a variety of EF tasks, it was found that a working memory latent variable 

did not reach adult levels until around 19 years of age (Luna et al., 2004).  

Another developmental latent variable study by Brocki and Bohlin (2004) investigated a smaller age 

range, and investigated whether WM ability develops linearly from age 6-13 years. Using latent 

variable analysis on a battery of eight EF tasks, with multiple task measures for some of these tasks, 

they found an underlying component of WM/fluency improved with age across the period of ages 6-

13. This latent component comprised task measures of verbal fluency, hand movements, Digit Span 

Forward, Digit Span Backward, a Stroop-like task, and time reproduction. Although they found no 

significant linear effect of age on overall WM performance, they found that the youngest group aged 

6-7.5 performed worse than the older groups. Little development in WM was observed between age 

7.6 and 11.5. Then, the oldest group aged 11.6-13 years also performed better than the others in the 

working memory component. This analysis suggests that there might not be a linear effect of age 

across childhood and adolescence, rather, there might be particular periods in early childhood and 

again in early adolescence where improvements happen more rapidly than other times. Other 

studies have however found linear development of WM ability in childhood and adolescence: 

Performance in a Backward Digit Span (BDS) task improved linearly from age 8 through to 15 years 

(Prencipe et al., 2011a); and performance in a variety of working memory tasks develops linearly 

from six to 15-years (Gathercole et al., 2004). It is notable that these studies did not extend into late 

adolescence or early adulthood; research that has considered a more protracted developmental 

period have found that some measures of WM continue to improve into young adulthood. 

Other studies have considered whether different aspects of WM performance might show different 

developmental trajectories, and might therefore have different ages at which peak or adult-like 

performance is reached. De Luca et al. (2003) looked at EF development across the lifespan, from 

age 8 to 64 years. They used various measures of Corsi and Spatial Working Memory (SWM) task 

performance in their research. They found overall working memory capacity peaked in their 15-19 

year old age group, whereas a strategic planning measure of working memory peaked in their 20-29 

year old age group. This indicates that specific aspects of WM may have separate developmental 

trajectories, with different periods of maturation, and that some aspects of WM development may 

extend into adulthood. Spatial Working Memory capacity appears to have reached a plateau by 

around age 13 (De Luca et al., 2003). Working memory accuracy improves from age 8-12, reaching 
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adult levels by age 13-15, whereas reaction time continues to show improvement until young 

adulthood (age 18-25) (Crone et al., 2006). Functional gains have been observed in an efficiency 

measure of working memory, between the ages of 15 and 19 years, with further increases until 20–

29 years of age (De Luca et al., 2003). Taken together, these findings suggest that working memory 

accuracy and capacity might reach adult-like levels by mid-adolescence, around age 13-15, where 

other aspects of WM such as strategic planning may continue to develop into young adulthood, and 

may not peak until after age 19-20.  

1.4.4 Development of Switching 

Three to four year olds are able to switch between two simple tasks, illustrating that switching ability 

is present in pre-schoolers (Diamond et al., 2002). The ability to switch between increasingly 

complex tasks develops with age, and reaches adult accuracy levels in early adolescence (Best et al., 

2009). However, other work has found by age 8, switching or cognitive flexibility is already at adult-

like levels (De Luca et al., 2003). Lee et al. (2013) found that switch-cost, as measured by the relative 

speed in congruent vs incongruent conditions on Simon and Flanker tasks (see Table 1.1 for a brief 

description of these paradigms) improved with age across the whole range of time between 8 and 

15 years of age. They also saw a levelling off in improvements in switch cost within the Simon task 

from age 10 onwards, with statistically significant though small decreases in switch-cost after this 

age. This suggests that developmental improvements in switch-cost may be levelling off by around 

the time children reach age 10, but are still not complete by age 15. 

It has been noted that there appears to still be a speed-accuracy trade off present in early 

adolescence (Huizinga et al., 2006a). 13 and 15 year olds show similar levels of accuracy to older 

participants in switching tasks, however they slow down their performance relative to both younger 

and older groups, perhaps in order to focus and achieve a good level of accuracy (Huizinga et al., 

2006a). This suggests that perhaps capabilities to perform specific aspects of switching tasks, or the 

ability to perform well in specific paradigms, might develop at different rates, as different tasks rely 

on different components of cognition in the embedding task. This could perhaps explain why 

different research has shown different results in terms of development of switching ability. 

1.4.5 Development of Structural Models of EF Across Adolescence 

Structural research indicates that during early childhood, executive functions tend to operate as a 

singular construct, with increasing modularity and separability of EF function as age increases across 

childhood and early adolescence. For more detail on development of EF latent structures across 

adolescence, see the Introduction to Chapter 5.  
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1.5 Neural Basis of Executive Function 

EF relies on the frontal lobes, in particular the prefrontal cortex (PFC) (Stuss, 2011). Early evidence 

for the link between PFC and EF came from research into patients with frontal lobe lesions and work 

investigating the specific impacts of brain lesions on patients. When damage was located exclusively 

within in the frontal lobes, a specific collection of impairments was observed dubbed the 

“dysexecutive syndrome” (Norman & Shallice, 1986). These patients were selectively impaired in 

their performance of tasks involving higher level cognitive abilities; specifically, tasks involving 

planning, inhibition, working memory and switching between rule sets, while other cognitive abilities 

remained largely intact. Double dissociation was observed, in that patients with loci of damage 

outside the frontal lobes were often not impaired on higher level cognitive tasks, but were impaired 

on other types of tasks; where patients with damage located in frontal regions performed poorly in 

EF tasks but not necessarily in other types of cognitive tasks. Neuroimaging evidence has since also 

indicated a strong link between PFC and EF, but has also revealed that functional networks across 

many brain regions also underlie EF performance, and furthermore that PFC also has roles in other 

cognitive functions than EF (Stuss, 2011). PFC function and EF are therefore considered separate but 

related concepts. 

One influential theory around the neural underpinnings of EF is that the frontal lobes follow a 

broadly hierarchical structure along the rostro-caudal axis; with increasingly complex or abstract 

cognitive control functions supported by more anterior regions. Various versions of this hypothesis 

have been expounded (as covered in a review by Badre, 2008). A common thread amongst these 

theories is that more abstract control functions are supported by more anterior brain regions. The 

PFC is the very font region of the frontal lobes. It is defined as the area of cortex which lies anterior 

to the supplementary motor area, and covers approximately the front one-third of the total frontal 

lobe cortical area (Best et al., 2009). The PFC itself comprises several different regions, including 

anterior cingulate cortex (ACC), Ventrolateral PFC (VL-PFC) and dorsolateral PFC (DL-PFC), and 

rostro-lateral PFC (RL-PFC), and orbito-frontal cortex (OFC) (Zelazo et al., 2008). A slightly more 

complex version of the rostro-caudal complexity hypothesis outlines that the ‘apex of abstraction’ 

lies not at very front of the brain, but slightly lateral to this, in the RL-PFC (Badre & D’Esposito, 2009). 

The brain overall can be conceptualised as a collection of neural networks, each of which consist of 

structurally and functionally interconnected brain regions (Richmond et al., 2016). The PFC is heavily 

interconnected with other brain regions (Anderson & Reidy, 2012). Neuroimaging research 

implicates a complex EF functional network across the whole brain. That is to say, although areas of 

the PFC are active during EF related tasks, EF functionality does not reside entirely within the PFC 
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(Crone & Dahl, 2012). One conceptualisation of the role of the PFC in the EF network is that this 

region plays a coordinating role, activating and inhibiting activity in other posterior cortical and 

subcortical regions via its functional connections in order to achieve particular goals at any given 

moment (Best et al., 2009). This suggests that the PFC plays a specific and important role in EF, and 

PFC functionality is essential to enable good EF task performance.  

Increasingly refined models of the neural underpinnings of EF suggest heterogeneity of PFC 

activation during different types of EF activity. Inhibitory control is associated with activity in the 

orbito-frontal cortex (the most anterior segment of PFC) and dorsolateral PFC (Davidson et al., 2006; 

(Huizinga et al., 2006a). Inhibition may also be particularly associated with activity in the right 

inferior frontal gyrus (Aron et al., 2014). Lateral PFC (both ventro-lateral and dorso-lateral PFC) is 

especially associated with working memory performance (Crone & Steinbeis, 2017). Switching tasks 

tend to recruit more medial PFC regions, alongside some activity in lateral PFC (Davidson et al., 2006; 

Huizinga et al., 2006). 

Different components of EF are furthermore associated with differential patterns of activation 

across the EF related neural network of cortical and sub-cortical brain regions in adults (Crone & 

Steinbeis, 2017). This suggests some level of diversity between the neural networks that underpin 

different EF components. The EF network involves various cortical regions such as the inferior frontal 

junction, premotor cortex, pre-supplementary motor area and the anterior cingulate, and 

subcortical structures such as the insula and cerebellum (Davidson et al., 2006). EF task performance 

is associated with functional activity in overlapping regions, in particular with activity in fronto-

striatal regions and PFC. These findings implicate some level of unity of EF in terms of neural 

structures that underpin cognitive components of EF (Best et al., 2009). 

1.6 Neural Development Associated with EF in Adolescence 

The neural underpinning of EF continues to develop through adolescence, supporting continued 

behavioural EF improvements. As discussed, there is significant evidence showing that EF skills 

continue to develop throughout adolescence. Neural structures and activity patterns associated with 

EF task performance in adulthood also continue to change and develop throughout adolescence; 

these structures have protracted developmental periods compared with regions supporting other 

cognitive activities such as language use (Diamond, 2013). A general hypothesis of structural and 

functional PFC development supporting EF development has been supported by a range of studies, 

discussed below, and more specific hypotheses regarding specific aspects of functional and 
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structural development of PFC and other brain regions supporting specific aspects of EF 

development have also been proposed.  

The beginning of adolescence is marked biologically, by the onset of puberty, where the end of the 

period is marked culturally, by the attainment of a functional or independent role in society 

(Dumontheil, 2016). Broadly adolescence begins at a point as early as age 10 or 11, though the 

starting points of puberty vary between individuals, and ends around age 18-20. Adolescence is a 

period of significant neural and behavioural and neural malleability (Mills, 2014). The brain 

undergoes significant changes both structurally and functionally during adolescence, underpinning 

the significant development of EF during this period. 

Both structural and functional changes to brain regions supporting EF can be observed across the 

period of adolescence (Crone & Dahl, 2012; ). In general, two complementary process occur in terms 

of broad functional brain changes during adolescence. Firstly, functionality of local cortical regions 

become more specific and modular; i.e. functional specialisation increases with age across 

adolescence. Secondly, neural networks undergo a strengthening of structural and functional 

connectivity, and gain increased functional integration (Hwang & Luna, 2013). That is to say, 

connections between brain regions across functional neural networks associated with particular 

cognitive functions become strengthened across adolescence.  

Regions associated with EF have a protracted developmental time period compared with other 

neural regions. Historically, observations that PFC damage results in similar patterns of deficits in 

cognitive control as in young children led to a theory that PFC development might underpin EF 

development. A general model of PFC development supporting cognitive control development can 

be proposed on this basis – but we can also be more specific about specific aspects of PFC 

development that might underpin specific aspects of EF (Crone & Steinbeis, 2017).  

In terms of structural development of the PFC, there are significant changes that occur through late 

childhood and early adolescence. White matter volume increases overall across the brain, including 

in PFC, and grey matter volumes in the PFC decrease. White matter increases reflect increasing brain 

volumes as the child grows physically. The decreases in grey matter during late childhood and 

adolescence may reflect the pruning of synaptic connections in the brain during this period, which 

may be a process which reflects the plasticity of the brain and allows the brain to be restructured in 

response to experiences (Zelazo et al., 2008). Engelhardt et al. (2019) suggest that the neural 

architecture of EF is established by middle childhood.  
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The pattern of functional brain activation when undertaking EF tasks also changes across 

adolescence. Research has suggested a broad brush change from more diffuse activity across the 

whole of PFC in earlier childhood, to more focussed activity in subregions underpinning specific kinds 

of EF activity as the child develops through adolescence (e.g. Bunge et al., 2002). Another broad 

finding is that increasingly anterior regions of PFC are recruited as children get older (Zelazo et al., 

2008).  

Developmental neuroimaging studies have also more specifically linked the developmental 

trajectories of individual EF processes with the maturation of certain sub-regions of PFC (Crone & 

Steinbeis, 2017). For example, increasingly anterior activity in the PFC is associated with a 

commensurate improvement in an inhibitory task performance (Lamm et al., 2006). The behavioural 

development of working memory performance co-occurs with the functional maturation of lateral 

PFC, with the better working memory performance in older children being associated with increased 

activity in the superior frontal and inter-parietal cortex (Klingberg et al., 2002).  

Klingberg et al. (2002) used fMRI to assess regions of neural activation during completion of a Spatial 

WM task. They assessed 14 participants aged 9-18. WM capacity was greater in their older 

participants. In terms of neural function, older participants had greater activation of superior frontal 

and intraparietal cortex regions than the younger children. Combined, these findings suggest that 

the changes in patterns of neural activity observed across adolescence might underpin the 

commensurate developmental increases in WM capacity observed over this period. 

Further complexity is added to the hypothesis that developmental changes in EF task performance is 

underpinned by underlying neural network changes by the finding that people of different ages 

might show similar behavioural performance levels of accuracy or capacity, but can recruit different 

brain regions while undertaking the tasks. Ciesielski et al. (2006) used fMRI to investigate regions of 

neural activation during a visual working memory n-back task involving categorisation of visual 

stimuli. They compared neural activity between children aged 6-10 and young adults aged 20-28 

years. Although the 10-year-old children showed similar behavioural performance accuracy to the 

adults, the neural networks recruited by the children and adults were significantly different. Children 

showed activation largely in the dorsal visual stream (usually associated with planning actions 

related to visual inputs) and sensory-motor pathways while undertaking the task, where adults show 

more activity in areas associated with the ventral visual stream (usually associated with object 

recognition), including ventral prefrontal cortex and inferior temporal networks. This suggests that 

patterns of functional recruitment of brain regions during EF tasks might change during adolescence, 

or at least some time between age 10 and age 20. This change in functional patterns of activity is not 
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necessarily associated with changing behavioural performance of EF tasks. Furthermore, there has 

been indication that extensive practice in WM tasks in childhood increases the functional 

recruitment of more adult-like regions in a small scale pilot functional neuroimaging study (Jolles et 

al., 2012). This suggests functional patterns of brain activity associated with EF might be altered with 

experience. This indicates the relationship between structure and function of neural regions 

underpinning EF is not a simple one, and may be experience related as well as being associated with 

biological maturation processes.  

1.6.1 Adolescence as a sensitive period for EF development 

It has been proposed that adolescence might mark a sensitive period in EF development (A. 

Thompson & Steinbeis, 2020). A sensitive period in this context is a particular temporal window 

during which neural systems underpinning particular cognitive functions undergo structural and 

functional alterations in response to experience. During the sensitive period, experience in the 

related cognitive area will significantly alter the development of the underpinning neural systems, 

where experience outside of the sensitive period will result in reduced levels of responsivity, though 

some change is still possible outside of the temporal window. As opposed to non-sensitive period 

learning, a sensitive period is experience-expectant rather than experience-dependent; is time 

limited by maturational stage rather than occurring across the lifespan; is associated with the 

formation of a developing system rather than with reorganisation of extant systems; and is 

associated with specific biological processes including synaptic pruning and remodelling, neural 

myelination, and changes in specific neurotransmitter levels such as GABA and dopamine. There is 

indicative evidence that early childhood marks one sensitive period in EF development, and the 

significant changes in both neural architecture and behavioural improvements in EF during 

adolescence suggest that adolescence may also be a critical sensitive period for EF development. 

In general, the plasticity of the brain decreases with age, with decreased changes in neural structure 

and functional patterns occurring in response to experience over time.  One possibility is that 

pubertal hormones act to induce a period of increased neural plasticity, within certain neural circuits 

and under certain conditions, during adolescence (Laube et al., 2020). This could be a mechanism by 

which a sensitive period for EF development may be induced during adolescence. 

Evidence for the theory that adolescence marks a specific sensitive period in EF development is so 

far somewhat limited, however, the fact that maturation of neural systems associated with EF occurs 

concurrently with behavioural gains in EF during adolescence indicates the possibility that 

adolescence could be a sensitive period for EF development. Training studies indicate that functional 

gains in some domains of EF are higher in adolescence than at other times, however, the findings in 
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this area have been mixed, and with few studies collecting measures indicating biological pubertal 

stage of participants, it is hard to draw concrete conclusions from the current evidence in this area 

(Laube et al., 2020). It is possible also that specific aspects of EF could have individual sensitive 

periods; this possibility is yet to be investigated widely (A. Thompson & Steinbeis, 2020). Research 

considering the interaction of pubertal hormones and neural plasticity indicates that this could be a 

mechanism by which neural plasticity in certain domains of functionality may increase during 

adolescence, relative to childhood and adulthood (Laube et al., 2020). 

1.7 EF and General Intelligence 

There has been some debate in the literature as to whether EFs are a separate component of 

cognitive functioning, or whether they are simply aspects of cognition associated with general 

intelligence. Early research with patients with frontal lobe lesions suggested that it is possible to 

have dissociation between EF and more general cognitive ability. That is to say, specific patients 

were observed to have deficits in performing complex, planning related tasks, but retained good 

performance on other more general intelligence measures (such as the Weschler Adult intelligence 

Scale (WAIS), an IQ proxy measure) (Friedman et al., 2006). This can be interpreted as indicating that 

EFs are a differentiated cognitive construct to general intelligence, as performance in EF tasks can be 

selectively impacted by brain lesions, while retaining other more general cognitive abilities.  

Other research has suggested that the common elements of tests of executive function are closely 

related to general intelligence or Spearman’s g (Duncan et al., 1997). Spearman’s g was proposed as 

a unitary explanation for the positive manifold effect: the observation that scores obtained from a 

great variety of psychological tests all share positive correlations with each other. The ‘positive 

manifold’ suggests that all psychological tests, including putative EF tests, are positively correlated 

with each other. A general intelligence process was proposed to explain this, which suggests that all 

kinds of cognitive processing are associated with a single broad capability, known as general 

intelligence (Spearman, 1904).  

Spearman’s concept of g has been further dissected, with two key differentiated cognitive elements 

identified with factor research by for example Cattell. These two components are general fluid 

intelligence (Gf) and general crystallised intelligence (Gc) (Horn & Cattell, 1966). Gf reflects general 

higher level mental abilities, such as reasoning and planning, and is employed to solve problems and 

complete a wide range of cognitive tasks. The concept of Gf is as opposed to General crystallised 

intelligence (Gc), which reflects knowledge that has been acquired through experiences (J. Duncan, 

2013). Gf ability is often assessed by tasks such as Cattell’s Culture Fair Task (CFT) (Cattell & Cattell, 
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1960a). This task is putatively free of the influence of particular cultural or life experiences, in that it 

should not: a) rely on specific knowledge to succeed; or b) be ‘trainable’ through practice of similar 

tasks. There has been some debate in the literature around how ‘culturally fair’ the culture fair task 

in fact is (Nenty & Dinero, 1981). It has also been found to be subject to practice effects in a similar 

way to most other psychological tests. In terms of development, research has indicated that 

differentiation between Gf and Gc increases across childhood (Horn & Cattell, 1966).  

Moving to the relationship between EFs and these concepts of general fluid and crystallised 

intelligence, one suggestion is that EF is simply an example of an intelligence function that is not 

really separate to Gf. Some studies have found that variance in performance in EF tests may be 

accountable by changes in fluid intelligence alone – indeed, for some EF tests such as WCST, once 

fluid intelligence is accounted for, observed differences between patients with frontal damage and 

controls is removed. Thus EF may not be dissociable from general fluid intelligence in the 

performance of complex EF tasks (Roca et al., 2010). However, the WCST is not a simple test of EF 

alone. It suffers strongly from the task impurity problem (outlined earlier in this chapter Section 1.3), 

as it relies heavily on multiple EF components of working memory, task switching and inhibition, but 

also more broadly on other cognitive functions such as reasoning, planning, logic, visual processing 

and processing speed. 

In other cases, EFs have been shown to be separable from general fluid intelligence (Friedman et al., 

2006). For example, other cognitive tests (other than the WCST) such as Hotel and Proverbs tests 

reveal deficits which are dissociable from fluid intelligence loss alone in patients with frontal lobe 

damage (Roca et al., 2010). In a young adult sample, Freidman et al. found that some, though not all 

EF components are related to Gf. Updating working memory capacity was significantly related to 

scores in WAIS, but inhibition and shifting were not, and therefore appear to be separate from Gf 

(Friedman et al., 2006). Rice (2017) suggested that perhaps EF is acting a catch-all term, that needs 

more refinement in the literature. 

1.8 Background to the SCAMP Study 

1.8.1 Mobile Phone Usage 

Mobile phone use has become ubiquitous in society over the last 10 years. In 2016, 93% of adults in 

the UK said they owned or used a mobile phone. Smartphones are by far the most common type of 

mobile phone (Ofcom, 2016). Smartphones are used in a huge variety of ways (Deloitte, 2017), and 

since 2016 are the most common method used to access the internet (Office for National Statistics, 

2016). Children’s mobile phone ownership and access has also increased significantly since 2014 
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when the SCAMP study began data collection (Ofcom, 2019). The potential impacts of mobile phone 

use on cognitive, psychological and health outcomes remain unclear. The ubiquity of mobile phone 

and other tech use makes this issue highly relevant to society. 

Table 1.2 Percentage of Children in the UK with Mobile Phone Access 
 

2014 2019 
Age in years 5-15 5-7 8-11 12-15 5-15 5-7 8-11 8-15 
Child has own mobile phone (%) 41 4 32 78 48 5 43 85 
Household has a mobile phone 
and child uses (%) 

14 19 18 6 19 28 24 7 

Total with mobile access (%) 55 23 50 84 67 33 67 92 

Note: data from Ofcom reports (Ofcom, 2014) and (Ofcom, 2019) 

1.8.2 What are the concerns with mobile phone usage?  

Exposure to RF-EMF from mobile phones might have health or cognitive impacts 

Mobile phones emit low power radio-frequency electromagnetic radiation (RF-EMF) while switched 

on and in use. The only known biological effect of exposure to RF-EMF emitted by mobile phones is 

that of slight cell and tissue heating (Ahlbom et al., 1998). There is some concern that this could have 

effects on the functioning of cells which are exposed to RF-EMF – however the mechanism by which 

this might occur is currently unspecified.  

The WHO considers mobile phones to be “possibly carcinogenic” - meaning that it is theoretically 

possible that mobile phones could increase the risk of cancer. However, the WHO acknowledge that 

there is no evidence suggesting a causal relationship so far. Early studies concluded that mobile 

phones are not carcinogenic (Blettner & Berg, 2000).  More long-term research is required to rule 

out this possibility (World Health Organization, 2010).  Regarding other health outcomes, a recent 

study in Switzerland looking at the long-term effects of mobile phones showed that higher mobile 

phone use was associated with a small increase in the incidence of non-specific health symptoms, 

such as headache and general feelings of illness – they conclude that this is not likely to be caused by 

RF directly, but may relate to some other aspect of mobile phone use (Schoeni et al., 2017).  

Studies have shown that RF exposure from mobile phones might have some short-term effects on 

cognition. A meta-analysis concluded that short-term exposure to RF radiation improved reaction 

times in attention tasks, but decreased accuracy in memory tasks (Barth et al., 2008). However, the 

size of the effect was small, and did not persist over time. Long-term studies indicate that neither 

mobile phone use nor RF exposure cause any lasting cognitive impairments (Roser et al., 2016). 

Mental health effects 
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Much literature has reported a link between levels of screen time and metal health issues. The 

pattern of this association is not simple: both very high and very low amounts of mobile phone use 

are associated with poorer mental health in adolescents, with moderate users reporting the best 

mental health (Przybylski & Weinstein, 2017). It is important to note that this literature largely 

consists of cross-sectional studies, which cannot determine causality. Long-term studies are required 

to better identify causality. The Health Effects Related to Mobile phonE use in adolescentS (HERMES) 

study has found some association between mental health and screen time, particularly between 

poorer mental health and high levels of social media use (Schoeni et al., 2017).  Furthermore, the 

type, rather than just the amount, of mobile phone use is important. Problematic mobile phone use, 

with features such as dependency (“I feel lost without the phone”) and loss of control (“I have tried 

to spend less time with the phone but have been unable to do so”)  is more strongly associated with 

mental health issues than the amount of mobile phone use alone (Roser et al., 2016). 

Cognitive training and learning effects 

Neuroplasticity allows the brain to adapt in response to our experiences. Any repeated activity will 

induce some neuroplasticity, effectively training the brain to become quicker or more accurate at 

that activity. Mobile phone use could induce neuroplasticity, particularly if they are used for a 

frequently repeated activity over time. Research into possible neural changes specifically due to 

phones is scarce. Research into video gaming shows that gaming can improve visual accuracy and 

performance in decision making tasks (Boot et al., 2011). Mobile phones are often used alongside 

other activities, and therefore their effects are not so simple to identify as there are other 

environmental factors alongside their use.  

Effects of increased screen time 

It has been proposed that increased screen time might mean reduced time spent doing other, 

potentially more beneficial, activities. The evidence is not clear however. Mobile phones are often 

used alongside other activities (Deloitte, 2017), suggesting people do not necessarily ‘displace’ other 

activities with mobile phone use. Studies have shown that increased screen time of other types, in 

this case watching TV, is associated with poorer language development (Kostyrka-Allchorne et al., 

2017). However, this is correlational evidence only – the causality may be reversed (the poor 

language skills mean children watch TV more) or the relationship may be due to some other factor 

(such as parental engagement) that influences both TV watching and language development.  

Mobile phones also carry the effects of the type of usage 
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Mobile phone use is not an end in itself – mobile phone use encompasses a huge variety of activities 

(Deloitte, 2017). The use of mobile phones carries with it any attendant risks or benefits of the 

activity for which we use them. For example, mobile phones are used to access social media, which 

carries with it the risk of harassment or cyber-bullying (Strickland & Dent, 2017). Use of mobile 

phones to access video games could potentially have beneficial effects on certain aspects of 

cognition (Boot et al., 2011), but may also have other attendant risks.  

1.8.3 Potential Cognitive Effects of Mobile Phone Use 

Meta-analysis suggests that short-term, direct exposure to RF-EMF can affect cognition, with 

improved reaction times in an attention task and an increased errors in working memory tasks 

(Barth et al., 2008). In a study among college students, EF performance decreased when 

smartphones were removed from participants by experimenters (Hartanto & Yang, 2016). The 

authors suggest removing the phone caused an increase in anxiety resulting in observed decrease in  

task performance. This suggesting mobile phones may have more general cognitive effects beyond 

those associated with direct exposure to RF-EMF. 

The Mobile Radiofrequency Phone Exposed Users’ Study (MoRPhEUS) found faster, but less 

accurate, response patterns in EF tasks were associated with greater mobile phone use (Abramson 

et al., 2009). The HERMES (Health Effects Related to Mobile phonE use in adolescentS) prospective 

longitudinal study found decreased performance in verbal and figural memory tasks associated with 

greater mobile phone use (Schoeni, Roser, & Röösli, 2015). The HERMES study focussed on RF-EMF 

exposure alone, using around 400 Swiss teenagers as participants. Compared with previous similar 

studies, the SCAMP considers a wider range of mobile phone use measures, and also a wider range 

of cognitive, behavioural and health outcomes. The SCAMP study also has a greater number of 

participants, which should provide greater power to detect smaller effect sizes, and likely will allow 

more covariates to be accounted for in analyses. 

1.8.4 Why study this age group? Why focus on EF? 

Children and teenagers may be particularly susceptible to effects of mobile phone use. The brain 

develops and matures across childhood and adolescence, reaching full adult maturity around age 20 

(Tiego et al., 2018). Children’s skulls are thinner, meaning they might absorb more RF-EMF radiation 

if exposed to it. If there are effects of RF-EMF on the brain, it is more likely that children would be 

more affected than adults receiving the same dosage. The pattern of brain development is affected 

by the environment, via neuroplastic responses. By repeated exposure to particular stimuli will 

‘train’ the brain to become quicker or more accurate at that repeated activity. As mobile phone use 
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is very high in teenagers (Table 1.2), the type of activity they do may be at such a level as to train 

their brains to become better at those activities.   

Both structural and functional changes to brain regions supporting EF occur across the period of 

adolescence (Dumontheil, 2016; Crone & Dahl, 2012). EFs are at a critical point of development 

during adolescence, when the brain regions supporting higher level thinking skills are maturing. The 

continued behavioural development of EF throughout adolescence, when mobile phone and 

technology use is high, makes it a likely target for a cognitive domain which may be affected by 

mobile phone use during this period. 

1.8.5 Motivation for SCAMP and this thesis 

The long-term effects of mobile phones are not fully understood. In addition to potential impacts of 

direct RF-EMF exposure, mobile phones also carry the effects of the activities they are used for, such 

as video gaming, online gambling, online harassment via social media, etc. Research has indicated 

that very high and very low levels of mobile phone use may be associated with poorer mental health 

during adolescence. Specific types of use, such as frequent use of social media, may have greater 

associations with mental health in adolescents. Mobile phone and other technology does not have 

clear-cut negative consequences for cognition: in fact, some types of use may be associated with 

specific cognitive benefits. SCAMP is investigating mobile phone use in teenagers, in a large-scale 

longitudinal sample, in order to try to identify potential impacts on health, wellbeing, academic, 

cognitive and / or behavioural outcomes. This thesis will provide a summary of the cognitive 

development of EF in the SCAMP cohort, to enable future research to explore associations between 

these EF measure developmental outcomes and other factors assessed by SCAMP, including mobile 

phone and / or video game use. By nature of their protracted developmental periods, EFs are likely 

to be more susceptible to environmental influence than other aspects of cognition (Lawson & Farah, 

2017).  

Work completed as part of this thesis has importance for the understanding of EF development 

during early adolescence in a general sense. Furthermore, individual task and composite measures 

of cognitive performance which have been created here will be useful in future studies using the 

SCAMP data. For example, studies considering the associations between bilingualism, SES and 

cognitive outcomes, and of access to green and blue space in the local environment have already 

been published using measures created during work on this thesis (Filippi et al., 2022; Maes et al., 

2021). Future work will explore the relationship between mobile phone and other technology use 

and cognitive development in the SCAMP cohort. It is hoped that the work undertaken here will 

therefore be able to contribute to exploration of the impacts of technology use on cognitive 
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development. Initially, it should help to identify in detail associations between socio-economic status 

and EF, to identify the developmental trajectories of EF abilities in adolescence, help to validate 

whether EF’s underlying structure in adolescence changes over time, and whether the structure of 

EF in adolescence is similar to that in adulthood. 

1.9 Thesis Structure 

Chapter 1 explored the theoretical background to the empirical chapters, including the concept of 

EF, structure and development of EF, neural structures underpinning EF, and explored the 

motivation for SCAMP overall and the empirical work in this thesis. 

Chapter 2 describes the methods used in the SCAMP data collection processes, task administration 

procedures, task measures for the cognitive and questionnaire data used in this thesis, and the data 

cleaning and processing techniques applied to the data. 

Chapter 3 investigates associations between socio-economic status and executive functions in early 

adolescence, using MANCOVA and multiple regression analysis. 

Chapter 4 uses multiple regressions and multilevel modelling to describe the developmental 

trajectories of executive function and general fluid intelligence, between our baseline and follow-up 

assessment points in early adolescence. 

Chapter 5 uses factor analysis methods to investigate the structure of EF at both assessment points, 

exploring changes in EF structure during early adolescence. 

Chapter 6 discusses the overall conclusions and limitations of the work included in this thesis, and 

relates findings to previous literature. 
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Chapter 2.  
Methodology: The Study of Adolescents, 
Cognition and Mobile Phones (SCAMP)  
This chapter describes the methodology for the Study of Adolescents, Cognition and Mobile Phones 

(SCAMP), from which the data for the following chapters are drawn. This chapter firstly gives a broad 

overview of the study and its aims. Participant characteristics and recruitment processes are 

described. There is a summary of the measures collected in the SCAMP study, both within the main 

assessment battery and the additional sub-studies. General data collection procedures are 

described, and specific details of administration of each cognitive task are provided. Task measure 

selection and data cleaning processes are summarised for each task. Finally, a table shows the 

number of data points for each task which are to be used in the subsequent chapters of this thesis.  

2.1 Overview of SCAMP 

SCAMP is a prospective longitudinal cohort study. Its key aim is to investigate whether use of mobile 

phones, other electronic devices, and exposure to radio-frequency electromagnetic waves (RF-EMF) 

are associated with differences in cognitive, behavioural, educational, and health outcomes during 

early adolescence. Pupils in 39 schools across the greater London area were assessed at baseline 

during school Years 7-8 (N = 6,680; age range = 9.62 - 15.41 years, age M = 12.07 years; SD = 0.47), 

and at follow-up during school Years 9-10 (N = 5,138; age range = 10.93 - 19.15 years;  M age = 14.26 

years; SD = 0.51). These age ranges include all reported figures at the time of testing, however some 

of these data will be excluded for analysis as the reported ages are not in the expected ranges for 

their school years. A total of N = 3,787 participants completed the assessments at both time points – 

this is only participants that were able to be matched based on their reported characteristics during 

testing, see Chapter 2.7 for more detail on how the matching across time points was carried out. 

Assessments consisted of a main assessment battery, and multiple optional enhancements. The 

main battery was a school-based, computerised assessment battery consisting of nine cognitive 

tasks and five questionnaire sections. The same tasks and questionnaires were included at both time 

points. Cognitive tasks assessed general fluid intelligence, executive functions, visuospatial 

processing, and speech processing. Questionnaires in the main battery covered topics including 

socio-economic status, languages spoken, mobile phone ownership and usage habits, gaming habits, 

leisure activities, home environment, and mental and physical health. In addition to the main 
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assessment battery, participants and their parents were invited to complete various optional 

enhancements, which included additional online questionnaires (for parents and children), consent 

for data linkage to educational and health records. Participants from a sub-sample of schools were 

invited to provide biological samples (BioZone) or to allow monitoring of personal RF-EMF exposure. 

Table 2.1 summarises the measures collected in the main battery and the various optional 

enhancements. 
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Table 2.1 Measures in the SCAMP main battery and optional enhancements 

Area assessed Specific Measures Data Source: 
Main battery section 

Data Source:  
Additional data 

Cognition 
 

Fluid intelligence (Cattell Culture Fair) 
Speech processing (Speech in Noise) 
Task-switching (Trail Making) 
Sustained attention / distractibility (Continuous Performance) 
Inhibition (Trail Making; Continuous Performance; Spatial Working 
Memory)  
Working memory (Corsi; Backward Digit Span; Spatial Working 
Memory) 
Subitisation range (Enumeration) 
Mental Rotation  

Cognitive Tasks  

Technology use    
Mobile phone Ownership / use of others’ mobile phone 

Problematic mobile phone use behaviours 
Night-time and pre-sleep mobile phone use 
Type of mobile phone 
Age first used a mobile phone 
Usual location of mobile phone when carried and when in use 

Questionnaire Parent questionnaire; 
Child questionnaire 

Call frequency and duration 
Internet use frequency and duration 
Method of internet access (wifi / network) 
Messaging type and frequency 

Questionnaire Parent questionnaire; Child 
questionnaire; Network data 

Mobile phone policy 
School internet access (is Wifi present; pupil internet access policy) 
Laptop and computer use at school 

School provided  

Cordless phone Call frequency and duration 
Location of base station 

Questionnaire   Parent questionnaire 
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Area assessed Specific Measures Data Source: 
Main battery section 

Data Source:  
Additional data 

Other device use Frequency and duration of device use at home / school 
Laptop 
Desktop computer 
Tablet / E-book reader 
Smart TV 
Media player 
Games console / portable gaming device 

Questionnaire Parent questionnaire 

Other technology use Frequency and duration of use at home and school 
Email 
TV 
Internet 
Social media 
Music (headphones / speaker) 
Wifi at home 

Questionnaire Parent questionnaire 

Video gaming Frequency and duration of play 
Types of game played 
Who played with / alone 
Type of equipment used for gaming 

Questionnaire Parent questionnaire 

Demographics Ethnicity 
Religion 
Was English first language learned 
Which languages are spoken at home 

Questionnaire  

Socio-economic 
status 

School type (independent or state) School-provided  
Parental occupation 
Parental education 
Home postcode (for Carstairs estimates (O. Morgan & Baker, 2006)) 

Questionnaire  

Environmental 
factors 

Smoking in the home 
Travel methods to school 
Living nearby busy road 
Green and blue space access and use 

Questionnaire  Parent questionnaire 
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Area assessed Specific Measures Data Source: 
Main battery section 

Data Source:  
Additional data 

Cooking, windows and ventilation at home 
Mould and damp at home 

 Parent questionnaire 

 Noise exposure at home (indoor and outdoor)  Child questionnaire 
Health and wellbeing    
Health-related quality 
of life 

KIDSCREEN-10  Questionnaire  

Anxiety Generalized Anxiety Disorder assessment (GAD-7; Spitzer et al., 2006) Questionnaire (follow-up only)  
Depression The Patient Health Questionnaire (PHQ-9; Kroenke et al., 2001) Questionnaire (follow-up only)  
Sleep  Length, latency, quality, disturbances Questionnaire   
Health Hearing and tinnitus 

Headaches 
Questionnaire 
 

 

Cyber-bullying Questionnaire (follow-up only)  
Disabilities, long-term illnesses or medical conditions 
Prescriptions, medications, therapy 
Previous physical trauma, major surgery  

 Parent questionnaire 

Puberty status 
Body image 

 Child questionnaire 

School-related health 
and wellbeing 

Learning disabilities 
Special educational needs (SEN) 
Attention deficit hyperactivity disorder 
Giftedness 

 Parent questionnaire 

Behaviours Self-efficacy 
Impulsivity: Domain-Specific Impulsivity Scale for Children 
(Tsukayama et al., 2013) 
Musical instruments 

 Child questionnaire 

Sport and physical activity Questionnaire (follow-up only) Child questionnaire 
Smoking, alcohol, cannabis consumption Questionnaire  
Diet Questionnaire Child questionnaire;  
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Area assessed Specific Measures Data Source: 
Main battery section 

Data Source:  
Additional data 
Parent questionnaire 

Leisure activities  Parent questionnaire 
Strengths and 
difficulties 

Pro-social behaviour, emotional symptoms, conduct problems, 
hyperactivity or inattention, peer relationship problems: Strengths 
and Difficulties Questionnaire (SDQ; Goodman, 1997) 

Questionnaire  

RF-EMF exposure 
(estimates to be 
modelled using these 
measures)  

Mobile phone use 
Other electronic device use 
Other technology use 

Questionnaire Parent questionnaire; Child 
questionnaire; 
Network data 

Other lifestyle and environmental factors Questionnaire   
Personal, home and school environment RF-EMF exposure levels 
(Exposimeter readings) 
Home and school pollution markers 

 Personal and environment 
monitoring 

Android phone data (X-MobiSense (Goedhart et al., 2015) 
Duration, frequency and type of calls, messaging, data use (Wi-Fi and 
network) 

 Android App ‘X-MobiSense’ 

Biological 
information 

Saliva and urine samples (to assess pubertal status, stress hormones, 
DNA, pollution exposure chemical markers) 
Forced vital capacity, waist circumference, body mass index (BMI) 

 Bio-Zone 

Height, weight Questionnaire Bio-Zone 
External data-linkage 
permissions 
 

Educational records (including school exam results, KS2 and KS3 
results, Cognitive Ability Test results, info from national pupil 
database, Special Educational Needs) 

 Parental consent form 

Health records (including primary care data, Hospital Episode 
Statistics, patient care, birth records) 
Mobile phone usage (mobile network provider data) 
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2.2 Main Assessment Battery 

The main assessment battery included the participant questionnaires and the cognitive tasks. The 

assessment lasted around an hour and was carried out in schools in place of a normal lesson during 

the school day. Testing was conducted using Psytools software (Delosis, 2017), which schools pre-

installed on their computers. At least one experimenter was present during each session (alongside 

the class teacher) in order to answer questions, encourage engagement, and resolve any technical 

issues that arose. Participants were allowed to ask the experimenter for clarification during the 

assessments - otherwise they were encouraged to work alone and in silence. The level of noise and 

other situational information (such as number of pupils present and type of lighting) was recorded 

for each session by the experimenter. 

Assessments were conducted on computers in class groups, which enabled speedy testing of a large 

number of students simultaneously. Recent research shows that digital assessments of school age 

children (age 7-13) carried out in groups in a classroom environment provide reliable and valid 

estimates of children’s cognitive performance, which correlate strongly with teacher assessments 

(Bignardi et al., 2020). Research has suggested that measurements of working memory obtained 

from classroom-administered tests may actually have greater ecological validity than those obtained 

from controlled individual testing, in that they better predict academic achievement, however, 

scores obtained from classroom settings may be lower than those obtained in individual settings 

(Bos & Weijer-Bergsma, 2020). 

There are intrinsic constraints associated with collecting data in a classroom environment. The level 

of control is reduced compared with one-to-one testing, which is generally considered to be the 

‘gold-standard’ for psychological testing. For example, some level of talking and interaction between 

students was practically inevitable, despite instructions to work in exam conditions. The order of 

testing was therefore staggered to discourage discussion of the tasks and questionnaires. The 

presence of an experimenter and a teacher in the testing rooms did allow some level of control over 

the battery administration, especially compared with remote or internet-based testing. 

The level of noise during the assessments varied across schools and individual classrooms, in part 

due to the behaviour of the participants, but also due to the differing environmental noise levels 

around the schools. Acute effects of classroom noise on task performance are unclear, with negative 

impacts on cognitive task performance being found in some studies (Joseph et al., 2018), and no 

impacts found in others (Kanerva et al., 2019) – it is therefore possible that noise levels during 

testing may have had some influence on performance.  
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Technical issues arose for some participants, such as issues with sound production or headphone 

failure, which caused some delays and loss of data which might have been avoided if testing had 

taken place in a lab environment. These issues are to be weighed against the fact that large amounts 

of data were collected from a wide sample of participants, who were in a familiar environment. The 

use of computerised tasks meant there was no variability in task presentation, or task instructions. 

Issues relating to the presentation of specific cognitive tasks are discussed further in Section 2.6. 

The tasks included in the battery were the same at both time points. It is expected that there will be 

improvements in the task scores between baseline and follow-up testing. There is evidence that 

some improvement in working memory test scores may occur due to practice effects. For example, 

Cacciamani et al. (2018) found practice effects with a period of 6 months between administrations  

in adult patients with mild cognitive impairments. Practice effects were observed with three-week 

period between testing in pre-school children (Müller et al., 2012). In adults, practice effects have 

been observed when re-testing after a delay of 12 months (Basso et al., 1999). EF abilities tend to 

have greater practice effects than tasks that rely on crystallised intelligence functions (Suchy et al., 

2017). It is therefore possible that practice effects may account for at least part of any observed 

developmental changes in EF task score for those participants who complete both assessment 

points, and this should be considered in any analysis. 

There will also likely be improvements in test scores due to neural and functional development 

during early adolescence. Most of the cognitive tasks assess some element of executive function – 

these tests were selected on the basis that we are likely to see changes in performance in early 

adolescence because of the prolonged development of executive functions across adolescence. 

A fixed testing order was used. Key cognitive tasks and questionnaires were completed earlier in the 

testing order. This was done to ensure that key measures were completed by as many individuals as 

possible, and to maximise the chances of having a complete data set for at least a subset of the tasks 

(as opposed to having considerable missing data for all the measures). Since this is a longitudinal 

study, using the same fixed task order across both time points means we are more likely to have 

data for the same tasks at both time points, improving comparability of individuals’ performance 

across time. The fixed order further ensures that differences between individuals’ task performance 

are not due to task order effects. The task order was intended to improve efficiency of presentation 

(e.g. the CPT is the longest task, so this was placed last in the sequence). Although a fixed order risks 

conflating order effects (fatigue, boredom, etc.) with task performance, and could also result in 

potentially problematic structure to the missingness of data, it was thought that the apparent 

advantages were greater than these disadvantages. The inclusion of additional questionnaires and 
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cognitive tasks at the end of the assessment battery also aimed to keep participants who completed 

the assessment quickly engaged on tasks rather than risking them distracting their peers once they 

had completed the key measures.  

Cognitive tasks were interspersed with questionnaire sections. This was done to minimise boredom 

from doing a long set of questionnaires in one go, and to reduce cognitive fatigue from completing 

multiple cognitive tasks in succession. Two staggered presentation sequences were used to slightly 

vary the stage that participants were at within a session, in order to discourage ‘copying’ or other 

group behaviour effects. Participants were randomly allocated to order A or B. At follow-up, n = 

2,840 previous participants who were recognised by the automated system were assigned to the 

same order as they completed at baseline. The original presentation orders are shown in the first 

two columns of Table 2.2. During baseline testing, some participants had difficulty in accessing the 

Speech-in-Noise (SPIN) task due to audio problems, which caused some delays while these issues 

were addressed. This task was therefore moved to later in the testing sequence to minimise the 

impact of this issue, while still retaining this important assessment of temporal cortex function at a 

relatively early point in the battery. The last two columns of Table 2.2 show these adjusted 

presentation orders. At baseline, n = 3,852 participants used the original task orders and n = 2,820 

used the adjusted orders. All follow-up testing used the adjusted orders. 

Table 2.2 Original and adjusted presentation orders of the SCAMP assessment battery 

Original Order A Original Order B Adjusted Order A Adjusted Order B  
1. Trail making task 1. Trail making task 1. Trail making task 1. Trail making task 
2. Backward digit span Questionnaire A 2. Backward digit span Questionnaire A 
Questionnaire A 2. Backward digit span Questionnaire A 2. Backward digit span 
3. Spatial working 
memory 

Questionnaire B 3. Spatial working 
memory 

Questionnaire B 

Questionnaire B 3. Spatial working 
memory 

Questionnaire B 3. Spatial working 
memory 

4. Speech in noise Questionnaire C 4. Enumeration Questionnaire C 
Questionnaire C 4. Speech in noise Questionnaire C 4. Enumeration 
5. Cattell’s culture fair 
task 

Questionnaire D 5. Cattell’s culture fair 
task 

Questionnaire D 

Questionnaire D 5. Cattell’s culture fair 
task 

Questionnaire D 5. Cattell’s culture fair 
task 

6. Enumeration Questionnaire E 6. Speech in noise Questionnaire E 
Questionnaire E 6. Enumeration Questionnaire E 6. Speech in noise 
7. Corsi 7. Corsi 7. Corsi 7. Corsi 
8. Mental rotation 8. Mental rotation 8. Mental rotation 8. Mental rotation 
9. Continuous 
performance task 

9. Continuous 
performance task 

9. Continuous 
performance task 

9. Continuous 
performance task 
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2.2.1 Additional data and add-on sub-studies 

Additional measures regarding school characteristics and policies were collected from schools and 

teachers. Students and parents were invited to complete additional online questionnaires. 

Permission to allow data-linkage to health records, educational records and data from mobile phone 

providers was sought via consent forms. Participants were also invited to download a mobile phone 

app to track their mobile phone usage, including duration, frequency and type of calls, messaging 

and internet use. The app, XMobiSense (Goedhart et al., 2015), was available for Android phones 

only. Twelve schools participated in the Bio-Zone sub-study, where biological samples of saliva and 

urine and measurements of height, weight and other health indicators were collected from 

consenting participants. These participants were also invited to complete a further environmental 

monitoring sub-study, where measures of pollution and RF-EMF levels in and around their home 

environment were collected, and they carried a personal RF-EMF exposimeter for a 24 hour period. 

Table 2.1 has a summary of all the measures collected in SCAMP so far; for more details, see 

Toledano et al. (2018). 

2.3 Participants 

The SCAMP cohort consists of pupils attending 39 schools across Greater London and the 

surrounding area. Schools were contacted if they met the following eligibility criteria: located in the 

Greater London metropolitan area; a Year 7 headcount of over 200 in state schools or over 50 in 

independent schools; not primary, infant, junior or middle schools; not pupil referral units or secure 

units. Of the 206 eligible schools, 35 agreed to participate. A further 8 schools (mostly from just 

outside the Greater London area) contacted the research team independently to participate. Four 

schools dropped out prior to the initial assessments taking place. This resulted in a final N = 39 

participating schools at baseline (Toledano et al., 2018). Parents of pupils in these schools were then 

contacted via the school with information packs about the study and consent forms. Participation 

was on an opt-out basis, meaning that pupils or their parents could choose not to participate at any 

point. If they chose not to participate in the school-based assessment, pupils were given something 

to do by their teacher. Of the N = 7,375 Year 7 pupils registered at the schools, N = 6,680 pupils 

completed baseline assessment between November 2014 and July 2016, and N = 5,138 pupils 

completed follow-up between September 2016 and August 2018. Parental opt-outs, absentees on 

the day of assessment, technical issues, withdrawals and non-assents by the participants account for 

the drop-outs. Sample demographics were largely representative of the target area population 

(Toledano et al., 2018). Numbers and socio-demographic characteristics of participants whose data 

are presented in this thesis are described in Table 2.3. Exclusions are described in Section 2.7.  
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Table 2.3 Socio-demographic information for SCAMP participants at baseline and follow-up  

 Baseline Follow-up 
Final N (after exclusions on age)  N = 6,591 N = 5,116 
 M SD M SD 
Age a 12.05 0.48 14.62 0.52 
Sex N  % N % 

Male 3132 47.52 2339 45.72 
Female 3459 52.48 2777 54.28 

Ethnicity  N % N % 
White (British, Irish, Other) 2658 44.46 2119 46.00 
Black (Caribbean, African, Other) 969 16.21 695 15.09 
Asian (Indian, Pakistani, Bangladeshi, 

Chinese, Other) 
1667 27.89 1299 28.20 

Any Mixed Race 2 0.03 26 0.56 
Other 682 11.41 468 10.16 

Socio-Economic Status Measures     
School Type N % N % 

Independent 1472 22.32 1283 26.09 
State 5122 77.68 3635 73.91 

Father Education N % N % 
Attended University 2750 68.92 2805 41.89 
Did not attend University 1240 31.08 2113 58.11 

Father Occupation b N % N % 
1 Routine occupations 307 6.21 171 4.49 
2 Semi-routine occupations 466 9.43 273 7.17 
3 Lower supervisory / technical  388 7.85 272 7.14 
4 Small employer / own account worker 1347 27.25 1042 27.35 
5 Intermediate occupations 315 6.37 160 4.20 
6 Lower managerial / professional 613 12.40 551 14.46 
7 Higher professional 1064 21.52 926 24.30 
8 Large employer / higher managerial 444 8.98 382 10.03 
0 Never worked / Long term unemployed - - 33 0.87 

Mother Education N % N % 
Attended University 2642 63.51 2899 58.95 
Did not attend University 1518 36.49 2019 41.05 

Mother Occupation b N % N % 
1 Routine occupations 245 5.74 117 3.27 
2 Semi-routine occupations 827 19.36 394 11.01 
3 Lower supervisory / technical  110 2.58 78 2.18 
4 Small employer / own account worker 194 4.54 272 7.60 
5 Intermediate occupations 535 12.53 352 9.84 
6 Lower managerial / professional 1152 26.97 807 22.56 
7 Higher professional 985 23.06 943 26.36 
8 Large employer / higher managerial 223 5.22 208 5.81 
0 Never worked / Long term unemployed - -  406 11.35 

a Age (in years) is at time of completion of the computerised assessment battery at each time point.  
b Occupations classified according to ONS NSSEC-8 categories; these values are re-coded such that higher values indicate 
higher socio-economic status. At baseline category ‘0’ were classified as missing data as numbers were considered very 
low. 
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2.4 Ethics and Consent 

The North West - Haydock Research Ethics Committee approved the original SCAMP study protocol 

and subsequent amendments (ref 14/NW/0347). The study is conducted in accordance with the 

Declaration of Helsinki (1964 and later revisions). Ethical approval for secondary data analysis carried 

out in this thesis was provided by the Birkbeck Department of Psychological Sciences Ethics 

Committee. Consent was obtained on an opt-out basis: schools provided initial consent for testing to 

take place during school time, then participants and parents were informed about the study via 

letters and information packs sent home from schools. They were told that they could withdraw 

from the study at any point. Consent forms were included in the information pack, along with 

requests to allow data-linkage to external data sources (health and educational records; mobile 

phone network data); to complete additional online parent and child questionnaires; and to 

participate in optional study extensions (see Table 2.1).  

2.5 Questionnaires 

Questionnaires in the main assessment battery were presented in five blocks, interspersed with the 

cognitive tasks. A fixed presentation order was used to ensure the most important topics were more 

likely to be completed by placing these at the beginning of the assessment. Around 250 questions 

were included in total. Block A covered personal details (name, address, date of birth), mobile phone 

ownership and use, and languages spoken. Block B covered other device use and video gaming. 

Block C covered internet access, social media, sleep (duration, quality, interruptions), habits around 

listening to music, hearing issues, and mother’s and father’s education and occupation. Block D 

covered medical conditions, mental and physical health and wellbeing (Kidscreen-10, SDQ, PHQ-9, 

GAD-7) and experiences of bullying. Block E covered experience of green and blue space, outdoor 

activities, religion, height and weight, headaches, eating and caffeine consumption, and alcohol, 

cigarette and cannabis use. The questionnaires measured key predictors (e.g. mobile phone use 

patterns), outcomes (e.g. mental and physical health), and important co-variates (e.g. socio-

economic status). Measures collected in the questionnaires are summarised in Table 2.1.  

Chapter 3 investigates the association of SES and EF, using SES measures collected from the 

questionnaire. A local deprivation measure (Carstairs index; Morgan & Baker, 2006) is calculated for 

the participant’s home postcode reported in Block A. Parental occupations and education levels are 

assessed in Block C. More details about these measures can be found in Chapter 3.  

Chapter 5 makes use of responses to the 11-17 self-report version of the Strengths and Difficulties 

Questionnaire (SDQ) (Goodman, 1997). This was presented in questionnaire Block D. The SDQ 
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assesses four domains of difficulties: emotional symptoms, conduct problems, hyperactivity 

problems and peer problems; and one strength domain: prosocial behaviours. There are five 

questions for each domain with twenty-five questions in total. The complete SDQ items can be 

found in Appendix A. Items are presented as statements such as “I am easily distracted” or “I find it 

difficult to concentrate”. Participants rate how much each statement is true for them, with 0 = Not 

True, 1 = Somewhat True and 2 = Certainly True. The key measures used are sum scores in each of 

the five subscale domains. Reverse-scored items within the subscales were recoded. Each subscale 

therefore has a minimum score of zero, and a maximum of 10. 

2.6 Cognitive Tasks 

The cognitive tasks in the SCAMP battery assessed aspects of executive function, fluid intelligence, 

sustained attention, speech processing, and visuospatial perception. These areas were chosen as 

they are (i) likely to display development during early adolescence; (ii) likely to show individual 

differences; and (iii) likely areas of cognition whose development could be affected by RF-EMF 

exposure, or mobile device use. Table 2.4 summarises the tasks used and their cognitive domains.  

Table 2.4 Cognitive tasks in the SCAMP battery 

Task Cognitive Domain Grouping for Analyses 
Trail making Cognitive flexibility; inhibition Executive function 
Backward digit span Working memory Executive function 
Spatial working memory  Working memory; inhibition Executive function 
Corsi Working memory Executive function 
Cattell’s culture fair Non-verbal fluid intelligence Stand-alone task 
Continuous performance Sustained attention; distractibility Stand-alone task 
Speech in noise a Speech and language processing Stand-alone task 
Enumeration a Visual attention Visuospatial perception 
Mental rotation a Visuospatial rotation ability Visuospatial perception 

a Task not discussed in this thesis 

2.6.1 Trail Making Task (TMT) 

A Measure of Executive Function: cognitive flexibility and inhibition components 

This task is a computerised version of the TMT used in neuropsychological studies (e.g. Tombaugh, 

2004), which was originally published in 1944 (Army Individual Test Battery, 1944). The task is 

traditionally presented in a pen-and-paper format with two parts: in part A, participants follow a trail 

of labelled circles alphabetically; and in part B, participants follow a trail of alternating numbers and 

letters. Participants are instructed to complete the trail as quickly as possible without lifting their 

pen from the paper. In our computerised version, participants instead clicked the stimuli in 

sequence. Further details of the presentation method are included in the Procedure section below.   
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Cognitive Components Required for Task Performance 

Successful performance in the TMT requires many cognitive processes, including visual attention, 

scanning, speed of processing, working memory, switching, and inhibition of incorrect responses 

(Sánchez-Cubillo et al., 2009; Tombaugh, 2004). Various measures of performance may be obtained 

from the task, each of which reflect different components of cognition. Direct measures of 

performance in parts A and B include total time to complete each sub-task; or number of incorrect 

responses. If a digital presentation method is used, a wider variety of performance metrics may be 

obtained, such as number of time the pen is lifted or number and duration of pauses (Dahmen et al., 

2017; Salthouse, 2011). Research comparing results from the TMT with other cognitive tests 

suggests that performance in part A is related to global processing speed, motor speed and visual 

perception ability, while part B is more closely related to inhibitory control, working memory, 

visuospatial sequencing ability, and executive function (Allen et al., 2012;  Fellows et al., 2017). 

Measures of difference in completion time between the two parts is thought to reflect a higher level 

EF component than either part alone, as the difference in speed between the two conditions at least 

in part accounts for differences in processing and motor speed coordination. Thus measures that 

combine performance in the two parts of the task, such as difference or ratio measures, are thought 

to more closely reflect set-shifting or switching ability (N. R. Lee et al., 2014).  

Development and Associations with Demographic Characteristics 

Sarsour et al. (2011) used TMT with age 8-12 year old children, showing that the task is appropriate 

for use in this age group in addition to in adulthood. However they found no significant association 

with age within this age group. Other research has shown that TMT performance is associated with 

age, gender, education level and general intelligence (Kowalczyk et al., 2001). It might therefore be 

useful to take these factors into when interpreting TMT performance. Development of switching 

ability and TMT task performance is further discussed in Chapter 4.  

Procedure 

This task was placed first in the battery as it provides a range of useful measures of processing 

speed, visuospatial processing, motor sequencing and a well-validated measure of executive 

function. In addition, the task instructions are clear and the task is quite entertaining and varied, 

making this task an engaging start of the assessment. Three sub-tasks were included: the Dots 

condition, the Letters condition and the Number and Letters or Switching condition. These are 

illustrated in Figure 2.1. 
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Each sub-task began with a short video demonstration alongside written instructions. Then the 

participant completed a short practice with six dots. Task instructions were repeated on screen if an 

incorrect location was clicked during practice. In the main trials, text feedback was given to highlight 

the correct starting point if they clicked on the wrong location initially; then an aversive sound was 

made if they made a later incorrect response. Throughout the entire task, if the participant made no 

response for 20 seconds a warning was displayed, advising them that the task will be abandoned in a 

further 10 seconds if they do not make a response. Then if there was still no response the sub-task 

ended and the next condition began.  

Participants completed three dot-to-dot sub-tasks. Locations the participant clicked correctly were 

connected by lines (forming the “trail”). The first sub-task participants completed is not part of the 

standard TMT. In this Dots condition, one dot appears highlighted in blue. Participants click on the 

highlighted dot; then a new dot is highlighted to be clicked; this repeats until all dots are in the 

completed trail (Figure 2.1). In the Letters condition, equivalent to the standard TMT Part A, 

participants clicked on labelled dots in alphabetical order (Figure 2.1). In the Number and Letters 

condition, equivalent to the TMT Part B, participants clicked on labelled dots in alternating numerical 

Figure 2.1 Illustration of the three TMT sub-tasks. Each condition has twenty items to complete. 
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and alphabetical order: 1-A-2-B… (Figure 2.1). There were twenty dots to complete in each sub-task. 

Dot locations were pseudo-randomly distributed across the screen, with each sub-task having 

different dot locations. All participants saw the same location distribution within a sub-task. 

We used a computerised version of the TMT task. Scores from other digital versions of the TMT have 

been shown to be strongly correlated with results from paper-and-pen versions. Fellows et al., 

(2017) found correlations of R=.53 for TMT-A and .80 for TMT-B total times; p’s < .001. Digital and 

paper-and-pen versions of the TMT have been shown to share similar patterns of association with 

other cognitive test results (Dahmen et al., 2017). However, this previous research used a tablet and 

stylus presentation, which might be considered more similar to paper-and-pen than the mouse-click 

version used in the SCAMP battery.  

Task Measures 

Various measures of task performance were recorded automatically: time to complete parts A and B 

of the task, response time for each individual mouse click (for both correct and incorrect responses), 

the number of clicks made to incorrect dots, and the number of clicks elsewhere in the screen (non-

dot clicks). TMT performance is usually estimated with some measure of time to complete parts A 

and / or B, or occasionally the number of errors made in each part. 

The key difference in terms of cognition between parts A and B is that part B requires switching 

between two modalities. In order to estimate EF ability, specifically of the switching component of 

EF, it is therefore useful to take a relative measure comparing performance in parts A and B. Relative 

measures are ‘purer’ measures of EF performance, specifically of switching or cognitive flexibility, 

than direct measures of performance in part B alone (Sánchez-Cubillo et al., 2009). Various relative 

measures may be calculated: a simple difference score (B-A); a ratio (B:A); a proportion (B-A)/A)); or 

the residual of B after B has been regressed on A (BrA) (Fellows et al., 2017). Analysis comparing 

results from relative measures of TMT with other cognitive tests indicate that simple difference (B-A) 

associates with overall processing speed, which is similar to a direct measure of time to complete 

part A (Salthouse, 2011). B:A ratio measures reduce the influence of other demands, such as psycho-

motor skill or general processing speed, and better captures cognitive flexibility and executive 

function than direct part B measures (Kowalczyk et al., 2001; Salthouse, 2011; Sánchez-Cubillo et al., 

2009). B:A ratio measures and BrA residual measures have similar patterns of association with other 

cognitive performance; they are most closely associated with general fluid intelligence and not 

significantly associated with memory, speed or vocabulary measures (Salthouse, 2011). The BrA 

residual measure has lower variance than B:A ratio measure, and is therefore preferable if sample 

sizes are sufficient (Salthouse, 2011). A version of a BrA residual measure was also used by Lee et al. 
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(2013) as it is thought to reflect a purer measure of task switching ability than other measures of 

TMT performance.  

Here, we calculated the unstandardized residual BrA as the first key EF measure of the TMT, this is 

used in Chapter 3 in the analyses of the associations of cognition with SES. This measure was 

calculated by running a regression with time to complete part A as predictor, and time to complete 

part B as outcome, then saving out the unstandardized residuals. Higher scores indicate greater cost 

of switching (i.e. higher score = relatively poorer switching performance). 

However, as the residuals are centred on zero and are calculated across the whole sample of 

participants, it makes it impossible to estimate any absolute improvement in performance by a given 

individual across multiple time points using this measure. Rather, any increase in score between two 

time points would reflect a relative improvement in switching ability compared to the other 

participants in the sample. Given that in our study the samples at the two time points are not 

identical (as many participants are missing data from one or other time point), improvements in a 

BrA residual score would not be easily interpretable. Therefore we used a proportion score (B-A)/A 

in the chapters (4 & 5) where we considered scores across both time points. 

A proportion measure is the second key measure of TMT we calculated, this is used in Chapters 4 

and 5 in the developmental trajectory and EF structural analyses. This was calculated by working out 

the difference between time to complete parts A and B, and dividing the this by time to complete 

part A, i.e. (B-A)/A. Higher scores indicate poorer switching performance. 

Data Cleaning 

A sub-set of N = 358 participants completed the letters and switching conditions twice, with a 

different array to the first iteration. Because of time constraints, the task was changed early in 

baseline testing to include only one array of each sub-task. Analyses in this thesis include only the 

first array attempted for each sub-task for all participants. 

Participants were excluded if they made an excessive number of clicks away from the dot stimuli 

elsewhere on the screen, i.e. non-dot clicks. A few of these could be considered as normal as the test 

is administered using mouse clicks, for example, if a participant is hurrying they might just miss the 

intended stimulus with the mouse. However, very high numbers of non-dot clicks would indicate 

that the participant was just clicking randomly and not attempting to do the task properly. 

Participants were excluded if they made over 20 non-dot clicks in any single sub-task. This is 

equivalent to the number of stimuli on each screen, so they made a total of more than one error for 

every stimulus item. Participants were also excluded if they did not complete all three sub-tasks, 
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such as if they failed to make a response for over 30 seconds and the task timed out, or any other 

reason such as quitting the whole battery part way through. Numbers of participants excluded on 

these criteria and final good N’s are found in Table 2.5 at the end of this chapter.  

2.6.2 Backward Digit Span (BDS) 

A Measure of Verbal Working Memory 

The BDS is a widely used and well-validated measure of verbal working memory (Richardson, 2007). 

Backward and forward digit span tests are among the oldest and most widely used assessments of 

working memory, and are commonly used in neuropsychological assessment batteries, such as the 

Automated Working Memory Assessment (AWMA) (Alloway et al., 2008). In the traditional 

presentation of this task, a sequence of numbers is read aloud to a participant, who then repeats the 

sequence back in reverse order. The BDS task relies on working memory, as it requires participants 

to manipulate information held in short-term memory, and also other cognitive processes including 

attention, auditory encoding and auditory processing. Overall, BDS is considered a measure of 

working memory (Sarsour et al., 2011). 

Development 

BDS capacity shows small but statistically significant development during adolescence (Prencipe et 

al., 2011a). Although performance peaks in adulthood, during the 30s, relatively small differences in 

overall backward digit span capacity are observed between adolescents and adults (Alloway & 

Alloway, 2013). Adult participants have a maximal backward digit span of between 3 and 8 items, 

with an average capacity between 5 and 6 (Gregoire & Van Der Linden, 1997). Sarsour et al. (2011) 

used Digit span (forward and backward) with age 8-12 year olds, and found no significant association 

with age in this group with the total number of items correct, suggesting that development of this 

particular task measure within this early portion of adolescence is quite limited. 

Procedure 

In the standard BDS presentation, trials are presented in blocks of increasing difficulty, with two or 

more trials at each level of difficulty. A certain number of correct responses is required in order to 

pass each level. Working memory span may then be estimated by taking the number of items in the 

longest sequence with a correct response, or the total number of trials with correct responses 

(Kessels et al., 2008). However, a ‘total correct’ score may not accurately reflect participants’ 

working memory capacity; rather it conflates maximal span length with consistency in performance 

across the task. For example, a participant who fails one trial each of 4, 5, 6 and 7 items and both 
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trials of 8 length would have the same ‘total correct’ score as someone who passes all trials up to 

level 5 then fails both trials of 6 items. An alternative measure is to calculate a product score which 

takes into account both maximum span length and number of trials correct (i.e. total correct 

multiplied by maximum correct trial length) (Kessels et al., 2008). This measure may better reflect 

overall performance on the task than either contributing measure alone. A further issue with 

estimating BDS performance is that differing test schedules (e.g. more repeats at each level, or 

different numbers of correct responses required to pass a level) are used in research, making task 

performance difficult to compare directly across studies. 

The standard sequential procedures with multiple trials at each length are quite time consuming and 

inefficient, especially where participants have a relatively high span threshold. Adaptive staircase 

procedures can improve both presentation time, and provide more trials of lengths close to the 

participants’ span capacity threshold to better estimate their true maximal span (Woods et al., 

2011). In the SCAMP battery the BDS was presented in an adaptive staircase format to speed up 

presentation (see Staircase Procedure section below). A further disadvantage of the traditional 

verbal presentation is that variance in tone, speed, and intonation of the reader can affect results 

(Woods et al., 2011). Interpretation of participant’s verbal response can also be difficult (for example 

if the participant has a speech impediment, or speaks very quickly or quietly), and may result in 

inaccurate response recording (Raiford et al., 2010).  

Here we used a computerised task presentation method. On each trial, participants saw a sequence 

of individual digits displayed in large white text on a black screen. Each digit was shown for 1000ms. 

After each sequence was shown, a numerical response grid appeared, and participants reproduced 

the sequence in reverse order by clicking with their mouse on the numbered buttons (Figure 2.2).  

This presentation format allowed standardisation of stimuli presentation and response recording. 

Additional information about responses could also recorded, such as response times. However, 

responses are potentially vulnerable to mouse-slips or response delays, especially if the participant is 

unfamiliar with using computers. This method is also somewhat different to the standard procedure 

in that it does not purely assess verbal working memory, since the stimuli are not presented verbally. 

While it is expected that participants transformed the visual presentation of numbers into a verbal 

code, the task does involve an additional visual component compared to the standard task version, 

both in terms of how the stimuli were presented and how the responses were made.  
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Task instructions were displayed first. During testing, the instructions were modified a few times 

because the participants found it difficult to grasp the task. From battery Version 2 onwards, the 

instructions were made clearer to emphasise that participants should reverse the number order, as 

many participants were making errors where they were repeating the number sequence in forward 

order. This may mean there is poorer performance observed in Battery Version 1 participants, 

compared to participants who did other task versions. The final instructions presented to 

participants are in Appendix B. 

Following the instructions, participants then began a set of practice trials: two sequences of two 

digits and one sequence of three digits. If the participant made an error during practice, a red cross 

appeared; an instruction prompt was shown again; then the trial was repeated up to three times. If 

they failed any practice trial three times the task was abandoned. Otherwise, the main task began. 

The main task had a minimum sequence length of three digits, and a maximum length of nine digits. 

No feedback was given during the main task.  

Staircase procedure 

A staircase procedure (Levitt’s procedure) was used to reduce the time taken on this task. In the 

main task, participants began with a sequence of three digits. If participants succeeded on the initial 

trial, sequence length increased initially by three digits, then after the next success by two digits, 

then one digit, and continued to increase by one until either three successes at the maximum level 

Figure 2.2 Illustration of a three item trial in the backwards digit span task. Participants see a sequence of digits (5, 9, 3) displayed 
on screen, then click the sequence in reverse order (3, 9, 5) on the input panel 
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of nine digits had occurred, or until an error was made. The staircase inverted after an error: the 

next trial sequence decreased initially by two digits, then by one after each subsequent failure, until 

another success occurred, or until the participant failed three trials of the initial starting length. After 

the next success, the staircase inverted again and increased the sequence by one digit. After the 

next failure, another inversion occurred, then the task finished. The stimuli used at each level were 

drawn from a list of 10 options selected in pseudo-random order such that two participants taking 

the same route through the procedure will have seen exactly the same stimuli on each trial. 

This test was placed second in the battery as it is a commonly used test of working memory, which 

shows improvement during early adolescence, exhibits significant individual differences, and is a 

predictor of academic performance. 

Task measures 

The key task measure used in this thesis is the average of the mean level passed and the mean level 

failed. To calculate this, we first calculated the mean load of all the trials the participant had passed, 

and then the mean load of all the trials they failed. We then took the mean of these two averages.   

This measure was used because our task presentation used a staircase procedure. We therefore 

cannot use ‘standard’ task measures (e.g. percentage accuracy) as levels were not presented 

progressively due to time constraints. A threshold value can be calculated by averaging the sequence 

length of the participants’ last 4 inversion points, however some participants did not get a threshold 

estimate. These are the poorer performers who failed out of the task after failing at floor level three 

times in a row. Using this threshold estimate would therefore skew the distribution of who we have 

data for. The alternative measure of performance which we used is to take an average of the mean 

level passed and the mean level failed. As correlation between this and the threshold measure is 

very high (R=.978; p< .0005) this second measure was used to be able to retain data from the poorer 

performers. 

Data Cleaning 

Participants who failed the practice were excluded, as were participants who passed the practice but 

did not pass any trials in the main task. No estimate of performance in the main task was possible for 

either of these groups. No other exclusions were made. Numbers of participants excluded and final 

good N’s are in Table 2.5. 

  



69 
 

2.6.3 Spatial Working Memory (SWM) 

A Measure of Visuospatial Working Memory 

The SCAMP battery included two tasks of visuospatial working memory. The first was adapted from 

the Spatial Working Memory task of the CANTAB battery (Luciana & Nelson, 1998). The task requires 

participants to search for a series of target locations, while remembering where previous targets 

were located and which locations have already been searched within a trial. Task measures include 

the number and types of errors made during the search process, and the use of a specific search 

strategy. The SWM therefore assesses both visuospatial working memory and a higher order 

executive function components related to strategy. Self-ordered tasks (where participants decide 

the order in which they search an array) typically show more prolonged development than simpler 

types of working memory tasks. 

One strategy for success is to use a consistent ordered search pattern across all searches within a 

block, e.g. searching the items in order from furthest left to right or in a clockwise manner, and 

eliminating locations from this predetermined sequence as targets are found. This kind of method 

reduces the working memory demand of the task (Luciana & Nelson, 1998). Strategy use reflects a 

higher level executive function of planning ability (Owen et al., 1990). A strategy use measure may 

be calculated from the number of searches that begin with the same starting location within each 

block. A higher score indicates lower rate of use of this strategy (Luciana & Nelson, 1998).  

Performance in the CANTAB version of this task develops across adolescence, with significant 

improvement between the ages of 10 and 15, and optimal performance being reached during early 

adulthood (20-29 years). Strategy use shows a slightly delayed developmental trajectory compared 

with error count measures, suggesting that higher level EF skills continue to develop later on into 

adolescence (De Luca et al., 2003). There is also an indication from previous research that males 

perform slightly better than females in this task, perhaps due to a general relative strength in spatial 

processing ability (De Luca et al., 2003).  

Procedure 

This test was the third cognitive task performed by the participants. In the original computerised 

version of this task, participants searched for tokens hidden within boxes on a screen (Luciana & 

Nelson, 1998). Participants clicked on boxes to ‘open’ them and find which one contained the token. 

When a token was found, another would be hidden in a new box. Each box contained a token 

exactly once during the task, and the task ended once all the tokens had been found (Robbins et al., 

1998). In the SCAMP version of the task, participants searched for a phone which was ‘ringing’ 
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amongst an array of identical images of phones; each phone would ring exactly once within a block; 

and the task ended once all the phones had been answered in all blocks. Visuospatial working 

memory is necessary to recall which phones have been clicked within an individual search trial, and 

also which have already rung within a block, to avoid clicking items multiple times. 

An array of identical images of phones was presented across a screen (Figure 2.3). The locations 

were pseudo-random; all participants saw the same arrays. In each trial, one phone is ‘ringing’ – this 

is the target item. Participants search for the ringing phone by clicking on phones to ‘pick them up‘; 

feedback is displayed as to whether they have been successful in answering the ringing phone after 

each click. Each search ending with a successful identification of the target constitutes one trial. A 

block includes all phones that can ring within the array.  

The instructions for the task were presented during a demonstration video, which illustrated the 

concept that once a particular phone has been found to be ringing then it will not ring again. A 

practice with four items followed. If between search errors – i.e. if the participant returned to a box 

which has previously been found to contain a token – were made during the practice, additional 

instructions were presented and the practice was repeated. If three unsuccessful attempts at 

practice occurred, the task was abandoned. If the participant made no between search errors during 

any round of the practice, the main task began.  

The main task consisted of four blocks with four, six, eight, then ten phones to find. Feedback was 

shown after each target was located. A counter at the top indicated how many ringing phones had 

been found so far within the block, and how many remained to be found (Figure 2.3). On each trial, 

if the participant made twice as many errors as there were items (e.g. eight errors within a four item 

display) the active phone was indicated with an arrow and the trial was failed; then the block 

continued with a new target phone. If the participant made every possible between search error the 

trial was also failed. If all searches in a block were failed, the task was then abandoned. Otherwise 

the task progressed until the final ten item block was completed. 
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Figure 2.3 Illustration of an eight-item block in the Spatial Working Memory task. Participants click on phones until they 
find the one that is ringing in each trial. Each phone rings once per block. The feedback bubble indicates the participant 
has successfully identified the ringing phone in this trial. The counter at the top indicates they have now identified two 
out of eight phones within this block. 

 

Task measures 

To estimate performance, it is useful to consider the task as a series of ‘searches’. Each search 

consists of the series of clicks leading up to the discovery of a target item. Two key types of error 

may occur during the task. A within-search error (WSE) occurs if the participant clicks the same item 

twice within a single search. A between-search error (BSE) occurs if the participant returns to a box 

which has previously been found to contain a token. These two types of search errors reflect 

different time-scales of spatial working memory; within search errors reflect a shorter time-scale, 

and between search errors reflect a slightly longer time-scale. Errors may also be both WSE and BSE: 

if a participant clicks an item which has already been the target location two times within a single 

search trial, this second erroneous click is an error both within the current search, and also between 

searches. In the analyses in this thesis, these ‘both errors’ are counted as a single error in our total 

errors measure, and add would one to the number of WSE and BSE if these were considered 

separately. 
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A strategy use measure was also calculated, based on that used in Luciana & Nelson (1998). The 

strategy we considered was using a set search pattern within a block, i.e. starting with same location 

each time, which would reduce the memory load required between searches. Higher scores indicate 

lower rate of use of this strategy. The score was calculated as follows:  If the participant begins with 

the same start location for every search trial within a block, they would score the minimum value of 

0 for that block. Where the participant begins a subsequent search after the first search within a 

block with the a new start location, we add one to their strategy score total. We do not add one to 

the score if the first item they click within a search happens to be the target location, as this is still a 

valid use of the strategy. Total strategy score is summed across the blocks of 6, 8 and 10 items. 

There are likely other possible useful strategies that could be employed, but it has been suggested 

that the most efficient method of completing the searches is to tart from the same location and 

follow the same pattern through all the items for each search (Lehto et al., 2003). 

The measures used in this thesis are:  

1. Total errors score, which includes both within and between search errors. A higher number 

indicates poorer performance.  

2. Strategy score, equivalent to the total number of excess changes in start location made across the 

blocks of 6, 8 and 10 items. A higher number indicates less consistent use of the assessed strategy, 

and therefore poorer strategic thinking. 

Data Cleaning 

In battery version 1 participants repeated the blocks with 4, 6, and 8 items. These repeats were 

removed from version 2 onwards due to testing time constraints. Any repeats were excluded during 

data cleaning.  

The same exclusions are applied in baseline and follow-up data. For participants who completed 

multiple repeats at same level (battery version 1 only) we only use their first attempt at each level 

for the analysis. We also excluded participants if did not reach the final Level 10 as it would be 

impossible to prorate for performance in only the easier levels. It was decided that it would be too 

complex to pro-rate the number of errors based on a smaller number of items seen by the 

participant at the loads 4, 6 and 10, as proportionally more errors may be made on level 10 as the 

memory load is greater. These participants did not reach L10 as they failed on an earlier level – this 

was often due to time out as they did not click the mouse for an extended period, and were no 

longer participating in the task. We also excluded participants who are outside 3.29SD of mean in 

total errors measure, as some participants had made very large numbers of errors (for example one 
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participant at baseline made over 150 non-dot clicks). Numbers of participants excluded on the 

different criteria and final good N’s are found in Table 2.5. 

2.6.4 Corsi Block Span Task 

A Test of Visuospatial Working Memory 

The Corsi block tapping task (Corsi, 1972) is a classic test of visuospatial working memory span. 

Developmental research has shown that performance in Corsi-type spatial span tasks continues to 

develop across early adolescence, with significant improvements in performance occurring between 

ages 10 and 15, and peak performance being reached in early adulthood (Luciana & Nelson, 2002), 

(De Luca et al., 2003) (Dumontheil & Klingberg, 2012). In addition, performance in this task has been 

shown to predict maths performance (Dumontheil & Klingberg, 2012). This task was therefore 

included in the SCAMP battery to provide a more direct measure of visuospatial working memory 

than in the more complex, self-ordered search SWM task. 

Procedure 

As the SWM phones task also assessed visuospatial working memory cognitive component, and has 

an additional strategic component, the Corsi task was placed towards the end of the battery as an 

additional measure. The Corsi span is a widely used and well-validated assessment of visuospatial 

working memory; it has been used to predict maths performance in school; and is short to complete, 

so it was considered a useful extra task to include towards the end of the battery. 

In the original version, the experimenter tapped blocks in a particular sequence, then the participant 

tapped that same sequence (Corsi, 1972). A computerised version of the Corsi task is used in the 

CANTAB battery (Luciana & Nelson, 1998). The version in SCAMP has a 4 x 4 grid of dots which light 

up in a sequence in place of the boxes. Computerised versions of this task have been used in 

previous research (e.g. De Luca et al., 2003; Dumontheil & Klingberg, 2012).  The SCAMP version of 

the task is similar to the block span task in the Automated Working Memory Assessment (AWMA) 

(Alloway et al., 2008).  

Instructions were shown first, followed by a short animation demonstrating the procedure. 

Participants then completed a single practice trial with three locations to remember. To proceed to 

the main task, correct responses for all three locations in the correct order was required. If an error 

was made, feedback was displayed, and the sequence was repeated. Five attempts at practice were 

allowed; if all were failed the task was abandoned. 
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In each trial, sixteen blue circles were displayed in a 4x4 grid on a grey background (Figure 2.4). A 

series of circles lit up in white one-by-one. Participants were asked to reproduce the sequence of 

locations they saw in the same order by clicking on the relevant locations in a response grid. If they 

did not respond within 3 s, a “don’t know” button appeared – if this was clicked the trial ended.  

Figure 2.4 Illustration of a three-item trial in the Corsi task. Participants see a sequence of dot locations, then repeat the 
sequence by clicking the input grid. 

 

The minimum trial sequence length was three items, and the maximum nine. During the main task, if 

an error was made or the “don’t know” button was pressed, the trial ended and a red cross 

appeared, and the next trial in the staircase procedure was initiated. To speed up task 

administration, the main task followed a similar staircase procedure to the BDS task. The Levitt 

staircase procedure was used, starting at load 3, with an initial step size of 3. In the first block up to 4 

trial failures are ignored. After the first block just one trial is administered at a load level. Success at 

a trial increases the load by the current step size. Failure reduces the load by the current step size. At 

reversal points (when the participant answers wrongly and then correctly or vice versa) the step size 

is reduced by 1 until the step size reaches 1. The task continues until there have been 4 reversals at a 

step size of 1. The stimuli used at each level are selected in order such that two participants taking 

the same route through the procedure will have seen exactly the same stimuli on each trial. The load 

range is constrained to 3-9, i.e. after a wrong answer on load 3 participants stay on load 3, and after 

a correct answer on load 9 participants stay on load 9, until participants have done three trials on 

that load, at which point the task is ends.  
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Task Measures 

The approach taken here is the same as for the BDS task. This measure was used because the task 

used a staircase procedure. We cannot use a ‘standard’ task measures (e.g. percentage accuracy) as 

load did not increase progressively. A threshold estimate can be produced by taking an average of 

the load levels of their final 4 reversals – however the poorest performers who fail due to repeated 

errors on the lowest load level do not have sufficient data to estimate this threshold score (N=634 at 

baseline). Using this threshold estimate would skew the distribution of who we have data for. 

Therefore we use an alternative measure of performance, which is to take an average of the mean 

level they passed and the mean level they failed. As correlation between this average and the 

threshold measure is very high (R = .969; p < .0005); and the average measure was able to retain 

data from the poorest performers. 

The key task measure used in this thesis is the average of the mean level passed and the mean level 

failed. We first calculated the mean level of all the trials they passed, and then the mean level of all 

the trials they failed. The key variable is the mean of these two averages.   

Data cleaning 

The same exclusions are applied in baseline and follow-up data. Participants who failed the practice 

are excluded – as they did not attempt the main task. Participants who passed the practice but did 

not pass any trials of main task also excluded, as they failed the main task entirely. No true estimate 

of performance is therefore possible.  Numbers of participants excluded on the different criteria and 

final good N’s are found in Table 2.5. 

2.6.5 Cattell’s Culture Fair Task (CFT) 

A test of general fluid intelligence 

This is a computerised version of a standardised visuospatial reasoning test, which assesses fluid 

intelligence (Cattell & Cattell, 1960b). Cattell distinguished between crystallised intelligence, which 

relies on specific prior knowledge, and fluid intelligence, which is a more general ability to reason 

and form solutions to novel problems. The culture fair test was devised to test fluid intelligence. It is 

intended to not rely on any particular prior knowledge to complete it. The test was intended to 

reduce the ethnic and cultural biases in IQ tests of the time, which largely assessed culturally-specific 

crystallised knowledge (Brown, 2016). However, cross-cultural research suggests that the CFT is not 

itself completely free of cultural bias, with participants from different counties (Nigeria and USA) 

exhibiting different patterns of performance on the sub-tasks (Nenty & Dinero, 1981). The key score 
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is the total number of items correct in each sub-task. The total score reflects the participant’s fluid 

intelligence, and scores from the standard version of the CFT may be used as an IQ proxy according 

to published norms (J. Duncan et al., 2017). 

Procedure 

This is a test of general cognitive ability, particularly targeting fluid intelligence, using a standardised 

visuospatial reasoning task. Scores are often used as a proxy for IQ. The CFT was included in the test 

battery as a measure of interest to teachers, parents and policy makers. CFT scores are also useful as 

they predict academic performance. The task was placed relatively early in the battery, but after the 

first three tasks assessing EF. 

The standard CFT is administered as a pen-and-paper task with four sub-tasks: (1) linear completion, 

which asks participants to choose the item which best completes a linear sequence; (2) odd-one-out, 

which asks participants to choose the item which is not like the others; (3) matrix pattern 

completion, which asks participants to choose the item which best completes the matrix; (4) match 

the shape, which asks participants to choose which complex shape contains the simpler target 

shape. Each sub-tasks needs to be completed within a particular time limit. 

The SCAMP battery originally contained sub-tasks 1, 2 and 3 (as sub-task 4 was deemed too complex 

to display clearly on a screen). Sub-task 1 (what comes next?) was removed from the battery early 

on in testing due to time constraints, and as scores form this sub-task were reasonably well 

correlated with the other two sub-tasks. Scores of sub-task 1 were not included in any of the 

analyses in this thesis. The procedures for the two sub-tasks 2 and 3, as used in the SCAMP battery, 

were as follows. Stimuli were taken from Cattell's Culture Fair Test Form A Scale 2 (Cattell & Cattell, 

1960b). In sub-task 2 (odd-one-out) five images were presented (Figure 2.5). Participants clicked on 

the image that did not fit with the others. Sub-task 3 (complete-the-pattern) was similar to the 

Raven’s Matrices test. Participants selected an item (out of five options) that best completed a 2 x 2 

grid with one empty square (Figure 2.5). 
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Figure 2.5 Illustration of Culture Fair Task. The ‘Odd-One-Out’ section comes first, then the ‘Complete the Pattern’ 

section. In each section, participants complete as many trials as possible within three minutes, up to fifteen trials. 

 

Each sub-task was preceded by an animation which demonstrated a sample trial and indicated which 

was the correct answer. A single practice trial was then completed for that sub-task, with corrective 

feedback given until the correct answer was chosen. The main task began with the odd-one-out sub-

task, then the complete-the-pattern sub-task. The participant had three minutes to complete as 

many items as they could out of 15 possible trials in each sub-task. Participants were allowed to skip 

a trial, then if they still had time at the end of presentation of the remaining trials, the skipped trials 

were re-presented until the time had elapsed or all trials had been attempted. Trials within each 

section were presented in order of increasing difficulty. An early termination rule was used: if the 

participant failed four out of five items, which indicated that they were responding at chance level, 

the assumption was made that they would continue to perform at chance and the task was 

terminated. Participants completed both sub-tasks; even if they had early termination in the first 

sub-task, they still progressed to the next one.  

Task Measures 

The standard measure of CFT performance is the total number of items correct in all 4 subtasks of 

the standard task. Subtask 4 from the original Cattell Culture Fair Task was not suitable for computer 
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presentation so was not presented in the SCAMP battery.  Sub-task 1 was only presented to some 

participants (those in battery version 1). All participants were presented a battery including subtasks 

2 + 3. The task measure used in this thesis is the total number of correct trials on sub-tasks 2 + 3. 

Data Cleaning 

Participants who completed only one subtask are excluded – there were not many participants who 

did this and it would be likely to give a somewhat skewed estimate if we were to prorate for only the 

subtask they completed. he same exclusion criteria are applied at baseline and follow-up. Numbers 

of participants excluded on the different criteria and final good N’s are found in Table 2.5. 

2.6.6 Continuous Performance Task (CPT) 

The CPT is a commonly used assessment of sustained attention, vigilant attention, or cognitive 

control (Brocki et al., 2010; Morandini et al., 2020; Iselin & DeCoster, 2009). It is essentially an 

extension of a basic go/no-go task, where participants are instructed to respond to one type of 

stimulus and not respond to another. The SCAMP assessment uses the A-X version of the CPT. In the 

AX-CPT, a series of letters is shown individually and sequentially to participants, who are instructed 

to make a response only when they see an A followed by an X (Halperin et al., 1991). Task 

parameters vary significantly in the literature. Often a very high number of trials is used, for example 

Iselin & DeCoster (2009) had 400 trials with a total task duration of around 30 minutes. Varying 

ratios of targets are also used – in Iselin and DeCoster’s study 70% of trials were correct targets, 

which was intended to induce high levels of expectancy bias and therefore high numbers of 

commission errors, whereas Halperin et al. had only 10% of stimuli as correct targets. In SCAMP, we 

used 54 trials, of which 9 were target sequences.  

By definition, this task requires maintaining attention in a sustained manner while stimuli are 

presented at a slow rate, while inhibiting impulsive responses. The task is therefore intentionally 

relatively long, and fairly boring. Success in the task requires various cognitive processes. Principally, 

it requires sustained vigilance, i.e. the ability to maintain attention to perform a simple, un-

challenging task for a prolonged period of time (Morandini et al., 2020). Success also relies on 

aspects of executive function, including working memory to maintain the target items and task 

requirements in mind, and to update mental representations of stimuli; and inhibitory control to 

prevent commission errors (Iselin & DeCoster, 2009).  

The number and type of errors is a common method of estimating CPT performance. Errors may be 

broadly classified as omission errors, where a target is missed, and commission errors, where a 

response is made to a non-target stimulus (Brocki et al., 2010). Different error types reflect different 
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aspects of cognition. Omission errors may reflect inattention, as participants fail to maintain 

sufficient attention to the task to respond correctly, or a failure of working memory, as participants 

have forgotten the target item or task instructions (Halperin et al., 1991). Commission errors are 

generally considered to reflect some aspect of impulsivity or disinhibition. In a factor analysis study 

looking at executive function structure in adolescents with ADHD, omission errors in a CPT task 

loaded onto a different factor (inattention) than commission errors (inhibition) (Barkley et al., 2001). 

Sub-types of commission errors may each reflect different aspects of cognition: response to an A 

alone reflects impulsivity; response to an X which was not preceded by A reflects disinhibition; 

response to a letter other than X which was preceded by A reflects inattention; and random errors 

occur when the participant responds at any other time (Halperin et al., 1991). Mean reaction times 

for correct responses may also be used to estimate performance, with faster reaction times 

indicating better performance and better sustained attention ability (Brocki et al., 2010).  

Procedure 

Instructions were displayed first, then participants were shown a short animation which 

demonstrated to press the spacebar when an X appeared which had been directly preceded by an A. 

A practice block followed, consisting of 18 trials with three target A-X sequences. Practice was failed 

if either an omission error occurred, or if two commission errors occurred. If this happened, the 

instructions were re-displayed and the practice repeated. Participants were allowed three attempts 

at practice. If they failed the practice all three times, the task was abandoned. Otherwise the main 

task then began. Individual letters appeared in a white font at the centre of a black screen. Each 

letter was displayed for 460ms, and a slightly jittered fixation period of around 2500ms occurred 

between successive letters. The total presentation time for the main task was around three minutes. 

A fixed series of 54 letters were displayed in two blocks with a short pause between blocks, 

participants were told to take a short break if they wanted, then press the spacebar to begin the 

second block. There were nine target A-X sequences in total. Because of its length, and because 

some participants in a pilot study found this task quite boring and disengaged with the whole 

assessment battery afterwards, this task was put in the last position of the prioritised list. 
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Figure 2.6 Illustration of AX-continuous performance task. A series of letters appears on a black screen. The participant is 
instructed to press the spacebar when they see the target sequence A-X. 

 

Task Measures 

Omission and commission errors are moderately strongly correlated, R=.319. The overall commission 

errors total is strongly correlated with the sub-groups of commission errors, i.e. the subcategories of 

impulsive, inattentive, disinhibited, random errors (R’s between .593 to .840). The subcategories of 

errors are also moderately to strongly correlated with each other.  

We decided to analyse the omission and commission separately, as a. they aren’t overly highly 

correlated to each other; b. they have a different meaning (inattention vs. disinhibition) (Barkley et 

al., 2001). In this thesis the numbers of omission errors and commission errors are used as the key 

task measures of the CPT task.  

Data Cleaning 

We considered excluding participants if it was clear that they not paying attention to the task at all. 

There are 9 AX targets in the whole task, and 54 non-target items. First, we considered whether 

participants were making excessive numbers of random-type errors, which would indicate they were 

pressing the response key entirely at random. At baseline, two participants made 10 or more 
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random errors; these were excluded. Next we considered whether participants were not responding 

at all. No participants missed all the target items, suggesting they were at least responding correctly 

some of the time. Finally, checked for any unusual values in the commission error measure. At time 

1, one participant made over 100 erroneous button presses (almost two per item displayed on 

average) – this participant was also excluded. No such unusual values were observed for the follow-

up data. Numbers of participants excluded on the different criteria and final good N’s are found in 

Table 2.5. 

2.6.7 Enumeration task 

This task is not analysed in this thesis so only a brief description is provided. This task assesses visual 

attention and specifically provides an estimate of subitisation range. Subitisation is the ability to very 

quickly ‘recognise’ the number of items present in a group; as opposed to counting the items 

consciously. Subitisation is only possible with small numbers of items, with most adults having a 

subitisation span of around five items (Green & Bavelier, 2006). Our task is a version the task used in 

Green and Bavelier (2006). A group of white squares was presented very briefly (50ms) on a black 

background (Figure 2.7). A response keypad then appeared, and participants were instructed to click 

the number of items they saw displayed. There were 36 trials with between 1 and 9 items each 

presented in pseudorandom order. 

Figure 2.7 Example of a four-item stimulus in the Enumeration task.  
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2.6.8 Speech in Noise (SPIN) 

This task is not analysed in this thesis, so only a brief description is provided. This task targets speech 

processing. Participants heard a recorded voice saying for example: "show the dog where the red 

three is"; with a different colour number combination for each trial. The participant then clicked the 

appropriate button on screen (Figure 2.8). The audio stimuli were masked with white noise at 

specified signal-to-noise ratios. Stimuli of varying difficulty were played following a staircase 

procedure similar to that used in the BDS and Corsi tasks, until the participant reached a plateau 

level of difficulty.  

Figure 2.8 Illustration of the response screen in the SPIN task. An audio stimulus was played, e.g. "Show the dog where 
the red three is"; participants clicked the appropriate colour number button. 

2.6.9 Mental rotation task (MR) 

This task is not considered in this thesis, so only a brief description is provided. The task assesses 

visuospatial manipulation ability, specifically mental spatial rotation ability. The task consisted of 

two white 3D block images presented simultaneously on a black screen, adapted from the Peters & 

Battista (2008) mental rotation stimuli library. The shapes were either the same 3D model rotated in 

space (Same trials), or mirror images of each other also rotated in space (Different trials) (Figure 

2.9). Participants clicked a response button below the image pair to indicate whether they thought 

the items were the same or different blocks. 
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Figure 2.9 Illustration of a 'Same' trial in the Mental Rotation task. Participants click the ‘SAME’ or ‘DIFFERENT’ button to 
respond. 

 

2.7 Summary of Data Cleaning Procedures 

2.7.1 Merging Data for Participants Who Moved Computers 

Some participants moved computers during task administration, mainly because of technical issues 

such as faulty equipment. These participants were assigned new ID numbers on the new computer. 

Data for these multiple IDs had to be merged into the same record during initial data processing. 

Matching participant IDs were identified by searching for records with the same name and birthdate 

within the same school, then the data were merged into a single record, with data from the later 

computers recorded as additional attempts at the task battery. 

2.7.2 Attempt Selection 

Where participants had completed the same task or questionnaire multiple times within an 

assessment, data from their first complete attempt were taken. Any subsequent attempts were 

filtered out of the final cleaned dataset. 

2.7.3 Exclusions based on Age at Time of Testing 

Data were excluded for participants whose reported age at the time of testing was far outside the 

intended target age groups. Participants reported their birthdate as part of the computerised 

assessment, and their age in days at assessment was calculated. The assessments were intended to 

capture pupils in school Years 7-8 at baseline (who are usually aged between 11 and 13 years) and 

Years 9-10 at follow-up (usually aged between 13 and 15 years). Some extremely high and low ages 
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were reported, with a range at baseline between 9.62 - 15.41 years, and at follow-up a range 

between 10.93 - 19.15 years. This indicated that either some participants had incorrectly input their 

birthdate, or that some pupils from incorrect year groups had been sampled. Data distributions were 

inspected to ascertain sensible cut-off values. We did not wish to simply exclude data from all 

participants who were outside the original intended range, as they may legitimately be in the 

intended school year, e.g. by being held back or promoted a year, however we did not want the 

extreme outliers to skew analyses, especially where age might be used as a covariate. At baseline, 

cut-offs were set to exclude participants whose reported ages were below 10.4 or above 13.6, this 

excluded 81 participants; a further 8 participants were also excluded as they did not provide age 

data. This left a final N = 6,591. At follow-up, cut-offs were set to exclude those outside 13.0 and 

16.0 years, this excluded 22 participants and gave a final N = 5,116. The distribution of ages of 

participants in each assessment point are shown in Figure 2.10. Final N’s for each task following 

these exclusions are provided in Table 2.5 at the end of this chapter.  

Figure 2.10 Distribution of participant ages at baseline (Time 1) and follow-up (Time 2) 

 

2.7.4 Matching Participants Across Assessment Points 

An auto-matching algorithm was used during the follow-up assessment. In the main battery, 

participants first entered their first and last names and date of birth. Where these were an exact 

match to an existing baseline record, that participant was assigned the same ID number and the 

same task order as at baseline. Following data collection, data were manually inspected to identify 

any additional matches. Records where last name and date of birth matched ,and first names were 

very with similar sounding (e.g. Jon and John), small typos (e.g Jane and Hane), or common 
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abbreviations (e.g. Will and William) were matched manually. These processes overall resulted in a 

total of N=3,715 participants matched across time points. Task-Based Data Cleaning and Final N’s 

Finally, data for each task were cleaned, as described in the relevant task description sections earlier 

in this chapter. Table 2.5 summarises the numbers of participants who were excluded on age, and 

each of the specific task exclusion criteria, and gives the resulting final N’s for each task at each 

assessment point.  

2.7.5 Creating Z-scored and Transformed Measures 

For easy comparison of effects across the different tasks, we created standardised scores for each 

task variable within each time point. For the baseline data, we Z-scored the data by centring the 

mean to 0 and setting the standard deviation to 1. For the follow-up data, we created transformed 

variables by using the raw mean and standard deviation from the baseline data to create a 

transformed variable similar to z-score, i.e. we took away the baseline mean and divided by the 

baseline standard deviation for each task score respectively. This was done in order to be able to 

show any progression from baseline to follow-up – if we had simply taken the Z-scores within 

baseline and follow-up separately, we would not have been able to demonstrate any progression in 

scores in Chapter 4 in particular. These Z-scored and transformed measures were used in most 

analyses – see the relevant Methods sections in each experimental chapter for which version of task 

measures were used. 
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Table 2.5 Final Ns per task at each assessment point 

 Baseline Follow-up Both Times 
Task Original N  Exclusion 

Criterion 
Excluded N Final N Original N  Exclusion 

Criterion 
Excluded N Final N Final N 

 6680 Age 89 6591 5138 Age 22 5119 3715 
          

TMT 6678 
 

Age 89 6424 5026 
 

Age 19 4918  
Excessive non-
dot clicks 

30 Excessive non-
dot clicks 

33  

Timeout 122 Timeout 47  
Other 
Incomplete 

13 Other 
Incomplete  

9 3526 

          

BDS 6657 Age 80 6165 5065 Age 20 4864  
Failed Practice 482 Failed Practice 177  
Other 
Incomplete 

11 Other 
Incomplete  

4 3379 

          

SWM 6592 Age 88 6300 4846 Age 19 4624  
Failed practice 127 Failed practice 110  
Did not reach 
final level 

27 Did not reach 
final level 

42  

Excessive 
Duration  

45 Excessive 
Duration  

41  

Other 
Incomplete 

5 Other 
Incomplete 

10 3281 

          

Corsi 3905 Age 17 3791 2156 Age 8 2093  
Failed Practice 46 Failed Practice 15  
Other 
Incomplete 

51 Other 
Incomplete 

40 1258 

          

CFT 5887 Age 79 5808 4720 Age  19 4701 3133 
          

CPT 1831 Age 2 1573 1096 Age 1 912  
Failed Practice 0 Failed Practice 0  
Incomplete 255 Incomplete 183 400 

  Excessive 
commission 
errors 

1       
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Chapter 3.  
Associations Between Socio-Economic 
Status and Executive Function in the 
SCAMP Baseline Sample 

3.1 Abstract 

Previous research has established an association between socio-economic status (SES) and executive 

function (EF). Higher SES is generally associated with better EF scores. Although some studies have 

found specific links between individual measures of SES and particular components of EF, there have 

been insufficient studies in this area to describe these links completely. It also remains unclear from 

the literature whether associations between SES and EF exist over and above associations with fluid 

intelligence.  SES and EF are independently significant predictors of academic achievement and other 

important life outcomes, and there is evidence that EF ability may act as a mediator between SES 

and academic achievement. It is therefore of interest to obtain a better understanding of 

associations between SES and EF during development. 

This chapter first investigates general associations between SES and EF, then aims to identify specific 

associations between aspects of these two constructs. It then investigates whether unique 

associations between SES and EF exist over and above associations with fluid intelligence. Data are 

taken from n = 6,591 participants in the SCAMP baseline sample. Multivariate analysis reveals 

significant association between three SES measures (school type, father’s occupation and postcode 

deprivation) and overall EF. These associations remain significant after accounting for fluid 

intelligence, with effect sizes slightly reduced. Univariate analyses reveal significant relationships 

between some specific SES measures and individual EF measures. Almost all of these specific 

associations remain significant after accounting for fluid intelligence. In both sets of analyses, school 

type is the SES measure most closely associated with EF. These results suggest firstly, that there are 

unique associations between SES and EF over and above associations with fluid intelligence, and 

secondly, that there are specific patterns of associations between individual aspects of SES and 

individual EF measures. 
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3.2 Introduction 

Socio-economic status (SES) in early life is associated with a variety of important outcomes, including 

academic achievement, literacy and numeracy skills, and general cognitive ability in later life (Devine 

et al., 2016; Blair & Raver, 2015; Kaplan et al., 2001). Higher SES is generally associated with better 

outcomes across all these categories. EFs independent of SES also have associations with a variety of 

life outcomes (Diamond, 2013). EFs predict academic achievement more widely (Huizinga et al., 

2018), and individual differences in childhood EF predict wider life outcomes in adulthood, including 

emotional traits, employment status, drug use, obesity and alcohol consumption (Robson et al., 

2020;  Smith-Spark, Moss & Dyer, 2016). EF also predicts socio-emotional outcomes later in life 

(Sasser et al., 2015).   

Within cognitive outcomes, associations between SES and EF have been noted in a variety of tasks 

and studies (e.g. meta-analysis from Lawson et al., 2018), and SES-related disparities in EF may also 

be greater than for other cognitive areas, suggesting there could be specific associations between 

SES and EF beyond associations of SES with more general cognitive abilities (Noble et al., 2005). 

Furthermore, some studies have noted that specific aspects of SES are differentially associated with 

specific EF components (Sheridan et al., 2017), suggesting different levels of association between 

certain measures of SES and EF. However, not all studies in this area have found SES-related EF 

disparities (e.g. Wiebe et al., 2008;  Gregoire & Van Der Linden, 1997). In particular, the detail of 

specific relationships between aspects of SES and EF requires further exploration. It also remains 

unclear from the literature whether SES is associated with EF over and above SES associations with 

other cognitive areas. Literature exploring the associations between SES and cognition, and in 

particular the literature investigating SES and EF will be summarised in this introduction. 

Research has found that early SES predicts a range of later life outcomes (e.g. Sirin, 2005). However, 

the mechanisms by which SES might have impacts on such a variety of later outcomes remain 

unclear. Specific aspects of SES may causally influence cognitive and academic outcomes through a 

range of more or less direct pathways. SES may exert influence over critical features of the child’s 

developmental environment, causing them to travel down certain developmental pathways, in turn 

influencing their unique pattern of cognitive, psychological and social outcomes. Research into the 

mechanisms by which SES exerts this influence remains in its infancy, and many potential areas are 

yet to be fully explored – some potential mechanisms by which SES may influence specific cognitive 

outcomes in EF is also included in this introduction.  
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A better understanding of how SES may affect EF is of particular interest because there is evidence 

that EF abilities can mediate the effects of SES on academic achievement. For example, a study 

found that children’s executive function ability mediates the impacts of parental factors associated 

with SES on children’s educational achievement outcomes, while general cognitive ability had no 

such mediating effect (Devine et al., 2016). Working memory ability predicts maths achievement in 

school, over and above the effects of intelligence, affective variables and family factors (Monette et 

al., 2011). Lawson and Farah (2017) found that children’s EF, but not verbal memory, mediates the 

effect of parental education and income on academic achievement across a two-year time period.  

The aim of this study was to investigate associations between specific aspects of SES and executive 

functions during adolescence. While pre-natal and preschool effects of SES on cognition have been 

relatively widely investigated, less work has been done in later development. As discussed in 

Chapter 1, executive functions continue to mature during adolescence, and effects of SES are likely 

to continue to be observed at this point. 

3.2.1 Defining and Measuring SES 

Conceptually, definitions of SES vary across the literature. One useful definition is that SES reflects a 

person’s access to financial, social or cultural resources (Improving the Measurement of 

Socioeconomic Status for the National Assessment of Educational Progress, 2012). One area of 

general agreement is that SES is can be assessed across three key areas: household income, 

education level, and occupation status (Lawson et al., 2018). Wider definitions of SES may also 

include social prestige or relative perceived societal status, neighbourhood factors such as 

deprivation, or access to resources in the home or at school (Alves et al., 2017; Eamon, 2005; Jeynes, 

2002; O. Morgan & Baker, 2006). 

SES is assessed in a multitude of different ways in research. Researchers might use a single measure 

as a proxy for overall SES, or might use multiple measures of SES, which are often combined in some 

way to give a single composite measure of SES. There is little consensus, however, around exactly 

which measures of SES should be used, or how multiple measures should be combined to give a 

single score (Bradley & Corwyn, 2002). For example, within the UK, two different SES composite 

measures are used for official purposes. In England and Wales, the Carstairs local area deprivation 

score is used. This is a weighted average across four criteria (percentage of male unemployment, 

lack of car ownership, overcrowding and low status occupations in the local area) (O. Morgan & 

Baker, 2006). In Scotland, the Scottish Index of Multiple Deprivation (SMID) is also a weighted 

average local area deprivation measure, which combines over 30 specific measures across seven 

domains (income, employment, education, health, access to services, crime and housing) (Payne, 
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2006). Table 3.1 lists some of the wide variety of measures that have been used in the literature to 

assess SES.  

Table 3.1 Examples of measures which may be used to assess socio-economic status 

SES component Measures Examples of studies using this 
measure 

Family income / wealth Income-to-needs ratio Sarsour et al. (2011) 
How much money do you have in 
savings? 

Sarsour et al. (2011) 

Annual income Decker et al.(2020), Sirin 
(2005) 

Occupational prestige Hollingshead Index Sarsour et al. (2011) 
ONS NSSEC categories Office for National Statistics 

Parental or own education 
level 

Number of years in education Sarsour et al., (2011) 
Highest educational level reached  Sarsour et al., (2011) 

Deprivation of local area Carstairs  Morgan & Baker (2006) 
Scottish Index of Multiple 
Deprivation 

Payne (2006) 

Home environment Quality of physical environment Rosen et al. (2019) 
Cognitive stimulation Rosen et al. (2019) 
Violence exposure Rosen et al. (2019) 

SES may be best considered as multiple independent, though related, components, rather than as a 

unitary construct. The three key SES components (income, occupation status and education) have 

different degrees of stability over time, and exhibit different patterns of associations with health and 

academic outcomes (Sirin, 2005). This may indicate that these three key SES indicators reflect 

separate underlying constructs. Another issue with measuring SES is that specific indicators of the 

same component can be associated with different patterns of outcomes. For example, paternal 

occupation in a child’s early life is more closely associated with their later life health outcomes than 

is maternal occupation (Pinilla et al., 2017). Mother’s education has been found to be a stronger 

predictor of cognitive performance than father’s education (Gutman et al., 2003). It is important 

therefore to investigate whether different measures of SES contribute differentially to any observed 

associations between SES and EF. 

Finally, it is important to note that SES and poverty are distinct, although related, concepts. Those 

who experience poverty are those who do not have sufficient financial resources to live adequate 

day-to-day lives. In the UK, the current government definition of poverty is households earning 

under 60% of the median wage (Devine et al., 2016). Some researchers use the concepts of low SES 

and poverty somewhat interchangeably (e.g. Lipina & Posner, 2012), and much research looking at 

associations between SES and cognitive outcomes simply compares extreme SES groups 
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(categorising participants as low or high SES, or those in poverty or not) (e.g. Noble, Norman, & 

Farah, 2005). This is problematic because it fails to capture potential variation in the middle of the 

scale, and cannot identify where along SES gradients in outcomes occur (D’angiulli, Lipina, et al., 

2012). Research using a range of SES levels has indicated that there are gradients in terms of 

academic and cognitive outcomes across the whole SES spectrum, rather than just between high and 

low SES groups, or between those in poverty and not Lawson et al., 2018). It is therefore important 

to investigate where along the SES spectrum differences lie, rather than considering only low vs high 

groupings. The analyses performed for this chapter will use measures of parental occupation, school 

type, parental education, and postcode deprivation with values across the spectrum of SES. 

3.2.2 Associations between SES and academic and cognitive outcomes 

There is significant evidence that students from lower SES households are more likely to do worse in 

school than those from higher SES households (Blair & Raver, 2015; Devine et al., 2016; Sirin, 2005). 

Cross-cultural research has revealed similar findings in various countries including Cambodia, 

Vanuatu, Mongolia – where relative SES within the countries predicted later academic achievement 

(Sun et al., 2018). Exposure to lower SES neighbourhoods earlier in childhood has a greater impact 

on academic outcomes than exposure during adolescence (Chetty et al., 2016). Parental and school 

based SES factors both contribute to the disparities in educational outcomes – a study using latent 

variable analyses found parental SES (education and occupation) and school-related SES (community 

and school type) were both associated with academic achievement, but only family SES influenced 

cognitive performance (Alves et al., 2017). Disparities are present even at the start of formal 

education, with children from lower SES households being less likely to score well on measures of 

school readiness (such as self-regulation) at school entry (Blair & Raver, 2015). This suggests that 

school quality is not the only factor affecting students’ outcomes, as differences are already present 

at school entry. One theory that has been proposed is that preschool EF abilities may moderate 

some aspects of associations between SES and early academic outcomes.  

SES is associated with a wide range of cognitive outcomes. Children from lower SES backgrounds are 

more likely to experience cognitive delays and emotional problems (Brito & Noble 2014). 

Performance on multiple types of memory tasks (both long and short term) is related to SES (see 

Herrmann & Guadagno, 1997 for a review). SES gradients predict around 30% of variance in 

language ability tests (Noble et al., 2007). A study of over 700 children found associations between 

family income and their memory and language abilities, and that anterior hippocampal volumes also 

correlated with family income (Decker et al., 2020). Some studies have found that specific aspects of 

SES in childhood predicts specific cognitive abilities or specific aspects of complex life outcomes. 
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Quality of environment is associated with accuracy in a memory guided attention task, and violence 

exposure in childhood is associated with poorer associative memory (Rosen et al., 2019). This 

suggests that different aspects of SES may be associated with specific cognitive outcomes, and this is 

an area of interest to investigate. 

3.2.3 Associations between SES and EF  

Since executive function has a prolonged developmental period, lasting well into adolescence (see 

Chapter 1 for review), it may be particularly sensitive to effects associated with differing SES levels . 

Associations between various EF measures and SES have been found. Children from disadvantaged 

backgrounds performed worse in a digit span working memory task (Globerson, 1983). Higher SES 

students showed better performance in attention control tasks in primary school children 

(Mezzacappa, 2004). Poorer performance of children in poverty on an A-not-B switching task has 

also been observed (Lipina et al., 2005). Multiple measures of EF were found to be associated with 

parental education level in a sample of over 600 South American children (Ardila et al., 2005). Rosen 

et al., (2020) used three measures of EF assessing cognitive flexibility, working memory and 

inhibition in a 18-month longitudinal study of children age 5-8. They found SES as measured by 

household income and highest parental education was associated with all performance in all three 

tasks at baseline, however, SES was not associated with improvements in performance over the 18 

month follow-up period.  This study suggests that SES is be associated with EF performance, and that 

the effect of SES does not alter over time.  

In a meta-analysis of association between SES and EF, SES accounted for between 2.6% and 7.8% of 

variance in EF, depending on the type of SES and EF measures used (Lawson et al., 2018). Some 

studies however have found no relationship between SES and EF measures (e.g. Wiebe et al., 2008;  

Gregoire & Van Der Linden, 1997). From the results of the Lawson et al. meta-analysis, it seems 

possible that SES and EF are only weakly related, with small effect sizes, and perhaps the studies 

finding null results may have lacked the power to detect these small effects.  

Evidence is mixed regarding whether associations between SES and EF may be greater than with 

other aspects of cognition. Some studies report a greater association between SES and EF than with 

other cognitive domains. For example, in a study with low and high SES kindergarteners Noble et al. 

(2005) found that EF and language abilities were more closely associated with SES than other 

cognitive measures were. Other studies have found that cognitive areas other than EF are more 

closely related to SES - for example, in a study with first-grade pupils in the USA, language, visuo-

spatial and EF abilities were found to be significantly associated with SES. While around 6% of 

variance in working memory was explained by SES, a much larger effect size was found for language 
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ability, with SES accounting for around 30% of the variance (Noble et al., 2007). In terms of 

associations with other life outcomes, one aspect of EF (working memory ability) has been shown to 

predict maths achievement in school, over and above the effects of intelligence, affective variables 

and family factors (Monette et al., 2011).  

Furthermore, it is possible that specific aspects of the lower SES household have different patterns 

of association with EF and neural structure and functional recruitment supporting EF activity. For 

example, in a study considering the EF-related behavioural and neurobiological impacts of SES 

among adolescents, low parental education was found to be associated with poorer WM 

performance and altered neural activity patterns when undertaking WM tasks (Sheridan et al., 

2017). Child neglect was also found to be associated with parentally reported EF issues. However, 

another aspect of SES, namely level of threat (measured by community violence and abuse) was 

found to not be associated with EF in the adolescent participants (Sheridan et al., 2017).  

Evidence has suggested that associations between SES and EF occur across a range of SES levels. 

Strongest effects have often been found at the lower end of the SES scale (Hackman et al., 2010), or 

between low and middle SES groups (Noble et al., 2007). However, significant EF and other cognitive 

differences have been found across all levels of SES (Sarsour et al., 2011). Often, studies 

investigating associations between SES and EF have included participants from a limited range of 

SES, or have reduced their measures down to a small number of SES classifications (two or three) in 

analysis (Lawson et al., 2018). This reduces the ability to identify potential effects that exist between 

particular levels of SES. This study will investigate associations between SES and cognition across a 

wide range of SES levels, which may help to better identify the pattern of SES - EF relationships.  

Previous studies investigating associations between SES and EF have often only used a single 

measure of EF, indeed in their meta-analysis paper, Lawson Hook and Farah (2018) found only six 

studies out of twenty-five where EF was estimated by multiple measures. Studies using only a single 

measure of EF cannot capture the complexity of any relationships between individual measures of EF 

and SES. Furthermore, many previous studies are lacking in SES variability and/ or classified their 

participants into low and high SES categories only. 15 out of 25 studies identified by Lawson Hook 

and Farah (2018) were considered to have ‘meaningful’ or ‘substantial’ SES variability. This makes it 

difficult to identify where along the SES spectrum EF differences might lie, and may result in null 

findings if samples of participants of the SES levels were differences exist are not included. Lawson 

et al. also suggest that most previous research studies have also lacked power to control for fluid 

intelligence or IQ , so it is impossible to identify from the literature whether SES and EF have any 

unique association over and above that between SES and IQ. As discussed in Chapter 1, EF and fluid 
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intelligence are closely related topics, and the ability to control for IQ or another fluid intelligence 

measure would be useful to see whether SES and EF have any unique variance once IQ is accounted 

for. Another issue in SES - EF research is that very poorly performing participants are often excluded, 

for example if they cannot complete the tasks, or if there are too few participants of a particular SES 

category to compare with others. Exclusion criteria may therefore unintentionally exclude the lowest 

SES participants, so it is possible that the range of SES in the sampled participants is reduced, leading 

to inaccurate conclusions about the effects of SES. 

3.2.4 EF as a Mediator of links between SES and later life outcomes 

EFs are also independently predictive of later life outcomes, such as mental and physical well-being. 

It has been proposed that executive functions may act as a mediator between parental factors such 

as SES and academic achievement. In a longitudinal study, Devine et al. (2016) demonstrated that 

EFs mediate the effect that parental factors associated with SES (such as parenting style and quality 

of home learning environment) have on children’s early academic achievement. General cognitive 

ability had no such mediating effect. A study conducted in the USA by Lawson and Farah (2017) 

showed that EF mediated links between SES and longitudinal maths progress in children aged 

between 6 and 15 years. Another longitudinal study, this time of 5-6 year olds, found that EF at 

baseline assessment explained SES differences in academic achievement at follow-up – and 

suggested that early EF may act as a mediating factor of associations between SES and later 

academic achievement (Rosen et al., 2020).  

In a study that attempted to replicate these findings in a cross-cultural context, found differing 

results by gender and location: EF skills mediated associations between SES and numeracy skills in 

UK males, but not males in Hong Kong or females in the UK (Ellefson et al., 2020). Another cross-

cultural study showed that EF was a mediator of associations between SES and academic 

achievement in children in some locations but not others: in Mongolia, EF mediated associations 

between SES and language, literacy and maths skills; in Vanuatu, EF mediated SES-maths and 

language disparities; whereas in Cambodia, EF was not a significant mediator of any links between 

SES and academic achievement (Sun et al., 2018).  

3.2.5 Possible mechanisms driving SES-EF relationships  

Early SES is associated with a variety of cognitive and other important outcomes in later life. In a 

review paper, Duncan and Magnusson (2012) highlight that intervention and quasi-experimental 

studies have shown that directly increasing household income (i.e. by giving lower income families 

money) and improving maternal education can improve cognitive outcome measures in children. 
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These findings indicate that direct intervention to increase specific measures of SES can have causal 

effects on children’s cognitive development. However, the mechanisms of such effects remain 

unclear. What is it about having more money in the household or a better education for the mother 

that causes a child to have better cognitive outcomes? Put another way, what are the possible 

mechanisms by which SES might impact on cognitive development?  

Overall links between SES and cognitive outcomes have been well-established in the literature, as 

already discussed in this section. However, the mechanisms by which these associations might occur 

are as yet underexplored, with a few general theories in the literature and few specific studies 

exploring the extent of the potential mechanistic links. To attempt a summary of the literature, we 

have created a network diagram (Figure 3.1) to summarise where possible links exist between 

specific SES measures, intermediary factors that might be directly altered by these individual SES 

indicators, and then how these factors might be grouped into more general explanatory groups and 

have causal links to cognitive outcomes. Firstly, we will cover research at a lower level of 

explanation, exploring aspects of SES and the specific factors that differ between individuals or 

households of different SES levels, and highlighting associations between SES measures and these 

factors. Secondly, we will discuss a higher level of explanation using more general theories to link 

these lower-level causal factors to broader developmental processes, which might form the basis for 

mechanistic explanations of SES-cognition relationships. The interrelations amongst the different SES 

measures and amongst the possible causative factors make drawing out individual pathways very 

complex. Evidence for some of these possible routes is discussed in this section where this was 

available – others of these potential routes are speculative, and are yet to be explored in the 

literature. 
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Figure 3.1 Possible routes of causation linking SES with Cognition 

 
a. Arrows indicate directions of possible causal relationships between SES, cognitive outcomes, and associated factors. 

Income 

Income here is used as a shorthand for any household or individual parental monetary measures, 

including total money available to household, household and/or parental income, or poverty 

measures. Greater income is associated with increased access to resources (Sarsour et al., 2011), 

reduced household stress (Eamon, 2005) and decreased household chaos (Rosen et al., 2020). These 

links could be causal, i.e. the income itself can directly influence these factors, and these factors 

might be mechanistic pathways by which SES exerts influence on cognitive outcomes.  

Access to resources is made easier with higher income, by being able to buy more child-related 

items for the household and afford to take more trips out of the house, both of which are associated 

with improved cognitive outcomes (Sarsour et al., 2011). Stress and household chaos can be reduced 

by having a greater income by reducing likelihood of some potential stressors such as money 

worries, and reducing the chances of certain measures of household chaos such as frequent house 

moves. It takes cognitive and emotional resources to deal with difficult life circumstances which may 

result from low income or poverty, perhaps reducing parental capacity to interact and intervene 

with the child and their developmental processes (Eamon, 2005), or impacting on the child’s neural 
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developmental processes via biological mechanisms such as increased cortisol levels and 

dysregulation of the HPA axis (Andrews et al., 2020). Some measures of household chaos (such as 

frequent house moves or household structure changes) are negatively associated with cognitive 

outcomes (Rosen et al., 2020).   

There are also potential causal links between income and other measures of SES, for example, higher 

income might be used to live in more desirable areas, thus reducing local area deprivation. Parental 

occupation and education might cause increases to household income.  

Parental education 

Mother’s education is associated with parenting quality (P. L. Morgan et al., 2009). Parenting quality 

here was measured by an observation of the quality of interactions between child and caregiver in 

play situations, and by a self-report assessment of aspects of home life such including aspects of 

cognitive stimulation: parental activities (frequency of responding to and interacting with child, 

taking child on errands or to public places), access to resources (e.g. books and toys in the home), 

and safety and supportiveness of home environment. This suggests that parental education, in 

particular mother’s education, might be causative of improvements in the child’s environment that 

might subsequently lead to improvements in their cognition (see later section on Cognitive 

Stimulation theory for more evidence for these factors’ relationships to cognitive outcomes). 

Intervention studies have shown that a parental education programme about parenting skills can 

improve EF outcomes in children, suggesting that parenting skill might be a factor in causing the link 

between parental education levels and cognitive outcomes (Neville et al., 2013). Coupled together, 

these findings suggest one possible route by which parental education might influence cognitive 

outcomes – better educated parents have higher quality interactions with the child, which in turn is 

associated with improved cognition.   

Children of better educated parents are exposed to more complex language in the home. Parental 

education and occupation levels account for significant variance in language development, by as 

early as 18 months old (Fernald et al., 2013). Parental education may be also causally associated 

with factors such as access to resources. For example, better educated parents are more likely to 

have more books and toys in the household (P. L. Morgan et al., 2009). This is perhaps as they better 

understand the importance of these factors in improving children’s language outcomes, or perhaps 

because higher parental education is itself associated with greater household income thus providing 

improved access to resources. Furthermore, parents with longer educational backgrounds are more 

likely to be more involved in learning at home, and this involvement is positively associated with 

children’s academic performance in school. This effect is over and above that of child’s intelligence 
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(Topor et al., 2010). These causal links are however somewhat speculative, and deserve further 

investigation.  

Parental occupation 

As already mentioned, this measure could be considered as having influence in determining 

household income, so therefore it might be indirectly causally associated with the factors listed in 

the income section above. Parental occupation, along with education, is shown to be associated with 

more complex language exposure in the home, and with language development of young children 

(Fernals et al., 2013). However other mechanistic links between occupation class and cognitive 

factors remain unclear. One issue at hand is the inter-related nature of various SES measures. 

Occupation class is strongly correlated with household income, and with parental education. 

Occupation itself may well not be causative of the observed associations between parental 

occupation and children’s cognition rather, perhaps improved parental education results in 

increased occupation class, therefore the causal relationship is in fact between parental education 

and children’s cognition; or that higher parental occupation class results in increased household 

income, which could then impact on the above factors acting to improve children’s cognition. Again, 

the potential mechanistic links here are somewhat speculative and deserve further investigation.  

Local area deprivation  

Higher local area deprivation is associated with increased pollution exposure (Evans, 2004), reduced 

access to greenspace in the local environment (Maes et al., 2021), increased violence exposure 

(Lambert et al., 2017) and might also be associated with increased experience of stressful events, 

changes in language exposure (outside of the household in particular), and the type of school 

environment a child might experience.  

Lambert et al. (2017) investigated the association between violence exposure and EF and emotional 

control abilities in 16-17 year olds. They found violence exposure was negatively associated with 

emotional inhibition (hot EF), but not with neutral cognitive control abilities (cool EF). Violence 

exposure and cognitive stimulation deprivation were associated with poorer performance on an 

emotional inhibition task, and poorer automatic emotion regulation. As a mechanism, they suggest 

that increased exposure to threat and the lack of a safe environment makes it more difficult for 

children to discriminate between threat and safety cues, so they do not as frequently practice 

extinction of fear responses when these are not appropriate, which in turn affects their 

development of broader emotion control processes. 
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Environmental issues including pollution, exposure to toxins, and lack of access to green space are 

increased in more deprived areas. Air quality in the local environment tends to vary in a positive 

relationship with socio-economic status. This trend has been observed across England, with more 

deprived areas having greater levels of particulate matter and nitrogen dioxide pollution in the air 

(Fecht et al., 2015). A recent review of the literature on associations between air quality and 

cognition suggests that both particulate matter and nitrogen oxides are associated with executive 

function (in particular working memory) in children (R. Thompson et al., 2023). A meta-analysis 

considering effects in adults showed that small increases in exposure to nitrogen dioxide (NO2) and 

small particulate matter (PM2.5) were associated with small decreases in cognitive battery 

performance (R. Thompson et al., 2023). Increased rates of asthma and other breathing issues, could 

be a causal mechanism by which air quality could impact on cognitive developmental outcomes, but 

this mechanism is speculative. 

Lower SES children are also more likely to have increased levels of lead in their blood. Lead is a 

neurotoxin that is not excreted by the body, therefore builds up over time. Increased levels of lead 

in the blood is known to affect IQ, academic achievement, and reading ability (Evans, 2004). The 

mechanism by which lead exposure might lead to decreases in cognitive abilities could be via some 

kind of interference with neurodevelopmental processes, but remains unclear.  

Access to greenspace, and in particular woodland, in the local area has also been shown to be 

associated with cognitive and mental health outcomes, in a paper that used our same SCAMP cohort 

as its sample (Maes et al., 2021). The mechanistic pathways by which the association between 

greenspace and cognition might occur is as yet unknown.  

Shared Attention 

One potential mechanism of action of SES upon later cognitive development is via development of 

joint attention abilities early in life. Joint attention refers to the ability of a child to respond to cues 

for shared attention from others, such as redirecting attention based on another’s eye gaze or 

pointing. Responses to joint attention cues are a foundational developmental milestone, and are 

implicated in subsequent development of language and a variety of cognitive abilities. For example, 

responding earlier in infancy to more subtle joint attention cues positively predicts later language 

and cognitive developments (Tomasello et al., 2005). Other research has shown that executive 

functioning in later adolescence is negatively associated with childhood attentional problems 

(Friedman et al., 2007). Joint attention could therefore be considered a precursor to EF 

development.  
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SES is associated with development of joint attention abilities in infants aged 8-18 months (Reilly et 

al., 2021). Specifically, family income (as measured as a percentage of the federal poverty line in the 

USA) and parental education (self-reported furthest education level achieved by participating 

parent) were positively associated with ability of the infant to respond to more subtle joint attention 

cues, after accounting for age and depressive and anxiety symptoms in the parent. Although not 

specifically investigated in this study, the authors suggest three strands of mechanisms by which SES 

might influence development of shared attention ability: home environment, parenting behaviour, 

and language exposure. Both measures of SES used (income and parental education) might influence 

home environment in ways that are already identified as influencing development, for example, 

income could: increase cognitive stimulation in the environment (e.g. number of books and toys); 

reduce household chaos; and reduce stress levels. Parental education could influence parenting 

behaviour, and the complexity of language exposure the child receives. Another study suggests that 

earlier maternal SES and development of pointing ability predict later language ability at 18 months, 

suggesting a role for joint attention skills in the association between SES and later cognitive abilities 

(McGillion et al., 2017).  

The development of shared attention mechanisms might therefore be a pathway between these 

lower-level factors that SES has some kind of direct impact upon and resultant cognitive outcomes. 

However, specific evidence linking language exposure and parenting behaviours to development of 

joint attention abilities is mixed, and therefore these mechanisms are somewhat speculative and 

need further investigation. Development of shared attention mechanisms could also be influenced 

by level of cognitive stimulation (or perhaps levels of some specific aspects of cognitive stimulation) 

in the household, such as by the quality and amount of caregiver interactions.  

Attachment Security 

There is significant evidence that household factors that are related to attachment are also related 

to children’s EF development. Experience of adversity early in life is associated with poorer EF 

abilities in children who have been adopted internationally from orphanages (Hostinar et al., 2012). 

Household stress also affects the quality of relationships between parents and children, and also is 

associated with children’s later EF ability (Hackman et al., 2010). In a meta-analysis paper, household 

chaos was found to correlate negatively with EFs in childhood. Instability in the household was a 

significant predictor of EFs (r=.17), and household disorganisation was also significant but showed a 

much smaller relationship (r=.06) (Andrews et al., 2020). As a mechanism, Andrews et al. suggest 

that attachment security might be disrupted by household chaos and poorer parenting behaviours 



101 
 

which might in turn affect EF development – though this hypothesised link between attachment 

security and EF is somewhat speculative and requires more investigation.  

Cognitive Stimulation 

Various factors that may be grouped together under the umbrella of cognitive stimulation are 

known to vary with SES. The factors include things like access to resources, such as books, toys and 

experiences; quality and quantity of language exposure and parental interactions; and quality of 

schooling. The theory has good surface parsimony, in that if we reduce the cognitive stimulation 

received by a child it would appear likely that their cognitive development would be negatively 

impacted through neuroplasticity processes as they are not receiving the required inputs for their 

cognition to develop normally.  

Access to resources is one aspect of cognitive stimulation that has been shown to vary with SES, and 

have associations with cognitive outcomes. Families with higher SES tend to have greater numbers 

of books and toys within the household (Christensen et al., 2014). Furthermore, children from 

parents with greater household income are also likely to access a greater number of activities 

outside the home, such as sports and music lessons, visits to the museum or park, or joining parents 

on errands.  (Sarsour et al., 2011). Research has shown associations between cognition and 

measures of home environment quality. Often in research, access to a wide range of child-related 

resources are grouped together into an overarching construct or factor. Christensen et al. (2014) 

used factor analysis on five home environment measures and found these grouped together as a 

single factor, and found this overall factor moderated the relationship between SES and general 

cognition. As access to multiple resources are often correlated with each other, is therefore difficult 

to disentangle any potential individual effects of access to any particular resources.  

To relate access to resources back to the theory of cognitive stimulation, children who have greater 

access to resources will experience increased cognitive stimulation by using these resources. For 

example, having more books in the household might lead to the child being read to more often; 

which increases the stimulation of neural regions associated with reading, speech and language, 

focus and attention; which in turn results in which improvements in language ability, better and/or 

earlier development of shared attention abilities, and also may increase the attachment to their 

caregiver by experiencing more frequent positive interactions. So the book on the shelf does nothing 

in and of itself – but having access to the book increases the frequency of it being used in daily life, 

which in turn might exert influence over a wide variety of developmental pathways. 
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Language exposure in the home is another aspect of cognitive stimulation that varies with SES and 

might impact on cognitive development. Quantity and complexity of parental language exposure in 

the pre-school years vary with SES, with a greater variety of words and more complex sentence 

structures used in higher SES households (Hoff, 2003). Variations in maternal language exposure 

associated with SES are in turn associated with differences in language and vocabulary development 

in early life (Hoff, 2003). Vocabulary diversity and complexity of maternal language in early 

childhood have also been shown to be associated with children’s later EF. These aspects of maternal 

language were also associated with children’s vocabulary diversity, which itself mediated the 

association between maternal language and children’s EF (Daneri et al., 2019). This suggests that 

maternal language and the resulting language abilities of the child are associated with their EF 

development. Other studies have also indicated that EF and language skills are positively associated 

across childhood (Gooch et al., 2016). These findings suggest a possible mechanism of action linking 

family SES and children’s EF skills: increased parental language complexity in early childhood occurs 

in higher SES households, and this impacts on children’s early language abilities, which in turn could 

impact their EF development.  

Quality of school environment also varies with SES, and might influence cognitive stimulation and 

impact upon cognitive developmental processes. Independent schools generally have improved 

classroom factors, with better pupil behaviour, discipline and more positive relationships between 

teachers and pupils (Crosnoe et al., 2004a) along with better access to classroom resources, 

computers, smaller class sizes and higher funding per pupil (Crosnoe et al., 2004b). Crosnoe et al. 

indicate these factors are associated with improved academic outcomes. This could provide a 

mechanistic explanation of how school type might affect student outcomes. 

Research has investigated the effects of independent vs. state schooling on academic outcomes, 

with somewhat mixed findings. Private schools show significantly better results at GCSE (Ndaji et al., 

2016). However, the cohorts attending private and state schools are quite different at entry, with 

those attending private schools more likely to be higher SES students and have higher prior 

academic ability. Once students’ prior academic ability, local area deprivation level of home address 

and gender at school entry were accounted for, the impact of private education on academic 

outcomes was reduced, though GCSE outcomes were still significantly better than at state schools 

(Ndaji et al., 2016). Other research in the UK comparing the effects of faith-based primary schools 

found that the greater performance of pupils in these schools was entirely explained by pre-existing 

characteristics at school entry (Gibbons & Silva, 2011). 
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In terms of cognitive outcomes, large-scale longitudinal research in Australia (Nghiem et al., 2015) 

found no significant differences in cognitive abilities between pupils attending state or private 

primary schools, once pupil’s abilities at school entry were accounted for. These findings suggest 

that cognitive processes are not directly improved by independent school attendance. Alves et al. 

(2017) used SEM latent variable analyses to compare effects of parental variables (parent’s schooling 

and socio-economic level) vs school effects (community and school type). They found both latent 

variables had impact on academic achievement, but only family influenced cognitive performance. 

Family factors explained a greater proportion of variance in cognitive and academic outcomes in 

primary school than did the type of school attended – further suggesting that it is not the school 

type itself that influences cognitive development, rather the pre-existing and continuing family 

effects that differ between independent and state school cohorts.  

Sarsour et al. (2011) studied associations between SES (assessed with a composite measure of 

income, wealth, maternal education and parental occupation) and three domains of EF – cognitive 

flexibility, inhibition and working memory – in children aged 8-12, and found that family SES was 

associated with all three domains of EF. They investigated whether home environment was a 

mediator of these SES-EF effects. Home environment was assessed across eight areas: physical 

environment, enrichment activities, parental responsivity, encouragement of maturity, emotional 

climate/acceptance, learning materials and opportunities, family companionship, and family 

integration. A composite home environment measure was associated with all three components of 

EF, and overall home environment quality also partially mediated the association between SES and 

inhibition. Specific aspects of the home environment, namely access to a variety of learning 

materials and enrichment activities, were also associated with EF, and of the specific home 

environment measures assessed in the study they found that enrichment activities, parental 

responsivity and family companionship partially mediated associations between SES and working 

memory and inhibition, but no aspect of the home environment mediated the association between 

SES and cognitive flexibility. The authors suggest that a mechanism by which these better home 

environments result in improved cognitive abilities due to increased cognitive stimulation.  

One issue with a cognitive stimulation explanation of SES-cognition links is that the term cognitive 

stimulation is somewhat ill-defined, with different researchers using widely varying measures of this 

concept. It is not clear whether all of the aspects of cognitive stimulation are tapping the same 

concept; or indeed whether specific elements of cognitive stimulation in early life have dissociable 

impacts on later cognition.  

 



104 
 

Neural Differences 

SES is associated with neurodevelopmental differences which may underpin the relationships 

observed between SES and cognition. There is significant evidence linking SES with neural structure 

and function (Hackman & Farah, 2009). Firstly in terms of structure, total cortical surface area is 

reduced amongst children from lower income families, and children whose parents have had fewer 

years of education (Noble et al., 2015). At the lower end of the income scale, greater differences in 

cortical area were observed for relatively small increases in income, where at the top end of the 

scale the same increase in income showed smaller increases in cortical area. This suggests those at 

the lowest end of the income scale exhibit the greatest sensitivity to SES in terms of cortical area. In 

a structural MRI study, lower SES, in particular lower parental education, was associated with lower 

total cortical surface area in 14-19 year old participants (Judd et al., 2020).  

The picture around total brain or cortical volumes is somewhat unclear – some studies find 

increased volumes of grey matter in certain brain areas among higher SES groups (Noble et al., 

2005), and lower volumes of grey matter in other regions (Jednoróg et al., 2012, Jensen et al., 2015). 

Greater cortical thickness (across the whole brain) has been found to be associated with higher 

family income (Noble et al., 2015). Grey matter volumes in the hippocampus and frontal regions are 

associated with maternal education and occupation (Jednoróg et al., 2012). Experience of adversity 

and stressful events early in life is associated with lower grey matter volumes in the anterior 

cingulate cortex, and higher grey matter volume in the Precuneus measured during early adulthood 

(Jensen et al., 2015).  

Reduced white matter tract volumes have also been noted in children from lower SES backgrounds 

(Ursache & Noble, 2016). Lower SES participants with reduced white matter tracts performed worse 

in cognitive flexibility tasks in this study. However, interestingly, higher SES children who had lower 

white matter tract volumes still showed good performance in cognitive flexibility tasks. This suggests 

that high and low SES participants may not use the same neural pathways when completing 

demanding tasks. Overall, analyses looking at associations between SES and the structure of specific 

brain regions suggest the greatest SES gradients in structure are found in brain regions associated 

with cognitive control, language, spatial skills and numeracy (Lipina & Posner, 2012; Noble et al., 

2015). 

Functionally, functional Magnetic Resonance Imaging (fMRI) and Event Related Potential (ERP) 

studies indicate that lower SES participants recruit different brain regions to higher SES participants 

while undertaking tasks involving attention and novel rule learning, with reduced activity in 

prefrontal regions and greater activity in other areas associated with worse performance in novel 
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rule tasks (Hackman et al., 2010). Changes to patterns of neural activity in regions associated with EF 

have been found to be associated with certain aspects of SES. Lower parental education has been 

shown to be associated with lower efficiency of neural recruitment during a WM task (Sheridan et 

al., 2017).  In an fMRI study, Sheridan et al. (2012) indicate that neural activity in the PFC 

underpinning performance in a complex EF task (a stimulus-response mapping task, similar to the 

DCCS see Table 1.1) differs between high and low SES children. Lower SES children had greater 

activation in frontal regions and the amygdala than did higher SES children in novel task conditions, 

where EF would be most required. The altered PFC activation patterns reflected poorer EF task 

performance of the lower SES children (Sheridan et al., 2012).  

Preadolescent children from lower SES backgrounds show different patterns of Electro-

Encephalogram (EEG) and ERP activity in a selective attention task: despite similar behavioural 

performance in the task, lower SES children showed a preference to attend equally to relevant and 

irrelevant environmental cues, and exhibited evidence (via increased activity in frontal regions) of 

more effortful control being exerted during the task (D’angiulli, Van Roon, et al., 2012). SES-related 

differences in functional recruitment of brain regions is consistent with other research that shows 

that even when task performance is equal, lower and higher SES participants display differences in 

neural activity while performing EF tasks (Hackman & Farah, 2009).   

Given the above findings, it seems likely that neural differences are likely involved in causal 

pathways by which SES is associated with cognition. However, the mechanisms by which these 

neural differences actually occur are not clear. Two factors that relate to both neural changes and 

SES levels have been identified in the literature: stress and pollution exposure. These will be 

discussed below. It is also the case that via general neuroplasticity, any of the other discussed causal 

pathways (such as cognitive stimulation, attachment security or shared attention) might also 

influence developing neural pathways that underpin cognition, but the mechanisms associating 

these remain unclear.  

Across their lifetimes, people growing up in lower SES households report more frequent experiences 

of stressful life events, such as home moves or changes in household make-up, and it has been 

suggested that the biological response over time to these stressors might explain associations 

between SES and health and cognitive outcomes (Hackman & Farah, 2009). Importantly, chronic 

stress exposure is thought to lead to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, 

in turn leading to neural changes in PFC and other regions underpinning EF, such as the 

hippocampus which is heavily involved in memory function, and the amygdala which is strongly 

implicated in emotional processing (hot EF) (Andrews et al., 2020).  
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As discussed in the above section on local area deprivation, children from lower SES households tend 

to have higher levels of lead in the blood (Evans, 2004). Higher concentrations of lead in the blood 

during childhood causes damage to developing neural structures in the PFC, hippocampus and 

cerebellum (Sanders et al., 2009) – important areas of the brain underpinning a wide range of 

cognition including EF. Thus exposure to pollutants in the local area and the subsequent disruption 

of neural developmental pathways might be one mechanism by which SES impacts on cognition.  

Genetic influences 

Finally, it is possible that genetics may play a role in how SES influences cognitive and life outcomes. 

The suggestion that genes may play a role in development of links between SES and other life 

outcomes does not suggest that genes are entirely determinative of outcomes, or that genes are the 

same as destiny (Sarsour et al., 2011). One study that has linked genes to SES and life outcomes is by 

Judd et al. (2020). They found that SES was correlated (r= .27) with frequency of certain genetic 

patterns across the genome, specifically EduYears-GPS.  EduYears-GPS is a genome-wide polygenic 

score that has been found to be associated with academic and cognitive outcomes (around 9% of 

variance in academic achievement at age 16 is explained by EduYears-GPS), elements of brain 

structure, and with family SES (with around 7% of variance in SES is explained by EduYears-GPS) 

(Selzam et al., 2017). Another study showed that family SES modifies the genetic heritability rate of 

children’s IQ, with SES accounting for significant portions of variance in IQ among lower SES 

households but very little of the variation in IQ in high SES households (Turkheimer et al., 2003). The 

causal mechanism of exactly how small genetic differences could exert influence over cognition 

remains unclear, but it is likely that neural differences would be involved in this pathway.  

Deficiency or adaptation to different environments? 

Many papers exploring the cognitive impacts of SES often explore areas in which the lower SES 

participants exhibit poorer performance in tasks. This is often related (explicitly or implicitly) to the 

idea that children from lower SES households are in some way deficient – they experience a deficit in 

performance relative to their higher SES peers. Another interpretation of the same data might 

indicate that children from lower SES households display adaptive behaviours to a different 

environment to that the higher SES households. For example, lower SES children are more likely to 

experience unpredictable or chaotic environments at home. This could result in an adaptive strategy 

by which the children are more vigilant to a variety of cues which could indicate potential disruption 

or threat in the environment, and must exert greater cognitive control to ignore task-irrelevant 

stimuli. This could result in either worse accuracy or longer response times in inhibition tasks, either 

due to greater attention being paid to irrelevant stimuli, or to more effortful control mechanisms 
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being required to focus on the single task in hand and ignore irrelevant stimuli. This is an important 

consideration when interpreting data that explores the association between SES and EF.  

3.2.6 Why study the relationship between SES and EF?  

Given the heterogeneity of previous research, it remains unclear exactly what the nature of the link 

between SES and EF is. This is an important area to investigate for a number of reasons. SES is a 

potential source of individual differences, and cognitive developmental science is interested in 

identifying these kinds of factors generally (Foulkes & Blakemore, 2018). More broadly in 

developmental science, we should probably consider impact of SES on our participants, so 

understanding the magnitude and specific areas of cognition that are affected by SES, and by what 

specific aspects of SES are they affected, will be useful so that these measures could be used as 

covariates in future research. There has been a move in cognitive science recently to try to extend 

our findings beyond ‘WEIRD’ (Western, educated, industrialized, rich and democratic) participants, 

and the consideration of the impacts of SES is of importance in this endeavour (Henrich et al., 2010).  

EF predicts a wide variety of life outcomes, and SES independently does too. Research has indicated 

that SES and EF are also related, and that EF skills may act as a mediator of SES related outcomes, 

with better EF reducing the impact of low SES on things like academic achievement. If we could 

identify the nature of links between SES and EF more precisely, it might be possible to design 

interventions aimed at improving EF in low SES groups, in order to improve more general life 

outcomes. The reverse idea is also possible: identification of specific SES components which have 

significant links to cognition could suggest targets for intervention studies – if certain SES measures 

are better at predicting cognitive outcomes, we could target these SES areas for intervention to 

improve outcomes. One intervention study found that lower SES children showed poorer selective 

attention skills, and that parents in these families also showed poorer attention-related parenting 

skills - this led to the development of a targeted attention-based intervention for parents and 

children which improved the children’s selective attention (Neville et al., 2013). Outcomes of 

research investigating links between SES and EF may highlight the impacts SES has on individual 

development, which may have wider policy implications.  

Effects of poverty on neural and behavioural development have been noted widely, but it is still 

unclear whether these effects exist across the whole spectrum of SES, or if instead effects are driven 

only by differences between for example very low SES and others, or between those in poverty and 

those not. The prolonged development of EF may make it particularly susceptible to changes due to 

SES effects across childhood and adolescence (Best et al., 2011). EF ability in early life has far 
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reaching associations, and knowing more about the factors that influence the development of EF 

would be of interest to developmental science generally.  

3.2.7 Aims 

SES and EF are both independently predictors of children's academic success and other important 

life outcomes, and they are also correlated with one another. However, previous research has not 

been able to rule out whether the association between SES and EF may be explained by associations 

with cognitive ability more generally. Mediation research has suggested a specific role of EF in 

mediation of the effects of SES on academic outcomes, whereas more general cognitive ability does 

not have this mediating effect, making it of interest to research associations between SES and EF in 

more detail and to assess to what extent associations may be general and not specific to EF.  

Both SES and EF are complex concepts and are measurable in a variety of ways. This study uses 

multiple measures of both SES and EF and attempts to unpick any specific associations between 

aspects of SES and EF. SES was measured through parental occupation, parental education,  local 

postcode deprivation and school type, while EF was measured through TMT, BDS, Corsi, SWM, and 

CPT. The SES measures used cover a wide range of SES levels, allowing investigation of the 

associations of SES and EF across the spectrum of SES. The data used are from the first data 

collection in the SCAMP cohort, when participants were aged around 11-12 years old in school years 

7-8. Analyses of this cross-sectional data first assessed associations between specific EFs and specific 

SES measures and investigated where in the SES spectrum were differences in EF observed, and 

second assessed whether these associations remained significant when covarying for fluid 

intelligence. This study provides sufficient power to account for CFT in the analysis of EF-SES links, 

which has not been common in the literature. It aims to identify specific areas of EF that are most 

associated with SES in general, and to see if there are specific measures of SES that are associated 

with specific aspects of EF. The study will consider participants across a wide range of SES, rather 

than considering only those in poverty vs. not in poverty.  

3.3 Methods  

3.3.1 Participants 

Data are taken from the baseline SCAMP assessments. Exclusions based on age and specific task-

based exclusions were applied (described in Chapter 2). The largest sample for the analyses 

presented in this chapter is n = 6,591, with a complete case sample of n = 1,428. Cross-tabular n’s for 

cognitive tasks and SES measures analysed here are shown in Table 3.2. 
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Table 3.2 Participant numbers with data for cognitive tasks and socio-economic status measures 

 Total TMT BDS SWM Corsi CFT CPT 

Complete Case n = 1,428 n a n a n a n a n a n a n a 

Total n a 6,591 6,424 6,084 6,300 3,791 5,808 1,574 

School Type 6,576 6,409 6,072 6,228 3,781 5,796 1,571 

Carstairs  6,379 6,226 5,913 6,111 3,717 5,643 1,555 

Father Occupation 4,944 4,828 4,635 4,802 3,100 4,607 1,334 

Mother Occupation 4,271 4,187 4,017 4,145 2,690 3,981 1,201 

Father Education 3,990 3,897 3,740 3,872 2,540 3,710 1,126 

Mother Education  4,160 4,065 3,894 4,038 2,598 3,856 1,164 

a Final n’s for each task. BDS: backward digit span; CFT: Cattell’s culture fair test; Corsi: Corsi block task; CPT: continuous 
performance task; SWM: spatial working memory; TMT: trail making task. 

3.3.2 Measures 

Cognitive measures 

EF is estimated from five cognitive tasks: Trail making task (TMT), backward digit span (BDS), spatial 

working memory (SWM), Corsi block task, and continuous performance task (CPT). Scores in Cattell’s 

culture fair test (CFT) are also used as an estimate of fluid intelligence. Task administration and data 

cleaning procedures described in detail in Chapter 2; a brief reminder of the key task measures is 

provided below. 

The trail making task (TMT) assesses cognitive flexibility or switching. The key measure is calculated 

by regressing response time in the switching condition on response time in the letters condition. 

Lower (more negative) scores indicate better performance. 

The backwards digit span and Corsi span tasks assess verbal and visuospatial working memory 

respectively. The key measures for these tasks are estimates of span capacity, with the score 

calculated as the average of the mean trial length of trials they passed and mean trial length of trials 

they failed. Higher scores indicate better performance.  

The key measures for the spatial working memory (SWM) task are the number of errors committed 

across the task, and a strategy use measure equivalent to the number of unnecessary changes in 

search starting location. Lower scores indicate better performance on both measures. 

The continuous performance task (CPT) measures sustained attention and inhibitory control. The key 

measures are: the number of omission errors made (how many targets the participant failed to press 

the space bar for), reflecting inattention; and the number of commission errors made (how many 
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times the participant pressed the space bar outside of targets), reflecting lower inhibitory control. 

Lower scores indicate better performance.   

The Cattell culture fair task (CFT) is a test of visuospatial reasoning and a proxy for fluid intelligence. 

The key measure is the total number of items correct across the whole task. Higher scores indicate 

better performance.  

Socio-economic status measures 

SES is assessed by six measures: school type; education level of each parent; occupation category of 

each parent; and the Carstairs postcode deprivation estimate. School type is classified as State or 

Independent school. This variable was reported by the school. For the parental education measures, 

participants reported whether their parents attended university in the main assessment 

questionnaire. Participants also reported their parents’ occupations during the main assessment 

questionnaire. Adolescent reporting of parental occupation level is considered reasonably accurate 

(Lien et al., 2001), and previous studies have also used adolescent assessment of parental 

occupation to estimate SES (Richter et al., 2006). Participants were asked a series of questions on 

parental occupation taken from the National Statistics Socio-economic classification (NS-SEC) (Office 

for National Statistics, n.d.). Responses were coded as per the 8-class version of the NS-SEC (D. Rose 

& Pevalin, 2003). Values were then re-coded for this analysis such that a higher number indicates a 

higher SES category (final codes used in analysis are in Table 3.3). Data were coded as Missing (NA) 

both where the researcher could not tell which category to use from the participant’s response or if 

the participant selected the ‘never worked or long term unemployed’ response, as there were very 

small numbers of this type of response in the baseline sample.  

Table 3.3 Socio-economic status (SES) parental occupation coding categories 

SES Level Occupation Description 
8 Large employers and higher managerial and administrative occupations 
7 Higher professional occupations 
6 Lower managerial, administrative and professional occupations 
5 Intermediate occupations 
4 Small employers and own account workers 
3 Lower supervisory and technical occupations 
2 Semi-routine occupations 
1 Routine occupations 
NA Never worked or long-term unemployed 

Carstairs postcode deprivation is an estimate of the deprivation level of the postcode area of the 

participant’s home address, relative to the area sampled by the SCAMP study. Home address was 

reported by the participant during the main assessment. A deprivation index score was estimated for 
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each participant using the Carstairs index (O. Morgan & Baker, 2006). Carstairs index values are 

calculated nationally for each postcode area, by taking weighted Z-score composite of four key 

economic indicators (Table 3.4) for each geographic area across England, using 2011 census data 

(Morris & Carstairs, 1991). Scores were then normalised across the SCAMP study sample area, and 

individual values relative to these normalised scores were calculated for each participant’s reported 

home postcode. Data were then categorised into quintiles, with 1 = least deprived and 5 = most 

deprived. 

Table 3.4 Economic indicators used to calculate postcode deprivation in the Carstairs index 

Indicator Description 
Male unemployment  The proportion of economically active males seeking or waiting to start work 
Lack of car ownership  The proportion of all persons in private households which do not own a car 
Overcrowding  The proportion of all persons living in private households with a density of 

more than one person per room 
Low social class  The proportion of all persons in private households with an economically 

active head of household in partly skilled or unskilled occupations, according 
to ONS-NSSEC classifications 

3.3.3 Missing Data: Multiple Imputation by Chained Equations (MICE)  

Data were imputed using Multiple Imputation by Chained Equations (MICE). This is a principled 

approach to dealing with missing data. It makes use of all the available data to estimate missing 

values by performing a series of regressions for each individual variable, using all other variables in 

the MICE model to estimate any missing values. This is preferable to other methods of handling 

missing data such as analysing complete cases only, since sample size and statistical power are 

increased, or mean imputation, since other variables in the model are used to make more accurate 

estimates of missing values (Azur et al., 2011).  

Imputation was carried out in R version 4.0.0, using packages mice_3.9.0 and tidyr_1.1.0. First, 

missingness pattern of the data was inspected. This revealed over 50% missing data for the CPT task, 

which was therefore omitted from the MICE procedure. Other measures broadly fit the assumptions 

of independence and of Missing at Random (MAR). All variables to be included as predictors, 

outcomes or covariates in the analyses (other than the CPT measures) were included in the MICE 

procedure (Buuren & Groothuis-Oudshoorn, 2010). Interactions between variables were not 

included as these were not being investigated in the subsequent analyses (Azur et al., 2011). 

Multiple imputation was used here. Ten MICE iterations were used to create five imputed datasets 

(Buuren & Groothuis-Oudshoorn, 2010). The ten iterations were used to achieve adequate model 

convergence on the missing element estimates within each imputed dataset. Checks of the imputed 

datasets were made, ensuring adequate model convergence and plausibility of imputed values. 
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Statistical analyses are then carried out on each of the five imputed datasets individually, and results 

of these multiple analyses are then combined or pooled in order to reconcile inconsistent results – 

see Statistical Analyses Section 3.3.4 for details of pooling methods used for each analysis.  

3.3.4 Statistical Analyses 

In a first stage of analysis, a between-subjects six-way multivariate analysis of covariance 

(MANCOVA) was run. MANCOVA is a multivariate omnibus test, which tests for differences between 

levels of independent variables on a linear combination of multiple dependent variables, whilst also 

accounting for covariates. An advantage of MANCOVA over conducting multiple univariate tests is 

that MANCOVA takes into account correlations between multiple dependent variables, has greater 

power than using multiple univariate tests, and does not inflate the chance of a type 1 error which 

using multiple univariate tests would (Field, 2013).  

MANCOVA was run on five EF measures: TMT, BDS, Corsi, SWM errors and SWM strategy score. Age 

and was entered as a covariate. Independent variables were the six SES measures (school type, 

postcode deprivation, each parent’s occupation and each parent’s education). MANCOVA was 

carried out on complete cases only, n = 1,428, as SPSS did not have functionality to provide pooled 

MANCOVA statistics for imputed data. The CPT task was omitted as significantly fewer participants 

completed this task (Table 3.5). Pillai’s Trace was selected as this is relatively robust to differences in 

group sizes (Field, 2013).  

Next, univariate follow-up tests of association between specific measures of SES and individual EF 

task measures were carried out with a series of multiple regressions. Models were conducted for 

each outcome variable separately: the seven EF measures (TMT, BDS, Corsi, SWM errors, SWM 

strategy, CPT omission errors and CPT commission errors). A separate model was also run to see 

whether fluid intelligence (CFT score) was associated with SES measures also – CFT will be used as a 

covariate in a second set of models to see whether relationships between SES and EF are still 

present after accounting for CFT.  

Six SES measures were entered as predictors (school type, postcode deprivation, each parent’s 

occupation and each parent’s education). Models were constructed in two steps: Step 1 with the 

covariate age, and Step 2 with this covariate plus the six SES variables, using the Enter method. 

Analyses for the two CPT measures were carried out on the original complete dataset for this task , 

n = 1,124, as data for this task were not able to be imputed. Analyses for the TMT, BDS, Corsi, SWM 

errors, SWM strategy and CFT were carried out with imputed data, n = 6,591. Coefficient estimates 

for the imputed data analyses were pooled following Rubin’s rules (Rubin, 1987). Estimates of R2 and 
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significance were pooled by simple averaging across the imputed dataset analyses – this method is 

used as it is straightforward to calculate, and provides reasonable estimates of R2 values, with a 

slight conservative bias (Ginkel, 2019).  

A final set of analyses was conducted to assess whether unique associations exist between SES and 

EF task performance beyond associations with general intelligence. The above described 

multivariate and univariate tests were repeated with CFT score as an additional covariate.  

3.4 Results 

3.4.1 Descriptive Statistics 

Descriptive statistics and cross-tabular Ns for the cognitive and SES measures, are presented in Table 

3.5. The general trend is for higher SES to be associated with higher scores in all the tasks, however, 

a notable exception to this occurs when looking at the parental occupation categories, where the 

poorest performance is sometimes observed closer to middle value of the scale. Table 3.6 shows the 

correlations between the outcome variables used in this Chapter. Although almost all the outcome 

variables are significantly correlated to each other, there are no major issues with multi-collinearity, 

as the R2 values are sufficiently low.  
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Table 3.5. a. Descriptive statistics of performance on the trail making (TMT), backward digit span (BDS), spatial working memory (SWM) and Corsi tasks, divided by levels of socio-
economic status measures  

 TMTa BDS SWM Errorsa SWM Strategya Corsi 
 n M SD n M SD n M SD n M SD n M SD 
School Type                
State 4,944 1,571 17,208 4644 3.97 0.87 4849 30.57 13.82 4849 10.75 2.86 2771 4.92 0.77 
Independent 1,465 -5,267 11,398 1428 4.50 0.86 1439 24.35 12.25 1439 11.63 5.42 1010 5.22 0.77 
Carstairs Quintile b                
1 910 -4,319 13,073 886 4.36 0.89 897 25.98 12.72 897 11.48 4.90 582 5.21 0.81 
2 929 -2,329 14,176 888 4.20 0.89 911 26.61 12.75 911 10.97 4.27 587 5.03 0.76 
3 1,099 -859 15,064 1059 4.15 0.90 1075 27.76 12.67 1075 10.79 3.39 668 5.00 0.77 
4 1,337 1,010 16,432 1280 4.01 0.86 1305 29.84 13.75 1305 10.79 3.18 785 4.98 0.79 
5 1,951 2,615 17,749 1800 3.97 0.88 1923 31.69 14.33 1923 10.87 2.92 1095 4.90 0.75 
Father Occupation c                
1 300 1,712 15,032 285 3.91 0.81 291 29.63 13.45 291 10.84 3.64 171 4.95 0.75 
2 445 875 16,932 430 4.04 0.91 452 29.81 14.11 452 10.88 3.61 259 4.96 0.70 
3 379 1,569 17,076 350 4.01 0.79 374 29.77 13.31 374 10.8 3.29 236 4.90 0.73 
4 1,310 925 15,947 1,244 3.99 0.86 1307 30.66 13.46 1307 10.97 3.24 823 4.88 0.77 
5 312 -396 17,289 295 4.21 0.87 309 28.22 13.18 309 11.43 3.79 194 5.07 0.82 
6 604 -860 15,407 585 4.24 0.91 599 27.39 12.97 599 11.18 3.88 401 5.04 0.75 
7 1,041 -3,151 13,642 1,024 4.31 0.90 1035 25.97 13.38 1035 10.48 3.77 714 5.20 0.80 
8 437 -3,752 12,015 422 4.27 0.86 435 26.45 12.75 435 10.78 3.94 302 5.15 0.82 
Mother Occupation c                
1 237 -604 17,726 216 3.87 0.82 232 32.70 13.56 232 11.18 2.95 132 4.79 0.70 
2 805 -302 14,476 764 4.05 0.87 801 29.18 13.43 801 10.89 3.26 489 4.89 0.75 
3 107 548 13,364 105 3.89 0.84 103 30.04 12.07 103 11.26 2.55 54 4.89 0.67 
4 190 -232 15,039 178 4.13 0.95 191 29.65 14.69 191 10.34 3.04 122 5.09 0.76 
5 529 -1,178 15,679 509 4.18 0.90 526 28.95 13.24 526 10.96 3.82 350 5.07 0.78 
6 1,131 -985 14,830 1,093 4.20 0.91 1117 27.33 13.04 1117 10.81 3.78 750 5.06 0.78 
7 968 -1,628 15,588 936 4.26 0.90 959 26.99 13.33 959 10.61 3.40 642 5.10 0.80 
8 220 -2,767 12,996 216 4.17 0.90 216 26.64 12.15 216 10.43 3.05 151 5.02 0.75 
Father Education                 
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 TMTa BDS SWM Errorsa SWM Strategya Corsi 
Did Not Attend 
University 1,209 556 15,986 1,152 4.00 0.87 1191 29.80 13.02 1191 11.08 3.41 758 4.96 0.74 
Attended University 2,688 -1,377 15,622 2,588 4.23 0.90 2681 27.71 13.6 2681 10.88 3.87 1782 5.08 0.79 
Mother Education                
Did Not Attend 
University 1,479 491 16,307 1,411 4.02 0.88 1468 30.07 13.18 1468 11.03 3.49 919 4.96 0.76 
Attended University 2,586 -1,486 15,359 2,483 4.23 0.90 2570 27.57 13.40 2570 10.91 3.91 1679 5.08 0.79 

a Lower scores indicate better performance in these tasks.  
b Higher Carstairs quintile indicates greater level of deprivation.  
c Occupations classified according to ONS NSSEC-8 categories; recoded such that higher values indicate higher socio-economic status. 
 
Table 3.5.b. Descriptive statistics of performance on Cattell’s culture fair test (CFT) and continuous performance task (CPT), divided by levels of socio-economic status measures. 

 CFT CPT Omissiona CPT Commissiona 
 n M SD n M SD n M SD 
School Type          
State  4,449 12.86 3.93 991 0.66 1.16 991 5.57 7.30 
Independent 1,347 14.64 3.44 580 0.36 0.78 580 3.21 3.58 
Carstairs Quintile b          
1 831 14.19 3.62 278 0.35 0.78 278 3.23 3.66 
2 857 14.17 3.67 270 0.39 0.85 270 4.15 5.14 
3 997 13.63 3.78 292 0.51 0.92 292 4.21 7.10 
4 1,212 13.10 3.89 328 0.66 1.24 328 5.07 6.38 
5 1,746 12.54 3.90 387 0.73 1.19 387 6.18 7.36 
Father Occupation c          
1 280 12.75 3.79 68 0.88 1.14 68 6.16 6.91 
2 418 12.89 3.55 96 0.60 1.05 96 5.56 6.00 
3 359 12.77 3.89 88 0.58 1.03 88 5.32 6.57 
4 1,251 12.95 3.88 293 0.65 1.09 293 5.66 6.44 
5 298 13.40 3.68 80 0.51 1.01 80 4.92 6.03 
6 574 13.91 3.90 204 0.49 0.93 204 3.85 4.85 
7 1,000 14.13 3.69 366 0.37 0.83 366 3.37 4.98 
8 427 14.19 3.77 139 0.56 1.25 139 3.83 4.62 
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 CFT CPT Omissiona CPT Commissiona 
Mother Occupation c          
1 230 12.33 3.57 47 0.79 1.32 47 5.81 5.53 
2 761 13.06 3.81 182 0.56 1.06 182 5.04 5.85 
3 101 12.66 3.39 16 0.44 0.73 16 6.12 5.64 
4 182 13.31 4.34 42 0.40 1.11 42 4.40 5.24 
5 505 13.75 3.64 156 0.49 1.04 156 4.78 5.56 
6 1,071 13.69 3.76 348 0.44 0.84 348 4.02 6.97 
7 921 13.89 3.65 339 0.54 1.08 339 3.80 5.18 
8 210 14.20 3.93 71 0.51 0.91 71 6.11 8.16 
Father Education           
Did Not Attend 
University 

1,152 12.88 3.76 300 0.56 0.94 300 5.81 6.73 

Attended University 2,558 13.80 3.85 826 0.46 0.95 826 3.86 5.03 
Mother Education          
Did Not Attend 
University 

1,393 12.84 3.70 354 0.53 1.00 354 5.11 6.36 

Attended University 2,463 13.91 3.85 810 0.51 1.02 810 4.13 5.23 
a Lower scores indicate better performance in these tasks.  
b Higher Carstairs quintile indicates greater level of deprivation.  
c Occupations classified according to ONS NSSEC-8 categories; recoded such that higher values indicate higher socio-economic status. 
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Table 3.6 Pearson's correlations between the outcome variables used in MANCOVA and Multiple Regression Analyses 

Variable  1 2 3 4 5 6 7 8 

1) TMT  
R2 -        

N 6424        

2) BDS 
R2 -.250** -       

N 5964 6084       

3) SWM Errors 
R2 .222** -.283** -      

N 6173 5880 6305      

4) SWM Strategy 
R2 .063** -.070** .451** -     

N 6173 5880 6305 6305     

5) Corsi 
R2 -.252** .313** -.282** -.151** -    

N 3731 3560 3704 3704 3791    

6) CFT 
R2 -.198** .352** -.290** -.140** .279** -   

N 5678 5406 5646 5646 3791 5808   

7) CPT Omission 
R2 .116** -.126** .139** 0.050 -.142** -.131** -  

N 1562 1520 1548 1548 1569 1572 1572  

8) CPT Commission 
R2 .162** -.183** .188** .099** -.223** -.178** .326** - 

N 1562 1520 1548 1548 1569 1572 1572 1572 
Note. * p<.05, ** p<.01, *** p<.001 

3.4.2 MANCOVA: Associations between SES and EF measures combined 

Multivariate analyses showed significant main effects for three SES measures: school type (F(5, 

1401) = 16.3, p < .001;  V = .055, father’s occupation (F(35, 7025) = 1.71; p = .006;  V = .042) and 

postcode deprivation (F(20, 5616) = 1.76; p = .019;  V = .025) indicating there were significant 

differences between levels of these SES variables in the combined EF outcome measures, when 

accounting for age. School type had the largest effect size (partial η2 = .055), followed by father 

occupation (partial η2 = .008) and postcode deprivation (partial η2 = .006). Age, was significantly 

related to the linear combination of the EF measures (p <.001), with effect size between partial η2 = 

.027. When CFT was entered as an additional covariate, the three significant SES effects remained 

significant at p < .005, and effect sizes were similar though slightly reduced. The CFT as a covariate 

was a significant predictor and had the largest effect size of all variables, (F(5, 1400) = 31.85; p <.001;  

V = . 102; partial η2 = . 102). Results are summarised in Table 3.7, and Appendix C has complete 

results for these models including for the CFT and Age covariate statistics. 
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Table 3.7 Results of MANCOVA analysis of differences between levels of SES measures in combined EF outcomes, after 

accounting for age 

n = 1,428 df F Pillai's Trace (V) p partial η2 

School Type 5, 1401 16.33 0.055 <.001a 0.055 

Father Occupation 35, 7025 1.71 0.042 0.006 a 0.008 

Mother Occupation 35, 7025 1.27 0.031 0.135 0.006 

Postcode Deprivation 20, 5616 1.76 0.025 0.019 a 0.006 

Father Education 5, 1401 1.07 0.004 0.375 0.004 

Mother Education 5, 1401 1.37 0.005 0.232 0.005 
a Bold = Significant, and Remained significant at p<.05 after also covarying for CFT 

3.4.3 Multiple regression analyses: Associations between specific measures of EF and SES  

Multiple including SES measures as predictors explained significantly more in variance in all the of 

the individual EF and CFT measures, after accounting for the effects of age. Higher SES backgrounds 

predicted better overall EF. Figure 3.1 shows the relationships between specific EF and SES 

measures. The contribution of the individual SES variables to each model is shown in Table 3.8. 

In the first set of follow-up regressions, school type was significantly associated with all seven EF 

measures, and also with CFT score. Students at Independent schools performed significantly better 

than their peers in State schools. Postcode deprivation level was significantly associated with TMT, 

BDS, SWM errors, both CPT error measures, and with CFT score. Participants from areas with greater 

deprivation performed worse on these tasks. Father occupation was significantly associated with 

TMT, BDS, and SWM strategy. Mother occupation was associated with BDS and SWM Strategy. with 

Higher level occupations were associated with better task outcomes. Father education was only 

associated with BDS and CPT omission errors, and mother education was only associated with BDS 

and CFT. Here participants whose parents did attend university scored higher on these tasks.  

The multiple regression exploring CFT score as an outcome variable, CFT score was significantly 

positively associated with father occupation, school type, and postcode deprivation, and mother 

education. When including CFT as an additional covariate, most of the associations observed 

between EFs and SES remained significant after also accounting for CFT – all the associations 

between TMT and SES measures (father occupation, school type and postcode deprivation) 

remained significant; for SWM Strategy all measures remained significant (i.e. those between SWM 

Strategy and father occupation, mother occupation, and school type); for SWM errors postcode 

deprivation and school type remained significant; for Corsi the only significant finding remained 

(with school type); and CPT commissions most associations remained significant (school type, 
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postcode deprivation and father education), but the association with mother’s occupation did not 

remain significant.  

Two tasks were exceptions to this pattern: for with BDS task, here only the association between 

school type and BDS score remained significant (with previous associations with mother and father 

occupation, postcode deprivation and mother and father education becoming non-significant) after 

accounting for CFT score too; and for CPT omission errors both the previously significant associations 

became non-significant after accounting for CFT score (school type and postcode).  
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Figure 3.2 Relationships between executive function and socioeconomic status (SES) measures 

 
* Starred tasks have had their scores flipped such that all tasks are shown with higher scores indicating better 
performance, for easier interpretation of the graphs. 
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Table 3.8 Results of multiple regression analyses of association between EF and SES, after accounting for age 

 TMTa BDS SWM 
Strategya 

SWM 
Errorsa 

Corsi CFT CPT 
Omissiona 

CPT 
Commissiona 

Step 1 (covariates) 
        

Df 1, 6589 1, 6589 1, 6589 1, 6589 1, 6589 1, 6589 1, 1124 1, 1124 
Overall R2  b <.001 <.001 .008 <.001 .002 .003 0.001 0.017 
 β b β b β b β b β b β b β β 
Age -0.010  0.002 -0.090 -0.002 0.041 4.117 -0.023 0.005 

Step 2 (+ SES measures) 
 

       
Df 6, 6583 6, 6583 6, 6583 6, 6583 6, 6583 6, 6583 6, 1118 6, 1118 
Overall R2 b .04 .05 .02 .04 .01 .06 .03 .06 
R2 changeb .04 .05 .01 .04 .008 .05 .03 .06 
 β b β b β b β b β b β b Β β 
Age -0.038 0.038 -0.073 -0.030 0.052 0.082 -0.021 -0.049 
Father Occupation -0.041 0.035 -0.040 -0.025 0.037 0.039 -0.047 -0.067 

Mother Occupation 0.012 0.009 -0.044 -0.030 0.015 0.031 0.012 0.004 
School Type -0.133 0.201 0.120 -0.132 0.055 0.126 -0.090 -0.114 
Postcode Deprivation 0.068 -0.001 -0.017 0.060 -0.004 -0.075 0.090 0.081 
Father Education 0.015 0.017 -0.022 -0.002 -0.014 0.004 -0.032 -0.127 
Mother Education -0.016 0.025 -0.013 -0.016 0.008 0.052 0.065 0.065 

a Lower scores indicate better performance in these task measures. 
b Pooled results across imputed datasets are presented for TMT, BDS, SWM, Corsi and CFT; B’s are pooled standardised betas.  
c Standardised betas.  
 Bold results are significant at p<.05; Bold Underlined = Remains significant at p < .05 after also covarying for CFT.
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3.5 Discussion  

This chapter investigated the pattern of relationships between six measures of SES, and seven 

measures of EF and one measure of fluid intelligence. It also aimed to see whether there are unique 

associations between SES and EF, over and above associations with fluid intelligence, by controlling 

for CFT score in analyses. Furthermore, it explored whether there are any significant associations 

between specific aspects of EF and specific measures of SES. It used a large sample size, 

representative of the overall London population, and included participants from a wide range of SES 

backgrounds.  

3.5.1 Findings and implications 

Results from multivariate MANCOVA analyses showed significant relationships between three 

specific SES measures (school type, father occupation and postcode deprivation) and the combined 

EF measures, while accounting for age. When CFT score was added as an extra covariate, these 

relationships all remained significant, and effect sizes were slightly reduced. In their meta-analysis of 

SES-EF relationships, Lawson et al. (2018) noted that few prior studies had the power to investigate 

whether SES-EF relationships remain significant after controlling for general fluid intelligence. These 

analyses show that even when accounting for CFT, relationships between SES and overall EF remain. 

The follow-up univariate multiple regression analyses showed the SES measures combined 

significantly predicted all the individual EF measures and also CFT score, after accounting for age. 

These analyses also showed that specific measures of SES were associated with some specific EF 

outcomes.  

School type was overall the strongest of the SES predictors considered, and significantly predicted all 

the EF measures, and also CFT. It was also the SES measure with the largest effect sizes across all 

models. This is an interesting finding. School type was classified as either State or Independent 

school (i.e. private and / or selective schools). Effectively, school type acts a kind of proxy measure, 

as most Independent schools require either fees to be paid, or for pupils to earn a place via a 

scholarship placement (by achieving exceptionally well in entrance exams). Previous research has 

shown differences in EF scores between participants in private and public schools (in Mexico), and 

has suggested that observed differences between these participants may depend on other outside 

influences, such as parental education level or other factors (Ardila et al., 2005). Of course, the 

differences in these parental factors endure throughout the schooling period and continue to affect 

developmental processes, so any effects of school type will be conflated with ongoing differences in 

parenal factors. Therefore it may be that these ongoing parental factors might be acting to improve 
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cognition in the independent school pupils, rather that these differences being driven by just the 

differences in the school environment itself.  

Often, pupils in Independent schools in the UK complete cognitive tasks similar to our battery at 

entry, and the schools are able to select or reject pupils based on their ability. So this might mean 

firstly that these students had more practice at similar types of task, and perhaps that the schools 

selected pupils based on their ability in these types of task (where State schools are unable to select 

on this basis). Furthermore, Independent schools might be less likely to have behavioural issues in 

the classrooms during the assessments, and with smaller group sizes, better computer equipment 

and greater levels of teacher engagement in research might have meant that students performed 

better in the tasks in these schools. Our study was carried out in London, which has a particularly 

high rate of students attending Independent schools relative to other areas of the UK. It would be 

interesting to see whether this remained a significant predictor of cognitive outcomes in other areas 

of the UK, or in other countries.   

Postcode deprivation was associated with TMT, BDS, SWM errors, both CPT error measures, and also 

with CFT score. Participants from areas with greater deprivation performed worse on these tasks. 

The Carstairs postcode deprivation measure is a wide measure of SES, which itself has multiple 

contributing factors. Given the general findings of previous research that has shown SES to be 

associated with EF measures, the fact we have found multiple tasks to be associated with postcode 

deprivation is unsurprising. It is perhaps a little more surprising that school type has a greater effect 

size than the postcode deprivation measure. 

Father occupation was significantly associated with TMT, BDS, and SWM strategy. Mother 

occupation was associated with BDS and SWM Strategy. Previous research has shown that paternal 

occupation in a child’s early life is more closely associated with their later life health outcomes than 

is maternal occupation (Pinilla et al., 2017). Here, we have found that mother and father occupation 

are both important predictors of strategy use and of verbal working memory capacity, and that 

father occupation is also predictive of switching ability. This perhaps reflects the fact that mother 

and father are both likely to work, and in London there are relatively high costs of living which will 

mean that the incomes of both parents are important in determining overall family SES levels.  

Father education was associated with BDS and CPT omission errors, and mother education was 

associated with BDS and CFT. Previous research has found that mother’s education has been found 

to be a stronger predictor of cognitive performance than father’s education (Gutman et al., 2003), 

where other research has found that both parents’ education level are predictors of EF (Ardila et al., 

2005). Here we see father and mother education both predicting verbal working memory capacity, 
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and each also predicting one other task measure. Intervention studies have shown that parental 

education about parenting skills can improve EF outcomes in children, suggesting that this is an 

important factor in predicting EF (Neville et al., 2013).  

Overall we found that some relationships between SES and EF were still present after accounting for 

CFT, with effect sizes only reduced slightly by including this covariate in the models. This indicates 

significant relationships between some measures of SES and EF, over and above any associations 

with fluid intelligence (Gf). In their meta-analysis, (Lawson et al., 2018) suggested that controlling for 

Gf in future SES-EF research would help to identify whether SES and EF have unique associations, 

over and above more general intelligence; this has been done in this chapter.  

Our task selection is an important factor in terms of identifying which aspects of EF are more closely 

related to SES. For example, we do not have a specific individual measure of inhibition. Rather, 

inhibition is an embedded element of task performance across multiple of our tasks. It might be 

possible to better tap inhibition by considering other task measures, such as the number of non-dot 

clicks in the spatial working memory or TMT tasks, or random type errors in the CPT task. Our tasks 

included multiple measures of working memory, and we have indicated that this is significantly 

associated with SES measures. These relationships extend over and above relationships with general 

intelligence. We found working memory was more closely related to SES than was switching ability 

(as measured by the TMT task).  

The mechanisms of SES-EF relationships are not clearly understood at present. Cognitive stimulation 

is an overarching theory that might explain the links between our observed associations between 

SES and EF. This suggests that children in higher SES households experience greater cognitive 

stimulation from various routes that drives their improved cognitive development. For example, 

maternal education level is associated with maternal language complexity, which is in turn 

asaociated with better language abilities in early childhood, which in turn is associated with 

improved cognitive outcomes. The improved  quality of language exposure is one example of a 

source of cognitive stimulation which may be an overall driver of our observed SES-EF associations.  

Our findings lend weight to the idea that school and neighbourhood environment might have wide 

impacts on cognitive development, as the school type and Carstairs measures are more strongly 

associated with cognitive scores than our other SES measures. School type has previously been 

shown to have associations with academic outcomes, but more limited evidence of association with 

cognitive outcomes. In terms of mechanisms, independent schools generally have smaller class sizes 

and better resources, which could be a source of improved cognitive stimulation and may drive 

improvements in certain cognitive areas as well as academic achievement. However, they also have 
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different cohorts with independent schools having higher performing pupils at the time of entry. 

Once these differences are accounted for in studies, effects of private schooling are reduced (Ndaji 

et al., 2016). In our study we do not have any data to be able to account for pupils’ abilities at time 

of entry to the schools, so cannot account for this in our analysis.  

Regarding the findings that the local area deprivation is a significant predictor of EF, various 

mechanisms might be at play here. Previous research has indicated that the increases in pollution 

exposure associated with living in less well-off areas tend to have higher lead concentrations in the 

blood, and as this is a neurotoxin, this could impact on children’s neurocognitive development and 

be a factor driving the relationship between Carstairs and EF in our study. Another factor that could 

underpin this relationship is that lower SES areas tend to also have poorer access to greenspace in 

the local environment, which a recent paper using our dataset has shown to be associated with 

overall EF score (Maes et al., 2021).  

If we can better understand the links between the composite parts of SES and EF, then this might 

suggest places to look for specific hypotheses about causal mechanisms relating SES to EF. For 

example, in this chapter it is clear that school type is the best predictor of all measures EF it may be 

that a key driving mechanism between SES and EF is to be found in the differences between the 

independent and state schools in this sample, or their intakes, or some other circumstance 

surrounding them. Answers to those questions may in turn suggest hypotheses to identify causal 

mechanisms between SES and EF. 

3.5.2 Limitations and suggestions for future research  

One issue in this study is that the outcome measures were all significantly correlated with one 

another. This makes it somewhat difficult to disentangle the effects. Furthermore, we did not 

correct for multiple comparisons in the follow-up univariate multiple regression analyses, after the 

MANCOVA test was completed. Previous researchers using omnibus tests with follow-up univariate 

tests have suggested that the results of the follow-up tests are ‘protected’ from issues with inflated 

type 1 error risk by performing the omnibus test first – however this claim is not accepted by all 

researchers in the field (Field, 2013). Another factor that limits the wider interpretation of our 

results is that we have a limited task selection. Future research could consider including a wider 

range of EF tasks, and using a combination of factor analysis methods and MANCOVA or multiple 

regression analysis to explore whether wider components of EF are related to SES. It would also be 

useful to explore specific measures of inhibitory control to explore which aspects of EF are more 

closely related to SES. 
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The SES as measured by the parental occupations in our sample was reasonably representative, 

though slightly higher than we might expect for London distributions. This perhaps relates to the fact 

that only 30 participants were in the lowest category of occupation both parents ‘never worked’, so 

these were excluded from analysis as the group was too small. Our group sizes were uneven which 

might have affected the analysis – but this is to be expected as this is representative of the London 

population. Our parental education measure was a binary measure – did they attend university – 

this could be critiqued as we therefore had less variation in this measure than for example if we had 

assessed the parents’ years of schooling. This variable and the parental occupation variable were 

both reported by the students – previous studies have shown parental occupation assessments to be 

reasonably reliable when reported by teenagers (Lien et al., 2001), however they might be less able 

to answer more detailed questions on parental education levels than the binary measure we used.  

The MANCOVA was conducted in whole case data only. This may have meant that the poorer 

performers were excluded from this analysis, for example if those who would have performed worse 

did not manage to complete all of the tasks analysed. It would be useful in future to explore whether 

this is the case in our data, and perhaps to carry out the MANCOVA in the imputed dataset to 

account for this potential source of bias.  

It would be useful to consider whether our effects were driven across the whole spectrum of SES, or 

whether there are specific levels of SES that are driving the significant effects we saw. For example, 

ANOVA with post-hoc tests could reveal whether the associations between SES occupation measures 

and EFs are driven across the whole gamut of assessed SES, or whether these effects are driven by 

differences between only some of the SES categories. A further analysis of interest could be to 

consider whether occupation related disparities in the EF tasks also occur within State or 

Independent school samples – i.e. is the relationship between occupation stronger or weaker within 

participants who attend state or independent schools?  

The effect sizes across this study were very small – in the MANCOVA, the partial eta square values 

were between .004 and .055. This does however fit with previous research – in a meta-analysis, 

Lawson et al. (2018) concluded that it is possible that SES and EF are only weakly related, with small 

effect sizes. In their meta-analysis SES accounted for only around 2.6% and 7.8% of the variance in EF 

measures. Our effect sizes are considerably smaller than this for some of our observed SES and EF 

associations, but the school type variable does fit into this range. 

Results were not corrected for multiple comparisons. If we were to conduct Bonferroni correction to 

each analysis, i.e. within each multiple regression analysis with a single outcome variable, we would 

divide the intended p-value of .05 by the number of considered SES and covariates (i.e. .05/7). In this 
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case, almost all of the results would remain significant at this corrected value, suggesting our 

conclusions would survive Bonferroni corrections. A post-hoc power calculation was carried out for 

the multiple regression analyses, using the online calculator by Soper (2024). For an effect size of 

around .05, with .90 power, we would require 373 participants for each multiple regression analysis. 

Thus we have sufficient power to detect the expected effect sizes based on the literature search, for 

all analyses carried out. For an effect size of .004 (which was our smallest observed significant effect 

size) we would have required 4,574 participants for a .90 power – therefore we do have sufficient 

participants in the imputed dataset, but not sufficient power for the analyses with CPT omission or 

commission errors at the smallest effect sizes.   

3.5.3 Conclusions 

This chapter has demonstrated that EF is associated with SES, even after controlling for CFT. 

Associations between specific aspects of SES and of EF suggest that different measures of SES might 

have different cognitive impacts on adolescents. Some of these specific associations survive after 

accounting for fluid intelligence, suggesting that SES and EF relationships are present over and above 

associations with fluid intelligence. School type was overall the strongest SES predictor of our EF task 

and CFT scores. The reasons for this are yet to be explored, though the selective nature of 

Independent schools seems likely to play a part in this effect. The effect sizes were all really quite 

small here, with partial eta squared values of between .004 and .055 for the relationship between 

SES measures and overall EF in the MANCOVA analysis. This is encouraging from a wider social point 

of view, in that SES is not determining most of the variance in EF in adolescents. SES can be said to 

have a small but significant relationship with EF given our findings here. 
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Chapter 4.  
Developmental Trajectories of Executive 
Function and Fluid Intelligence  

4.1 Abstract 

This chapter explores the development of Executive Functions (EFs) and fluid intelligence across late 

childhood and early adolescence. Participants included in analysis in this section after data cleaning 

(and exclusions of data where the ages were likely incorrectly reported – see Chapter 2 for 

details)were aged M= 12.05 (SD=0.48, range 10-13 years) at baseline, and at follow-up were aged 

M=14.62 (SD=0.52, range 13-16 years). Scores from the cognitive tasks in the main SCAMP battery 

described in Chapter 2 are used to assess EF and fluid intelligence.  

When considering data from across both assessment points, linear regressions reveal a small but 

significant effect of age on all but one (CPT omissions) of the task measures considered, with older 

participants performing better than younger ones. Multi-level modelling shows that these effects 

remain significant when also including a random intercept per participant in the model, suggesting 

that even after accounting for the fact data come from the same participants at baseline and follow-

up, there are still significant age-related improvements in performance. Further multiple regressions 

show that task scores at follow-up were better predicted by participants’ baseline scores than by 

their age at baseline or age change. Another set of regression analysis shows no significant 

association between change in task score between baseline and follow-up and age change or age at 

baseline. Change in task score is significantly negatively associated with baseline score. Finally, 

explorations to investigate potential practice effects showed that not all of the age-related 

improvements in task performance observed in the first set of analyses were related to practice 

effects. There is little evidence of any age-related development of task scores within either of the 

assessment periods, however, comparing age-related development within subsamples of 

participants with task data at only one or both assessment points shows that some but not all of the 

age-related improvement in task scores observed in analysis Part 1 were due to practice effects. 

Findings are discussed in relation to previous literature.  
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4.1 Introduction 

This chapter considers the developmental trajectories during early adolescence of the EF and 

general intelligence cognitive task measures. The general development of EF during adolescence was 

discussed in the general introduction Chapter 1.  

As reviewed in Chapter 1, overall, age related improvements in EF task performance can be 

observed across childhood and adolescence. The three key EF components of inhibition, working 

memory and switching having somewhat different developmental trajectories across this period. 

Furthermore, within those broad components, specific tasks and task measures have also been 

shown to have different patterns of development. Developmental studies have indicated that 

measures of inhibition performance reach adult-like levels at some point between age 11 and 14, 

with specific tasks and task measures showing some variation in age that peak performance is 

reached (Brocki & Bohlin, 2004; Huizinga et al., 2006b; Luna et al., 2004).  Working memory capacity 

is likely to reach a peak in performance around age 13-15 (De Luca et al., 2003; Huizinga et al., 

2006b); where more strategic aspects of WM may not reach their peak until early adulthood (De 

Luca et al., 2003). Improvements in switching ability with age can be observed until mid-

adolescence, perhaps reaching a peak in performance by around age 15 (Best et al., 2009; Huizinga 

et al., 2006b). Some measures of switching ability might begin to level off by around age 8-10 in 

some measures (De Luca et al., 2003).  

Specific EF tasks might show specific age-related developmental trends during childhood and 

adolescence. The tasks considered in this chapter are: Trail making task (TMT), Backward digit span 

(BDS), Spatial working memory (SWM), Corsi block task, Continuous performance task (CPT), and 

Cattell’s culture fair task (CFT). The tasks are described in detail in Chapter 2. After data cleaning and 

exclusions (See Chapter 2.7 for details) participants in the SCAMP cohort range in age from 10 to 16 

years, with N = 6,591 participants assessed at baseline, aged between 10.4 and 13.5 years (M = 

12.05 ; SD = 0.48), and N =  5,116 participants assessed at follow-up, aged between 13.1 and 16 

years (M = 14.26; SD = 0.52). A summary of previous research that has investigated development in 

the same or similar tasks within similar age groups follows. 
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4.1.1 Development of specific task performance during late childhood and early 

adolescence 

Trail Making Task (TMT) and Switching 

Previous findings regarding the age at which development of switching ability reaches a peak have 

been somewhat conflicting. For example, in a study that considered the development in scores 

across three different switching-type tasks, some measures of switching show levelling off by around 

age 6 (Flanker task), where for the Picture-Symbol task the oldest participants (14-15 years) 

performed better than the younger groups (K. Lee et al., 2013). The Simon task switch-cost measure 

was shown to be levelling out by around age 8, with only small improvements observable beyond 

this age in this study. This illustrates the fact it is difficult to directly tap EF concepts, and the use of 

different embedding tasks can result in differing estimates of EF performance. The observed results 

perhaps reflect the idea that specific tasks are tapping somewhat different aspects of switching 

ability that have unique developmental trajectories, or perhaps that the switching cost measures are 

embedded in tasks of varying difficulty. From individual tasks it is difficult to tell whether the 

embedding task difficulty is conflated with switching ability.  

The results of Lee et al’s (2013) study are somewhat ambiguous, as some inhibitory tasks are still 

showing development in the age groups we are considering, but others appearing to have reached a 

plateau in performance. The picture-symbol task is probably most similar to the task we are using, 

and the switch-cost measure they used probably a more pure measure of switching than the other 

two tasks analysed in Lee et al.’s research. Therefore it is more likely that we will see results similar 

to their results for this task than others, with development extending up to age 14-15. This suggests 

we could expect to see age-related development on our switch cost measures of TMT.  

A previous study has investigated development of TMT scores in this age group, though a different 

task outcome measure was used. Lehto et al. (2003) investigated TMT development in a sample of 

173 girls and 196 boys aged 8-13 years. Time for completion of Part A and B was used as their task 

measures. No significant effect of age was observed in an ANOVA analysis looking at potential 

effects of their five age group categories on task scores. This would suggest that scores have reached 

a developmental plateau by the age of 8 in this study, and it is therefore possible that there will be 

little development in scores associated with age within our data. However, they used the overall 

completion times of each part rather than a more ‘pure’ measure of the switching component such 

as the proportion (B-A)/A we are using, so it does not rule out that we might see development in this 

‘purer’ EF measure. It is also possible that there will be continued development beyond age 13 that 

we might be able to observe in our sample, which this study was unable to observe due to the age 
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range considered. Finally, their sample sizes were much smaller than ours; perhaps they did not have 

sufficient statistical power to detect relatively small effect sizes that might be detectable in our 

sample.  

Backward digit span (BDS) 

Prencipe et al. (2011) found improvement in BDS scores across a sample from late childhood (8-9) to 

early adolescence (14-15) in an ANOVA analysis. They found the significant effect of age was driven 

by differences between the 8-9 year group and the 10-11 and 14-15 groups, but interestingly, the 

12-13 group did not perform significantly better than the 8-9 group, and the 12-13 group had slightly 

lower absolute scores than the 10-11 group. The task measure used for BDS was total correct, in the 

traditional progressive presentation of the task. Brocki and Bohlin (2004) also used BDS in a 

developmental study of children from 6-13 years. Again they used a progressive presentation, eight 

trials / levels, they had two attempts at same trial regardless of success on first attempt, one point 

per time each trial was correct, average points across the trials (so average of 0, 1, 2 which was 

scored for each level). Performance in BDS improved linearly with age across this age band. Another 

developmental study using BDS found no significant development with age in BDS in a sample of 138 

participants aged 11-17, using total correct in a progressive presentation as their measure. There 

were also no significant differences in performance between any of their individual age groups, i.e. 

single years between 11 and 15 and a final 15+ group (Anderson et al., 2001). 

Looking to an overall prediction for our study based on these findings, given that some previous 

studies have found age-related development in BDS performance in similar age groups to our 

sample, that our youngest participants will perform worse than our oldest participants. It is 

therefore possible that we will see an overall improvement in BDS scores with age across our 

sampled age groups. Furthermore it is possible that there will be a non-linear effect of age, as for 

example Prencipe et al. (2011) found a small dip in performance in participants aged 12-13 years 

compared with participants slightly older and younger than this, and the study where linear effects 

of age were found did not cover older participants than 13 years.  

Spatial Working Memory (SWM) – Phones task 

Lehto et al. (2003) investigated age related development in children aged 8-13 in tests from the 

Cambridge Neuropsychological Test Automated Battery (CANTAB) battery, including the original 

‘boxes’ version of the Spatial Working Memory task that our SWM ‘phones’ task was based upon. 

They found no significant effect of age in children aged 8-13 years on the SWM task, in an ANOVA 

analysis. This was true for three measures of SWM they considered: Within and Between Search 
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errors, and Strategy score. This somewhat conflicts with other prior research which has found that 

strategy measures of Working memory continue to develop into early adulthood (See also Chapter 1 

for summary of development of Working Memory overall). Previous research has suggested that 

although working memory accuracy and capacity might have reached adult-like levels by early 

adolescence, other aspects of WM performance may continue to develop into young adulthood. 

Functional gains have been observed in an efficiency measure of spatial working memory, between 

the ages of 15 and 19 years, with further increases until 20–29 years of age (De Luca et al., 2003). De 

Luca et al. also found that a strategic planning measure of working memory (equivalent to our SWM 

Strategy measure) peaked in their 20-29 year old age group.   

Overall, findings suggest that we might see some improvement with age in our SWM task, in 

particular we are more likely to see significant development with age in the strategy score measure 

as this is a higher-level EF and previous research has suggested this kind of measure shows extended 

developmental period into young adulthood.  

Corsi block tapping task 

The Corsi task is a second measure of spatial working memory used in our SCAMP battery. Previous 

research investigating development in childhood in this task has found no significant effect of age on 

a spatial span measure obtained from a traditional progressive presentation of the Corsi task, in 

children aged 8-13 years (Lehto et al., 2003). De Luca et al. (2003) also used the Corsi task in their 

research looking at EF development across the lifespan, from age 8 to 64 years. They found 

significant effects of age in spatial span capacity,  with 15-19 and 20-29 year olds showing the best 

performance in this task (De Luca et al., 2003).  

Given the mixed findings of previous research, it is not clear what we might expect to see in our 

study. There could be some improvement with age amongst our sample, since spatial span capacity 

has been found to still be developing until age 15-19 in one study (De Luca et al., 2003), where Lehto 

et al. (2003) found no significant improvement in Corsi performance between ages 8 and 13. Taken 

together we might predict that we could see a non-linear effect of age, for example there may be 

little difference in span capacity between our youngest participants and those in the middle of our 

range (i.e. roughly between age 10 and 13), but then an improvement may occur between ages 13 

and 16. Overall we might see a small linear change effect.  

Continuous Performance Task (CPT) 

Brocki and Bohlin (2004) used a version of a CPT task in their assessment of EF development among 

children aged 6-13. Their task used squares with different symbols inside, with a target sequence of 



138 
 

a square containing an X followed by square with a vertical line. Measures they considered were 

omission errors (which they considered to be a direct measure of inattention) and three types of 

commission errors (following the model of dividing the commission errors in Halperin et al., 1991). In 

a latent variable analysis, they found that an inhibition component of EF generally improved with 

age, with the 10-11 year olds better than 8-9 year olds. For the specific task measures of CPT, 

significant effects of age were found for the inattentive omission error measure and the impulsivity 

commission error measure, but no significant effect of age was observed on the disinhibited or 

impulsive commission error measures.  

A prediction based on this previous research might suggest that we will see a significant effect of age 

on our omission error measure, but perhaps not on the commission error measure, as two out of the 

three types of commission error did not improve with age in this previous study (Brocki & Bohlin, 

2004). However it is worth noting that our study is using older participants – they found no 

significant differences in CPT performance between their oldest participants and the other groups in 

post-hoc analysis – suggesting that perhaps performance might be beginning to level off by this age 

and therefore we won’t see large differences across our whole age sample.  

Cattell’s Culture Fair Task (CFT) – IQ proxy measure of General Fluid Intelligence (Gf) 

Scores on CFT increase across childhood. Research considering children in school grades 4, 5 and 6 

(aged approximately 8-12 years) shows significant increases in CFT score over this age group (Cahan 

& Cohen, 1989). Pubertal timing has been shown to be related to CFT scores in boys aged between 8 

and 12 years (Shangguan & Shi, 2009). In this study, levels of testosterone in saliva samples were 

used as proxy markers of pubertal development stage. Findings were somewhat complex, with 

amount of testosterone at different ages predicting being correlated with sometimes improved 

scores and at other points worse scores in CFT. Overall, there was as significant improvement in CFT 

scores between the ages of 8 and 12. Overall these studies suggest that we are likely to see some 

development in CFT task scores in our cohort.  

4.1.2 Aims 

This study aims to see whether there is any significant development in EF and Gf task scores in a 

large sample of adolescents, between age 10 and 16 years. We will investigate the association 

between Age and Task score in our dataset using linear regressions and multi-level modelling (MLM) 

techniques. We will also explore rates of change and whether these are associated with change in 

age between baseline and follow-up, and will explore whether the task score at follow-up and 
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change in score are associated with baseline scores. We will also consider the potential impact of 

practice effects on our results.   

4.2 Methods 

4.2.1 Task Measures 

A summary of the key measures used in this chapter are presented in Table 4.1. Details of task 

presentation methods, measure calculation, and data cleaning processes were covered in Chapter 2. 

We used the proportion score (time taken in (A-B)/A) for the TMT task. This was selected as it is not 

possible to show overall changes in performance from baseline to follow-up using the residual 

measure which was used in Chapter 3 analysis. This is because the residual score is centred on zero 

and is calculated across the whole sample of participants. Thus, any increase in score between two 

time points would reflect a relative improvement in switching ability compared to the other 

participants in the sample. Given that in our study the samples at the two time points are not 

identical (as many participants are missing data from one or other time point), improvements in a 

BrA residual score would not be easily interpretable. Therefore we used a proportion score (B-A)/A 

in this chapter consider scores across both time points. 

Table 4.1  Summary of cognitive task measures used in this chapter 

Task Measure Brief summary of how measure is calculated 

Trail making task (TMT) Proportion score Difference in response times between switching and letters 
condition, divided by the response time in letters condition 
(A-B)/A 

Backward digit span 
(BDS) 

Mean pass / fail level Average of the mean level of correct trials and the mean 
level of incorrect trials 

Spatial working memory 
(SWM) 

Total errors Total number of errors (within and between search errors) 
across the task levels with 4, 6, 8 and 10 items 

Strategy score Total number of excess switches of search start location 
across levels with 6, 8 and 10 items 

Corsi block task  Mean pass / fail level Average of the mean level of correct trials and the mean 
level of incorrect trials 

Cattell’s culture fair task 
(CFT) 

Total correct Total number of correct trials across odd-one-out and 
complete-the-pattern subtasks 

Continuous performance 
task (CPT) 

Omission errors Total number of omission errors when A-X target was 
missed across the task 

Commission errors Total number of commission errors when response was 
made to something other than A-X target across the task  
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4.2.2 Participants  

Participants were tested at two time points with the SCAMP computerised assessments as described 

in Chapter 2. Participants were tested during school years 7-8 at baseline, and school years 9-10 at 

follow-up. Data have been excluded for participants who reported that they were very much older 

or younger than the target age at each assessment point(see Section 2.7 for details on exclusions). 

After these exclusions, a total of n = 6,591 participants had attempted the baseline assessment, aged 

between 10.4 and 13.5 years (M = 12.05 ; SD = 0.48), and n =  5,116 participants attempted the 

follow-up assessment, aged between 13.1 and 16 years (M = 14.26; SD = 0.52). Ages are given at 

time of testing within each assessment point. Age in days was first calculated from the date of 

testing and the date of birth that was reported by the participant in the assessment questionnaire. 

Age in days was then divided by 365.25 to give age in years - this measure of age is used in analyses 

in this chapter. The distribution of participant ages included in the analysed data at each time point 

were shown in Chapter 2, Figure 2.10.  

4.2.3 Data Cleaning and Statistical Analysis  

Before analysis, the baseline task measures were z-scored, and follow-up task measures were 

standardised using the means and standard deviations from the baseline data (See Chapter 2.7). This 

was to more easily compare effect sizes across tasks, and to show the progression from baseline to 

follow-up. For measures where a lower raw score would usually indicate better performance (TMT, 

SWM total errors and strategy score, CPT omission and commission errors) scores were multiplied 

by -1 such that a higher score indicates better performance for all measures in the statistical 

analyses, for easier interpretation of results. Analysis was carried out in R version 4.0.0, with 

packages dplyr, psych, Hmisc, pastecs, lme4, lmer, QuantPsyc. 

4.2.4 Modelling Approach 

The analysis consists of four key sections. In part 1, linear regressions and MLM were used to 

investigate the relationship between overall task score and age in our dataset, across data from both 

baseline and follow-up assessments. Part 2 investigates the associations between follow-up task 

scores and both age and baseline score. Part 3 looks at whether the rate of change in task score 

between baseline and follow-up is associated with the participants’ change in age, age at baseline or 

their baseline score. Finally, Part 4 considers whether any observed age-related development is due 

entirely to practice effects. 
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4.2.5 Part 1: Overall associations between task scores and age 

In this section of analysis, data from both time points were combined into a single dataset. In 

Analysis A, separate linear regressions were run with data for each task respectively to see whether 

age predicted task scores overall, for any of the cognitive tasks. In Analysis B, Multi-level Modelling 

(MLM) was used to improve these estimates, using task scores as outcomes, age at testing as a 

predictor, and adding a random effect of participant to account for the fact that data are not 

independent samples within the two time points. 

Analysis A: Linear Regression Analysis  

Data from both assessment points were combined into a single dataset for this analysis. This method 

treated each data point as a separate observation, without considering whether the data from 

follow-up assessment came from the same participants as the data from the baseline assessments. 

Separate linear regressions were then run for each task, with respective task score as the outcome, 

and age at time of testing as a predictor. 

This analysis aimed to assess whether there is an overall association between age and cognitive task 

score, ignoring which assessment point the data came from. 

Analysis B: Multi-level Modelling  

Multi-level modelling (MLM) is a way of accounting for the similarity of the data gathered from the 

same participants multiple testing points. MLM is essentially an extension of linear regression 

methods, where random effects are first included in the model, which are used to account for the 

similarity of data obtained from a particular participant group while considering fixed effects of any 

predictors (Ntoumanis, 2014). Multi-level models, also known as linear mixed models, apply a linear 

regression model to data with a continuous outcome, with fixed effects for predictors (the same as a 

simple regression model) and adds random effects of factors which are common across time (in this 

case we apply random effects of participant to the data from baseline and follow-up). 

In this case, a random intercept per participant is used. This allows us to model data for each 

individual, remove variance which is explained by the fact the data at the two time points are 

coming from the same participant, before a standard linear model (with fixed effects of age on task 

score as outcome) is applied to the data. Simpler linear regression methods as used in Analysis A 

assume that all data points are independent – MLM may therefore be considered to be more 

appropriate when data are obtained from same participants at multiple time points (Ntoumanis, 

2014). Multi-level modelling adds random effects to a linear model to account for the fact that 
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scores at baseline and follow-up are not independent, as the same participants were present in both 

samples. This model uses all of the data from both time points, i.e. includes data for participants 

who have data at both assessments and at only one time point.  

There are two key aims for these analyses:  

1. Does age predict task score, when accounting for the fact data at the two time points comes 

from the same participants?  

2. What is the effect size of any observed association between age and task score, whilst 

accounting for individual intercepts?  

In the multi-level models we used a similar approach to the linear regressions in Analysis A, with age 

entered as a predictor and respective task score as outcome. We also added random intercept 

effects per participant to account for the fact much of the data came from the same participants 

across the two time points. It was not possible to include a random slope per participant in this 

model, as there were only at most two data points per individual and this would have resulted in an 

overfitted model. The models listed in Table 4.2 were conducted sequentially. Models were run 

using the Enter method. At each stage we checked to see if the more complex model added 

significantly to the previous one by running an ANOVA. If the ANOVA returned a significant result 

(p<.05) then the more complex model was considered to be an improvement over the previous one.  

Table 4.2 Sequential models used for multi-level modelling 

Model  Predictors included 

1 Age (intercept only) 

2 Participant (random intercept)  

3 Age (fixed) + Participant (random intercept) 

4.2.6 Part 2: Associations of score at follow-up, with age measures and score at baseline 

Next we ran multiple regressions to investigate whether score at follow-up was predicted by task 

score at baseline, age at follow-up, or change in age from baseline to follow-up. Age at baseline 

testing was calculated in decimal years from the date of birth the participant entered during the 

assessment battery, and the date on which they completed the battery. An age change measure was 

calculated by taking age in decimal years at baseline testing from age at follow-up testing. Task 

scores at baseline were the Z-scored key measures, and the follow-up scores were the transformed 

task scores (calculated as described in Chapter 2). Multiple regressions were performed separately 

for each task, with respective task score at follow-up as the outcome; predictors were respective 
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task score at baseline and the two age measures: age at baseline and change in age from baseline to 

follow-up. These predictors were entered into the models simultaneously using the Enter method. 

The key questions this analysis aimed to address were: 

1. Do baseline scores predict follow-up scores?  

2. Does age at baseline predict score at follow-up?  

3. Does change in age between baseline and follow-up predict score at follow-up? 

4. Are these relationships positive or negative? What are the relative effect sizes between age 

and score at baseline in predicting follow-up score? 

4.2.7 Part 3: Associations of change in task score with change in age, age at baseline and 

score at baseline 

Next we wanted to investigate whether the rate of change in task performance was associated with 

the rate of change in age. This analysis is also intended to investigate whether development in task 

score is the same at all ability levels, by using score at baseline as a predictor. For each participant, 

simple change scores were calculated by taking their score at baseline away from their score at 

follow-up, using the z-scored and transformed data (as described in Chapter 2) as the basis for the 

task scores. It was therefore only possible to include participants with data at both time points for 

each task respectively in this analysis. Multiple regressions were then performed with these task 

change scores as outcome; predictors were respective task score at baseline and the two age 

measures: age at baseline and change in age from baseline to follow-up. These were entered into 

the model simultaneously using the Enter method.  

The key questions addressed by this analysis were: 

1. Does task performance at baseline predict the rate of change in task score? Is the effect 

seize of any relationship between baseline score and rate of change greater or less than 

effects of age and/or age change? 

2. Do those who are younger at baseline improve more than those who are older at baseline? 

3. Is change in task score related to absolute age at baseline or follow-up, independent of their 

age at baseline testing? 

4. Is age change a strong predictor of increase in task score? 

4.2.8 Part 4: Exploration of potential practice effects 

As many participants completed the same tasks in baseline and follow-up, we wanted to rule out any 

practice effects which might confound our developmental results. Practice effects in EF tasks have 
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been shown to have durations extending for at least a year in adult populations (Basso et al., 1999). 

Practice effects in EF tasks can be investigated by running analyses within specified subsamples of 

participants, to see whether effects remain in these groups or whether effect sizes are decreased. 

(Salthouse, 2011). 

The approach here was two-fold. In Analysis A, we checked whether there were any associations 

between age and task scores within either of the assessment points. The logic of this is that any 

significant developmental effects within the time points would not be subject to practice effects, as 

participants only completed each of the tasks once within that time point. For Analysis A, we ran 

linear regressions of task score by age within data from each of the two time points, to see whether 

there are any significant effects of development within either of the time windows covered by the 

assessments at baseline and follow-up. Any significant developmental effects here would not be 

associated with practice effects, as participants only completed each task once within a time point 

(NB – any occasions where individual participants completed repeat attempts of tasks were excluded 

during the data cleaning steps, as described in Chapter 2).  

Analysis B checked whether participants who had completed the tasks only once showed differing 

patterns of age related effects on task score to those who completed the tasks at both time points. 

Logically, the subsample with data for a given task at only one time point will not display any 

practice effects, as they only completed the tasks once, where those with data at two time points 

may have some practice effects in addition to any age-related or developmental change in score. In 

Analysis B, we ran linear regressions of task score by age for each of the cognitive tasks within two 

subsamples of participants: The first group consisted of participants with data at only one time point 

for each task respectively, and the second group were those who had data at both time points for 

each task respectively. 

4.3 Results 

4.3.1 Descriptive Statistics 

Overall means and standard deviations for the cognitive task data in each assessment point are 

presented in Table 4.3. These are the raw scores for each task measure. Higher scores indicate 

better performance in CFT, Corsi and BDS. Lower scores indicate better performance for TMT 

proportion (A-B)/A, SWM errors and strategy errors measures, and the CPT Omission and 

Commission errors measures. On average, performance is slightly better at follow-up than at 

baseline for all tasks. The subsample columns are presented to show that participants who have data 

for a given task at both time points show slightly better performance on average than those who 



145 
 

have data for that task at only one time point. This is true for both baseline and follow-up data – 

showing this effect is not only due to practice effects in the follow-up testing. Rather, it indicates 

that the participants who have data at only one time point do not score as well in the tests overall as 

those who were present at school on the days of both testing points. 

Table 4.3 Descriptive statistics for the tasks baseline data raw task scores 

 Baseline Data 

 All data Subsample with 
baseline data only 

Subsample with data at 
baseline and follow-up 

Task Measure N M SD N M SD N M SD 

TMT proportion (A-B)/A 6424 0.84 0.64 2898 0.84 0.67 3526 0.83 0.61 

BDS Score 6084 4.09 0.9 2705 3.99 0.89 3379 4.17 0.89 

SWM errors 6305 28.99 13.52 3022 30.41 13.86 3283 27.69 13.06 

SWM strategy errors 6305 10.99 3.59 3022 10.86 3.1 3283 11.12 3.98 

Corsi Score 3791 5 0.78 2533 4.97 0.79 1258 5.06 0.75 

CFT Total correct 5808 13.27 3.9 2675 12.86 4.08 3133 13.62 3.69 

CPT omission errors 1572 0.54 1.04 1173 0.6 1.1 399 0.37 0.84 

CPT commission errors 1572 4.61 5.74 1173 4.8 5.85 399 4.04 5.37 

 

  
Follow-up Data 

 All data Subsample with follow-
up data only 

Subsample with data at 
baseline and follow-up  

Task Measure N M SD N M SD N M SD 

TMT proportion (A-B)/A 4918 0.79 0.62 1392 0.78 0.65 3526 0.79 0.61 

BDS Score 4864 4.4 0.99 1485 4.19 0.99 3379 4.49 0.97 

SWM errors 4627 25.37 13.05 1344 27.63 13.86 3283 24.44 12.6 

SWM strategy errors 4627 10.09 2.95 1344 10.26 2.97 3283 10.03 2.95 

Corsi Score 2093 5.32 0.89 835 5.18 0.89 1258 5.41 0.88 

CFT Total correct 4701 14.57 4.11 1568 13.86 4.57 3133 14.92 3.81 

CPT omission errors 912 0.57 1.15 513 0.68 1.3 399 0.43 0.9 

CPT commission errors 912 3.14 5.16 513 3.85 5.72 399 2.23 4.16 
Note.  Means and SDs are presented for the raw data before Z-scoring or transformation applied. 
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4.3.2 Correlations Between Cognitive Task Measures  

Data from both time points were combined into a single dataset. Overall means and standard 

deviations for each measure, and the results of Pearson’s correlations, are presented in Table 4.4. 

Positive correlations are observed between almost all of the task measures, with only CPT omission 

and SWM strategy having no significant relationship with each other at p<.05. Moderate correlations 

with R >.3 are present between BDS and SWM errors, Corsi, and CFT; between SWM errors and 

SWM strategy score and Corsi; between CFT and Corsi; and between CPT omission and commission 

errors measures. No issues with multicollinearity are present.  

Table 4.4 Pearson’s Correlation matrix showing relationships between the cognitive task measures. With means and 
standard deviations for each task measure. 

Task Measure M SD 1 2 3 4 5 6 7 

1. TMT Proportion 0.03 0.99               

2. BDS 0.16 1.06 .12**             

3. SWM Errors 0.11 0.99 .09** .33**           

4. SWM Strategy 0.11 0.94 .05** .15** .51**         

5. CORSI 0.15 1.07 .15** .35** .32** .19**       

6. CFT 0.15 1.04 .10** .39** .32** .18** .31**     

7. CPT Omission -0.01 1.04 .07** .13** .12** .04* .13** .11**   

8. CPT Commission 0.09 0.97 .08** .21** .20** .12** .25** .20** .34** 
Note. Data were Z-scored at baseline; and transformed according to the mean and SD from baseline at follow-up – these 
Z-scored / transformed values are presented above; presented Mean and SD figures are from the overall combined 
dataset i.e. across baseline and follow-up data. Values are presented for the Pearson’s coefficient (R) for each pair of 
task measures. Pair-wise deletion is used. *p<.05; **p<.01. 

4.3.3 Part 1: Overall associations between age and task scores 

Analysis A: Linear Regression Analysis  

The numbers of data points for each task along with the results of the linear regressions are shown 

in Table 4.5. Age was found to be a significant predictor of score for TMT, BDS, both SWM measures 

of errors and strategy, Corsi, and CPT commission errors, but not CPT omission errors. The largest 

effect sizes were for the Corsi task, followed by CFT then BDS, SWM strategy and errors measures, 

then the CPT commission errors and finally TMT. Using Cohen’s rules of thumb for effect sizes, the 

modelled effect size was extremely small for the TMT score (R2 = .0016), and also very small for all of 

the for the other significant task measures (R2 = .014 to .032) (Cohen, 1988). Graphs to illustrate 

these regressions are presented in Figure 4.2. A weakness of this method is that is likely to 

underestimate error terms, and p values, as the assumption of independence of data points in the 

linear regression is violated. Data from the two assessment points are not truly independent, as 
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many participants completed the tasks at both baseline and follow-up. Analysis B will attempt to 

address this issue. 

Table 4.5  Results of linear regressions with task score as outcome and age as predictor 

Outcome Predictor Std. Beta CI p R2 / R2 
adjusted 

N obs. 

TMT Age Years .04 .02 – .05 <.001 .001 / .001 11342 

BDS Age Years .16 .14 – .17 <.001 .024 / .024 10948 

SWM errors Age Years .12 .10 – .14 <.001 .015 / .014 10932 

SWM  strategy Age Years .14 .13 – .16 <.001 .021 / .021 10932 

Corsi Age Years .18 .15 – .20 <.001 .032 / .032 5884 

CFT Age Years .16 .14 – .18 <.001 .026 / .025 10509 

CPT omission Age Years -.01 -.05 – .03 .669 .000 / -.000 2484 

CPT commission Age Years .12 .08 – .16 <.001 .013 / .013 2484 
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Figure 4.1 Results of linear regressions showing associations between cognitive task scores and age, across (black) and 
within (colour) the two assessment time points. 

 
Note. Task scores are scaled (Z-scores at baseline; follow-up transformed with baseline mean and SD) and higher scores 
indicate better performance for all tasks. Black line represents the linear regression result using all data, with age as 
predictor and task score as outcome. Grey shaded area (very narrow) represents Standard Error of the Mean. R2 
represents the zero-order correlation; p is significance for overall model fit. R2 and p-values for regression for all data 
shown in black, and within time points are shown in colour. Regression lines for within time points are not shown as 
these overlapped with overall regression lines. Scatterplot of individual scores also shown in colour; Red = Baseline data, 
Turquoise = Follow-up data. 
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Analysis B: Multi-level Modelling 

For each task measure, except CPT omissions, Model 3 (which included fixed effect of Age and 

Random participant intercepts; see Table 4.2) was the best model. For CPT Omission, there was no 

significant relationship between age and task score, and therefore Model 2 including only a random 

intercept for Participant was the preferred model. Results for Model 3 for each task are reported in 

Table 4.6, including for CPT Omissions. Method used was Maximum Likelihood for all MLMs.  

Results of the multi-level modelling (Figures 4.3 & 4.4; Table 4.6) showed a significant effect of age 

on task scores in the following tasks: TMT, BDS, Corsi, SWM strategy and errors measures, CFT and 

CPT commission errors. No significant association with age is observed for CPT omission errors. The 

results show that the Corsi task has the greatest age-related development, with an improvement of 

around 1 SD in score observable from the youngest participants to the oldest. Next greatest are BDS 

and CFT which show similar amounts of age related development, with around 0.75 SD difference 

between the oldest and youngest participants. Then SWM Strategy use, SWM Errors and CPT 

Commission errors with around 0.6 SD difference across the age groups assessed. Finally, TMT shows 

a very small improvement in score, less than 0.1 SD, across this time period. CPT omission errors 

shows no significant change over this time period.   

The marginal R2 illustrates the effects of the fixed effects only (i.e. age in years), where the 

conditional R2 is the overall effect size of the model once random effects are also added (i.e. 

accounting for age and also the random participant intercepts). By comparing the marginal and 

conditional R2 values, we can see that the multi-level model including random intercepts per 

participant accounts for a much greater proportion of the variance in the data than the marginal 

effect of age alone. This is true for all the tasks. This indicates that the effect of individual differences 

on task scores is much greater than the effect of age on scores.  
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Figure 4.2 Results of Multi-level Models Showing Development of Cognitive Task Scores with Age 

 
Note. Task scores are scaled (Z-scores at baseline; follow-up transformed with baseline mean and SD). Higher scores 
indicate better performance for all tasks. Estimates predicted using multi-level models with respective task score as 
outcome, fixed effect of age, and random intercept per participant. Shaded bands represent Standard Error of the Mean. 
*** indicates the effect of age in the model is significant at p<.001. TMT_Proportion=Trail making task proportion score 
(B-A)/A; BDS=Backward Digit Span; SWM_Errors=Spatial Working Memory errors; CFT=Cattell’s Culture Fair Task score; 
SWM_Strategy= Spatial Working Memory strategy; CPT_Omission=Continuous Performance Task omission errors; 
CPT_Commission=Continuous Performance Task commission errors. 
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Note. Individual participant trajectories are shown in randomly coloured lines, for participants with valid task data at 
both time points for each task respectively. Task scores are scaled (Z-scores at baseline; follow-up transformed with 
baseline mean and SD), and higher scores indicate better performance for all tasks. Black lines are predicted estimates 
from multi-level models with respective task score as outcome, fixed effect of age, and random intercept per 
participant. Grey shaded areas (very narrow) show standard error of the mean. TMT_Proportion=Trail making task 
proportion score (B-A)/A; BDS=Backward Digit Span; SWM_Errors=Spatial Working Memory errors; CFT=Cattell’s 
Culture Fair Task score; SWM_Strategy= Spatial Working Memory strategy; CPT_Omission=Continuous Performance 
Task omission errors; CPT_Commission=Continuous Performance Task commission errors. 

Figure 4.3 Development of cognitive task scores with age, shown in black, with individual participant trajectories 
in colour. 
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Table 4.6  Results of Multi-level modelling, with task score as outcome, fixed effects of age in years, and random 
intercept per participant. 

 TMT  BDS  SWM errors 

Predictors Beta CI p Beta CI p Beta CI p 

Age in years 0.04 0.02 – 0.05 <0.001 0.16 0.15 – 0.18 <0.001 0.12 0.11 – 0.14 <0.001 

σ2 0.76   0.53   0.6   

τ00 ID 0.22   0.56   0.38   

ICC 0.22   0.52   0.39   

N ID 7816   7569   7649   

Observations 11342 10948 10932 

Marginal R2 / 
Conditional R2 

0.001 / 0.226 0.027 / 0.530 0.015 / 0.394 

 SWM strategy  Corsi  CFT  

Predictors Beta CI p Beta CI p Beta CI p 

Age in years 0.15 0.13 – 0.16 <0.001 0.18 0.16 – 0.21 <0.001 0.16 0.15 – 0.18 <0.001 

σ2 0.75   0.56   0.45   

τ00 ID 0.11   0.55   0.62   

ICC 0.13   0.5   0.58   

N ID 7649   4626   7376   

Observations 10932 5884 10509 

Marginal R2 / 
Conditional R2 

0.021 / 0.151 0.034 / 0.513 0.026 / 0.588 

 CPT Omissions  CPT Commissions  

Predictors Beta CI p Beta CI p 

Age in years -0.01 -0.05 – 0.03 0.564 0.12 0.09 – 0.16 <0.001 

σ2 0.21   0.37   

τ00 ID 0.19   0.4   

ICC 2085   2085   

N ID 0.88   0.57   

Observations 2484 2484 

Marginal R2 / 
Conditional R2 

0.000 / 0.193 0.015 / 0.406 

Note. Results for Model 3 (see Table 4.2) are presented for all task outcomes. Model 3 used age as a fixed effect 
predictor, individual participant as a random intercept, and task score as outcome. Values in non-italics relate to the 
Fixed Effects in the model. Marginal R2 is the effect of Age alone in the model without accounting for the random effects. 
Values in Italics (σ2, τ00 ID, ICC, N ID) relate to the Random Effects in the model, the random intercept per participant that 
is included. Conditional R2 is the overall model R2 when the Random Effects are included. 

  



153 
 

4.3.4 Part 2: Associations between score at follow-up, age, and score at baseline 

Next we ran multiple regressions to investigate whether task score at baseline, age at follow-up, or 

change in age from baseline to follow-up were good predictors of task score at follow-up. Results are 

shown in Table 4.7. For all task measures except CPT omission errors, there is significant association 

present between score at baseline and score at follow-up (p’s<.05). There is a positive relationship 

between score at baseline and score at follow-up – suggesting that those who scored worse at 

baseline also scored worse at follow-up. The effect sizes here vary between tasks. For BDS, Corsi and 

CFT the effect size is large. For TMT, SWM errors and CPT commission, we have medium effect sizes. 

SWM strategy has a small effect size.  

Table 4.7 Results of Multiple Regressions using Score at Follow-up as Outcome, with Score at Baseline, Age Change and 
Age at Baseline as predictors 

 TMT at Follow-up BDS at Follow-up SWM at Follow-up 

Predictors Beta CI p Beta CI p Beta CI p 

Baseline Score 0.21 0.18 – 0.24 <.001 0.51 0.48 – 0.54 <.001 0.36 0.32 – 0.39 <.001 

Age change 0 -0.03 – 0.04 .895 0.02 -0.01 – 0.05 .111 0 -0.03 – 0.03 .935 

Baseline Age -0.01 -0.04 – 0.03 .63 0.01 -0.02 – 0.04 .46 0.02 -0.01 – 0.06 .168 

Observations 3526 3379 3283 

R2 / R2 adjusted .044 / .043 .264 / .263 .127 / .126 

 SWM Strategy at Follow-up CORSI at Follow-up CFT at Follow-up 

Predictors Beta CI p Beta CI p Beta CI p 

Baseline Score 0.16 0.12 – 0.19 <.001 0.5 0.45 – 0.54 <.001 0.53 0.50 – 0.56 <.001 

Age change -0.02 -0.05 – 0.02 .373 0.01 -0.04 – 0.06 .807 0.01 -0.02 – 0.04 .369 

Baseline Age 0.02 -0.01 – 0.06 .188 -0.03 -0.08 – 0.02 .207 0 -0.03 – 0.04 .771 

Observations 3283 1258 3133 

R2 / R2 adjusted .025 / .024 .247 / .245 .282 / .281 

 CPT Omissions at Follow-up CPT Commissions at Follow-up 

Predictors Beta CI p Beta CI p 

Baseline Score 0.07 -0.02 – 0.17 .14 0.29 0.20 – 0.39 <.001 

Age change 0.02 -0.08 – 0.12 .754 0.06 -0.03 – 0.16 .201 

Baseline Age 0.08 -0.02 – 0.18 .134 0.09 -0.01 – 0.18 .074 

Observations 399 399 

R2 / R2 adjusted .011 / .004 .097 / .090 

Beta = Standardized Betas for each predictor. CI are 95% CI for the Standardized Beta values. P-values <0.05 are 
highlighted in Bold. 
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4.3.5 Part 3: Associations between change in task score and change in age, age at baseline 

and score at baseline 

Results of the multiple regressions are shown in Table 4.8, and relationships are illustrated in Figures 

4.5 and 4.6. For all tasks, there is a significant negative association between score at baseline and 

change in score between baseline and follow-up. This suggests that people who were scoring well at 

baseline improved less than those who scored poorly at baseline. The strongest predictor of change 

in score was respective task score at baseline. Further, there is no significant association of change in 

score with either of the age predictors, i.e. there was no association between participants’ age at 

baseline testing and their change in task scores, or their difference in age between baseline and 

follow-up (age change) and their change in task scores. This applies to all the cognitive tasks. 

Table 4.8 Results of Multiple Regressions using Score Change from Baseline to Follow-up as Outcome, and Score at 
Baseline, Age Change and Age at Baseline as predictors 

 TMT Change BDS Change SWM Change 

Predictors Beta CI p Beta CI p Beta CI p 

Baseline Score -.63 -.66 – -.61 <.001 -.42 -.45 – -.39 <.001 -.59 -.62 – -.56 <.001 

Age change 0 -.02 – .03 .895 .03 -.01 – .06 .111 0 -.03 – .03 .935 

Baseline Age -.01 -.03 – .02 .63 .01 -.02 – .04 .46 .02 -.01 – .05 .168 

Observations 3526 3379 3283 

R2 / R2 adjusted .401 / .400 .180 / .180 .347 / .347 

 SWM Strategy Change CORSI Change CFT Change 

Predictors Beta CI p Beta CI p Beta CI p 

Baseline Score -.77 -.79 – -.75 <.001 -.38 -.44 – -.33 <.001 -.46 -.49 – -.43 <.001 

Age change -.01 -.03 – .01 .373 .01 -.05 – .06 .807 .01 -.02 – .05 .369 

Baseline Age .02 -.01 – .04 .188 -.03 -.09 – .02 .207 0 -.03 – .04 .771 

Observations 3283 1258 3133 

R2 / R2 adjusted .595 / .594 .149 / .147 .212 / .211 

 CPT Omissions Change CPT Commissions Change 

Predictors Beta CI p Beta CI p 

Baseline Score -0.65 -0.73 – -0.58 <.001 -0.72 -0.79 – -0.66 <.001 

Age change 0.01 -0.06 – 0.09 .754 0.05 -0.02 – 0.12 .201 

Baseline Age 0.06 -0.02 – 0.13 .134 0.06 -0.01 – 0.13 .074 

Observations 399 399 

R2 / R2 adjusted .428 / .424 .525 / .522 

Beta = Standardized Betas for each predictor. CI are 95% CI for the Standardized Beta values. P-values <0.05 are 
highlighted in Bold.  
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Figure 4.4 Results of linear regressions with age change as predictor, and change in task score between baseline and 
follow-up as outcome. 

 

Note. Individual task scores are shown as black dots. The blue line represents the association between change in task 
score and age change. The Grey shaded area represents the Standard Error of the Mean. 
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Figure 4.5 Results of linear regressions with score at baseline as predictor, and change in task score between baseline 
and follow-up as outcome. 

 

Note. Individual task scores are shown as black dots. The blue line represents the association between change in task 
score and score at baseline in that task. The grey shaded area represents the Standard Error of the Mean. The graphs 
illustrate the negative relationship between task score at baseline and improvement in that score between baseline and 
follow-up. 

  



157 
 

4.3.6 Part 4: Exploration of potential practice effects across time points 

Analysis A: is there any association between age and task scores within baseline or follow-up 

assessment periods?  

We ran linear regressions of task score by age within data from each of the two time points. R2 and 

p-values for each regression within time points are shown in colour alongside the scatterplots above 

in Figure 4.2, and results are shown in Table 4.9. There was some improvement in specific task 

scores associated with age within the assessment windows: Within baseline, CFT, Corsi and SWM 

total errors showed significant association with age, and for only the BDS task within follow-up. 

However, the effect sizes were extremely small for all the associations observed (Adjusted R2  values 

between  .003 and .008 at baseline, and .001 at follow-up).  

Table 4.9 Results of linear regressions, with each task score as outcome, and age in years as predictor in each model. 
Regressions are run within data from each assessment point separately 

Outcome Predictor Std. Beta CI p R2 / R2 
adjusted 

N obs. 

 Baseline 

TMT Age Years -.01 -.04 – .01 .246 .000 / .000 6424 

BDS Age Years 0 -.02 – .03 .872 .000 / -.000 6084 

SWM errors Age Years 0 -.02 – .03 .942 .000 / -.000 6305 

SWM  strategy Age Years .09 .07 – .12 <.001 .008 / .008 6305 

Corsi Age Years .05 .02 – .08 .002 .003 / .002 3791 

CFT Age Years .05 .03 – .08 <.001 .003 / .002 5808 

CPT omission Age Years 0 -.05 – .05 .941 .000 / -.001 1572 

CPT commission Age Years .02 -.03 – .07 .354 .001 / -.000 1572 

 Follow-up 

TMT Age Years .02 -.01 – .05 .231 .000 / .000 6424 

BDS Age Years .03 .00 – .06 .036 .001 / .001 6084 

SWM errors Age Years -.02 -.05 – .01 .143 .000 / .000 6305 

SWM  strategy Age Years .01 -.02 – .04 .37 .000 / -.000 6305 

Corsi Age Years .01 -.03 – .05 .632 .000 / -.000 3791 

CFT Age Years .01 -.01 – .04 .334 .000 / -.000 5808 

CPT omission Age Years .01 -.05 – .08 .735 .000 / -.001 1572 

CPT commission Age Years -.04 -.11 – .02 .219 .002 / .001 1572 
Std. Beta = Standardized Betas for each predictor. CI are 95% CI for the Standardized Beta values. P-values <0.05 are 
highlighted in Bold. 
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Analysis B: Are associations between age and task score the same within sub-samples of 

participants who completed only one assessment point vs those who completed both 

assessments? 

We ran linear regressions of task score by age for each of the cognitive tasks within two subsamples 

of participants: The first group were participants with data at only one time point for each task 

respectively, the second were those who had data at both time points for each task respectively. 

Comparing the two sections of results in Table 4.10, we can see that the observed developmental 

effects are not entirely related to practice effects. Within the subsample with data at only one data 

point, there are still significant associations of task scores with age for all the task measures that 

showed significant development in the whole group analyses presented in Part 1 (i.e. we see 

significant effects of age for all task measures except CPT omission errors). However, there are 

notable decreases in age-related effect sizes in the one-time only group compared with those who 

completed the tasks at both time points, suggesting that at least some of the age-related 

performance increase effects we observed in the whole group analysis above may be down to 

practice effects caused by completing the same tasks at both time points. 

One caveat to this finding is that the two groups are not identical in terms of task performance: as 

shown in the descriptive statistics in the Methods section of this Chapter, Table 4.3, the participants 

with data at both time points show slightly higher scores on average than those with data only at 

one time point, and this difference in scores is present in baseline assessment. It is therefore feasible 

that development trajectories across this time period may also differ between those who attended 

school on both assessment days and therefore had data for both time points, and those who 

completed just one assessment. 

Table 4.10 Results of linear regressions, with each task score as outcome, and age in years as predictors. Regressions run 
with data from both assessment points combined as a single dataset  

Outcome Predictor Std. Beta CI p R2 / R2 
adjusted 

N obs. 

 Subsample with data at only one time point per task 

TMT Age Years .05 0.02 – 0.08 <.001 .003 / .003 4290 

BDS Age Years .12 0.09 – 0.15 <.001 .013 / .013 4187 

SWM errors Age Years .09 0.06 – 0.12 <.001 .009 / .008 4363 

SWM  strategy Age Years .10 0.07 – 0.13 <.001 .010 / .010 4363 

Corsi Age Years .12 0.09 – 0.16 <.001 .016 / .015 3366 

CFT Age Years .13 0.10 – 0.16 <.001 .017 / .017 4240 

CPT omission Age Years -.02 -0.07 – 0.03 .414 .000 / .000 1686 

CPT commission Age Years .07 0.02 – 0.12 .004 .005 / .004 1686 
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Outcome Predictor Std. Beta CI p R2 / R2 
adjusted 

N obs. 

 Subsample with data at both time points per task 

TMT Age Years .02 .00 – .05 .046 .001 / .000 7052 

BDS Age Years .16 .14 – .18 <.001 .026 / .026 6761 

SWM errors Age Years .11 .09 – .14 <.001 .013 / .012 6569 

SWM  strategy Age Years .17 .14 – .19 <.001 .027 / .027 6569 

Corsi Age Years .19 .15 – .23 <.001 .036 / .035 2518 

CFT Age Years .16 .14 – .19 <.001 .027 / .027 6269 

CPT omission Age Years -.04 -.11 – .03 .213 .002 / .001 798 

CPT commission Age Years .16 .09 – .23 <.001 .026 / .025 798 
Std. Beta = Standardized Betas for each predictor. CI are 95% CI for the Standardized Beta values. P-values <.05 are 
highlighted in Bold.  
 

4.4 Discussion 

This chapter used a combination of linear and multiple regressions, and multi-level modelling, to 

explore the associations between age and cognitive task scores during late childhood and early 

adolescence, between the ages of 10 and 16 years. In the first set of analyses, we found significant 

associations between age and task score overall for all task measures except CPT omissions. These 

effects were not entirely due to practice effects, as shown in part 4 of our analyses. In part 2 of our 

analysis, score at baseline was shown to be a strong, positive predictor of score at follow-up for all 

measures except CPT omissions. Part 2 further showed that age at baseline or age change had no 

significant association with follow-up score, when including score at baseline in the analysis. Part 3 

showed that score at baseline was also a strong predictor of change in score between baseline and 

follow-up for all measures except CPT omissions, but the association was in a negative direction. Part 

3 further showed that age change and age at baseline were not significant predictors of score 

change for any task measure.  

4.4.1 Key Findings and Interpretation 

Overall, in line with prior research, we found that measures of EF and general fluid intelligence 

improve with age across the time period of 10 to 16 years. However, the observed effect sizes were 

quite small, and some but not all of the improvements observed were likely due to practice effects 

as the same tasks were repeated at two assessment points by most participants.  
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Part 1: Age is associated with task scores 

The results of the fist set of analyses showed that there are small but significant associations 

between age and task score across the EF task measures for the TMT, BDS, SWM errors and strategy, 

Corsi, CPT commission errors, and also on CFT. All task measures except the CPT omission errors 

measure showed significant associations with age. Our observed effect sizes were all very small – 

suggesting that there are small but still significant improvements with age in EF tasks across this 

time period. The observed significant effects remained in the MLM analysis, though the effect sizes 

were decreased for the associations between age and task score when accounting for a random 

intercept per participant. Descriptive statistics also showed higher scores on average at follow-up 

than at baseline. 

In relation to previous research, these findings are largely in-keeping with previous studies. The 

finding that a relative measure of switch-cost from the TMT task improves with age between 10 and 

16 fits with findings that a switch-cost measure in a Flanker task was still developing until around age 

15 (Lee et al., 2013). We found improvement in our proportion switch-cost measure, but only a very 

small improvement of around .1 of a SD of the mean between baseline and follow-up.  

Previous findings were mixed for the BDS task, in that some studies found no significant 

development in performance during early adolescence (Brocki & Bohlin, 2004), where others did 

find development across adolescence (Prencipe et al., 2011). We found that BDS capacity did 

improve with age in our sample, but capacity only increased between baseline and follow-up by 

around 1 item on average.  

In the Corsi task, some previous research suggested we might see some improvement in spatial 

working memory capacity (Prencipe et al., 2011), where other research suggested that we might not 

(Lehto et al., 2003). We found significant improvement in spatial working memory span capacity 

across our sample, with a very small increase in capacity from baseline to follow-up of around .3 

items on average.   

For the SWM task, we saw significant but reductions in the total numbers of errors associated with 

age between ages 10 and 16, with a drop of around 3 errors in the task from baseline to follow-up 

on average. We also saw improvement in strategy use, with around 1 fewer strategy error being 

made at follow-up than at baseline. Previous research had suggested that we would see 

development in the strategy score in particular (De Luca et al., 2003) which fits with our findings. 

SWM Strategy score is the highest level skill we assess here, which involves planning an overall task 

approach. 
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A previous study suggested that CPT omission scores improved with age until around age 12 (Brocki 

& Bohlin, 2004). Here we found no significant improvement in CPT omission scores with age in our 

sample. However, we used a shortened CPT task, and therefore the absolute numbers of omission 

errors was relatively low in our sample. This might be one reason that we have no significant effect 

of age here. We did see small but significant reductions in the numbers of commission errors with 

age in our sample. Previous research had found that some types of commission errors measures 

continue to develop with age until age 13 (Brocki & Bohlin, 2004), but not other commission error 

types. Given the smaller sample size that we had in the CPT task, and the fact we used a shortened 

version of the CPT task, we thought that we would not have sufficient variance in the data to split 

apart the types of commission errors within our analysis.  

Part 2: Score at follow-up positively associated with score at baseline and age 

We found that score at baseline was a strong, positive predictor of score at follow-up. This means 

those who scored relatively higher at baseline were also scoring relatively higher at follow-up. With 

score at baseline included in the model, we found no significant effects of age, either age at baseline 

or age change. It would be possible to investigate this further by including a multi-step multiple 

regression model instead of the single, Enter version used here, for example, using age at baseline 

and age change as a first step, and then considering whether score at baseline would add anything 

to this model.  

Part 3: Change in task score negatively associated with baseline score but not change in age 

We found that score at baseline was a strong, negative predictor of score change between baseline 

and follow-up. This means that those who scored higher at baseline did not improve as much as 

those who had poorer scores. This is interesting because it counteracts some previous work looking 

at task score change over time – where often gaps between participants present at early assessment 

points continue to widen over time. 

Taken together, the results across Parts 2 and 3 show that participants with a lower score at 

baseline: a) continued to be lower scorers in follow-up; but also b) their performance improved 

relatively the higher scorers’ performance between baseline and follow-up assessments. Taken 

together, this suggests that adolescents who have lower scores and therefore poorer EF skills during 

late childhood or the start of adolescence continue to perform below their peers who had higher EF 

skills at the start of adolescence, but that they may start to ‘catch up’ to their higher performing 

peers, with the gaps between the highest and lowest performers on average narrowing over the 

course of adolescence.  
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One possible reason that we did not find association between age change and score change is that 

the absolute change values for the tasks were quite low. Furthermore, the age change variable was 

found to be non-normal, which might have affected the results. The non-normality was not able to 

be corrected, as it was caused by the fact that participants within the same school had testing 

carried out on the same day, or at least within the same week, as each other. Therefore we don’t 

have the full gamut of possible values in age change covered – rather, we have substantial clustering 

of the age change values. Finally, the change scores were only possible to calculate for participants 

who had data at both time points. This subsample may not be representative of the overall 

population. Looking at the descriptive statistics in Table 4.3, we can see that those who have data 

for both time points score higher on average than those with only data at that one time point. This 

effect could be tested statistically with a t-test or ANOVA to see if the groups are significantly 

different to one another.  

Part 4: Practice effects don’t explain all associations of task scores with age 

This set of analysis investigated whether practice effects were playing a major role in the findings 

from Part 1, where we observed a significant improvement in many of the cognitive task scores with 

age overall in the dataset.  

Firstly, we found there was some limited development within the baseline assessment window for 

three task measures: Corsi, CFT and SWM strategy. There was only one significant association 

observed between a task score and age within the follow-up window, which was the BDS task. The 

effect sizes were all extremely small, though slightly larger for the baseline tasks than at follow-up. 

This indicates that the time windows within our assessment points are likely too small to show clear 

developmental effects. Developmental improvements in cognitive task performance would not be 

expected to be particularly large within a 1-2 year time frame, and it is likely that individual 

differences will be greater than the overall association with age. It is worth noting that there were 

more effects observed within the baseline assessment point. Many of the tasks assessed would still 

be expected to be showing improvement with development in early adolescence, the time window 

covered by our baseline assessment. However, for many of the tasks, we might be expecting to see a 

slowing in the rate of development towards the middle of adolescence, and for some tasks, we 

would be expecting to see little development in certain task measures by the age of around 13. The 

finding observed here where more development is observed within the baseline window than the 

follow-up window therefore fits with previous findings that EF tasks are developing at a faster rate in 

early adolescence than later in adolescence. 



163 
 

4.4.2 Limitations of this study 

One limitation in this study is that participants within a particular school were usually all assessed on 

or very close to the same day. This means that the age differences between baseline and follow-up 

were not normally distributed, as the age change values tended to cluster together and were not 

spread out across the whole possible range. This means that the age change distribution is not 

normal, and it was not possible to make any correction for this non-normality.  

No correction for multiple comparisons was performed in the multiple regression analysis or the 

multi-level modelling. However, where results have reached significance at the uncorrected p<.05, 

these significant values would in fact survive Bonferroni correction across this whole set of analyses, 

as the p-values are all very low. Therefore the findings would still be applicable. Post-hoc power 

calculations were conducted using the online calculators by Soper (2024). For our multiple 

regression analyses, we required a sample of 1,411 for an effect size of .01 and power of .90. This is 

met for all of our analyses, except for a few of the analyses in Part 4, the within-time point analysis 

for the CPT tasks only. For the MLM models, this showed we would require 1,255 participants for an 

effect size of .01 at .90 power – this is met for all of our MLM models.  

Within the multi-level modelling used in Part 1 Analysis B, we could not include random slopes per 

participant as we only had at most two data points per participant and this would have resulted in 

an overfitted model. If we had three or more data points per participant we could model with 

random slopes per participant in addition to the random intercepts to better account for the 

similarity of the data within participants. It would also be possible to extend the multi-level 

modelling to account for other clustering that might be present in the data, for example, it would be 

possible to add a random effect for each school that the participants attended. This would be a 

‘nested’ form of MLM with multiple levels of clustering nested within each other. This could be 

useful to include as the data from individuals within certain schools are likely to be somewhat similar 

to each other, particularly for example within selective schools vs. state schools. 

It is important to consider the possibility of practice effects driving the associations observed 

between age and score. More than half of the participants with data for each task at time 2 had 

completed the task previously at time 1. It has been noted in the literature that practice effects can 

persist over at least two year intervals, and that in longitudinal studies, practice effects may to 

positively bias age-related improvement trends (Salthouse, 2010). In the Salthouse study this effect 

was particularly observed in younger adults as opposed to older adults. In another study with adults, 

Salthouse et al demonstrated that an interval of at least 7 years between test administration was 

needed to reduce the positive practice effects to 0 (Salthouse et al., 2004).  
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Another issue here is that the participants who are present at both time points may not be 

representative of the sample as a whole. Students who miss a greater number of school days are 

more likely to have been absent on one of the testing days, than those who miss fewer school days. 

There is also evidence that students who miss fewer school days do better in school, and also may 

have higher IQs and overall better cognitive performance. This is backed up in the data here –

inspecting the scores within each assessment point, we can see that the subsample who have valid 

data at both time points generally perform better than the subsample who only have data in one 

time point. This is a potential confounding factor, especially in the regression models which were run 

on the subsample with both time point data – in these models we see no effect of age change on 

either score at follow-up (Part 2) or with change in task scores (Part 3) but there is a significant 

association between score at baseline and score at follow-up (Part 2), with those scoring better at 

baseline also scoring better at follow-up. There is also an effect in analysis Part 3 where those 

scoring lower at baseline improved more than those who scored better at baseline– since this model 

is only run within the participants with data at both points. 

One potential improvement to this study is that we could consider regressing out any gender and 

ethnicity effects. When data checks were carried out, there were some significant differences 

observed between genders on some of the cognitive tasks, and a few effects of ethnicity group on 

task score also. The effect sizes were not very large, but these are potential confounders which could 

be addressed by regressing out effects of these variables by including them as covariates in the 

models.  

4.1.1 Future Research Directions 

The onset of puberty happens at different chronological ages. It has been suggested that the 

changes in pubertal hormone levels might act to induce a sensitive period with increased neural 

plasticity in association with EF development during adolescence (Laube et al., 2020). This means 

that it is important to consider not only chronological age, but also pubertal status when considering 

stages of EF development. During the SCAMP assessments, a sub-set of participants in the Bio-Zone 

add-on study (see Chapter 2 & Table 2.1) had saliva samples collected in order to analyse their 

pubertal hormone levels at the time of assessment, at both baseline and follow-up. There is 

potential to re-analyse the data for this sub-set of participants with some indication of their 

individual pubertal stage. However, the samples were only collected on the two occasions at testing 

– to better understand individual’s pubertal stage it would be necessary to have collected multiple 

additional samples before and after the testing point to see the relative change in the individual’s 

hormone levels, rather than just taking a one-off snapshot sample. We also did not consider any 
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non-linear effects of age, where previous research might have suggested we could see this. Future 

research could consider exploring whether there are non-linear effects present for the Corsi and BDS 

tasks in particular.  

4.4.3 Conclusions 

In Chapter 4 we investigated the development of task scores across the age range of 10 - 16 years. 

We found small but significant effect of age on all but one of our EF task measures, and also on our 

measure of Gf. This effect was present over and above the practice effect, i.e. the normally expected 

improvement associated with some participants having completed the tasks more than once.   
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Chapter 5.  
Structural Models of Executive Functions 
at Baseline and Follow-up Assessment 

5.1 Abstract 

This chapter investigates the latent structure of EF in the SCAMP cohort at two time points in early 

adolescence. Participants were N = 6,591 participants assessed at baseline, aged between 10.4 and 

13.5 years (M = 12.05 ; SD = 0.48), and N =  5,116 participants assessed at follow-up, aged between 

13.1 and 16 years (M = 14.26; SD = 0.52). Task measures and questionnaire data are taken from the 

main SCAMP assessment battery. A series of exploratory and subsequent confirmatory factor 

analysis was carried out on data from baseline and follow-up separately to investigate the structural 

relationships of EF, fluid intelligence and mental health at two time points across early adolescence.  

At baseline, a three-factor model best explained the structure of EF data, with components labelled 

as combined switching and working memory; planning; and attention. A three-factor model was also 

best fit at follow-up, with slightly different latent components which were labelled as combined 

switching and working memory; spatial working memory; and attention. At both time points the EF 

components were significantly correlated with each other, supporting a unity-yet-diversity model of 

EF structure. 

Next, a fluid intelligence measure was added in addition to EF task scores. At baseline, fluid 

intelligence fit within an underlying component alongside some of the EF measures, resulting in a 

three-factor model with components labelled combined EF and general fluid intelligence; spatial 

working memory; and attention. In the follow-up sample, a single factor explained the data best 

when fluid intelligence was added, which was labelled general intelligence or G.  

Finally, we added scores on the five sub-scales of the Strengths and Difficulties Questionnaire (SDQ; 

Goodman & Goodman, 2009) as a measure of mental health. Results showed that SDQ formed two 

additional components at baseline, resulting in a five-factor model: three EF components; a 

problems SDQ component; and a strengths SDQ component. At follow-up, a single factor structure 

was found containing all the cognitive tasks and the SDQ measures, which was labelled general 

intelligence or G. Results are discussed in the context of the wider literature.  
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5.2 Introduction 

As covered in Chapter 1, adolescence marks a period of significant development in terms of EF 

components. Measures of inhibition, working memory and switching ability all show significant 

improvements during adolescence. The structure of EF in unity-yet-diversity models of EF during 

adulthood has been covered in Chapter 1. Here, I will summarise findings relating to the underlying 

structure of EF in childhood and during adolescence, with a focus on the structure of EF within the 

age range covered by the SCAMP sample. 

5.2.1 EF Structure in Children 

Studies looking at structure of EF components in young children have generally found less 

differentiated EF structural models than in adulthood. One influential example of a factor analysis 

study looking at EF structure in children aged between 2-6 years, with a mean age of 3.9 years, 

found a single-factor, unitary model best described EF in this age group (Wiebe et al., 2008). This 

study was conducted using data from a battery of 10 EF tasks, and used CFA methods to investigate 

whether children’s EF is best modelled by a single factor, two factors or a full three-factor model 

similar to Miyake’s model in adults. Their findings suggest that EFs in young children are less 

differentiated than in adults, as a single factor was the best model here. This suggests that the 

neural and cognitive processes that underpin EF task performance undergo some reorganisation 

during the period between childhood and adulthood, i.e. during adolescence, and that there might 

be a process of moving from less-differentiated EFs to more differentiated ones over the period of 

late childhood to adolescence.  

5.2.2 EF Structure in Adolescence  

Studies considering EF structures in late childhood and adolescence have more mixed findings. 

Evidence from cross-sectional studies where children within a similar age range as the participants in 

the present study are presented here. In the studies mentioned in this section, children are grouped 

into a single group across multiple ages for structural analyses.  

In a cross-sectional study of EF structure in children aged 8-13, mean age 10.5, Lehto et al. (2003) 

found that the best model of EF was a three factor model with inhibition, switching and working 

memory components, similar to the model found in adults by Miyake et al. (2000). Initially this 

three-factor solution was identified using EFA. Using follow-up CFA analysis in the same data, they 

compared the identified three-factor model to one- and two-factor models. They found the three-
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factor model was the best fit for the data. They also found that allowing the factors to correlate with 

each other produced better fit metrics than forcing the factors to be orthogonal to one another.   

Alfonso and Lonigan (2021) found a two-factor model of EF in early adolescence, in a sample of 174 

middle school students in Florida (Mean age of 12.8 years, range between 10 and 15). The two 

factors were labelled as working memory and a combined shifting and inhibitory control factor. They 

had theorised a model similar to Miyake and they used three tasks per expected component – yet 

still found a two-factor model. 

In a sample that included a clinical population of adolescents with ADHD and controls, aged 12-19, 

Barkley et al., (2001) found a three factor model of EF using a battery of cognitive tasks. They 

described these factors as CPT inattention, working memory, and CPT inhibition. CPT omission 

errors, CPT correct response speed standard error, and variability of the standard error of CPT 

response speed measures loaded on CPT inattention; CPT commission errors and CPT correct 

response speed loaded on the inhibition factor; backward digit span, Simon task, verbal fluency, 

object usage task and fluency task loaded on a working memory factor. Their clinical population of 

teens with ADHD showed significantly greater inattention than controls without any diagnosed 

conditions. No differences between controls and these clinical participants were observed for the 

working memory or inhibition components. 

Malagoli & Usai (2015) conducted a cross-sectional analysis of WM and inhibition measures in a 

sample of participants aged 14-19. They found a two-factor model was the best fit for their data, 

with their four inhibition tasks clustered on one factor, and WM measures forming a separate factor. 

They find 2 factor model of EF is a better fit than a one factor model. They only used tasks of WM 

and inhibition so it was not really possible for them to find any more factors as they did not assess 

switching for example. They do also found that the WM and inhibition tasks are reasonably well 

related to each other – so a unity-yet-diversity hypothesis of EF in adolescence is supported here. 

Inhibition measures were all on one factor here – this contrasts to Friedman & Miyake (2004) who 

found inhibition forms multiple factors in adults.  

In slightly younger participants aged 6-13, Brocki & Bohlin (2004) found a three-factor model of EF. 

They described their components as Disinhibition, Speed/arousal, and Working memory/Fluency. 

EFA was used so factors could be any structure – this is similar to our analysis approach, as they 

were not looking for any pre-defined structure. They found low unity among the factors identified, 

with only correlations of -.12 to -.15, which contrasts with most other EF factor analysis findings. 

Anderson et al. (2001) used PCA methods, and found a five-factor model was the best explanation 

for their EF data in participants aged 11-17, who were treated as a single group.  
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Adolescence is a period of rapid development with multiple biological, behavioural, cognitive and 

societal phases. As such collapsing across time points during adolescence means it is possible that 

we are collapsing across developmental phases within adolescence. In the cross-sectional studies 

reviewed above, participants were often grouped into widely ranging age groups, with a single 

model being used to describe the data across all age groups overall. This means that it is not possible 

for this research to highlight any developmental changes in EF structure across the tested age 

groups. This could be problematic as other research has indicated that structures of EF components 

change and develop significantly across adolescence. Better evidence for the ways in which structure 

of EF changes during adolescence comes from studies where the same tasks are applied to 

participants of different ages. These studies may be either cross-sectional in approach, with data 

from participants in different age groups are structurally analysed separately, or longitudinal, where 

the same participants are assessed at different times. In studies providing the best evidence for the 

changing structure of EFs over adolescence, factor analysis is carried out within narrow age groups, 

perhaps as small as single year of age. A strength of this type of study is by using the same tasks 

across different age groups, variance due to differences in task requirements is removed, and 

therefore gives us a purer estimate of the developmental related differences in EF structure than 

comparing results across studies which have used different sets of tasks. A further strength of 

longitudinal studies, i.e. of using follow-up assessments using the same tasks with the same 

participants, is that variance due to both task requirement and individual participant characteristics 

is reduced. 

Huizinga et al. (2006) used a cross-sectional design, performing latent class modelling with children 

in different age groups (7, 11, 13 and 15 year olds) and young adults (21 year olds). They used tasks 

designed to tap working memory, inhibition and shifting, and two complex EF tasks (WCST and TOL). 

They found that a two-factor model best explained their data at all ages considered. The two factors 

were working memory and switching. Interestingly they found that inhibition did not lie on a single 

factor within their sample, rather was best explained with individual tasks as manifest variables in 

the final model. Xu et al. (2013) also carried out cross-sectional structural analysis of EF, using groups 

of 7-9, 10-12, and 13-15 year olds. They found a single EF factor was the best model in their 

youngest and middle groups, then a three-factor model with working memory, inhibition, and 

shifting in oldest group. 

Lee et al. (2013) used structural analysis on data from a battery of EF tasks in children aged between 

6 and 15, considering models within single year age groups. They used CFA methods to check for the 

most appropriate structure at each age, using Miyake et al.’s three factors as a basis for their model 

structures. Using CFA they compared a full three-factor model with all possible two-factor models 
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and a unitary model. For participants aged 6-13 years, they found a two-factor model was the best 

fit for the data. The two factors were updating working memory, and a combined inhibition-

switching factor. Although a three-factor model also had good fit metrics for participants aged 6-12, 

the three-factor model was inadmissible as the model parameters required a correlation of greater 

than 1 between the inhibition and switching components. Within their age 11 and 12 participants, 

they found that the three-factor model was admissible, but there was a strong correlation between 

the inhibition and switching components (r =.86), and the fit metrics were similar between the two- 

and three- factor models in this age group, so the two-factor model was deemed to be more 

parsimonious and therefore was accepted for this group. For participants age 13 and 14, they 

selected the three-factor model, though the authors noted reservations regarding high correlations 

between latent variables of switching and inhibition in the 13 year old group, and some issues with 

similarity of fit metrics in the 14 year old group. In the age 15 group, they found more convincing 

evidence for a three-factor model, where a structure with working memory, inhibition and switching 

as separate components had improved fit metrics over any two- or one- factor model, and also the 

correlation between the any of the latent variables was not considered to be overly high.  

A good feature of the Lee et al. (2013)  study is that they followed participants longitudinally over 4 

years, reducing variance due to individual participant characteristics over time. Results for the latent 

variable modelling at each age point use all the data from all participants across that age group, i.e. 

the data were combined from participants who had previously completed the tasks at previous time 

points, and from participants who were completing the tasks for the first time. This is somewhat 

similar in approach to the method used in this paper – in that some participants in the SCAMP 

follow-up assessment had completed the assessment at baseline and some were not present at 

baseline assessment, so were completing the tasks for the first time.  

5.2.3 Summary of Findings from Adolescent Studies  

Findings relating to the development of structure of EF during adolescence have been rather mixed. 

Three-factor structures of EF have been observed in participants aged 12-19 (Barkley et al., 2001), 

and at ages 13-15 (Lee et al., 2013; Xu et al., 2013). Among younger participants, a one-factor model 

has been observed in participants aged 7-9 and 10-12 (Xu et al., 2013), where in other studies a two-

factor model has been found in participants aged 6-12 (Lee et al., 2013). Taken together, these 

findings could suggest that some point around age 13 marks the transition to a more differentiated 

structure of EFs. However, other research has also found three-factor models in younger participants 

aged between 6 and 13 (Brocki & Bohlin, 2004; Lehto et al., 2003), and even a five-factor model has 

been observed in older teenage participants aged 11-17  (Anderson et al., 2001).  
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Furthermore, the nature of the factors identified in these studies varies significantly, with studies 

using exploratory factor analysis methods (such as EFA and PCA) frequently finding structures other 

than the widely used model of working memory, inhibition and switching. The fact that factors are 

not always found to match this structure might depend on the specific tasks and measures used in 

studies; or it may be that there is no consistent structure to EF during adolescence, rather structures 

are in a state of flux across this period.  

One reason for the lack of consistency across studies might be the use of varying tasks in the factor 

analysis research. As discussed in Chapter 1, EF tasks by their nature are embedded within complex 

tasks which require multiple cognitive processes to work together to successfully complete them. 

Labelling of factors identified by EFA is therefore complex. In EFA, we do not have a specific 

expected structure to the data. When considering the labels we apply to the components identified 

in EFA, we need to carefully consider both the main EF ability that is needed for task performance 

across the contributing tasks, any other EFs which are required, and any other important cognitive 

abilities that may also be required for performance across the tasks. An example illustrating this 

complexity comes from Lehto et al. (2003). They labelled an EF component which included Tower of 

London performance as ‘inhibition’. However this task is often considered as a more complex EF 

task, rather than purely relating to inhibitory processes, and the component might therefore be 

better labelled as something like ‘planning’ or ‘general EF’. 

Task selection is very important in factor analysis research, and changing the specific tasks used to 

assess EF can greatly influence the latent variable structures that are identified when modelling. This 

is of particular issue in CFA analysis, where tasks are chosen carefully to target particular 

hypothesised EF components. Miyake et al. (2000) make clear that they only put in tasks thought to 

fit with their three hypothesised components; they also explain that including other types of EF tasks 

would be theoretically justifiable and might well change the latent structures a factor analysis model 

would produce. Alfonso and Lonigan (2021) found a two-factor model of EF in early adolescence, in a 

sample of 174 middle school students in Florida (M age=12.78, SD =1.18). The two factors were 

labelled as working memory and a combined shifting and inhibitory control factor. They had 

theorised a model similar to Miyake and they used three tasks per expected component – yet still 

found a two-factor model. Use of EFA is also complex, in that labelling factors within the models can 

be difficult, as it may not be clear exactly what cognitive process is underlying a given factor, or what 

process the task measures have in common with each other.  

Many different tasks have been used across the studies cited here, and where the same tasks have 

been used, specific task measures have also differed. Given that specific EF tasks and even individual 
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task measures have been shown to have different developmental trajectories, it is likely that this is a 

factor in different researchers finding slightly different results in EF structural research. This makes it 

difficult to reconcile from the existing literature overall what the pattern of development of EF 

structure is during childhood and adolescence. Studies use differing sample sizes, clinical or non-

clinical populations, and participants of slightly differing ages, making overall conclusions more 

difficult (Zelazo et al., 2016). Furthermore, in adolescence there is a complicating factor of puberty 

to take into account. Within any particular age or school year sample we will have people of 

different biological stages of puberty. Girls and boys also begin puberty at different ages, on 

average. The onset of puberty happens at different chronological ages. It has been suggested that 

the changes in pubertal hormone levels might act to induce a sensitive period with increased neural 

plasticity in association with EF development during adolescence (Laube et al., 2020). This means 

that it is important to consider not only chronological age, but also pubertal status when considering 

EF development in adolescence.  

Based on previous work, it is rather difficult to predict what exact structure of EF is likely to come 

out of our research. However, one possibility is that we will find a less-differentiated structure in the 

younger participants, and a more differentiated factor structure in the older participants – this broad 

pattern has been found in studies that have considered the development of EF factor structure in 

adolescence (Lee et al., 2013; Xu et al., 2013).  

5.2.4 Rationale for investigating EF structure in the SCAMP cohort 

The above summary of previous research in this area sets the scene for our study – in younger 

children, research has generally shown a less differentiated, perhaps single factor or two-factor 

model to be a good fit for EF data. In adults, a three-factor model of EF is largely accepted in the 

literature, as described in Chapter 1. Adolescence marks a period of development in terms of 

improving performance across broad EF components (as described in Chapter 1) and of specific EF 

tasks (see Introduction to Chapter 4 for a review of previous research, and the findings from Chapter 

4 relating to our specific sample). Structural underpinnings of EF are also believed to be in a period 

of transition, from the less differentiated models found in early childhood, to the more 

differentiated models observed in later adolescence and adulthood. Findings from research 

considering the structure of EFs during adolescence generally indicates that adolescents gradually 

move from a less-differentiated structure present in childhood, to a more differentiated three-factor 

structure by the mid-teens (K. Lee et al., 2013). This study will explore the factor structure present in 

EF at two time points during adolescence, firstly within the baseline assessment period, with 
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participants aged between 10 and 13 years, and secondly within the follow-up assessment period, 

where participants were aged between 13 and 16 years. 

5.2.5 Strengths and Difficulties Questionnaire 

The SDQ is a well-validated indicator of child mental health and behavioural problems. Higher total 

difficulties scores reflect an increased chance of psychopathology diagnosis (A. Goodman & 

Goodman, 2009). The questionnaire covers five subscales, over four domains of difficulties: 

emotional symptoms, conduct problems, hyperactivity problems and peer problems; and one 

strength domain: prosocial behaviours. The difficulty subscales can be grouped into internalising 

problems (measured by the emotional problems and peer problems scales) and externalising 

problems (conduct problems and hyperactivity scales).  

EF performance has been found to be negatively related to concurrent mental health in 

adolescence. Participants aged 11-16 with more errors in the WCST were more likely to have higher 

scores of depression symptoms. EF performance was also predictive of later anxiety symptoms two 

years later (Han et al., 2016). EF predicted later anxiety even after accounting for IQ, suggesting a 

specific association between adolescent EF and anxiety symptoms in later adolescence. WM capacity 

may act as a mediator of the relationship between trait anxiety and academic achievement (Alfonso 

& Lonigan, 2021). Anxiety and depression are examples of internalising disorders, where the person 

has mental health symptoms which are related to their internal cognitive, affective and behavioural 

problems. Although the SDQ does not measure specific symptoms of anxiety or depression disorders 

directly, more general internalising problems are assessed by the peer and emotional problem 

scales.  

A recent study has shows that aspects of SDQ and EF are related in adolescence (Donati et al., 2021). 

Within early adolescence (age 10-13 years), higher internalising and externalising problem scores on 

the SDQ were associated with poorer working memory and inhibition task performance. In later 

adolescence (age 14-19 years), significant association was observed between externalising problems 

and working memory scores, but there was no concurrent association between internalising 

problem scores and working memory within their later adolescence time point. Using a cross-lagged 

model, they further showed that internalising and externalising problems as measured by the SDQ 

predicted worse later working memory scores, but that later inhibitory task performance was not 

predicted by earlier SDQ scores. Earlier executive function measures did not predict later SDQ score. 

These findings suggest a developmental link from earlier internalising and externalising problems to 

a later reduction in EF scores. In the context of the present study, the findings of Donati, Meaburn 

and Dumontheil (2021) would suggest that we can expect negative correlations between the SDQ 
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problem subscales and working memory and inhibition within our baseline sample, and that we are 

less likely to observe such correlations between SDQ and EF within the follow-up sample.  

In a study investigating group differences between children identified as hyperactive by their 

teachers and controls, the hyperactivity subscale of the SDQ has been found to be associated with 

literacy measures, tasks of inhibition and executive function, but not with verbal working memory 

measures (Adams & Snowling, 2001). This suggests that certain aspects of the SDQ may associate 

with certain aspects of EF.  

Given that the hyperactivity subscale of SDQ has previously been associated with inhibition and 

executive functions (Adams & Snowling, 2001), we might expect to see that this subscale clusters 

with some of our EF measures, and may be most likely to cluster with the TMT measure. Adams and 

Snowling did not however find association between hyperactivity and verbal working memory, 

leading to a prediction that we may not see this SDQ subscale clustering with our BDS measure.  

5.2.6 Factor Analysis Methods  

Exploratory factor analysis (EFA) is statistical method by which data from multiple source measures 

is reduced to a number of factors (also called components, or latent variables) without prior 

specification of the number of factors to be included in the model (Beaujean, 2014). EFA is 

somewhat similar in this regard to principal component analysis (PCA), which is another statistical 

method that extracts components from data without a pre-defined structure in mind. This is in 

contrast to confirmatory factor analysis (CFA), where a specific pre-planned model structure of 

latent variables is tested to see whether the pre-planned model structure is a good fit to the dataset. 

In both EFA and CFA, the methods allow the factors extracted to be either orthogonal to each other, 

or to be correlated with one another. In previous EF structural research, factors have been found to 

be correlated with one another (Miyake et al., 2000; Zelazo et al., 2008). This consideration will 

determine the factor rotation method that will be applied in this study – we have selected an 

oblique factor rotation method (oblimin), as recommended by Osborne and Costello (2009). Another 

consideration when constructing factor analysis models is the selection of which model is the ‘best’ 

fit for the data. When conducting EFA, multiple possible models could theoretically be used to 

describe the underlying data patterns, and the researcher must choose between the possible 

structures. To this end, goodness-of-fit metrics are used. Hu and Bentler (1999) suggest that 

comparative fit index (CFI), Tucker-Lewis Index (TLI), root mean square error of approximation 

(RMSEA), and standardized root mean square residual (SRMR) can be used to estimate the 

performance of a model. Multiple other metrics are also used in the literature. Each fit metric 

assesses a particular aspect of goodness-of-fit. When judging an EFA model, these metrics can either 
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be chosen a-priori, or it is possible to apply many metrics to the data then see which model produces 

the greatest number of significant results in order to choose the most appropriate model, this is 

referred to as a method agreement procedure (Makowski, 2018). We will apply the method 

agreement procedure to select the best models here.  

5.2.7 Aims  

This study has three major aims. Firstly, we are interested in seeing what structure of EFs can be 

observed during adolescence at our two assessment points, in school years 7-8 and school years 9-

10 respectively, and whether there are any differences between the EF structures between these 

age groups. The tripartite model as described by Miyake et al. (2000) in adults provides a working 

framework for investigation. Using exploratory factor analysis, we would like to investigate what 

structure EFs have in adolescence; whether this structure is a similar three-factor organisation to 

that which has been noted in adulthood; and whether we see both unity and diversity of the latent 

variable structures in adolescence. There is evidence that EF structure changes across adolescence, 

with research prior research generally indicating that EFs become more differentiated across 

development (e.g. Lee et al., 2013). Factor analysis will therefore also be used to investigate whether 

similar EF structures are found at both our assessment points, or whether there are differences in 

structures at our two assessment points.  

Secondly, we want to see whether fluid intelligence sits alongside EF measures within any of the 

identified EF latent variables, or whether it forms its own distinct factor from the EF tasks. This will 

be investigated at both assessment points.  

Finally, prior research has indicated that mental health issues such as internalising and externalising 

problems as measured by the SDQ are associated with EF in adolescence ; Donati et al., 2021; Han et 

al., 2016). Our last aim is to see whether any of the subscales from the SDQ form latent variable 

factors alongside either EFs or fluid intelligence, and also whether the SDQ subscales sit together in 

the same factor as each other. Again, this will be investigated in both assessment points.  

This study will extend the available literature considering structure of EF in adolescence. A potential 

strength of this study is that we are using the same participants at both time points; this will enable 

us to see the development of structures in the same sample of participants, and should reduce 

variance that might occur by using different participants in the separate analyses. However it should 

be noted that practice effects might come into play and influence task performance at follow-up 

(see Chapter 4). This study will offer a structural analysis of EF at two time points across 

adolescence. This should help to identify whether the structure of EF in adolescence is differentiated 
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into separate though related components, or whether a single factor is a better explanation for 

adolescent EF structure. As we will not be collapsing across wide age bands, rather conducting 

separate analysis of participants at younger and older time points, we should be able to see whether 

the structure of EF changes from early to later adolescence. By adding CFT and SDQ measures into 

the structural analysis, we should be able to see whether EFs are structurally separate from fluid 

intelligence, and whether mental health measures cluster with EFs. 

5.3 Methods 

5.3.1 Task and Questionnaire Measures 

The EF task measures were: TMT Proportion score, BDS score, SWM errors, SWM strategy, CORSI 

score, CPT omission errors, and CPT commission errors. For fluid intelligence, we used the total score 

on the CFT task. For all the cognitive tasks, we used Z-scored data at baseline and scaled data at 

follow-up. See Chapter 2 for details on measure selection, calculation and scaling methods. For the 

SDQ measures, sum scores out of 10 for each of the five subscales (emotional symptoms, conduct 

problems, hyperactivity problems, peer problems, and prosocial behaviours) were used. For details 

of the SDQ scoring methods and the items in the SDQ, see Chapter 2 and Appendix A respectively.  

5.3.2 EFA and CFA Modelling Procedures 

Three sets of models were investigated within each testing point, i.e. within baseline and follow-up 

data. Models 1-3 were carried out using baseline data. After exclusions based on incorrect ages were 

carried out (see Section 2.7 for details on exclusions and data cleaning), N = 6,591 participants were 

assessed at baseline, aged between 10.4 and 13.5 years (M = 12.05 ; SD = 0.48).Models 4-6 used the 

follow-up data. Participants at follow-up were N =  5,116, aged between 13.1 and 16 years (M = 

14.26; SD = 0.52). In the first stage of modelling, Models 1 and 4 used the EF task scores: TMT 

Proportion score, BDS score, SWM errors, SWM strategy, CORSI score, CPT omission errors, and CPT 

commission errors. In the second set of models (Models 2 and 5), CFT score was added, to see if the 

resulting factor structure would match with that from Models 1 and 4 respectively, and to see 

whether fluid intelligence would appear as a separate factor from the EF measures. Finally, Models 3 

and 6 added scores for the five subscales of the strengths and difficulties questionnaire (SDQ) to see 

whether these were related to any of the identified EF or cognitive factors from the previous 

models, or whether the SDQ formed factor(s) separate to the cognitive tests.  

For each model, the datasets were first inspected to ensure they were suitable for factor analysis 

using the Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy and Bartlett’s test of sphericity 
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to check for sufficient correlation in the data to support factor analysis. EFA was then applied to the 

dataset to explore the factor structure. EFA was conducted as we have no clear idea of what 

structures we are expecting to observe a-priori: as we have only a limited number of EF measures, 

and the tasks were not specially selected to tap specific aspects of EF, rather to act as general EF 

ability indicators, and also we don’t have multiple tasks per EF, the data were not suitable to pre-

plan how we might expect the tasks to line up with particular EF components in e.g. Miyake’s model, 

so CFA was deemed unsuitable in the first instance. As there is no consensus in the literature on 

what is the “best” goodness-of-fit statistic to use when determining the success of a structural 

model, a method agreement procedure was used (Makowski, 2018). This procedure runs multiple 

factor selection routines, producing multiple goodness-of-fit statistics for all the potential model 

structures, then selects the factor structure with the highest rate of consensus across the different 

methods. This procedure was implemented via the psycho package in R for each model.  

We next wanted to check whether the optimal model identified from the EFA analysis was better 

than other possible models. EFA was applied to the data in order to identify the optimal factor 

structure. Optimal structure was identified using the method agreement procedure (Makowski, 

2018). CFA was then applied to the testing set using the optimal structure obtained from the training 

set. We then statistically compared the optimal model identified in the EFA phase with the structure 

with the second-highest consensus rating obtained from the method agreement procedure. 

Goodness-of-fit of the two compared models was assessed using comparative fit index (CFI) statistics 

to decide which of the models to accept. Finally, CFA using the model structure obtained from the 

EFA analysis was applied to the whole dataset to get the overall fit metrics and factor weightings. 

R was used to carry out the factor analysis, using packages psycho, lavaan and performance; images 

illustrating the structural models were produced using R packages ggplot2 and tidySEM. Oblimin 

rotation method was used for all factor analyses. This is an oblique rotation method which allows 

the latent variables to correlate with each other. This was chosen as correlations between the 

underlying factors would be expected based on the literature review (e.g. Lehto et al., 2003). Missing 

data were removed listwise for each model. The method of estimation used was maximum 

likelihood. Model fit statistics are provided for chi-squared (χ2), comparative fit index (CFI), Tucker-

Lewis Index (TLI), root mean square error of approximation (RMSEA), and standardized root mean 

square residual (SRMR). Rules of thumb were applied to determine whether the models were a good 

fit within the different model fit metrics: For χ2, significant p-values of below .05 indicate good 

model fit (Beaujean, 2014); for CFI and TLI, values greater than 0.90 indicate adequate fit, and 

greater than 0.95 indicate good model fit; for RMSEA, values of below .06 indicate good fit; for 

SRMR, values of below 0.08 indicate good fit (Hu & Bentler, 1999).  
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5.4 Results  

5.4.1 Descriptive Statistics 

Means (M) and standard deviations (SD) for the age of the participants at testing, and variables 

entered into the structural analysis for the cognitive tasks and the SDQ subtasks within each 

assessment point are given in Table 5.1. The means and SDs presented below are the Z-scored 

variables at baseline, and the follow-up scores that have been transformed using the mean and SD 

from baseline results. This means at baseline, the mean scores for the cognitive tasks are set to 0; 

the SDs to 1. At follow-up, the scores reflect the average increase in performance compared with 

baseline. The process of creating the Z-scored and transformed variables is described in Chapter 2, 

Section 2.7.6. The Z-scored and transformed variables for the cognitive tasks were entered into each 

of the structural models. The SDQ measures were not transformed, the raw scores presented below 

were entered into models. 

Table 5.1 Descriptive statistics for the Baseline Z-scored and Follow-up Transformed measures used in Factor Analysis 

 Baseline Follow-up 

Measure N M SD N M SD 
Age at testing (years) 6672 12.07 0.47 5138 14.26 0.51 
TMT proportion (B-A)/A 6424 0 1 4918 0.08 0.97 
BDS score 6090 0 0.99 4864 0.35 1.1 
SWM total errors 6313 0 1 4627 0.27 0.97 
SWM strategy errors 6313 0 1 4627 0.25 0.82 
Corsi score 3795 0.01 1 2093 0.41 1.14 
CPT omission errors 1573 0 1 912 -0.03 1.11 
CPT commission errors 1573 0 1 912 0.25 0.9 
CFT total score 5816 0 1 4701 0.33 1.05 
SDQ emotional problems 5456 2.79 2.22 3967 3.18 2.38 
SDQ conduct problems 5456 2.75 1.45 3967 2.71 1.48 
SDQ hyperactivity 5456 4.68 1.57 3967 4.61 1.61 
SDQ peer problems 5456 4.31 1.28 3967 4.21 1.24 
SDQ prosocial behaviours 5456 7.5 1.9 3967 7.12 2.01 

Note: Data are presented for the Z-scored data at Baseline and Transformed data at Follow-up, as entered into the 
factor analysis models in this chapter. 

 

Correlations between all the task and questionnaire measures used in factor analysis are given in 

Tables 5.2 and 5.3. At both baseline and follow-up, significant positive correlations at p<.05 are 

present between all the cognitive task measures, except between CPT omission errors and SWM 

strategy score. The effect sizes are all small, with the highest R2 value at baseline being .12 for the 

correlation between CFT and BDS, and .15 in follow-up for the same pair of tasks. The correlations 
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between the EF and fluid intelligence tasks at follow-up were all somewhat higher than those at 

baseline, suggesting a general increase in the relatedness between all the tasks (this may also be 

interpreted as a reduction in the differentiation of EF components across this time period).  

At baseline, significant (p<.05) correlations are present between all the subscales of the SDQ except 

between SDQ prosocial and SDQ emotions. Interestingly, the direction of these associations is 

positive between all the subscales, i.e. amongst all the difficulty domains (emotion, conduct, 

hyperactivity and peer problems) and the strength scale (prosocial behaviours), except for between 

prosocial behaviours and conduct problems, which are negatively correlated. Significant (p<.05) 

correlations are present between all the SDQ subscales at follow-up. The direction of these 

associations are the same as at baseline: all positive except for the correlation between prosocial 

behaviours and conduct problems.  

Finally, there are some significant correlations between the cognitive tasks and SDQ subscales. At 

baseline, SWM Strategy is not correlated with any of the SDQ measures (p’s all >.05). Emotional 

problems are correlated negatively with BDS, Corsi, CPT commission and CFT. Conduct problems are 

correlated negatively with all task measures except SWM strategy. Hyperactivity problems are only 

associated with CPT commission errors. Peer problems are negatively associated with BDS, SWM 

errors, Corsi and CFT. Prosocial behaviours are positively correlated with BDS, SWM errors, Corsi, 

CPT omission errors and CFT (all except TMT and CPT commission errors). At follow-up, we see no 

significant associations between TMT and any of the SDQ measures (p’s all >.05). Positive correlation 

is present between emotional problems and SWM errors. Conduct problems are negatively 

associated with BDS, SWM errors, SWM strategy, Corsi, and CFT. Hyperactivity and peer problems 

are not associated with any cognitive tasks at follow-up. Prosocial behaviours are positively 

correlated with all the cognitive tasks except for TMT.  All of the correlations observed are .45 or 

below, therefore there are no major issues with multicollinearity. 

  



180 
 

Table 5.2 Correlations between factor analysis variables at baseline 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 
1. TMT                         
2. BDS .10**            
3. SWM Errors .09** .28**           
4. SWM Strat .03* .07** .45**          
5. Corsi .12** .31** .28** .15**         
6. CPT Omission .05* .13** .14** .05 .14**        
7. CPT Comm .07** .18** .19** .10** .22** .33**       
8. CFT .09** .35** .29** .14** .28** .13** .18**      
9. SDQ Emotion -.02 -.06** -.02 .01 -.04* -.03 -.05* -.09**     
10. SDQ Cond -.03* -.13** -.12** .01 -.11** -.01 -.10** -.14** .34**    
11. SDQ Hyper .01 -.00 -.00 -.01 .01 .01 -.06* -.02 .27** .26**   
12. SDQ Peer -.03 -.09** -.04** .01 -.04* -.00 -.02 -.08** .29** .32** .24**  
13. SDQ Pro -.02 .11** .10** .01 .09** .06* .04 .12** .01 -.09** .15** .20** 

Note. Values represent Pearson’s correlation R. * indicates p < .05. ** indicates p < .01. White background are 
correlations amongst cognitive tasks ; light grey are correlations between SDQ measures and cognitive tasks; darker 
grey are correlations amongst SDQ measures. 
 
Table 5.3 Correlations between factor analysis variables at follow-up 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 
1. TMT                         
2. BDS .12**            
3. SWM Errors .09** .36**           
4. SWM Strat .07** .23** .60**          
5. Corsi .18** .37** .33** .20**         
6. CPT Omission .10** .15** .10** .04 .13**        
7. CPT Comm .08* .22** .20** .13** .24** .37**       
8. CFT .09** .39** .32** .19** .32** .08* .20**      
9. SDQ Emotion .00 -.02 .05** -.00 .00 -.01 .01 -.02     
10. SDQ Cond -.03 -.11** -.09** -.07** -.10** -.04 -.05 -.12** .29**    
11. SDQ Hyper .00 .02 .01 .02 .01 -.00 -.05 .01 .26** .23**   
12. SDQ Peer .01 .00 .02 .00 .00 .02 .04 -.03 .25** .31** .22**  
13. SDQ Pro .02 .16** .11** .04* .10** .14** .12** .11** .09** -.09** .15** .22** 

Note. Values represent Pearson’s correlation R. * indicates p < .05. ** indicates p < .01. The area with a white 
background shows correlations amongst the cognitive tasks; light grey area shows correlations between SDQ measures 
and cognitive tasks; darker grey area shows correlations amongst the SDQ measures. 

5.4.2 Model 1: Baseline Structure of Executive Functions 

EFA analysis suggested a model with three factors was optimal. Using the method agreement 

procedure, the choice of three dimensions is supported by 10 (43.48%) methods out of 23 (Bentler, 

CNG, Optimal coordinates, Parallel analysis, Kaiser criterion, VSS complexity 1, BIC, BIC (adjusted), 

CRMS, BIC). The three latent variables were labelled as: Switching and Working Memory, consisting 

of TMT, BDS, SWM errors and Corsi scores; Planning, consisting of SWM strategy; and Attention 

consisting of both CPT measures. In the EFA model, the three latent factors accounted for 40.23% of 
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the total variance of the original data (Switching and Working Memory = 16.35%, Planning = 12.73%, 

Attention = 11.15%).  

The structure identified in the EFA was then applied to CFA, and the three-factor model was 

compared with a one-factor model as this was the next best in terms of method agreement  

consensus. The three-factor model gave improved fit statistics compared with the one-factor. Fit 

metrics indicate the final model is not a very good fit for the data:SRMR (.06) indicates an adequate 

fit, and the other fit metrics indicate a poor fit of the model to the original data with χ2(185.20, 12, 

p<.001), CFI (.83), TLI (.70), RMESA (.10). Factor loadings of each task on the latent variables, and the 

covariances between the latent factors, are shown in Figure 5.1. Goodness-of-fit statistics are 

presented in Table 5.4. 

Factor loadings were all significant at p<.001, however the loading for the TMT task on the 

Switching_WM component was very low (0.16), and had a very high and significant error term 

(0.97), which indicates variance in this task is not particularly well explained by the Switching_WM 

component. The BDS task also did not load strongly with the Switching_WM component (0.26 with 

an error term of 0.93). Correlations between the identified components were all significant at 

p<.001, with R values between Switching_WM and Planning .060, Switching_WM and attention .41. 

Although significant at p<.001, the association between planning and attention was only R = 0.13.  

Figure 5.1 Results of Model 1: Three-factor latent variable model of executive functions at baseline 

 

Ellipses represent latent variables. Rectangles represent manifest variables. Double headed circular arrows represent 
error terms. Arrow labels are standardised parameter estimates. Dashed lines represent covariances between latent 
variables.* indicates p < .05. ** indicates p < .01. *** indicates p < .001. Switching_WM = Switching and Working 
Memory; TMT = Trail making task; BDS = Backward Digit Span; SWM_err = Spatial Working Memory errors; SWM_Strat= 
Spatial Working Memory strategy; CPT_om = Continuous Performance Task omission errors; CPT_com = Continuous 
Performance Task commission errors. 
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Table 5.4 Latent variable structures, variance explained and goodness-of-fit metrics for Models 1-6 

 Baseline models Follow-up models  

Metric Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Latent factor 
structure  

3 factors:  
Switching + 
WM; 
Planning; 
Attention 

3 factors:  
EF_G; SWM; 
Attention 

5 factors:  
EF_G; 
Planning; 
Attention; 
SDQ Probs; 
SDQ Prosocial 

3 factors:  
Switching + 
WM; SWM; 
Attention 

1 factor: G 1 factor: G 

Total variance 
accounted for in EFA 

40.23 % 36.44 % 41.65 % 26.32 % 23.66 % 15.08 % 

CFA Fit Metrics       
χ2 185.20 43.90 390.27 10.20 293.54 676.21 
Df 12.00 17.00 57.00 11.00 20.00 65.00 
P <.001 <.001 <.001 0.51** <.001 <.001 
CFI 0.83 0.98** 0.80 1.00** 0.72 0.52 
TLI 0.70 0.96** 0.73 1.00** 0.60 0.43 
RMSEA 0.10 0.03** 0.06** 0.00** 0.13 0.11 
SRMR 0.06** 0.02** 0.05** 0.02** 0.09 0.09 

Models 1 and 4 included the executive function (EF) measures: trail making task, backward digit span, spatial working 
memory errors and  strategy score, continuous performance task omission and commission errors. Models 3 and 5 
included EF measures and Cattell’s culture fair task (CFT) score. Models 3 and 6 included EF and CFT measures, and scores 
in the five subscales of the strengths and difficulties questionnaire (SDQ). Latent factors: WM = Working memory; EF_G = 
Executive Function and General fluid intelligence; SDQ probs = Problems scales of SDQ; SWM = Spatial Working Memory; 

G = General fluid intelligence. Fit metrics: χ2
 = Chi Squared; Df = Degrees of freedom; p = significance of Chi Squared test; 

CFI = comparative fit index; TLI = Tucker–Lewis index; RMSEA = root mean square error of approximation; SRMR = 
standardized root mean residual. ** indicates this metric shows the model is considered to be a good fit to the data. 

5.4.3 Model 2: Baseline Structure of Executive Functions and General Intelligence  

In this model we added CFT into the model in addition to the EF measures, to see if this loads with 

the EF skills or whether it forms its own separate factor. EFA analysis suggested a model with three 

factors was optimal. Using the method agreement procedure, the choice of three dimensions was 

supported by 7 (36.84%) methods out of 19 (CNG, Parallel analysis, Kaiser criterion, VSS complexity 

1, VSS complexity 2, BIC, BIC (adjusted)).  

The three latent variables were labelled as: executive function and general fluid intelligence, 

consisting of TMT, BDS, CFT, and Corsi scores; Spatial Working Memory, consisting of SWM errors 

and SWM strategy; and Attention consisting of both CPT measures. In the EFA model, the three 

latent factors accounted for 36.44% of the total variance of the original data (Executive functions 

and general fluid intelligence = 14.40, Spatial Working Memory = 12.40%, Attention = 9.65%). 

The structure identified in the EFA was then applied to CFA, and the three-factor model was 

compared with a one-factor model as this was the next best in terms of method agreement  
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consensus. The three-factor model gave improved fit statistics compared with the one-factor. Fit 

metrics indicate the final model is a good fit for the data: χ2(43.90, 17), CFI (.98), TLI (.96), RMESA 

(.03) and SRMR (.02) all indicate a good fit of the model to the original data. 

Factor loadings of each task on the latent variables, and the covariances between the latent factors, 

are shown in Figure 5.2. Goodness-of-fit statistics are presented in Table 5.4. Factor loadings of all 

measures were all significant at p<.001, however the loading for the TMT task on the EF_G 

component was very low (0.26), and had a very large (0.93, p<.001) error term, which indicates 

variance in this task is not particularly well explained by the EF_G component. The factors were 

significantly associated with each other, with correlations of R=.50 between Attention and EF_G, and 

lower correlations between SWM and EF_G (R=.39) and SWM and Attention (R=.25).  

Figure 5.2 Results of Model 2: Three-factor latent variable model of executive functions and fluid intelligence at baseline 

 

CFA results. Ellipses represent latent variables. Rectangles represent manifest variables. Double headed circular arrows 
represent error terms. Arrow labels are standardised parameter estimates. Dashed lines represent covariances between 
latent variables.* indicates p < .05. ** indicates p < .01. *** indicates p < .001. EF_G=Executive functions and general 
fluid intelligence; TMT=Trail making task; BDS=Backward Digit Span; SWM_err=Spatial Working Memory errors; 
CFT=Cattell’s Culture Fair Task; SWM_Strat= Spatial Working Memory strategy; CPT_om=Continuous Performance Task 
omission errors; CPT_com=Continuous Performance Task commission errors. 

5.4.4 Model 3: Baseline Structure of Executive Functions, General Fluid Intelligence and 

Strengths and Difficulties Questionnaire 

In this model we added the scores on the five SDQ subscales into the analysis in addition to the EF 

and CFT measures, to see if these load with any of the cognitive tasks. EFA analysis suggested a 

model with five factors was optimal. Using the method agreement procedure, the choice of three 

dimensions was supported by 5 (26.32%) methods out of 19 (Parallel analysis, Kaiser criterion, VSS 

complexity 1, BIC, BIC (adjusted)).The five latent variables were labelled as: Executive function and G 

general fluid intelligence, consisting of TMT, BDS, SWM errors, CFT, and Corsi scores; SDQ Problems, 

consisting of the four SDQ problem subscales emotional, conduct, peer relationship and 

hyperactivity problems; Planning, consisting of the SWM strategy score; and Attention, consisting of 
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both CPT measures. The 5 latent factors accounted for 41.65% of the total variance of the original 

data (Executive function and G general fluid intelligence = 9.29%, SDQ problems = 9.12%, Strategy = 

8.45%, SDQ prosocial = 8.16%, Attention = 6.63%). 

The structure identified in the EFA was then applied to CFA, and the five-factor model was compared 

with a one-factor model as this was the next best in terms of method agreement consensus. The 

five-factor model gave improved fit statistics compared with the one-factor. Goodness-of-fit 

statistics were presented in Table 5.4. The fit metrics indicate the final model is a fairly good fit for 

the data: SRMR (.05) indicate good fit, and RMSEA (.06) indicates adequate fit, although the other 

reported fit metrics (χ 2 = 390.27, 57, CFI = .80 and TLI = .73) indicate a poor fit of the model to the 

original data.  

Factor loadings of each task on the latent variables are shown in Figure 5.3. Factor loadings of all 

measures were all significant at p<.001, however the loading for the TMT task on the EF_G 

component was very low (0.20), and had a very large (0.96, p<.001) error term, which indicates 

variance in this task is not particularly well explained by the EF_G component. Table 5.5 shows the 

covariances between all five latent factors. Covariances between the factors indicate significant 

interrelations amongst the three cognitive task components (EF_G, Planning and Attention), and 

interrelations between the two SDQ components and Attention and EF_G components, but no 

association between Planning and the SDQ components. 
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Figure 5.3 Results of Model 3: Five-factor latent variable model of executive functions, fluid intelligence and strengths 
and difficulties at baseline 

 
Ellipses represent latent variables. Rectangles represent manifest variables. Double headed circular arrows represent 
error terms. Arrow labels are standardised parameter estimates. * indicates p < .05. ** indicates p < .01. *** indicates p 
< .001. EF_G=Executive functions and General Fluid Intelligence; TMT=Trail making task; BDS=Backward Digit Span; 
SWM_err=Spatial Working Memory errors; SWM_Strat=Spatial Working Memory strategy; CFT=Cattell’s Culture Fair 
Task; SDQ=Strengths and Difficulties Questionnaire; SDQ_hyper=SDQ hyperactivity subscale; CPT_om=Continuous 
Performance Task omission errors; CPT_com=Continuous Performance Task commission errors.  

 

Table 5.5 Interrelations between the five latent variables found in Model 3 

Latent variable pairs Covariance 

EF_G and SDQ_Problems -0.09* 
EF_G and SDQ_Prosocial 0.09** 
EF_G and Planning 0.57*** 
EF_G and Attention 0.49*** 
Planning and Attention 0.13*** 
SDQ_Problems and SDQ_Prosocial 0.03 
SDQ_Problems and Planning 0.06 
SDQ_Problems and Attention -0.11* 
SDQ_Prosocial and Planning 0.02 
SDQ_Prosocial and Attention 0.08* 

* indicates p < .05. ** indicates p < .01. *** indicates p < .001. 
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5.4.5 Model 4: Follow-up Structure of Executive Functions 

Using the method agreement procedure with the EFA analysis, there was poor agreement on which 

model would be the best, with models with 1, 3, 4 and 6 factors having agreement in 3 methods 

each. Further investigation was carried out within the training portion of the data. Here, the choice 

of 3 dimensions was supported by 6 (31.58%) methods out of 19 (CNG, Parallel analysis, Kaiser 

criterion, VSS complexity 2, BIC (adjusted), BIC). The three latent variables were labelled as: 

Switching and Working Memory, consisting of TMT, BDS, and Corsi scores; Spatial Working Memory, 

consisting of SWM errors and strategy scores; and Attention consisting of both CPT measures. In the 

EFA model, the three latent factors accounted for 47.85% of the total variance of the original data 

(Spatial Working Memory = 19.09%, Attention = 16.02%, Switching and Working Memory = 12.74%).  

The structure identified in the EFA on the training set was then applied to CFA, and the three-factor 

model was compared with a one-factor model as this was the next best in terms of method 

agreement  consensus. The three-factor model gave improved fit statistics compared with the one-

factor model. Goodness-of-fit statistics are presented in Table 5.4. The fit metrics indicate the final 

model is overall a good fit for the data: χ2 (10.20, 11), SRMR (.02), RMSEA (<.001), CFI (>.99) and TLI 

(>.99) all indicate good fit.   

Factor loadings of each task on the latent variables, and latent variable covariances, are shown in 

Figure 5.4. Factor loadings of all measures were all significant at p<.001, however the loading for the 

TMT task on the Switching_WM component was very low (0.27), and had a very large (0.93, p<.001) 

error term, which indicates variance in this task is not particularly well explained by the 

Switching_WM component. Significant correlations are present between all three components at 

p<.001; with R values of .46 between Switching_WM and SWM, .49 between Switching_WM and 

Attention, and a small correlation of .25 between SWM and Attention. 
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Figure 5.4 Results of Model 4: Three-factor latent variable model of executive functions at follow-up 

 

Ellipses represent latent variables. Rectangles represent manifest variables. Double headed circular arrows represent 
error terms. Arrow labels are standardised parameter estimates. Dashed lines represent covariances between latent 
variables. * indicates p < .05. ** indicates p < .01. *** indicates p < .001. Switching_WM=Switching and Working 
Memory; SWM=Spatial Working Memory; TMT=Trail making task; BDS=Backward Digit Span; SWM_err=Spatial Working 
Memory errors; SWM_Strat= Spatial Working Memory strategy; CPT_om=Continuous Performance Task omission errors; 
CPT_com=Continuous Performance Task commission errors. 

 

5.4.6 Model 5: Follow-up Structure of Executive Functions and General Intelligence 

Using the method agreement procedure with the EFA analysis, the choice of 1 dimensions was 

supported by 6 (31.58%) methods out of 19 (t, p, Acceleration factor, Scree (SE), Scree (R2), Velicer's 

MAP). The unique latent variable was labelled as G or general fluid intelligence. In the EFA model, 

the unique latent factor accounted for 23.66% of the total variance of the original data. The single 

factor structure was then applied to CFA. Fit metrics indicate the final model is a relatively poor fit 

for the data: χ2 (293.54, 20), SRMR (.09), RMSEA (.13), CFI (.72) and TLI (.60) all indicate poor fit of 

the model to the original data.Goodness-of-fit statistics are presented in Table 5.4.  

Factor loadings of all measures were all significant at p<.001, however the loading for the TMT task 

on the G component was very low (0.20), and had a very large (0.96, p<.001) error term, which 

indicates variance in this task is not particularly well explained by the single G factor. Factor loadings 

of each task on the latent variable in the final model are shown in Figure 5.5.  
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Figure 5.5 Results of Model 5: One-factor latent variable model of executive functions and fluid intelligence 
questionnaire at follow-up 

 

Ellipses represent latent variables. Rectangles represent manifest contributing variables. Double headed circular arrows 
represent error terms. Arrow labels are standardised parameter estimates. Dashed lines represent covariances between 
latent variables.* indicates p < .05. ** indicates p < .01. *** indicates p < .001. G=General fluid intelligence; TMT=Trail 
making task; BDS=Backward Digit Span; SWM_err=Spatial Working Memory errors; SWM_Strat= Spatial Working 
Memory strategy; CFT=Cattell’s Culture Fair Task; CPT_om=Continuous Performance Task omission errors; 
CPT_com=Continuous Performance Task commission errors. 

5.4.7 Model 6: Follow-up Structure of Executive Functions, General intelligence and 

Strengths and Difficulties 

Using the method agreement procedure with the EFA analysis, the choice of a single dimensions is 

supported by 4 (21.05%) methods out of 19 (t, p, Scree (R2), Velicer's MAP). The unique latent 

variable was labelled as G or general fluid intelligence. In the EFA model, the unique latent factor 

accounted for 15.08%  of the total variance of the original data. The single factor structure was then 

applied to CFA. Fit metrics indicate the final model is a relatively poor fit for the data: χ2, SRMR (.09), 

RMSEA (.11), CFI (0.52) and TLI (0.43) all indicate poor fit of the model to the original data. 

Goodness-of-fit statistics are presented in Table 5.4.  

Factor loadings of each task on the latent variables in the final model are shown in Figure 5.6.Factor 

loadings of all the cognitive task measures were all significant at p<.001, however the loading for the 

CPT omissions and commission errors measures and the TMT task measure on the G factor were 

very low (<0.30), and all had very large (>0.9, p<.001) error terms, which indicates variance in the 

CPT and TMT tasks is not particularly well explained by the single G factor. Furthermore, the SDQ 

measures did not load well with the G factor, with very low weightings and very high error terms, 

suggesting the SDQ measures do not fit well with the cognitive task measures and that the single 

factor model is not a particularly effective model to explain variance in the SDQ and cognitive tasks 

together.  
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Figure 5.6 Results of Model 6: One-factor latent variable model of executive functions, fluid intelligence and the 
strengths and difficulties questionnaire at follow-up 

 

Ellipses represent Latent Variables. Rectangles represent manifest contributing variables. Double headed circular arrows 
represent error terms. . Arrow labels are standardised parameter estimates. Dashed lines represent covariances between 
latent variables. * indicates p < .05. ** indicates p < .01. *** indicates p < .001. G=General Fluid Intelligence; 
SDQ=Strengths and Difficulties Questionnaire; TMT=Trail making task; BDS=Backward Digit Span; SWM_err=Spatial 
Working Memory errors; SWM_Strat= Spatial Working Memory strategy; CPT_om=Continuous Performance Task 
omission errors; CPT_com=Continuous Performance Task commission errors. 

5.5 Discussion 

5.5.1 EF Structure 

In terms of the analysis where we considered only EF measures, we found a three factor structure of 

EF at both time points. This is somewhat similar to what has been observed in literature (e.g. Lehto 

et al., 2003). However, we did not find evidence for the idea that EFs are differentiated into fewer 

factors in early adolescence and become more differentiated into a greater number of separate 

factors in later adolescence, which was one broad prediction that we made based on previous 

research looking at development of EF structures across adolescence (e.g. Lee et al., 2013; Xu et al., 

2013). Rather, we found similar numbers of factorsin EF structure in the younger (age 10-13) and 

older (age 13-16) participants. In the follow-up data, we found that Model 4 (with three factors) was 

overall a better fit to the data than was the equivalent three-factor for the baseline data, as the fit 

metrics indicated a better fit. Furthermore, looking at tables 5.2 and 5.3 we can see that there are 

consistently slightly higher zero-order correlations between all the EF tasks ijn the follow-up data. It 

could be argued this indicates greater differentiation into separate factors - in that we have closer 

correlation between the tasks within the factors identified, with similar correlations across factors as 

were observed in Model 1 for the baseline data, so the three factors are more differentiated from 

each other in the follow-up data. However we did not see a greater number of factors at follow-up, 

which might have been expected from the literature.  
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Factors were significantly interrelated with each other at both time points. These interrelations had 

similar effect sizes to those observed in previous literature (e.g. Lehto et al., 2003). However, as we 

used EFA methods and our tasks were not specifically selected in order to match the working 

memory, inhibition and switching model proposed by Miyake (Miyake et al., 2000), we did not find 

clear support for this precise structure of EF. We can however say that we found broad support for a 

unity-yet-diversity hypothesis of EF in adolescents, with three separable but interrelated factors at 

age 10-13 and at age 13-16. However this conclusion should be tempered by the fact we have a 

somewhat limited task selection, which was not designed to replicate previous EF structural 

modelling research. We have a relatively small number of tasks to conduct factor analysis, and these 

tasks are somewhat imbalanced in that we have three tasks targeting aspects of working memory, 

one for switching, and one task measure that might be used to target inhibition, though is not a 

particularly pure inhibition based task.  

Similar structures for EF alone were observed at baseline and follow-up, though the specific task 

measures that contributed to the three factors differed across our time points, which led to us 

labelling the factors differently at the two time points. This finding suggests some developmental 

changes in EF structure occurred between our two assessment points.  

Interestingly, we observed a combined switching and working memory latent variable in our 

baseline data. The fact that WM measures fit into a factor alongside our switching measure appears 

to be a somewhat unusual finding. In studies where two-factor models are the best explanation for 

EF data in children, WM is often the EF that is separable from the other two components of EF. For 

example, (Lee et al., 2013) found a two-factor model of WM and combined switching/inhibition, in 

participants aged between 6 and 12 years. Alfonso & Lonigan (2021) also found something similar, 

with a two-factor model with WM and combined switching/inhibition factors in participants aged 

10-15. However, we did not have a great number of tasks or measures that tapped inhibition in our 

analyses, therefore the specific tasks and measures used might have influenced this finding.  

One interesting finding is that the working memory tasks (SWM, Corsi, BDS) did not all group 

together except in the follow up models where the single G factor was the best structure. The Corsi 

and SWM tasks in particular are ostensibly measuring very similar cognitive processes (in that they 

are both assessing spatial working memory), but don’t group together in many of our models. One 

potential avenue of exploring this is to look at what are the differences between the tasks – in the 

Corsi task, participants repeat an observed order, with little room for any planning or creative 

problem solving to improve task performance, whereas in the SWM task participants can creatively 

come up with strategy to solve SWM. Therefore the SWM task is not purely measuring working 
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memory per se, even in the overall performance measure, as the ability to plan and use a helpful 

strategy will result in improved performance here as compared to the Corsi task, or BDS task.  

Another interesting finding is that the TMT task loaded with other task measures across all six 

models, but it had consistently low weightings values with high error terms. This suggests that there 

is some shared variance between the TMT task and some of the other tasks, however, there is also 

some considerable difference between the TMT task and the others that it loaded with. One 

explanation of this could be that the TMT is the only task to address the switching component of EF 

– therefore it does not share a huge amount of its variance with the other EF tasks, and that it shares 

some common EF component with other EF tasks. This finding in itself lends support to the unity-

yet-diversity model, in that the TMT did significantly load onto a factor with other EF tasks in each 

model (suggesting some unity of EF) but its weighting values on these factors were consistently low 

(suggesting some diversity of switching from the other EFs). However our findings don’t lend weight 

to any specific previous models; rather this research is somewhat unique in its task selection and 

structures observed. CPT measures formed a separate factor together, which we labelled as 

attention, across all the baseline models 1-3. One previous study using CPT in an EF structural model 

also found that measures from a CPT task did not group with other EF measures, however, they 

found that two CPT measures formed their own individual factors in their model, where ours fit on 

the same factor (Barkley et al., 2001). One possible reason for our finding is that it could be 

suggested that the CPT has quite different task requirements to the others in the battery, as it takes 

considerably longer to complete than the other tasks, and requires continuous extended attention, 

where the other tasks could mostly be completed successfully even if a person has short breaks in 

attention. The CPT measures may be more influenced by classroom distractions than other 

measures, as it is a longer and more boring task requiring more extended focus and attention. 

Classroom noise has been shown to affect children’s performance on cognitive testing (Massonnié et 

al., 2022). The idea that level of classroom distraction could influence CPT performance in particular 

could be explored in future analyses by using the data recorded by experimenters on the level of 

talking that was present in the classroom environment during the assessments. This could be used in 

for example an ANOVA analysis to see whether reported distraction level is associated with scores in 

the cognitive tasks, and in particular whether the distraction level is more strongly related with CPT 

measures than the other tasks.  

5.5.2 SDQ and EF 

We found no division of the SDQ problems into two factors within this analysis – all four problem 

subscales clustered on the same factor at both baseline and follow-up. This is different to some 
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conceptions and previous uses of the SDQ, where the problems have been categorised into 

internalising (combining the emotional problems and peer problems scales) and externalising 

(combining the conduct problems and hyperactivity scales). Using the five SDQ subscales this study, 

we found no evidence of the separation of the internalising and externalising scales, in terms which 

factor they loaded with. Indeed we found no separation of any of the problem subscales from each 

other – all four difficulty scales clustered on the same factor in both time points. We did find 

separation of the four problem scales from the prosocial strength scale within the baseline sample, 

but not within follow-up. The fact that we see the four problem scales clustering together in our 

sample is somewhat in contrast to previous research which has found independent relationships of 

internalising and externalising SDQ scales with both concurrent and later EF (Donati et al., 2021). 

However, as our analysis did not consider the factor structure of SDQ alone, or use the individual 

questionnaire item responses, we cannot categorically say whether our findings support or refute 

the use of other structures for SDQ. Future research to investigate the underlying factor structure 

could be conducted using our dataset, for example carrying out factor analysis on the individual 

questionnaire items to see what structure is present in the questionnaire subscales. This might be a 

useful addition to previous research as we have a relatively large sample size of participants who 

have completed the SDQ, across a representative sample of high school children in London.  

Previous research has suggested that SDQ measures are related to EF in a similar age group sample 

as ours (Donati et al., 2021). We found that SDQ only fit with our EF measures in the follow-up 

sample, but not at baseline, where it formed its own factors. Even in the follow-up model, we found 

that the weightings of the SDQ measures on the single G factor were very low, and for most of the 

SDQ measures, we did not see any significant weighting at p<.05 on the G factor. This suggests that 

even in the follow-up dataset we did not find convincing evidence that the SDQ measures load onto 

the same factor as EF or fluid intelligence task measures. 

The SDQ conduct problems scale had a significant negative correlation with 5 of our 8 cognitive task 

measures, with the highest association being around R=.14. The Prosocial scale had positive 

correlation with 7 of 8 cognitive measures. Emotional problems, hyperactivity and peer problems 

scales were not correlated with any cognitive task measures. These findings suggest different 

patterns of association of the different aspects of SDQ with cognition, with only the conduct 

problems and prosocial scales being broadly associated with cognition. That the conduct scale is 

negatively associated with EF tasks is an interesting finding: the conduct scale could perhaps be 

considered to address some kind of ‘hot EF’, i.e. an ability to control one’s behaviour in emotional 

contexts appropriately.  
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5.5.3 Fluid intelligence and EF 

Adding CFT into the analysis in the baseline data (Model 2) resulted in a three factor model, labelled 

executive function and general fluid intelligence; Spatial Working Memory; and Attention. These 

were significantly interrelated with each other. Adding CFT into the analysis in the follow-up data 

(Model 5) resulted in a unique factor structure. Although this single factor structure was the best 

model available according to the fit statistics, the single factor was actually a very poor fit for the 

data with all of our reported fit statistics showing poor fit. The weightings of individual tasks on this 

unique G factor were all reduced compared with the weightings to the latent factors in the model 

for EF alone (Model 4), i.e. the tasks were more closely related to the three components of EF in 

Model 4 than to G in Model 5. Model 5 with a single factor including the CFT scores alongside EF 

explained less of the variance of the original data than did the 3-factor solution in Model 4 with only 

the EF data (23.66% in Model 5 vs 47.85% in Model 4).  

When adding CFT, at baseline it groups with one of the EF factors, and the three factor structure was 

preserved. However at follow-up, including CFT alongside EF led to a single factor model being 

selected. This is somewhat contrary to the general consensus in the literature, in terms of EF 

development and increasing differentiation across development during adolescence, as we have 

found greater separation into distinct EF categories at baseline than at follow-up. However, it is 

important to note that the models for our follow-up data  

SDQ also groups to a single factor G at follow-up. In Baseline, adding SDQ in Model 3 didn’t change 

the structure compared with Model 2 which included CFT and EF measures. SDQ forms two separate 

clusters: problems and prosocial at baseline.   

It is not clear from the literature as yet what the variance that is shared across different EF measures 

means in terms of cognitive processes. Related to this, a potential explanation for the observed 

structure of a single factor in Model 5 is that CFT taps the cognitive component that reflects the 

shared variance between the latent EF structures that were present in Model 4. This would mean 

that fluid intelligence reflects the common EF or shared variance amongst EF components. To 

investigate this proposition further, analysis could be conducted where CFT score is instead used as a 

covariate, i.e. variance associated with CFT could be regressed out of all the other task scores to 

remove the variance associated with fluid intelligence, then a model similar to Model 4 could be run 

to investigate the EF latent structure in the remaining data. If we found that the interrelations 

between the latent EF factors were reduced by this process, it would indicate that the common EF or 

shared variance amongst latent EFs reflects general fluid intelligence.  
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An alternative proposition is that common EF could represent processing speed (Rose et al., 2011). 

This could be investigated in our data by using processing speed as a covariate before modelling the 

latent structure of EFs, and see whether the covariances between latent EF variables remain the 

same magnitude. This could be investigated in our dataset by creating a processing speed measure 

(perhaps by combining measures such as reaction time in the one and two item trials on the 

enumeration task, speed of reading and response times in some of the longer questions in the main 

battery questionnaires, or reaction times in the ‘dots’ portion of the trail making task) then 

regressing this out of the EF task scores, then running the same structural model on the remaining 

data. If covariances between the latent EF components were reduced, it would indicate that 

processing speed reflects common EF.  

A final suggestion in previous literature is that common EF represents inhibition processes, rather 

than inhibition being a similar level of factor to other EF processes. This could be tough to 

investigate within our data, as we have no single task primarily measuring inhibition. However it 

would be possible to produce some measures of inhibition from our data – perhaps by considering 

the commission errors in the CPT task as indicating inhibition failures, or the number of non-dot 

clicks in the spatial working memory task and the trail making task. Taken together, these measures 

could form an indicator of inhibitory control. These measures could then be included in a SEM 

model, to better investigate whether inhibition is a separate factor within our data.   

5.5.4 Strengths and Limitations 

In the SCAMP battery, we had a selection of five different EF tasks. In terms of structural analysis, 

this is quite a limited number of tasks. Furthermore, we simplified our analysis to use only a single 

key measure for most of the tasks, and only two key measures where these were intended to 

address different specific aspects of EF performance. This was done for ease of interpretation. We 

could have considered including more measures for each of the tasks, in order to better tap different 

components of EF and cognitive processing. For example we could have included overall response 

times in tasks in order to consider processing speed as a factor, or we could have better tapped 

inhibition as a factor by including measures such as number of non-dot clicks made in the SWM and 

TMT tasks, or number of random type errors (a subcategory of commission errors) in the CPT task. 

Previous studies have used multiple measures of CPT, dividing commission errors into three sub-

types, and also including reaction times, in structural EF analysis (Brocki & Bohlin, 2004). In the task 

selection that we did have, we probably did not have sufficient measures to exactly match a three-

factor models of EF with working memory, switching and inhibition which has been found in 
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previous structural papers in older adolescents and adults (e.g. Lehto et al., 2003; Miyake et al., 

2000).  

Our tasks were not selected specially to tap specific EFs, which is usually what is done in CFA 

research that has a particular hypothesis for EF structure in mind (for example Miyake et al., 2000,  

specifically chose three tasks for each putative EF). We were therefore unable to apply CFA to test 

for the specific three-factor Miyake et al. (2000) model in our sample due to the fact that the tasks 

we used were not intended to exactly match this approach. Rather, the approach to task selection 

was to cover EF in general, with easy to administer tasks that were well-validated in this age group, 

and were likely to show development during the SCAMP assessment windows. This meant that 

underlying structures were identified using EFA instead, then CFA applied to the structures identified 

in EFA.  

EFA has advantages in that it is not confined to a single theoretical approach – however it does mean 

that there is the complex task of naming the latent variables identified. This process was simple for 

some areas (for example where the CPT tasks grouped together and were labelled as ‘attention’ in 

Model 2) but more difficult in others as tasks grouped in perhaps unexpected ways (for example in 

Model 4 where our switching measure grouped with some of our WM measures, but not the 

measures of the SWM task). In our study, we carried out EFA and then follow-up CFA analysis in the 

same data. This is perhaps not the best method to have selected, as there is a possibility of an 

inflated Type 1 error when carrying out the follow-up CFA in this kind of method. Previous studies 

have used this kind of EFA-to-CFA method, such as Lehto et al., (2003). However they did justify their 

use of this method as they had insufficient data to be able to partition the dataset into a training and 

test set and still retain sufficient power to explore the structures in their data. We would likely have 

had sufficient power to split our data into training and test sets, and this could be a critique of the 

methods in this study. 

We used the sum totals for each of the five subscales of SDQ as our SDQ measures. Previous factor 

analysis research has validated the five-factor model within the SDQ, i.e. has supported the idea that 

each subscale is different to the others, and that in factor analysis, the question items that 

contribute to each subscale cluster on a factor for that subscale (Thompson et al., 2021). However, 

there has also been support in the literature for a two-factor model of internalising and externalising 

scales, or other structures, especially in non-English versions of the questionnaire (Kóbor et al., 

2013); Ruchkin et al., 2007). Further research could be done to investigate the factor structure of the 

SDQ within our baseline and follow-up samples, to see whether the five-factor model or other 

structures of SDQ can be validated within this sample. When considering the final goodness-of-fit of 
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the models to the original data, we have found that different fit metrics give differing results. Only in 

Model 2 (EF tasks plus CFT in baseline data) did we find that all the reported fit metrics agreed with 

each other. This therefore calls into question how good our models are in their fit to the data, and 

the conclusions made should be considered in this context. In the literature there is no broadly 

agreed upon route of selection of which goodness-of-fit statistics should be selected to determine 

the quality of the model in terms of how it explains the original data. Here we have reported the fit 

metrics following rules of thumb for model adequacy proposed by Hu and Bentler (1999), and used 

the same metrics that were reported in the factor analysis paper by Alfonso and Lonigan (2021).  

However, where fit metrics disagree with each other, there is only limited advice in the literature 

about how to go about choosing which fit metric to use, and therefore on what to base our 

assessment of the quality of a factor analysis model. Lai and Green (2016) discuss the fact that 

different goodness-of-fit statistics approach the data from different perspectives, and that rule of 

thumb cut-off values of  model adequacy that are generally used in the literature are essentially 

arbitrary rather than statistically justified. When selecting the best structural model in the EFA phase 

of the analysis, the method agreement procedure was implemented to attempt to deal with the 

issue of differing fit metrics yielding differing results (Makowski, 2018). However, even using this 

method, the model selection process for Model 4 (EF within follow-up data) proved a particular 

issue. No model structure was better than all the others in terms of a greater number of goodness-

of-fit statistics. To resolve this, a 70% training set was used to define the EFA model structure for this 

model, yielding a three-factor model with highest agreement across fit statistics. Goodness-of-fit 

statistics in factor analysis each have their own strengths and weaknesses, and it is therefore 

possible or even likely that they will disagree with each other in some cases. In future, it would be 

useful to the research field for methodologists to explore which fit metric to use in cases where 

different metrics conflict, and perhaps a more statistically justified approach to model selection in 

factor analysis could then be adopted than the somewhat ad-hoc method that was employed here 

to overcome the particular selection problem we experienced.  

One major critique of this analysis is the low number of tasks overall. Some studies have carried out 

factor analysis on a similar number of tasks, for example, Zanini et al. (2021). Here they used only 6 

tasks to investigate EF structure, although it should be noted that they selected specific tasks using 

two tasks to tap each of the three components of EF, so their design here is still superior to ours. In 

general however it is better to have a greater number of tasks or task measures when carrying out 

factor analysis. One issue with using a small number of tasks and measures is the possibility of 

identifying spurious factors, a kind of type I error, where there is no true underlying grouping such as 

we have observed, rather we have observed the structures we have due to statistical artefacts in the 



197 
 

data. Some of our findings are pretty consistent across the models:  that we found similar three-

factor structures for EF in both baseline and follow-up – these findings are less likely to be spurious 

results as we have similar results in two different samples in our analysis. However in each of our 

models, we have had to name some of the factors differently to the others as different tasks appear 

to group within different factors. We therefore do not have strong evidence for a single specific 

structure of EF overall, and our research offers somewhat limited evidence to either support or 

refute a three-factor structure of EF in this age group. 

We had more tasks assessing working memory than other EF components, which means our findings 

are somewhat limited in terms of attempting to replicate or find similar structures to much previous 

CFA research investigating EF structure. We also took multiple measures from two of the tasks (the 

SWM task produced an overall spatial working memory span measure and a strategy use measure, 

and the CPT produced commission and omission errors measures). These imbalances in design could 

have caused some of the grouping we observed in the structural models. The CPT task measures in 

particular grouped together in all the models, suggesting that perhaps the fact we had two measures 

from this task has influenced those results.  

We also have issues with low factor loadings and high error terms in the structural models, for 

example, the TMT does not load well with its respective factors across the six models. All possible 

models were considered using the EFA method, and we found that the best model for each data set 

did include TMT with other tasks, but that this task did not load very well with the other tasks. 

Interpreting this, TMT could be said to share something in common with the other EF tasks, but that 

it also has a large amount of variance that is not accounted for by any EF factor in common with our 

other tasks. It also suggests that the factors identified in the models are not a particularly good 

explanation of the variance in the TMT. 

A post-hoc power calculation was carried out to check the sample size was adequate for the analyses 

conducted. This was done using an online power calculator for CFA analysis, using the RMSEA fit 

statistic (Preacher & Coffman, 2006). This calculator applies the rules laid out in MacCallum et al. 

(1996) and accounts for the sample size N, the model structure applied and the targeted level of 

significance (Kyriazos, 2018) . For the most complex models we conducted, with inclusion of the EF, 

CFT and SDQ variables, we had a sample size of N=1,478 and N=823 for the baseline and follow-up 

models respectively. This analysis had df=57, p=.05, and a good fit for RMSEA set at 0.06 (Hu & 

Bentler, 1999). For a desired detection power of .99, we required 282 participants – we had far more 

than this in all analyses. We also saw no issues with convergence or with improper solutions. 

Therefore we have sufficient power for our CFA analyses for all models considered.  
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Another statistical issue is that of correcting for multiple comparisons. Here, we have carried out six 

separate analyses, with our desired alpha level set at p=.05. We have not corrected the results for 

multiple comparisons within the results section above. If we were to carry out Bonferroni correction, 

the most stringent type of multiple comparison correction, we divide .05 by the six analyses, 

resulting in p=.0083 required for significance for each model. This would not result in any changes to 

the significance of any of the models considered, i.e. all the relationships that were significant at 

p<.05 remain significant at the Bonferroni corrected level. This is true for both the overall model 

structures and for the individual factor weightings. Some of the interrelations between factors 

within the models would disappear at this corrected level, suggesting that there is somewhat weaker 

evidence for the unity of EFs in our sample than there is for the diversity or differentiation of EFs. 

The width of our age bands means that it is hard to identify if there are any differences in EF 

structure between our younger and older participants within the assessment points. It might be 

possible to explore this by either school year or year of age in our dataset. Previous work considering 

the development of EF structure across adolescence suggests that a three-factor structure to EF 

becomes viable around age 13 (Lee et al., 2013; Xu et al., 2013). As we had participants of around 

age 13 in both groups, this might have been the reason we found a three-factor model in the 

baseline assessment as well as the follow-up assessment data. If we considered the year groups 

separately we might find an undifferentiated or less differentiated model is more supported in the 

data from the younger participants. We would need to consider whether we have sufficient data to 

explore structure within single year of age or school year group, as the numbers of datapoints in 

each analysis would be reduced.  

The analyses here grouped participants in quite wide age bands of around 3 years. Developmental 

research has shown that there is are fairly rapid changes in EF abilities across the period of early 

adolescence (review in Diamond, 2013). As there is uncertainty in the literature around the exact 

point at which EFs become more differentiated during this period, and given our sample sizes, it 

would be possible to re-analyse the data in smaller age categories, such as age in years. However as 

the testing was carried out during school years, it may be that there are fewer participants in some 

age categories (for example either testing point could have featured participants who were aged 13 

– but only the very oldest participants who were tested at the very end of the baseline testing point 

would be 13 at baseline, and only the very youngest who were tested at the beginning of the testing 

period would be 13 at follow-up. Therefore there are fewer age 13 participants than say age 14 at 

follow-up). A possible option could be to collapse the data across testing points, however, care must 

be taken to account for the fact that some participants would have completed the testing twice and 

others only once within the overall sample, and practice effects should be accounted for. 
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5.5.5 Future Research Directions  

Previous studies of EF structure in adolescence has largely been done in non-clinical populations. 

Our study does include some participants with a variety of specific mental and physical conditions, 

as it covers the population of students in non-specialist education establishments in London. One 

previous study used a group of participants with ADHD alongside control participants, finding 

significant differences between these groups in terms of working memory performance. However 

they did not explore whether the EF structures were the same across the two groups – rather they 

were combined for their structural EF analysis (Ardila et al., 2005). It would be interesting to explore 

whether clinical populations within the SCAMP sample display any differences in terms of their 

ability across any of our identified components, and perhaps (if numbers of clinical populations are 

sufficient) comparing whether there are any differences in terms of EF structure between clinical 

and non-clinical populations.  

In the SCAMP dataset, some participants have given consent to link to health data. Therefore future 

work might be able to explore whether EF structures vary with participants’ mental or physical 

health. An alternative approach to investigate whether EF structures vary with mental health would 

be to divide the sample in terms of their scores on the SDQ. Although the SDQ measure does not 

measure anxiety or depression symptoms or any mental health diagnosis directly, it is known to 

correlate with mental health diagnoses. By dividing the population and analysing EF structures 

within the high and low scorers on the SDQ problems scales, it would be possible to see whether 

there are any differences in EF structure between participants with poorer and better mental health. 

Another issue at hand is that of chronological age vs. pubertal stage. Pubertal timing has been 

shown to be related to cognitive scores in early adolescence (Shangguan & Shi, 2009), and pubertal 

hormone changes might be responsible for initiating a period of neural plasticity that enables the 

significant changes in EF abilities observed during adolescence (Laube et al., 2020). Future work with 

the SCAMP dataset could use information on pubertal hormone levels in saliva and urine samples 

which were gathered as part of the BioZone add-on study to consider whether there is a greater 

difference in EF structure between those who have and have not started puberty, rather than those 

of different chronological ages as analysed here.  

Our task and measure selection somewhat limited our ability to investigate the structure of EF, in 

particular, we had no task that mainly assessed inhibition, rather this was only an aspect of cognition 

required to complete some of our tasks, in particular the commission errors in the CPT task. One 

possible approach to resolve this could be to use additional task measures to attempt to target a 

potential inhibition component more directly. For example, in the TMT and SWM phones tasks, the 
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number of non-target clicks could be said to reflect inhibition (with greater numbers of non-target 

clicks reflecting poorer inhibition ability). In the CPT task, random commission errors (i.e. button 

presses in response to stimuli other than A or X) could be considered to reflect inhibition, with 

higher numbers of random errors reflecting poorer inhibition. Including these alternative measures 

in structural models could better draw out any potential inhibition component of EF. Future work 

could also consider using a more structured task selection to enable CFA of a three-factor model 

similar to that proposed by Miyake et al. (2000) within the ages we tested, to better explore 

whether this particular organisation of EF is supported across early adolescence, and whether there 

are changes to the structure over this developmental period.  

5.5.6 Conclusions 

Overall we found some evidence for the unity and diversity of EF components at two time points 

across early adolescence. At both time points, a three-factor model of EF was supported, with 

slightly different tasks contributing to the components in the two time points. These findings suggest 

a three-factor model of EF is likely to be present during adolescence. However we did not find clear 

cut evidence for the specific three-factor model of inhibition, working memory and switching as 

proposed by Miyake et al. (2000). This is likely related to the fact we did not select the tasks 

specifically to target these aspects, and we were in particular lacking a particularly good or pure 

measure for inhibition. At both time points we observed significant associations between the latent 

EF components, supporting the idea that there is both unity and diversity of EF components during 

adolescence. We also observed that the zero-order correlations between tasks were slightly greater 

in the follow-up data than at baseline, with similar interrelations observed between the identified 

latent factors. This suggests that we find some limited evidence of increased differentiation of EF 

into these factors with time across adolescence, while noting that we do not find an increased 

differentiation into a greater number of factors in the older participants.  

CFT was found to fit with one of the three EF components at baseline (age 10-13), where at follow-

up (ages 13-16), including CFT meant that a single-factor model was a better explanation for the 

data. This single factor model however was not a particularly good fit for the data – suggesting the 

results here are to be taken with caution. The inclusion of SDQ measures at baseline resulted in a 

five-factor model with three EF / CFT components and two separate SDQ components. SDQ was not 

related to any of the EF or Gf task measures at baseline, rather it formed two separate factors with 

all the problem scales in one factor and the prosocial scale separately. At follow-up, the SDQ 

grouped within the single-factor model along with all the EF measures and CFT. Again, this model 

was not a very good fit for the data, so this finding should be taken with caution.    
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Chapter 6.  
Discussion 

6.1 Summary of Findings 

The key aims of this thesis were to investigate the development and underlying structure of EF in a 

longitudinal sample of participants across the period of early adolescence (between ages 10 and 16 

years), and to explore the associations between SES and EF in early adolescence.  

Both SES and EF are independently predictors of later life outcomes, such as academic achievement 

(SES: Blair & Raver, 2015;Devine et al., 2016; Sirin, 2005; EF: Diamond, 2013; Purpura et al., 2017). 

The nature of the relationship between SES and EF during adolescence is currently somewhat 

unclear – however previous research has shown significant associations between these concepts, 

and given that both are ‘umbrella’ concepts which have multiple facets, it would be useful to better 

understand the detailed relationships between specific aspects of SES and EF. This could potentially 

allow focused interventions to help improve children’s future achievement chances.  

Chapter 3 looked at the associations between SES and EF in our baseline data sample, where 

participants were aged between 10 and 13 at the time of testing. Here, we used MANCOVA analyses 

to show that SES is associated with overall EF, with higher SES levels being associated with better EF 

outcomes. This supports previous findings in the literature which have demonstrated many times 

that EF and SES are related to each other (e.g. Noble et al., 2007; Sarsour et al., 2011). A multiple 

regression analysis showed that CFT, a proxy measure for general fluid intelligence (Gf), was also 

associated with SES. 

In an effort to check whether EFs are particularly associated with SES, over and above any 

associations of SES with Gf, a second MANCOVA analysis was conducted. This used CFT as an 

additional covariate. Here we showed that association between overall SES and EF remained 

significant, with effect sizes slightly reduced. This finding is important because it supports the idea 

that SES and EF have significant associations over and above associations with Gf. Few previous 

studies of the relationship between SES and EF have been able to demonstrate this – often because 

studies have lacked power to also control  for CFT, or the measure was not collected (Lawson et al., 

2018).  

A set of follow-up analyses was conducted to investigate which, if any, individual measures of SES 

and EF were associated with each other. Here we used Multiple regression methods. These analyses 
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showed that specific aspects of SES and EF were differentially associated with each other. In terms of 

predictors, we found that the strongest predictor out of the six SES measures we used was school 

type (independent or stats school). It is possible that school type acts as a kind of proxy measure for 

multiple SES strands, including for example family income and involvement of parents. On the other 

hand, it could be that independent schools had quieter environments and better equipment at the 

time of testing, due to factors such as lower class sizes and more teacher involvement in the 

research, hence the participants were able to perform better in the tasks than those in state schools, 

on average. Independent schools are also able to select pupils to attend based on prior attainment 

or entrance exam results – so the populations may not be the same across state and independent 

schools. The next strongest SES predictor was Carstairs postcode deprivation measure (O. Morgan & 

Baker, 2006). This is a combined measure that includes unemployment rates, overcrowding and lack 

of car ownership and occupation type in the local area. This measure therefore covers a range of SES 

related measures in itself – this might be why this measure came out as a stronger predictor than 

the parental occupations or educations.  

In terms of the tasks which were associated with SES, the most notable example is that the BDS task 

was associated with all of our SES measures. BDS is a measure of verbal working memory span 

(Richardson, 2007). Previous research has also showed significant links between SES and verbal 

working memory, such as a paper that found that children from a disadvantaged background 

performed worse in a digit span working memory task (Globerson, 1983). Previous research has also 

linked parental interactions with the child as predictors of their later life working memory ability – 

perhaps the links between BDS and SES are related to this.  

Chapter 4 looked at the developmental trajectories of EF and Gf tasks in the SCAMP battery. 

Participants were aged M= 12.05 (SD=0.48, range 10-13 years) at baseline assessment, and at follow-

up were aged M=14.62 (SD=0.52, range 13-16 years). Using multiple regression and MLM analysis 

methods in the overall dataset, i.e. ignoring the assessment point the data were taken from, we 

found significant associations of age on EF task measures of switching (TMT proportion switch cost), 

verbal working memory (BDS span), spatial working memory (SWM errors and Corsi span), strategy 

use in a spatial working memory task (SWM strategy), attention/inhibition (CPT commission errors) 

and also on a fluid intelligence measure (Gf – measured by CFT score). We did not find any 

significant association with age in the CPT omission errors measure. Older participants scored better 

on all of the tests where significant associations with age were observed. The effect sizes were quite 

small for all of the significant results, suggesting that there is only a small amount of age-related 

development within the age group we tested.  
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Previous research has indicated that some aspects of EF are still developing in the period of early 

adolescence, where other measures of EF are likely to have reached a plateau in performance 

around this age. For example, inhibition is likely at a plateau in performance by around 11-12 years 

old (Brocki & Bohlin, 2004; Huizinga et al., 2006b). Previous research has suggested that working 

memory accuracy and capacity may have reached a peak in performance by early adolescence (De 

Luca et al., 2003) - however we did see age-related improvements in performance in SWM errors 

and Corsi capacity. Higher-level aspects of working memory, such as planning or the SWM strategy 

use measure we used, have been shown to continue to develop until early adulthood (De Luca et al., 

2003), which we did see in our data. Switching was also expected to improve over this period (K. Lee 

et al., 2013), and we also saw this effect. We also expected to see age-related developments in Gf 

(Cahan & Cohen, 1989), which we did find in our study.  

We checked whether these effects were largely down to practice effects in a series of sensitivity 

analyses. We found that significant development of the same task scores with age was present in the 

group of participants who only participated in one of the assessment sessions, though effect sizes 

were reduced – suggesting that some but not all of the developmental effects we observed were 

down to practice effects.  

We also investigated whether score at follow-up was best predicted by age or by score at baseline. 

We found a strong, significant association between score at baseline and follow-up, where age was 

not related to follow-up score when baseline score was accounted for. This was true for all of our 

task measures, except for CPT omission errors. We also considered whether the rate of change in 

score between baseline and follow-up was predictable by age, or by task score at baseline. We found 

that previous task score was a strong significant predictor of change in task score from baseline to 

follow-up for all of our tasks, with a negative relationship – meaning those scoring worse at baseline 

made more progress than those at follow-up. These findings taken together suggest that the gaps 

between the worse and best performers on average were decreasing with time across the age 

groups we analysed. 

Chapter 5 investigated the latent variable structure of EF, Gf, and mental health in our two 

assessment time points, at baseline where participants were aged between 10 and 13, and at follow-

up where participants were aged between 13 and 16. We found three-factor models of EF in both 

time points, with the factors being significantly interrelated with each other, and slightly different 

tasks contributing to the specific components at the two time points. This lends support to the idea 

that EFs display both unity and diversity during adolescence, similar to the ideas proposed in adults 

by Miyake et al. (2000). We failed to find support for the differentiation of EF into the widely 
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discussed components of inhibition, working memory and switching as have been observed in 

adults, however, as out study was using EFA methods rather than CFA designed to look specifically 

for this model, this is not conclusive evidence against this structure. It should be noted that our 

number of tasks overall was quite limited for this kind of factor analysis modelling. Also, our task 

selection was biased towards working memory, with three of our five EF tasks targeting this 

component. Therefore our support for this kind of three-factor model is somewhat tentative.  

Research looking at EF structural development during adolescence has suggested a broad change 

from less differentiated models observed in early childhood to more differentiated components 

observed in adulthood. Research has not been conclusive regarding exactly when during 

adolescence EF structures become more differentiated, but some studies point to a three-factor 

model of EF becoming stable around age 13-15 (Lee et al., 2013; Xu et al., 2013). We did not find 

evidence of EF becoming fractionated into a greater number of factors between our two time points, 

as both baseline and follow-up data supported a three-factor model of EF fractionation. We did find 

some evidence that the factors themselves are more differentiated from each other in our older 

participant group – we note that the zero-order correlations between all the EF tasks are slightly 

greater in the follow-up data (Tables 5.2 and 5.3), where the interrelations between factors are 

similar in the structural models at baseline and follow-up. However, since our age bands both 

included participants around age 13, and given that previous structural developmental research 

suggests this may be the point around which three-factor models begin to become more viable, it 

may be that our age bands were too wide to be able to spot any possible changes in EF structure 

that might be occurring around this age. 

In the structural models including CFT, we found that Gf fit with one of the EF components in 

baseline, but that in follow-up, including CFT in the models resulted in a single overall factor 

including all the tasks being the best model. This is somewhat surprising given that previous research 

has indicated that cognition broadly becomes more differentiated across adolescence, we did not 

support this in our findings. However, it is important to note that the single factor structure was not 

a very good fit for the data based on the fit metrics. We found that mental health measures did not 

group with EF or CFT measures in the baseline data, rather that they formed two separate factors 

relating to the Strengths (prosocial scale) and Difficulties (all four problem scales) components of the 

SDQ items. At follow-up, we found that mental health also measures grouped into the same single 

factor model that we had identified with CFT and EF measures. Again, this single factor model was 

not a particularly good fit for the data according to the fit metrics. 
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6.2 Limitations  

The nature of the classroom environment in which participants were assessed results in a reduced 

amount of control of outside variables, as compared with individual lab-based assessments.  For 

example, there was significant variation in the level of noise between the different testing rooms, 

which varied at both school and individual classroom level. Research has shown that levels of noise, 

especially noise of other people talking or ‘background babble’, can be particularly distracting to 

some people. For example, those with lower working memory capacity perform worse on 

mathematics problems in situations with high levels of background babble (Massonnié et al., 2022). 

It would be possible to investigate whether the noise level during the assessment (as noted by the 

experimenters at the time) associates with the outcome of task performance across the battery, to 

rule out or identify the potential magnitude of this potentially confounding variable on the data. 

On the other hand, the use of classroom assessments meant that large amounts of data could be 

collected. This has enabled us to run complex models to investigate executive function structure, 

development and the associations with SES. It has also enabled us to detect small effect sizes which 

may be present in the data – more on this shortly. A further advantage of the classroom assessment 

is that it allowed some level of control over the environment, as opposed to say online testing where 

people’s environments and levels of focus may differ significantly.  

Computerized testing was used in the main battery in order to efficiently gather data on the large 

sample of participants. This reduced the requirement for trained test administrators compared with 

more traditional presentations of tasks. It also meant that participants were able to get through 

significant volumes of testing in a relatively short period of time, as there was little or no ‘down 

time’ between the individual task assessments or questionnaire items. A downside of using 

computerized testing is that results of this type of very controlled experimental tasks may have poor 

construct validity and potentially bear limited resemblance to real-life EF abilities, as discussed by 

Chan et al. (2008b).  

One issue of particular relevance to the developmental trajectories chapter (Chapter 4) is that the 

same tasks were completed at both time points, potentially resulting in practice effects. However it 

was considered that the advantage of having longitudinal data across the two time points was 

greater than the downside here. In the analysis in this thesis we did consider the potential impacts 

of practice effects by conducting a set of sensitivity analyses – we found that the associations with 

age that we had observed in the overall sample (including those who had repeated the tasks at 

baseline and follow-up, and those who had only completed one of the two assessment points) were 
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still present in the sub-sample who had data at only one time point, but that effect sizes were 

reduced. This should be borne in mind when interpreting the results in this section.  

In many of the schools, participants did not have the intended full hour to complete the testing, due 

to time constraints in the school’s timetabling. This meant a significant proportion of our 

participants did not manage to finish all of the assessment battery. Participants were able to work 

through the assessment at their own pace. A downside of this is that potentially, the participants 

with quicker response times or reading speed are likely to have completed more of the testing 

battery. This is of particular concern as it is likely to have affected the sample who completed the 

final task in the battery, namely the CPT. This task has a much lower sample size than the other 

cognitive tasks. It is possible that the participants who did manage to complete this task are by their 

nature the participants who would score more highly on the cognitive tests. This relates to the idea 

of the ‘positive manifold’ – in this case, the speed of completion of the tasks and questionnaires 

would likely positively correlate with performance in any given task, as any psychological task is in 

general positively associated with any other. It would be possible to analyze statistically, perhaps 

using logistic regressions, whether those who scored more highly on earlier tasks, or have a quicker 

reaction time, are more likely to complete the CPT. This could give an estimate of how ‘skewed’ the 

data for this task are.  

A further complication for the interpretation of our results is that we have not been able to include 

or account for any measures of pubertal age, as opposed to chronological age. The beginning of 

puberty is defined by the onset of changes in sex hormones, rather than by a specific chronological 

age. The hormone changes are thought to be potentially causative of the increase in neural plasticity 

observed during puberty, and therefore of the rapid changes in cognitive performance also observed 

at this time. Research in boys aged 8 to 12 years old has shown that levels of salivary pubertal 

hormone (testosterone) are correlated with performance in Cattell’s CFT, after accounting for age 

and BMI (Shangguan & Shi, 2009). We are likely to have data from some participants who have 

begun puberty before the first assessment point, others who will have begun puberty at some point 

between the assessment points, and potentially some who were tested early in the follow-up testing 

period who may not have entered puberty even by the time of their follow-up assessment. The 

differences in pubertal stages between participants could explain some of the differences we have 

observed due to age (in Chapters 4 & 5), as research indicates higher levels of puberty hormones are 

associated with improvements in cognitive tasks. Our overall conclusions are limited by the specific 

task measure selection we have used. For example, it is difficult to draw wide conclusions about the 

aspects of EF as described by (Miyake et al., 2000) , as our task selection was not intended to match 

the components of working memory, switching and inhibition specifically. In particular, we have not 
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included a specific measure of inhibition in our analyses, limiting our conclusions to other EF aspects 

of switching and working memory, and more general EF where we have shown effects across most 

or all of our EF tasks.  

6.3 Future research directions 

Chapter 3 explored the nature of associations between SES and EF. Previous research has suggested 

that EF acts as a mediator of SES related disparities in other life outcomes, such as academic 

achievement and numeracy (e.g. Devine et al., 2016; Ellefson et al., 2020). It would be interesting to 

consider whether this is the case in the SCAMP cohort – future work is planned to collect academic 

achievement data as the participants have now completed their schooling, and this could be an 

interesting line of future research to pursue. Furthermore, we only analysed data from the first 

testing point in this thesis in this chapter, as follow-up data collection had not yet been completed 

when the analysis was carried out. An area that could be considered in future would be to see 

whether the association between SES and EF remains similar in the follow-up data as we have seen 

at baseline. Previous research has come to differing conclusions about whether the associations 

between SES and EF increases or remains similar over time.  

It would also be possible to use the saliva samples collected from the BioZone add-on study to 

estimate pubertal hormone levels. We could then firstly replicate the work of Shangguan & Shi 

(2009), who found that pubertal hormone levels in boys aged 10-12 correlated with CFT scores after 

accounting for age and BMI. We could also extend this research to investigate associations between 

other cognitive tasks scores and pubertal hormones, include estimates for girls, and extend the age 

groups up through to around 16 using data from our follow-up sample. We would be able to see 

whether the improvements in task performance with age that we observed in Chapter 4 are better 

explained by pubertal hormone concentrations or chronological age. 

The data collected during the SCAMP project included various measures of video game use. Previous 

research has indicated that people who play video games are more likely to have better subitisation 

range, and shorter reaction times  (Boot et al., 2011; Green & Bavelier, 2006). Subitisation range was 

measured by our enumeration task, and various measures of reaction times could be calculated 

from our task data. This could be investigated in relation to participants’ responses to the questions 

regarding video gaming to attempt to replicate these previous findings in a large sample of 

adolescents in the UK.  

A question of import is whether, and if so how, do mobile phone and other technology use influence 

trajectories of cognitive development. Given that EFs have a protracted period of development, this 
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makes them a likely area of cognition that might be affected by use of mobiles and technology 

during development (Best et al., 2009). As part of the SCAMP assessment, many measures of mobile 

phone use amongst our cohort have been collected. This includes questionnaire responses in the 

main battery and add-on questionnaires, and also a subsample of participants downloaded an app 

that tracked type and time of mobile usage at points during the data collection period, and a further 

subsample carried a mobile exposimeter to assess their exposure to RF-EMF in their daily lives. 

Previous research has indicated that mobile phones do not cause cognitive impairments, but may be 

associated with poorer mental health (Roser et al., 2016). However the research field is lacking any 

overall conclusions about the effects of mobile use in a longitudinal study. SCAMP offers the 

opportunity to investigate this in a large, representative sample of adolescents in London, and might 

be able to better elucidate causality than previous correlational work in this area due to its 

longitudinal study design. The work completed as part of this thesis, considering EF structure and 

development over the SCAMP study period, could be extended to investigate mobile use. For 

example, the EF latent variables identified in Chapter 5 could be used in a cross-lagged SEM model 

along with latent variables describing mobile phone or other technology use, to see whether there is 

a predictive relationship between these variables, and which direction this relationship runs (i.e. 

does mobile phone use at baseline predict later EF at follow-up, or the other way around).  

6.4 Conclusions 

This thesis has investigated the associations between EF and SES in early adolescence, and the 

structure and development of EF from early to mid adolescence. Small but significant associations 

between SES and EF were demonstrated in Chapter 3. The associations between SES and EF 

measures were present over and above associations with general fluid intelligence (Gf). This has not 

been widely demonstrated previously. We used a large sample of participants whose SES was 

representative of the wider London population, which extends the field by illustrating effects of SES 

across the whole range of SES, rather than only comparing limited groups of participants. By using 

multiple measures of both SES and EF, we found significant associations between specific measures 

of SES and EF. Overall we found that school type was the SES measure with the largest association 

with EF measures (around 5% of variation in EF scores) with SES measures generally accounting for 

around 8% of the variation in EF scores, and that the BDS task was most strongly related to multiple 

measures of SES. 

In Chapter 4 we investigated the development of task scores across the age range of 10 - 16 years. 

We found small but significant effect of age on all but one of our EF task measures, and also on our 



209 
 

measure of Gf. This effect was present over and above the practice effect, i.e. the normally expected 

improvement associated with some participants having completed the tasks more than once.  

In Chapter 5 we found a three-factor model of EF at both baseline (age 10-13) and follow-up (age 13 

-16). Factors were all significantly interrelated, supporting a unity-yet-diversity model of EF in both 

age groups. At baseline, factors were labelled as switching and working memory; planning; and 

attention. At follow-up, factors were labelled as switching and working memory; spatial working 

memory; and attention. We found that Gf fit with the switching and working memory EF component 

at baseline. At follow-up, including Gf in the model resulted in a unique factor structure which was 

associated with the variance in all EF and Gf tasks. Mental health measures did not group with EF or 

Gf task measures at baseline, rather the inclusion of mental health measures resulted in a five-factor 

model consisting of three EF and Gf related factors (switching and working memory; planning; 

attention), and two mental health factors (SDQ strengths; SDQ difficulties). At follow-up, mental 

health measures grouped with the single factor model which explained variance in all of the EF, Gf 

and mental health measures. 
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Appendix A  
Strengths and Difficulties Questionnaire, 
11-17 Version 

Please give your answers on the basis of how things have been for you OVER THE LAST SIX MONTHS. 

Options buttons: NOT TRUE; SOMEWHAT TRUE; CERTAINLY TRUE.  

1. I try to be nice to other people. I care about their feelings 
2. I am restless, I cannot stay still for long 
3. I get a lot of headaches, stomach-aches or sickness 
4. I usually share with others (food, games, pens etc.) 
5. I get very angry and often lose my temper 
6. I am usually on my own. I generally play alone or keep to myself 
7. I usually do as I am told 
8. I worry a lot 
9. I am helpful if someone is hurt, upset or feeling ill 
10. I am constantly fidgeting or squirming 
11. I have one good friend or more 
12. I fight a lot. I can make other people do what I want 
13. I am often unhappy, down-hearted or tearful 
14. Other people my age generally like me 
15. I am easily distracted, I find it difficult to concentrate 
16. I am nervous in new situations. I easily lose confidence 
17. I am kind to younger children 
18. I am often accused of lying or cheating 
19. Other children or young people pick on me or bully me 
20. I often volunteer to help others (parents, teachers, children) 
21. I think before I do things 
22. I take things that are not mine from home, school or elsewhere 
23. I get on better with adults than with people my own age 
24. I have many fears, I am easily scared 
25. I finish the work I'm doing. My attention is good 

Coding of items  
Emotional problems: 3, 8, 13, 16, 24 

Conduct problems: 5, 7, 12, 18, 22 

Hyperactivity problems: 2, 10, 15, 21, 25 

Peer problems: 6, 11, 14, 19, 23 

Prosocial: 1, 4, 9, 17, 20 
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Appendix B  
Instructions presented for BDS task in 
the SCAMP battery 

BDS  
BDS_intro In this task you will see series of numbers, like 2, 5, or 3, 9, 1, appearing on the 
screen one by one.¬You need to remember the numbers and indicate what they were clicking on a 
number pad like this.¬ ¬ ¬ ¬ ¬ ¬ The trick is that you have to click on the numbers in the REVERSE 
ORDER of what they were shown in.¬So if you see 1 then 9 you would need to press number 9 first 
and then number 1.¬Let's try the practice. 

BDS_practice_fail2 Oops you didn't get that one, let's try again, remember click on the numbers 
you saw IN REVERSE ORDER.¬Press space to try another 

BDS_pre_main Well Done! Press space to do the rest of them now - you won't be told if you get 
them right or wrong any more. 

BDS_close That was great, WELL DONE!!¬ ¬Press space to try another task. 

BDS_reverseRemind Remember you have to REVERSE the numbers in your head!¬So if you see 1 
then 9 you would need to press number 9 first and then number 1.¬Press space to try another 

BDS_no_idea_text I DON'T KNOW 

BDS_close_early THANKS! Let's try another task. ¬ ¬ Press space to continue 

BDS_practice_fail3 You got this last one wrong, remember you have to repeat the numbers 
backwards, so if you see 1, 2, 3 you should click 3, 2, 1.¬Press space to try another 
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Appendix C Results for Chapter 3 (SES)  

MANCOVA results 
Effect Value F Hypothesis 

df 
Error df Sig. Partial 

Eta 
Squared 

Intercept  0.057 16.881b 5.000 1401.000 0.000 0.057 

School_Type  0.055 16.329b 5.000 1401.000 0.000 0.055 

SES_F  0.042 1.714 35.000 7025.000 0.006 0.008 

SES_M  0.031 1.266 35.000 7025.000 0.135 0.006 

cars11_q  0.025 1.759 20.000 5616.000 0.019 0.006 

Par_Ed_F  0.004 1.070b 5.000 1401.000 0.375 0.004 

Par_Ed_M  0.005 1.373b 5.000 1401.000 0.232 0.005 

Age  0.027 7.735b 5.000 1401.000 0.000 0.027 

a. Design: MANCOVA test, Intercept + School_Type + SES_F + SES_M + cars11_q + Par_Ed_F + 
Par_Ed_M + Age 

b. Exact statistic 

c. The statistic is an upper bound on F that yields a lower bound on the significance level. 
 

Effect Value F Hypothesis 
df 

Error df Sig. Partial 
Eta 
Squared 

Intercept  0.057 16.840b 5.000 1400.000 0.000 0.057 

School_Type  0.046 13.579b 5.000 1400.000 0.000 0.046 

SES_F  0.041 1.649 35.000 7020.000 0.009 0.008 

SES_M  0.029 1.184 35.000 7020.000 0.211 0.006 

cars11_q  0.025 1.733 20.000 5612.000 0.022 0.006 

Par_Ed_F  0.004 1.109b 5.000 1400.000 0.354 0.004 

Par_Ed_M  0.004 1.085b 5.000 1400.000 0.367 0.004 

Age  0.019 5.550b 5.000 1400.000 0.000 0.019 

CFT  0.102 31.848b 5.000 1400.000 0.000 0.102 

a. Design: MANCOVA test Intercept + School_Type + SES_F + SES_M + cars11_q + Par_Ed_F + 
Par_Ed_M + Age + CFT 

b. Exact statistic 

c. The statistic is an upper bound on F that yields a lower bound on the significance level. 
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Appendix D  
Results for Chapter 4 (Developmental 
Trajectories) 

Complete Model information for linear regressions, with each task score as outcome, and age in years as predictor in 
each model.  

Outcome Predictor b b 
95% CI 

beta beta 
95% CI 

r Model Fit 
R2, 95% CI 

TMT Intercept -0.36** [-0.56, -0.16]    R2 = .002** 

 Age Years 0.03** [0.01, 0.05] 0.04 [0.02, 0.05] .04** [.00,.00] 

BDS Intercept -1.67** [-1.89, -1.45]    R2 = .024** 

 Age Years 0.14** [0.12, 0.16] 0.16 [0.14, 0.17] .16** [.02,.03] 

SWM errors Intercept -1.21** [-1.41, -1.00]    R2 = .014** 

 Age Years 0.10** [0.09, 0.12] 0.12 [0.10, 0.14] .12** [.01,.02] 

SWM  strategy Intercept -1.40** [-1.59, -1.20]    R2 = .021** 

 Age Years 0.12** [0.10, 0.13] 0.14 [0.13, 0.16] .14** [.02,.03] 

Corsi Intercept -1.97** [-2.27, -1.67]    R2 = .032** 

 Age Years 0.16** [0.14, 0.19] 0.18 [0.15, 0.20] .18** [.02,.04] 

CPT omission Intercept 0.06 [-0.39, 0.51]    R2 = .000 

 Age Years -0.01 [-0.04, 0.03] -0.01 [-0.05, 0.03] -.01 [.00,.00] 

CPT commission Intercept -1.15** [-1.56, -0.74]    R2 = .014** 

 Age Years 0.10** [0.06, 0.13] 0.12 [0.08, 0.16] .12** [.01,.02] 

CFT (Intercept) -1.70** [-1.91, -1.48]    R2 = .026** 

 Age_Years 0.14** [0.12, 0.16] 0.16 [0.14, 0.18] .16** 95% CI[.02,.03] 
Note. A significant b indicates the standardised beta is also significant. b represents unstandardized regression weights. 
beta indicates standardized regression weights. r represents the zero-order correlation. Numbers in square brackets 
indicate lower and upper limits of a confidence interval, respectively [LL, UL].  * indicates p < .05. ** indicates p < .01. 
 

 

 


