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 Abstract—The metaverse, known as the next-generation 3D 

Internet, represents virtual environments that mirror the physical 

world. It is supported by innovative technologies such as digital 

twins and extended reality (XR), which elevate user experiences 

across various fields. However, the metaverse also introduces 

significant cybersecurity and privacy challenges that remain 

underexplored. Due to its complex multi-tech infrastructure, the 

metaverse requires sophisticated, automated, and intelligent 

cybersecurity measures to mitigate emerging threats effectively. 

Therefore, this paper is the first to explore Artificial Intelligence 

(AI)-driven cybersecurity techniques for the metaverse, examining 

academic and industrial perspectives. First, we provide an 

overview of the metaverse, presenting a detailed system model, 

diverse use cases, and insights into its current industrial status. We 

then present attack models and cybersecurity threats derived from 

the unique characteristics and technologies of the metaverse. Next, 

we review AI-driven cybersecurity solutions based on three critical 

aspects: User authentication, intrusion detection systems (IDS), 

and the security of digital assets, specifically for Blockchain and 

Non-fungible Tokens (NFTs). Finally, we highlight challenges and 

suggest future research opportunities to enhance metaverse 

security, privacy, and digital asset transactions.  

 

Index Terms—Artificial Intelligence, biometrics, continuous 

authentication, cybersecurity, Digital Twins, intrusion detection, 

metaverse, multimodality, NFTs 
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I. INTRODUCTION 

HE metaverse is an increasingly popular concept that is 

gaining significant attention from the tech industry, with 

its market value expected to reach 2.5 trillion US dollars 

by 2023 [1]. Essentially, the metaverse is the next-generation 

Internet, characterized by immersive three-dimensional virtual 

environments that mirror the physical world, where users 

engage in various experiences via customizable digital avatars. 

The term metaverse was coined by Neal Stephenson in his 1992 

science-fiction novel Snow Crash [2], which envisioned a 

digital world that could be accessed  in real-time via smart 

devices known as head-mounted displays (HMDs). Early 

adaptations of the metaverse were in the realm of video games, 

with Massively Multiplayer Online Games (MMOGs) like 

Second Life and Roblox enabling players to create personalized 

avatars, construct virtual worlds, and purchase in-game items 

using digital currencies. Beyond the gaming industry, the 

metaverse has the potential to revolutionize everyday activities 

in various domains, including entertainment [3], education [4], 

e-commerce [5], social interactions [6], healthcare [7], and 

tourism [8].  

Advancements in technology have brought significant 

transformations in wireless communications and user 

engagement, evolving from PCs and static web environments 

(Web 1.0) to the current era of smart devices, Wi-Fi, 

applications, and the dynamic web (Web 2.0). The next phase, 

commonly known as Web 3.0, is expected to be user-centered 

and supported by emerging technologies and the future 

metaverse [9], as shown in Fig. 1. Digital twin technology is a 

core enabler of the metaverse, as it generates real-time virtual 

representations of physical objects, capturing precise imitations 

of their actions and responses within an Internet of Things (IoT) 

ecosystem [10]. Extended Reality (XR), which combines 

Virtual Reality (VR), Augmented Reality (AR), and Mixed 

Reality (MR), is another important technology responsible for 

the creation of immersive and interactive experiences in the 

metaverse [11]. Other metaverse-enabling technologies include 

Artificial Intelligence (AI), computer vision, blockchain, edge 

and cloud computing, and emerging communication networks 

such as 5G and 6G+ [12]. 

Although the metaverse promises to deliver technological, 

economic, and social benefits, its significant digital 

T 
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transformation poses various challenges, particularly 

cybersecurity and privacy threats.  Cybercriminals often exploit 

new technological trends, as evidenced during the COVID-19 

pandemic, when increased online activities led to a rise in 

phishing attacks and fraud [13]. Moreover, technological 

advancements lead to evolved cybercrime, demonstrated by the 

rise of sophisticated AI-driven cyberattacks [14]. Therefore, 

integrating numerous heterogeneous technologies in the 

metaverse contributes to its complexity and vulnerability, likely 

magnifying current cyber threats. Furthermore, the metaverse’s 

decentralized and highly interactive nature presents unique 

security challenges that need to be addressed.  

First, the metaverse introduces significant threats to digital 

identity as virtual environments become more integrated into 

daily life [15]. As users navigate the metaverse through 

customizable digital avatars, verifying their true identities 

becomes increasingly difficult, enabling malicious actors to 

commit identity theft and impersonation. Deepfakes, AI-

generated entities that can mimic real images, videos, and 

voices [16], can be utilized to create realistic but fraudulent 

avatars, leading to potential misuse of personal data and 

financial fraud. Additionally, AI-generated Non-Playable 

Characters (NPCs), which operate without direct human 

control, can complicate identity verification processes and 

integrity. Another identity-related issue arises with VR 

technology [17], where collecting biometric data such as facial 

features and behavioral patterns is necessary. Malicious actors 

can exploit vulnerabilities in authentication mechanisms, 

compromising this sensitive information and leading to severe 

privacy breaches. 

Second, the dynamic nature of the metaverse poses 

significant network security threats. Unlike traditional 

networks, the metaverse consists of constantly changing virtual 

environments, high volumes of real-time data transmission, and 

interaction among numerous devices and users. This 

complexity increases the risk of network-based attacks, such as 

Denial of Service (DoS) attacks, which can cause disruptions 

and downtimes. Additionally, malicious actors can leverage AI 

techniques to target the metaverse with automated attacks that 

evade detection, known as Advanced Persistent Threats (APTs) 

[18]. Therefore, current cybersecurity measures that rely on 

pre-defined rules and static approaches, such as firewalls and 

antivirus software, are insufficient to mitigate advanced threats, 

especially zero-day attacks that exploit unaddressed 

vulnerabilities [19].  

Third, the economic system of the metaverse is poised to be 

supported by blockchain technology, which provides a 

relatively secure and decentralized platform for online 

transactions [20]. Virtual object trading is expected to rely on 

cryptocurrencies and Non-fungible Tokens (NFTs), the latter 

being unique cryptographic identifiers that verify ownership of 

digital assets [21]. The market value for cryptocurrencies and 

NFTs is rapidly growing, with OpenSea, one of the largest NFT 

marketplaces, achieving a sales record of $20.37 billion in 2022 

[22]. This rapid growth makes these systems attractive targets 

for cybercriminals. For instance, in February 2022, NFTs worth 

2.9 million US dollars were stolen from the OpenSea 

marketplace due to phishing attacks [23]. Cybersecurity threats 

extend to blockchain wallets, where users store their 

cryptocurrency and NFTs. Attackers often use fake profiles on 

NFT marketplaces and impersonate other users to gain 

unauthorized access to blockchain wallets and NFT accounts. 

Therefore, exploring the risks associated with asset trading and 

developing solutions to mitigate these issues is necessary to 

ensure the security and integrity of the metaverse's economic 

system.  

Given the scale and scope of potential threats in the 

metaverse, traditional cybersecurity measures are insufficient 

and thus require innovative solutions. Specifically, AI-driven 

cybersecurity techniques offer promising advantages [24],[25]. 

Enhanced biometric authentication, automated real-time threat 

detection, and cost-effective fraud detection represent areas 

where AI can transform security practices. As the metaverse is 

still in its nascent stages, existing literature mainly focuses on 

addressing technological limitations and realizing its full 

potential. While numerous survey papers investigate potential 

risks and propose countermeasures, more in-depth studies that 

mainly explore AI-based cybersecurity methods for the 

metaverse need to be conducted. Therefore, this comprehensive 

survey seeks to bridge this gap by examining AI solutions for 

securing the metaverse, focusing on the potential of AI in 

enhancing user authentication, intrusion detection, and security 

of asset trading within the metaverse. The contributions of this 

paper are summarized as follows:  

1) Provide an overview of the metaverse based on 

academic and industrial perspectives, presenting a 

comprehensive system model and use cases. 

2) Present attack models and discuss cybersecurity 

threats unique to the metaverse. 

3) Review various AI-based cybersecurity solutions for 

the metaverse, including user authentication, intrusion 

detection systems (IDS), and security of digital asset 

trading (specifically for NFTs). 

4) Identify challenges and research opportunities for 

building a secure metaverse environment using AI-

based cybersecurity measures.    

The paper is organized into six sections, as shown in Fig. 2. 

Section II includes a review of related surveys. Section III 

provides a background on the metaverse and relevant AI 

techniques. Attack models and cybersecurity threats of the 

metaverse are presented in Section IV. Section V reviews AI 

techniques for cybersecurity based on user authentication, 

intrusion detection systems (IDS), and digital asset security. 

Section VI summarizes the lessons learned from this survey, 

Section VII highlights the challenges and research 

opportunities, and the conclusion is presented in Section VIII.   

Web 1.0 

•  User-centered 

•  6G+ 

•  AI 

•  Blockchain 

•  Extended Reality 

•  Digital Twins 

•  Metaverse. 

• PC 

• Static Internet 

• 1G 

• Basic HTML 

• E-mails 

• Centralized 

• Smart Devices 

• Wi-Fi 

• 4G,5G 

• Apps 

• Cloud 

• Social Networks 

Web 2.0 Web 3.0 

Fig. 1. Advancing from the current Internet of 2D apps into a decentralized, 3D, 

and immersive Internet, known as the metaverse. 
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II. RELATED WORK AND MOTIVATION 

 This section reviews previously published survey papers 

related to the metaverse. Our literature search was guided by a 

set of keywords, including metaverse, survey, overview, review, 

cybersecurity, security, privacy, and threats. We sourced papers 

published in English from leading academic databases and 

publishers such as ACM, Elsevier, IEEE, ScienceDirect, and 

Scopus. The reviewed survey papers, listed in Table I, are 

compared based on the inclusion of discussions on metaverse 

threats, NFTs threats, and possible cybersecurity solutions. 

Regarding solutions, our comparative analysis is focused on 

user authentication, intrusion detection systems (IDS), and NFT 

security, as these areas are the main contributions of our work. 

We employ a symbol system to categorize discussions based on 

depth and the inclusion of AI-based solutions, as follows: 

• Comprehensive discussion (✓).  

• Partial discussion (≈), indicating brief mentions or 

generalized discussions.  

• Inclusion of AI-based solutions (*). 

• Absence of AI-based solutions (─).   

As observed from Table I, the papers are categorized based 

on their primary research focus into general overview, AI and 

blockchain, and cybersecurity. A notable early survey from 

2013 [26] outlines foundational features of the metaverse, such 

as Realism, Ubiquity, Interoperability, and Scalability, but 

primarily addresses computational challenges rather than 

security concerns. Recent surveys [27]-[32] offer extensive 

overviews of the metaverse’s development, architecture, 

technologies, characteristics, applications, and open challenges. 

Lee et al. [28] explore user behavior, ethical design, and data 

privacy challenges, highlighting examples of existing threats 

likely to be magnified within the metaverse. However, their 

examination of countermeasures is limited. For instance, user 

authentication and federated learning (an AI paradigm) are 

generally mentioned as potential research areas for metaverse 

security without delving into detailed discussions about their 

current state, limitations, or existing solutions. Metaverse 

threats are discussed in [30] and [31], while NFT issues are 

partially mentioned. The authors in [30]  focus on edge 

computing and blockchain as solutions, but they also mention 

the utilization of federated learning as a privacy-preservation 

method and the need for robust authentication methods. The 

work in [31] addresses metaverse threats based on data, 

network, software and hardware, and mentions threats targeted 

at cryptocurrencies and NFTs, providing general research 

directions toward governing the metaverse to avoid security 

issues.  

Several survey papers focus their research on AI and 

blockchain for the metaverse. In [33], [34], the authors 

highlight the role of AI in the metaverse, with general 

discussions of potential security and privacy threats. Yang et al. 

[35] investigate the integration of blockchain and AI, 

particularly in advancing the metaverse's development. In [36], 

the authors discuss the role of blockchain technology in 

enabling the economic system of the metaverse, highlighting its 

role in mitigating potential challenges. Another study [37] 

conducts an in-depth review of the integration of blockchain 

technology within the metaverse, particularly in terms of digital 

asset management and security aspects. It discusses various 

threats to the metaverse, including access control attacks, 

network intrusions, malware attacks, and impersonation risks. 

Additionally, the paper discusses NFTs as a mechanism for 

verifying ownership and authenticity of digital assets, briefly 

mentioning potential scams in NFT marketplaces. While this 

survey provides a broad range of strategies to address identity 

and digital asset management, it focuses on blockchain-based 

solutions. In contrast, our survey explores AI techniques for 

user authentication and mitigation of NFT-related threats.  

The surveys focusing exclusively on cybersecurity and 

privacy threats in the metaverse analyze potential risks across 

various domains.  The survey conducted by Wang et al. [38] is 

among the earliest comprehensive works to examine 

cybersecurity and privacy threats within the metaverse, 

focusing on threats related to data, privacy, identity, network, 

physical and social impacts, and governance. The authors offer 

corresponding countermeasures for each challenge, paving the 

path for future research in metaverse security. Another survey 

[39] studies potential challenges and cyber threats that might 

derive from implementing digital twin technology in the 

metaverse, focusing on blockchain-based solutions. Chen et al. 

[40] provides a discussion on metaverse threats based on five 

of its enabling technologies: blockchain, AR/VR, AI, cloud and 

IoT, and digital twins. The authors also mention integrity issues 

associated with NFTs.  

Chow et al. [41] categorize security threats into 

authentication and identity, privacy issues, social issues, and 

physical threats, focusing on challenges brought by 

visualization technologies like VR and AR. The survey 

discusses the vulnerabilities of traditional authentication 

 
Cyberattacks and Attack Models Cybersecurity Threats 

Structure of the Survey 

I. Introduction  

II. Related Work  

III. Background  

IV. Cybersecurity Threats in the Metaverse   

V. AI-based Cybersecurity Solutions for the Metaverse  

AI for User  

Authentication  

AI for Intrusion  

Detection  

Systems 

AI for Blockchain 

and NFT Security  

VI. Lessons Learned  

VII. Challenges and Research Opportunities   

VIII. Conclusion 

Metaverse Overview AI for Cybersecurity  
 

Fig. 2. Organization of the Survey.  
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methods in virtual environments. It highlights the potential of 

AI-driven cybersecurity measures to combat these threats, such 

as continuous authentication, DeepFakes (AI-generated 

avatars) detection, and automated monitoring for malicious 

activities. Sun et al. [42] explore security and privacy threats 

specifically for big data, focusing on potential cyberattacks on 

different layers of the metaverse. User authentication is briefly 

mentioned in the context of lightweight methods for metaverse 

security. The work in [43] also comprehensively reviews 

metaverse security and discusses user biometric authentication 

solutions. Moreover, solutions for attack detection methods are 

discussed, with AI-based methods mentioned as solutions.  

 The reviewed surveys have made substantial contributions 

to the field of metaverse cybersecurity. However, our distinct 

contributions lie in exploring AI-based solutions for metaverse 

cybersecurity, particularly for user authentication, IDS, and 

NFT security, areas not extensively covered in prior surveys. 

While numerous works discussed biometric and continuous 

authentication for the metaverse, our approach 

comprehensively analyzes various biometric traits, highlighting 

their advantages, disadvantages, and implementation for the 

metaverse. We also emphasize the significance of integrating 

multimodal and continuous authentication, comprehensively 

reviewing literature combining both methods in metaverse-

related applications.  

 Furthermore, our survey is the first to investigate AI-based 
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[26] 2013 
Overview of four metaverse features: Realism, ubiquity, 
interoperability, scalability, and highlighting computational 

limitations for metaverse development 

      

[27] 2021 
A survey on metaverse development, standards, current 

applications, and key characteristics 
≈      

[28] 2021 
An analysis of metaverse technologies, applications, and 
development 

✓ ≈ ≈ ≈*   

[29] 2022 
A survey on metaverse development and case studies of existing 

metaverse applications 
≈      

[30] 2023 A survey on the utilization of different technologies in the metaverse ✓ ≈ ✓ ≈─   

[31] 2022 
A thorough investigation of metaverse architecture, development, 

applications, and impact on various sectors 
✓ ≈ ≈ ≈─   

[32] 2023 
A survey on metaverse characteristics, applications, and challenges 

with a focus on the concept of human-centric metaverse 
≈  ≈    
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[33] 2022 
A survey on 6-G enabled edge and AI techniques in the metaverse, 

focusing on technological issues 
≈  ≈    

[34] 2022 
Analysis of the role of AI in the metaverse, AI-enabled applications, 

and open challenges 
≈  ≈    

[35] 2022 
A survey on the integration of AI and blockchain technologies into 
the metaverse and open challenges 

≈ ≈  ≈─  ≈─ 

[36] 2023 
Technical analysis of blockchain technology and its role in building 

the economic system of the metaverse 
 ≈ ✓ ≈─  ≈─ 

[37] 2023 
A survey on the role of blockchain in the metaverse, focusing on 

digital asset management 
✓ ≈ ✓ ✓─  ✓─ 
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[38] 2022 
A comprehensive survey on the metaverse and its security and 
privacy issues based on seven aspects 

✓ ≈ ✓ ✓─   

[39] 2022 
Overview of digital twin technology for the metaverse and relevant 

security and privacy issues 
✓ ≈ ≈ ≈─   

[40] 2022 
Overview of metaverse security and privacy issues, current 

solutions, and open security questions 
✓ ≈ ≈ ≈*   

[41] 2022 
A Survey on cybersecurity threats in the metaverse based on 

visualization technologies 
✓  ✓ ✓* ≈*  

[42] 2022 
A survey on big data in the metaverse and potential security and 

privacy threats 
✓  ≈ ≈─   

[43] 2023 
A survey on security and privacy threats and solutions in the 

metaverse 
✓ ≈ ✓ ≈* ≈*  

Our 

Paper 
2024 

Survey on AI-based cybersecurity solutions for the metaverse, 
exploring user authentication, intrusion detection, asset trading, 

specifically for the metaverse 

✓ ✓ ✓ ✓* ✓* ✓* 

TABLE I  

OVERVIEW AND COMPARISON OF RELATED SURVEYS  

✓ : YES  : NO ≈: PARTIALLY INCLUDED *: INCLUDES AI ─: DOES NOT INCLUDE AI 
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solutions for detecting security breaches (IDS) specifically 

designed for the metaverse. We also explore how AI can help 

secure NFTs, moving beyond the usual discussions focusing 

only on blockchain technology. Furthermore, we discuss related 

challenges to the metaverse while considering academic and 

industrial perspectives, and we also examine AI algorithms, 

datasets, performance metrics, and the applicability of such 

methods in the metaverse. With this approach, we aim to offer 

a comprehensive overview of the current applications of AI 

technologies and their deployment for metaverse security. We 

aim to add valuable insights to the field and guide researchers 

interested in AI-based cybersecurity for the future metaverse. 

 

III. BACKGROUND  

This section offers a preliminary background divided into 

two parts. First, an overview of the metaverse is provided, 

outlining its architecture, enabling technologies, characteristics, 

and industrial status. Second, general AI concepts are 

introduced, emphasizing their role in cybersecurity.  

A. Metaverse Overview 

The term metaverse combines ‘meta’ (transcending/beyond) 

and ‘universe’. While its definition is still evolving, the 

metaverse is often envisioned as a 3D next-generation form of 

the Internet. Coined by Neal Stephenson in his 1992 novel Snow 

Crash, the metaverse is described as an immersive virtual space 

that reflects aspects of the real world, with users representing 

themselves as digital avatars [2]. Essentially, the metaverse is a 

cyberspace consisting of numerous virtual worlds that represent 

the convergence of physical and digital realities, where users 

engage in immersive experiences such as social 

communication, entertainment, education, and digital asset 

trading.  

1) Architecture and Elements: The metaverse combines the 

cyber and physical worlds into a unified virtual space. Powered 

by Digital Twin technology, a digital replica of our reality is 

created, where two worlds are seamlessly interconnected and 

updated in real time. The overall metaverse architecture is 

illustrated in Fig. 3, and it primarily consists of the physical 

world, digital world, and the metaverse engine that consists of 

enabling technologies.   

a) Physical World: The physical infrastructure supporting 

the metaverse consists of interconnected technologies, 

including computation units, communication networks, storage 

devices, and hardware. As the metaverse continues to evolve, a 

concrete physical architecture with detailed specifications is 

still being developed. However, several studies propose 

frameworks for the physical infrastructure of the future 

metaverse [44][45]. Based on these studies, we conceptualize 

the architecture of the physical world of the metaverse around 

five main elements: Human Area, Physical Layer, 

Communication Layer, Edge Layer, and Cloud Layer. 

• Human Area: The metaverse mirrors the complexities of 

the real world, including humans, physical environments, 

objects, social interactions, human activities, official 

institutions, and governance. 

• Physical Layer: This layer consists of hardware and 

technologies that collect data from the Human Area. Users 

access and interact with the metaverse using various end 

devices, such as HMDs (VR headsets and AR glasses), 

haptic gloves [46], motion controllers, and smart devices 

(wearables and smartphones). While traditional devices 

like personal computers (PCs), mobile devices, and tablets 

can access the metaverse, they do not provide a fully 

immersive experience. Metaverse devices (HMDs) collect 

diverse user data, including biometrics (eye movements, 

heart and brain activities, and facial expressions). Based on 

the Internet of Things (IoT) ecosystem, sensors deployed 

across physical environments collect data on atmospheric 

conditions, acoustics, physical movements, and features of 

objects and buildings, seamlessly integrating physical 

world dynamics into the digital space. 

• Edge Layer: The edge layer consists of distributed and 

decentralized edge nodes that process data from the 

physical layer. Edge computing supports transmitting time-

sensitive data, allowing faster data flow and reducing 

latency by performing real-time operations close to data 

sources. Additionally, edge computing enhances privacy 

and security by enabling local data processing and giving 

users control over their data [47]. The edge layer filters data 

and transmits the necessary packets to the cloud, ensuring 

an efficient infrastructure capable of handling the 

metaverse’s dynamic and demanding ecosystem. 

• Cloud Layer: The cloud layer is the backbone for storing 

and processing big data. It consists of data centers with 

servers and storage units responsible for the mapping of the 

cyber and physical worlds through data analytics [47], AI 

processing, data synchronization, Application 

Programmable Interfaces (APIs), and security measures 

such as authentication, identity management, firewalls, and 

access control. 

• Communication Layer: This crucial layer is responsible 

for the seamless data exchange across multiple layers in the 

metaverse. Innovative networking technologies and 

protocols must be incorporated into the metaverse to enable 

reliable, secure, and high-speed data transmissions. Among 

these, 5G and 6G networks are anticipated to be part of the 

metaverse communication system due to their capability to 

deliver ultra-low latency and massive data throughput [48]. 

Software-defined networking (SDN) is another critical 

architectural innovation within the communication layer. 

SDN increases network flexibility and efficiency by 

separating control and data planes, allowing for more agile 

network management and optimized resource utilization 

[49]. SDN also facilitates smoother data movement across 

the distributed infrastructure of the metaverse.  
b) Digital World: The digital world, or the virtual landscape 

of the metaverse, consists of an extensive network of 

interconnected sub-metaverse worlds. These worlds host 

various applications and experiences, such as entertainment, 

social interactions, and education. Users can navigate 

seamlessly between different environments and experiences 

without barriers. 
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• Virtual Personas: Users represent themselves as digital 

avatars in the metaverse. A digital avatar is a visual 

illustration of a character within a digital platform, which 

can be created using 2D or 3D graphics to perform certain 

actions [50]. Since the metaverse consists of multiple 

worlds and applications, users can customize avatars based 

on their experience [51]. For example, an avatar that 

reflects similar physical features of a user (powered by 

digital twins) can be used in a work or educational 

environment for integrity purposes (i.e., Microsoft Mesh 

avatars). However, avatars can be extensively personalized 

in gaming platforms such as Roblox and Fortnite, offering 

users imaginative elements to explore.  

• Virtual Environment: This component mirrors the 

physical world within the metaverse, with digital twin 

technology generating real-time simulations of physical 

entities and landscapes, including everything from 

institutions (such as schools and workplaces) to entire 

virtual cities and natural landscapes. 

• Virtual Economy: The economic system of the metaverse 

is poised to be supported by blockchain technology, which 

provides a secure and decentralized platform for online 

transactions [20]. The creator-based economy allows users 

to generate virtual objects empowered by blockchain, 

cryptocurrencies, and Non-fungible Tokens (NFTs), which 

are cryptographic identifiers that verify ownership of 

digital assets on the Internet [21]. NFTs can represent any 

form of digital content, including images, videos, in-game 

items, domain names, and virtual real estate. Yilmaz et al. 

[52] found that the integration of NFTs into the metaverse 

offers new opportunities for digital trading and asset 

ownership, enriching user interactions and expanding the 

digital economy. VR and AR technologies enable 

immersive trading experiences through virtual auction 

houses and promote the monetization of digital art, 

introducing possibilities for virtual real estate and cross-

platform interoperability. 

• User Experience: Users can experience real-world 

activities in the metaverse with full immersion and 

engagement. Such experiences include gaming, 

entertainment (e.g., virtual concerts), tourism, education, 

work meetings, shopping, etc. Users can create their own 

content and indulge in social interactions and interactive 

live events without the restrictions of time and space.  

2) Metaverse Engine and Enabling Technologies: The 

metaverse engine layer (illustrated in Fig. 3) consists of the 

Fig. 3. A diagram of the general architecture of the metaverse, showing the elements and their connections in the physical world and digital worlds. The 

metaverse engine is the link layer that includes the main enabling technologies of the metaverse. Real-time and constant data flow between the physical 

infrastructure and the metaverse highlights the complexity and dynamic nature of the metaverse. 
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enabling technologies that bridge the physical and virtual 

worlds, such as human interfaces, AI technology, digital twins, 

and blockchain. This layer provides a continuous and real-time 

flow of data between the physical world and the metaverse. 

Data, especially big data from the physical world, is collected, 

analyzed, and processed though these technologies, enriching 

the virtual world with real-time feedback and interactions.  

a) Digital Twin: Digital twin is an emerging technology that 

generates real-time virtual copies of physical objects with 

accurate representations of their actions and responses [53]. 

Data of physical elements is obtained via sensors and recreated 

in a digital space, building a “digital twin” of that element. AI 

techniques are used to simulate the effects of any changes that 

can occur in the real world. For a digital twin to function 

efficiently, information from physical sensors must be 

continuously gathered to ensure any changes in the physical 

world are reflected in the digital twin. As the metaverse is a 

virtual reflection of physical reality, digital twin technology is 

vital for creating exact replicas of elements and environments 

such as avatar generation, architectures, e-commerce, retail, and 

automation, as illustrated in Fig. 4.  

b) Human Interfaces: Interfaces in the metaverse are 

revolutionized by emerging technologies. Extended Reality 

(XR), which includes Virtual Reality (VR), Augmented Reality 

(AR), and Mixed Reality (MR), offers users deeply immersive 

environments, enhancing their sense of presence and 

engagement [54]. As shown in Fig. 5, VR immerses users in 

fully interactive digital environments, isolating them from the 

physical world, while AR overlays digital objects onto the real 

world, enhancing but not replacing the user’s environment. MR 

merges real and virtual worlds to generate new environments 

where physical and virtual objects coexist in real-time, allowing 

users to interact with responsive elements integrated into real 

environments. Additionally, Brain-Computer Interface (BCI) 

technology connects the human brain with a device to translate 

neural signals into commands, allowing users to control virtual 

elements or receive tactile feedback without physical 

movements [55]. The integration of XR and BCI opens new 

opportunities for the collection of biometric data and emotional 

states, which provides highly immersive, responsive, and 

personalized experiences for metaverse users.  

c) Artificial Intelligence: Artificial Intelligence (AI) refers 

to the simulation of human intelligence in machines or 

computer systems, allowing them to perform tasks such as 

learning, problem-solving, and language understanding. AI 

offers the benefits of automating tasks, enhancing decision-

making, improving efficiency, and unlocking insights from vast 

amounts of data. Table II lists several survey papers that explore 

the role of AI in various communication systems, highlighting 

the significant potential of using AI to ultimately transform 

industries and simplify our daily lives.  
AI plays a transformative role in the metaverse [34][56]. It 

enables personalized experiences through sophisticated 

algorithms that analyze user behavior, preferences, and 

interactions. According to [57], AI enhances realism and user 

interaction via immersive content generation, intelligent 

interactions, conversational AI, and lifelike avatars.  It also 

optimizes network infrastructure, improves interfaces, and 

advances spatial computing [57]. Moreover, AI powers natural 

language processing (NLP) for communication with virtual 

assistants and characters, making interactions more intuitive 

[58]. AI also supports the development of realistic scenes, non-

playable characters (NPCs), and autonomous agents that can 

enhance storytelling and social interactions.  

d) Blockchain: Blockchain is the core technology that 

supports decentralization, security, and transparency. It enables 

trustworthy transactions and ownership of digital assets via 

cryptocurrencies and NFTs.   

e) Spatial Computing: Spatial computing is mainly 

responsible for the reconstruction of 3D spaces in the 

metaverse. It utilizes computer vision, AR, and sensors to blend 

digital content with the physical world with precise placement 

and scaling of virtual objects.  

3) Key Characteristics: The metaverse is distinguished by 

several unique characteristics, including immersion, 

interoperability, decentralization, persistence, and scalability.  

Immersion is the key characteristic that distinguishes the 

metaverse from the current Internet. Through integrating XR 

and haptic technologies, the metaverse creates highly engaging 

and realistic environments. The human senses are embedded 

 

Fig. 4. Digital twin technology enables the replication of users, objects, and 

environments in the physical world into digital counterparts via sensors that 

feed real-time data to the digital space.  
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into the virtual space, elevating the user experience.  

Interoperability allows users to seamlessly use and trade 

their virtual goods across virtual worlds. Achieving 

interoperability in the metaverse is an open challenge due to the 

need for global standards and protocols to ensure compatibility 

of virtual assets across several platforms [59]. 

Decentralization is another key characteristic of the 

metaverse. Transitioning from Web 2.0 to Web 3.0 leads to a 

user-centric and decentralized Internet, which is a key aspect of 

the metaverse. A decentralized system, opposite to a centralized 

one, eliminates the involvement of a third party, allowing users 

to control their transactions directly. This aspect, supported by 

blockchain technology, enhances security and data 

transmission in the metaverse [35].  

Persistence refers to the ability of the metaverse to operate 

in real-time, ensuring that augmented objects and environments 

remain sustainable and accessible [27]. This means that AR 

objects placed in real-world locations will persist to exist even 

when not actively viewed, allowing for real-time updates 

visible to all metaverse users. This persistence can lead to cost 

and time savings, for example, by replacing physical billboards 

with AR technology [60].  

Scalability ensures the environment can handle increasing 

number of users and complex interactions without degrading 

performance.  Addressing scalability for the metaverse involves 

optimizing computing capabilities, network bandwidth, and the 

overall quality of the virtual experience. 

Hyper-spatiotemporality in the metaverse refers to the 

enhanced and multidimensional integration of spatial and 

temporal elements within virtual environments, transcending 

the limitations of physical reality. This concept involves the 

manipulation and synchronization of space and time in ways 

that are not possible in the real world, allowing for dynamic, 

interactive, and immersive experiences.   

4) Applications: The metaverse is revolutionizing various 

aspects of our daily lives, akin to how the evolution of the 

Internet transformed communication and interaction with 

technology. It offers diverse applications across entertainment, 

commerce, tourism, remote work, education, healthcare, and 

social interaction. 

a) Entertainment: The metaverse is reshaping entertainment 

through immersive gaming, virtual events, concerts, and virtual 

theme parks, as highlighted by initiatives like Disney’s virtual 

theme park project [61].  

b) E-commerce: Commerce is evolving into an immersive 

experience where users can virtually navigate stores in real-

time, exemplified by collaborations between brands like Gucci, 

Nike, and Roblox. 

c) Tourism: Virtual tourism enriches the travel experience 

with various levels of interactivity based on user goals, offering 

digital trips for entertainment or immersive preview of travel 

destination [62]. The Emirates VR Experience is a VR 

application released by Emirates Airlines on the Oculus store, 

which allows users to explore the interior and services of the 

airline through a realistic and interactive VR experience [63].  

d) Remote Work: The COVID-19 pandemic emphasized the 

need for effective online communication. The metaverse 

addresses challenges of remote work, such as social isolation 

[71] and reduced productivity due to lack of mobility [72], by 

offering immersive virtual meetings and customizable 

workspaces, as seen in platforms like Meta’s Horizon 

Workrooms and Microsoft Mesh.  

e) Education: The metaverse enables realistic digital 

replicas of educational environments, offering immersive 

experimental learning and improved observations of students’ 

behaviors via their emotional state and body language [73].   

f) Healthcare: The metaverse is posed to enhance healthcare 

through telepresence, automation, remote diagnosis, and 

medical education/training [74], [75]. 

g) Social Interactions: Enhancing global communication, 

the metaverse facilitates rich online social interactions, 

allowing users to participate in activities regardless of physical 

distances.  

h) Practice Platform: The metaverse provides a platform for 

realistic and controlled professional training in fields like 

athletics and military operations. Several studies demonstrate 

the potential of implementing immersive VR environments for 

professional training due to realistic stimulation, controlled 

environment, remote training, to name a few  [76]-[78]. 

5) Metaverse Use Cases: Based on the metaverse's 

architecture and enabling technologies, we present two use 

cases that highlight examples of basic operations within it. 

a) Building a Digital City: In the metaverse, a digital city is 

crafted by an interdisciplinary team of urban planners, 

architects, and digital artists. They design a city with various 

districts for education, entertainment, and innovation, utilizing 

advanced server technologies and cloud computing for 

infrastructure. Key elements include digital twinning of real-

world locales for accurate urban simulations and integration 

with IoT devices to feed real-time data on weather, traffic, and 

environmental conditions. Through XR devices, users 

worldwide can explore this city, interact with its components, 

own virtual property, and engage in community governance. 

This virtual city is a dynamic platform for urban planning 

Ref Field  Examples of discussed AI roles 

[64] 6G Networks 
Optimizing network efficiency, real-time 

decisions, fast data processing.  

[65] Smart Cities  

Intelligent transportation systems, efficient 

urbanization and energy consumption, 
improved communications.  

[66] 

IoT and cyber-

physical systems 

(CPS) 

Adaptive network architecture, optimization 

of wireless technologies, federated learning 

for data privacy, real-time analytics.  

[67] Edge Computing  
Optimizing computing offloading and 
resource allocation, reducing latency, 

adapting to dynamic workloads.    

[68] Cloud Computing 

Optimizing resource allocation and server 

performance, creating GPU-accelerated 
computing 

[69] 
Vehicular Ad-hoc 

Networks 

Safety applications, traffic management, 

routing optimization, mobility management. 

[70] 
Internet of Things 

(IoT) Systems 

Operational efficiency, risk management, 

scalability, smart sensors and data gathering  

TABLE II  

SURVEY PAPERS ON AI APPLICATIONS FOR VARIOUS 

FIELDS 
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experiments, educational ventures, and cultural exhibitions, 

highlighting the seamless blend of real-world integration and 

virtual innovation within the metaverse.  

b) Virtual Asset Trading:  The metaverse is set to capitalize 

on blockchain technology to revolutionize asset trading, with 

NFTs being an example of digital assets traded in this use case, 

as shown in Fig. 6. Content creators (artists) can sign up to any 

NFT marketplace, such as OpenSea, where their accounts get 

linked to their cryptocurrency wallet. MetaMask stands out as a 

popular crypto wallet that allows users to interact with 

decentralized applications (dApps) via their Ethereum-based 

wallet. Once the artist lists the digital work on the NFT 

marketplace, it gets minted via a smart contract. The actual 

information (metadata) of the NFT is stored off-chain, while the 

buyer of an NFT, who is also required to connect their crypto 

wallet to the marketplace, can use or view the content of the 

NFT on blockchain once it is purchased (See Fig. 6a). 

NFTs bring new opportunities for both metaverse users and 

enterprises (See Fig. 6b). With their ability to ensure ownership 

of virtue goods in the metaverse [79], shopping in the metaverse 

can be done more securely. Once an NFT-based item is 

purchased, users immediately get ownership of that item. 

Beyond asset trading, avatars can also be minted as NFTs, 

linking the identity of a user to that specific unique avatar, 

which offers a solution to impersonation problems in the 

metaverse [80]. Moreover, NFTs can be utilized for legal access 

controls within virtual worlds, enabling the creation of 

exclusive event tickets and managing organized virtual 

gatherings with specific access parameters.  

6) Industries and Strategies: The global metaverse market 

has seen substantial investments in the tech industry. Table III 

lists several investing companies, highlighting their goals, 

current metaverse-related projects, and their publicly 

announced metaverse-specific security measures. 

Mark Zuckerberg, the CEO of Meta, describes the 

metaverse as the “next chapter of the Internet”  [81]. Meta’s 

goals revolve around building user-centric and immersive 

experiences where users can engage in activities such as work, 

shopping, and learning. Zuckerberg acknowledges the need to 

address privacy and cybersecurity issues, open standards, 

interoperability, and governance. Meta has officially committed 

to responsible innovation to create a safe and sustainable 

metaverse by prioritizing user safety and privacy [82].   

Microsoft envisions the metaverse as the new version of the 

Internet [83], focusing on the evolution of the workplace. Their 

online meetings platform, Mesh for Microsoft Teams, 

integrates MR, AI, digital twins, and holograms to create an 

immersive and accessible digital-physical work experience. In 

Teams, users can represent themselves as 3D avatars that reflect 

lip and head movements. Charlie Bell, the executive vice 

president of security, compliance, identity, and management at 

Microsoft, discussed potential privacy threats such as fraud and 

impersonation attacks [84], and called for further investigation 

of possible solutions. 

Nvidia’s metaverse strategy focuses on the economic benefits 

for enterprises and industries. Its platform, Omniverse, 

generates AI-driven 3D simulations of physical environments, 

aiming to provide efficient and time-saving workflows [85]. 

Nvidia is dedicated to integrating AI and cybersecurity in the 

future, as they publicly highlighted the company’s role in 

accelerating cybersecurity applications like threat detection, 

zero-trust architecture, and fingerprint scanning [86].  

Apple Inc. has a different perspective on the metaverse, 

focusing on the development of AR technology. Tim Cook, 

CEO of Apple, stated that his company does not embrace the 

term metaverse due to its vagueness. However, Cook 

anticipates a future where MR will be implemented in daily life 

activities, leading to a new technological revolution [87]. While 

Apple has not disclosed specific security and privacy measures, 

their Vision Pro XR headset utilizes iris recognition for user 

authentication.  

Adobe Inc. aims to create virtual goods for the metaverse 

[88]. Adobe Experience Manager (AEM) Cloud Services 

employ security measures such as encryption, authentication, 

and auditing to protect user data [89]. Unity Technologies is 

collaborating with other companies to incorporate its engine as 

a tool for content creation in the metaverse [90]. Epic Games 

focuses on the consumer’s perspective and experience, aiming 

to allow users to own and monetize their creations [91]. 

Regarding safety issues, Epic Games and Lego Group 
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Fig. 6. Illustration of virtual asset trading withing the metaverse. Fig.6a illustrates the process of NFT creations in marketplaces and decentralized apps, highlighting 

the technical components and operations involved. Fig.6b illustrates a scenario where NFTs can be used in the metaverse, including using them for avatars, virtual 

shopping, and attending virtual events.  
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announced a collaborative project to build an immersive 

regulated digital world for children to ensure their safety and 

privacy [92].  

Amazon Web Service (AWS) is specialized in immersive 

online shopping [27], while Nike Inc. has developed Nikeland, 

a Roblox-based virtual space where users can engage in 

different experiences related to the brand, such as gaming, 

socializing, working, and NFT trading [93]. MetaDubai, an 

ongoing project that aims to build a digital version of Dubai 

city, focuses on improving the economy and developing the 

future metaverse via the integration of XR, AI, big data, 

blockchain, and cloud/edge computing. 

The massive global interest in the metaverse implies its 

significant potential for economic growth in enterprises and 

businesses, as well as providing an innovative user experience 

for many applications. However, most companies are currently 

focused on technological challenges, and a few have publicly 

addressed cybersecurity and privacy concerns. 

 

B. Artificial Intelligence for Cybersecurity   

Artificial Intelligence (AI) aims to create systems capable of 

performing tasks that require human intelligence, such as 

learning, problem-solving, and perception. Generally, AI 

systems rely on algorithms to acquire knowledge and make 

informed decisions. The generic workflow, illustrated in Fig. 7, 

starts with problem definition, data acquisition and preparation, 

model training and development, tuning and evaluation, and 

then model deployment and testing against new data. 

In the field of cybersecurity, AI allows for real-time detection 

and mitigation of security threats. AI systems process large 

volumes of data, identify anomalies, and automate responses to 

threats, enabling proactive defense mechanisms against 

evolving cyber threats, as reviewed in  [94]-[97]. Within AI, 

machine learning (ML) is a core subfield extensively utilized in 

cybersecurity applications. ML enables computers to learn from 

data autonomously, identifying patterns and making decisions 

without human intervention. Deep Learning (DL) is an 

advanced branch of ML that uses multi-layered neural networks 

to simulate the complex processing of the human brain. Unlike 

traditional ML, which offers manual feature extraction, DL 

automates this process, allowing the system to learn directly 

from the data through the deep network of layers.     

This subsection provides an overview of various ML 

algorithms employed in cybersecurity applications and 

highlights the key performance metrics required for AI-based 

cybersecurity systems.  

1) Learning-based Algorithms for Cybersecurity: ML can be 

broadly categorized based on the system’s learning style into 

Supervised Learning, Unsupervised Learning, Semi-

Supervised Learning, Reinforcement Learning, and Federated 

Learning, as shown in Fig. 8. 

a) Supervised Learning (SL): This method requires labeled 

datasets, in which the model is trained using an input object 

Company/ 

Platform 
Goal/Vision Current Applications/ Hardware 

Security/Privacy 

Measures 

Meta  

Advancing from 2D screens into immersive 3D 

worlds, where people can engage in work, physical 
health, commerce, and education 

- Horizon Worlds 

- Horizon Workrooms 
- Oculus Headsets 

User privacy protocols 

Microsoft  

Building a real-presence digital representation of the 

physical world, focusing on the workplace and 

industrial usage 

- Mesh for Microsoft Teams 
- HoloLens Headsets 

- Identity management 

- User privacy. 
- Transparency 

- Collaborative governance 

Nvidia  

Applying the metaverse in industries and businesses 

for economics to reduce workload and save time via 
immersive 3D simulations of physical environments 

- Omniverse  - AI for cybersecurity 

Apple  
Focusing on the development and implementation of 

MR (specifically AR) for daily-life activities 

- Entertainment: Clips app 

- Shopping: Warby Parker and IKEA Place 

- Education: Apollo’s Moon-Shot AR 
- Tourism: Museum Alive 

- Iris recognition for user 

authentication (Vision Pro) 

Adobe 

Creating 3D virtual goods for a variety of 

experiences, such as gaming, shopping, art, virtual 
museums, and job training 

- Adobe Substance 3D 

- Adobe Aero 
Encryption, authentication 

Unity 

Utilizing multiple technologies to collaborate with 

other companies and build real-time immersive 

worlds for variant experiences 

- Industrial: Hyundai’s Meta-Factory  

- Sports: Rezzil’s training app 
- Shopping: Samsung’s digital twin store 

- Healthcare: Fatal Heart VR 

N/A 

Epic 

Games 

Focusing on user-centered experience and ownership 

of virtual assets  

- Unreal Engine  

- Fortnite  

Protected virtual world for 

under-aged groups 

Amazon 
Integrating metaverse technologies for immersive 

shopping experiences  
- Amazon AR View N/A 

Nike 
Building a virtual space for immersive experiences 
and NFT trading 

- Nikeland N/A 

MetaDubai  
Leveraging multiple technologies to build a digital 

twin of Dubai city 
- MetaDubai  N/A 

TABLE III  

COMPANIES INVESTING IN THE METAVERSE, THEIR APPLICATIONS, AND METAVERSE-RELATED SECURITY MEASURES   
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(vector) and a corresponding output (label). The algorithm 

learns the mapping function from the input and output to 

perform tasks such as classification and regression. Common 

algorithms used in SL include Decision Trees (DT), Random 

Forest (RF), and Support Vector Machines (SVM). DT utilize 

a hierarchical tree structure consisting of several nodes and 

branches used to enable decision-making, while RF integrates 

multiple DT for robust accuracy. DT and RF are widely 

employed in cybersecurity for fraud detection [98] and phishing 

attacks identification [99]. SVM, known for their efficacy in 

classification by maximizing the margin between classes, are 

extensively applied in malware detection across Android 

platforms [100], network traffic [101],  and unknown malware 

classification [102]. Additionally, ensemble learning is a 

specific method that combines multiple ML algorithms to 

improve model accuracy and robustness. For example, a 

combined DT and SVM framework proposed in [103] has 

shown high accuracy for malware detection within IoT 

ecosystems.  AdaBoost and XGBoost are notable ensemble 

learning algorithms that have also been deployed to enhance the 

detection of complex threats in IoT domains [104],[105].  

Artificial Neural Network (ANN) architectures like 

Recurrent Neural Networks (RNN) and Convolutional Neural 

Networks (CNN) are also examples of SL methods. RNNs, 

particularly Long-short Term Memory (LSTM) networks, can 

process information from previous inputs to influence the 

output of subsequent steps, making them ideal for analyzing 

time-series data or sequences of actions within cybersecurity, 

such as continuous monitoring of network traffic for anomaly 

detection. CNNs are specialized deep neural networks that 

excel in handling data with grid-like structures such as images. 

In cybersecurity, CNNs are commonly used for tasks like 

biometric authentication and malware image identification to 

detect suspicious patterns or anomalies [106].  

b) Unsupervised Learning (UL): UL deals with unlabeled 

data, allowing algorithms to learn and identify patterns without 

human supervision. 

Clustering focuses on grouping similar data points into 

clusters. K-Means is a common clustering algorithm that 

partitions a dataset into K distinct groups, with each data point 

assigned to the nearest mean value (centroid). In cybersecurity, 

log files are crucial for identifying and detecting anomalies. 

Clustering techniques manage the vast amounts of unstructured 

data from system logs, aiding in outlier detection and enhancing 

anomaly detection [107]. 

Dimensionality Reduction aims to reduce the number of 

input variables in a dataset to simplify it without losing 

important information. Principal Component Analysis (PCA) is 

an example of such algorithms, which finds the most significant 

features in a dataset that makes the data easy for 2D and 3D 

visualization and identifying linear combinations of variables. 

Autoencoders (AEs) are a type of artificial neural network used 

to learn efficient representations of data, which can also be used 

for dimensionality reduction. An AE consists of an encoder that 

compresses input data into a lower-dimensional form and a 

decoder that reconstructs the original data from the compressed 

representation. The goal is to minimize the difference between 

the input and the reconstructed output, effectively capturing the 

important features of the data. This makes AEs useful for 

dimensionality reduction. In cybersecurity, AEs detect 

anomalies or outliers in data by identifying unusual behavior in 

user activities or network traffic, which could indicate a cyber-

attack or breach [108].   

Data Generation involves creating new data points similar 

to a given dataset, which can be used for data augmentation, 

simulation, and anomaly detection. Generative Adversarial 

Networks (GANs) are generative models that consist of two 

neural networks, a generator and a discriminator, trained 

simultaneously to generate and discriminate between real and 

synthetic data, respectively. GANs are trained on given datasets 

and can generate synthetic data for data augmentation purposes, 

such as increasing dataset size or balancing class distribution, 

thereby improving the overall performance of the AI model. 

GANs enhance security by creating synthetic data for secure 

analysis, improving intrusion detection systems and malware 

detection through adversarial training. They are also used in 

secure image steganography to conceal data within images and 

in neural cryptography for encrypting biometric data [109]. 

c) Semi-Supervised Learning: Semi-supervised learning 

uses both labeled and unlabeled data for training. This approach 

is particularly useful when acquiring a fully labeled dataset is 

expensive or impractical. Semi-supervised learning techniques 

have been employed in various cybersecurity applications, 

including anomaly detection [110], cyberattack detection in 

smart grids [111], ransomware detection [112], detection of 

malicious authentication attempts [113], and insider threat 

detection [114].  

d) Reinforcement Learning (RL): In RL, an agent learns to 

make decisions by performing actions in an environment to 

achieve rewards. Two notable RL algorithms are Q-Learning 

and Deep Q-Networks (DQN). Q-Learning is a model-free 

algorithm that learns the value of actions directly, while DQN 

combines Q-Learning with deep neural networks for more 

complex decision-making. In cybersecurity, RL can be utilized 

to develop adaptive systems that continuously learn and 

optimize their detection capabilities. Several survey papers 

review the applications of RL in cybersecurity systems, 

including intrusion detection, intrusion prevention, botnet 

detection, identity management, etc. [115], [116].  

e) Federated Learning (FL): Federated Learning is a ML 

paradigm where multiple decentralized devices collaboratively 

train a model without sharing their local data [117]. FL is 

extensively researched within metaverse security since it is 

expected to address privacy and computational efficiency issues 

[118]. FL is categorized into three types based on how data is 

distributed among participants.  

Fig. 7. Generic AI Process 
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• Horizonal Federated Learning (HFL): Involves training 

with similar data features but from different samples.   

• Vertical Federated Learning (VFL): Involves training 

with shared or overlapped samples but different data 

features.  

• Federated Transfer Learning (FTL): Involves training 

with different samples and features. 

2) Performance Metrics: In ML systems, several metrics are 

generally used to evaluate the performance of models in 

cybersecurity applications. 

a) Accuracy: The ratio of the correct predictions to the total 

number of predictions. Higher accuracy indicates a better-

performing system.  

b) Confusion Matrix: A summary table often used to evaluate 

model performance. In includes: 

• True Positive (TP): Correctly identified legitimate actions 

or entities.  

• True Negative (TN): Correctly rejected malicious actions 

or entities. 

• False Positive (FP): Incorrectly identified legitimate 

actions or entities as malicious.   

• False Negative (FN): Incorrectly identified malicious 

actions or entities as legitimate.   

c) False Acceptance Rate (FAR): The probability that the 

system incorrectly accepts a malicious action or entity. Lower 

FAR is preferred to avoid security breaches.  

d) False Rejection Rate (FRR): The probability that the 

system incorrectly rejects a legitimate action or entity. Lower 

FRR is preferred to ensure usability.  

e) Equal Error Rate (EER): The point where FAR and FRR 

are equal. A lower EER indicates a more accurate system.  

f) Area Under the Curve (AUC): The value quantifying 

overall model performance by measuring the area under the 

Receiver Operating Characteristic (ROC) curve. A higher AUC 

indicates better performance. 

Effective AI training, validation, and monitoring are 

essential to reduce false positives and negatives, ensuring 

robust system security. 

IV. CYBERSECURITY THREATS IN THE METAVERSE 

Cybersecurity threats refer to malicious activities that aim to 

gain unauthorized access to data or cause damage to computer 

systems and networks. While cybercrimes have been occurring 

since the evolution of the Internet, they are rapidly evolving 

with the growth of technology. According to a report published 

by the Internet Crime Compliant Center (IC3) in the United 

States, a loss of 6.9 billion dollars was caused by cybercrime in 

2021, which is an increase of 64% from 2020 [119]. 

Cybercriminals often target new technological trends, as 

exemplified by the significant increase in scam and frauds (i.e., 

phishing attacks) during the pandemic due to dependance on 

remote work [120]. With the metaverse being a new form of the 

Internet that integrates various innovative technologies, the 

attack surface increases, and current cybersecurity threats are 

likely to be magnified.  

In this section, we examine potential risks in the metaverse 

from a cybersecurity perspective. First, we highlight the impact 

of existing cyberattacks on the metaverse and present scenarios 

that illustrate several potential attack models. Second, we 

provide a general discussion on metaverse threats according to 

several aspects: Data, identity, privacy, digital wellbeing, legal 

regulations, and NFTs.  

A. Cyberattacks and Attack Models 

Traditional cyberattacks, such as network-based attacks and 

malware injections, will continue to target the metaverse. 

However, their potential impact is expected to magnify due to 

the complex nature of the metaverse ecosystem and its 

deployment into daily life activities. The convergence of 

innovative technologies, such as XR and digital twins, 

introduces new threats that exploit the unique immersive and 

interconnected features of the metaverse, ranging from integrity 

issues to threatening the wellbeing of users [121],[122]. 

Attackers can also utilize AI techniques to launch sophisticated 

and automated attacks, targeting the metaverse infrastructure. 

These AI-driven attacks are particularly concerning as they can 

adapt, learn, and bypass conventional security measures 

[123],[124]. Some attacks may even target and exploit 

vulnerabilities within AI models (e.g. Data Poisoning attacks), 

which presents a meta-layer of security challenges requiring 

innovative defensive strategies. Table IV lists examples of 

traditional cyberattacks, immersion-based attacks, and AI-

based attacks, each with their respective definition and impact 

on the metaverse. 

Based on the metaverse architecture, use cases, and existing 

cyberattacks, we propose three scenarios that highlight 

Fig. 8. Categorization of common ML methods used in cybersecurity based on model learning style.  

 

Classification & 

Regression Supervised Learning 
(Labeled Data)  

DT, RF, SVM 

Neural Networks 

(CNN, LSTMS) 
AdaBoost, XGBoost 

 

Semi-Supervised Learning 
(Labeled and Unlabeled Data) 

Federated Learning 
(Distributed Learning) 

Unsupervised Learning 
(Unlabeled Data) 

Reinforcement 

Learning 

(Learning from Errors) 

ML 

Methods 

K-Means 

 

AE, PCA 

 

GAN 

Clustering 

 

Dimensionality Reduction 

 

Data Generation 

Horizontal FL 

 

Vertical FL 

 

Federated Transfer Learning 

Q-learning 

 

 

DQN 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3442475

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) 

examples of possible attack models in the metaverse, including 

the creation of digital entities, impersonation of other users, and 

targeting digital goods, as illustrated in Fig. 9. 

1) Scenario 1: Digital Integrity Attacks: In this scenario 

(based on Use Case 1 presented in Section III), a digital city is 

developed by an interdisciplinary team using digital twin 

technology and IoT. The scenario highlights three possible 

cyberattacks related to data integrity and information 

transmission: Data tempering, MiTM attack, and overlay 

attacks. With data tempering, the attacker exploits 

vulnerabilities in a sensor to compromise its accuracy via 

malware injections, distorting the digital twin’s representation 

and leading to flawed urban planning decisions. MiTM attacks 

intercept communication channels between the physical 

infrastructure and its digital counterpart, altering data flow and 

resulting in inaccurate simulations of city models. The overlay 

attack introduces malicious content into the digital city that can 

be utilized for false advertising, manipulation, or inducing 

psychological effects on the users (e.g., panic). 

2) Scenario 2: User Impersonation: In this scenario, the 

identity of a user engaging in a metaverse-based meeting is 

compromised through two impersonation tactics. First, a MiTM 

attack intercepts communications between the user and the 

metaverse platform, especially when the user attempts to access 

the meeting by providing authentication credentials. The 

attacker establishes a fraudulent connection to extract sensitive 

information, thus endangering the user's digital identity. 

Secondly, utilizing AI to create convincing deepfakes based on 

stolen data, an attacker crafts a deceptive avatar that mimics the 

user’s facial features and voice, engaging in acts of 

misinformation, harassment, or reputational damage. This is 

particularly dangerous if the impersonated avatar holds a 

position of authority (e.g., a CEO or political figure), since 

attackers take advantage of their perceived trust to extract 

Attack 

Type 
Cyberattack Definition Impact on the Metaverse  
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s 

 

Denial of 

Service 

DoS/DDoS 

 

A cyberattack that prevents access to legitimate users due to 

high traffic (flood) from a compromised computer. Distributed 

DoS (DDoS) occurs when multiple computers are used to 
perform the attack 

Attackers can target IoT devices connected to the metaverse 

to launch DDoS attacks. Service interruption in the metaverse 

is very costly and risky due to its significant economic impact 
and integration into everyday life activities.   

Malware 

Attacks 

Malware refers to malicious software developed to infect 
devices and networks. Examples of malware include viruses, 

worms, and trojans 

The multitude of devices and sensors used to access the 
metaverse makes them susceptible to malware attacks, 

compromising user privacy and security  

Ransomware 

Attacks 

Ransomware is a type of malware that encrypts data and blocks 
access to computer systems until the attacker’s demands are 

met. (Usually monetary demands) 

With the expansive economy in the metaverse and the 

emergence of NFTs and cryptocurrency, ransomware 

demands can be higher and have a significant impact on both 
companies and individuals 

Phishing 

Attacks 
The attacker tricks the victim by sending malicious emails and 
links to steal sensitive information 

Phishing attacks are already causing major theft incidents in 

NFT marketplaces and are expected to target the intellectual 

property and personal information of metaverse users   

Man in The 

Middle 

(MiTM) 

MiTM attacks occur when attackers position themselves 
between the communication of two entities to eavesdrop, alter 

data, or inject malicious content into the communication flow  

MiTM attackers eavesdrop on user-to-user communications 

and transactions of virtual assets in the metaverse, leading to 
theft or altering of sensitive data. MiTM attackers can also 

disrupt data flow between the physical and virtual worlds, 

leading to inaccurate rendering of digital twin entities  

Masquerade 

Impersonation 

Attacks 

Occurs when an attacker disguises themselves as a legitimate 

user to gain access to sensitive information 

With digital twins and avatar generation, malicious attackers 
can impersonate legitimate users and potentially gain access 

to unauthorized information 

Im
m
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-

b
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d

 A
tt
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s Overlay 

Attacks 

In an overlay attack, malicious content is placed on top of user 

interface (UI) elements to deceive or harm users 

Affects user perception and interaction with immersive 

environments, leading to manipulation, phishing, or 
unauthorized access to virtual resources  

Occlusion 

Attacks 

These attacks cause disorientation of the content in an 
immersive environment, obstructing the user’s view during a 

VR session   

Disrupts the user experience, which can be significantly 
problematic for learning and work environments. It can also 

lead to physically harming users by causing cybersickness  
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False 

Generation of 

Data  

AL algorithms generate synthetic, misleading content such as 

fake news or deepfake audio/visuals of users 

Can lead to misinformation, manipulation of public opinion, 

impersonation of other users to gain personal information that 

can lead to unauthorized access 

AI-driven 

password 

attacks 

Deep learning models, like GAN, can be utilized to guess 

passwords based on learned distributions from actual breaches, 

improving the success rate of password cracking attacks  

Attempting to gain unauthorized access is inevitable in the 

metaverse. In case of a password breach, sensitive data will be 

put at risk (e.g. biometrics, digital goods) 

AI-Model 

Manipulation  

Manipulation of ML models with adversarial techniques to 
degrade their performance (e.g., data poisoning)  

The heavy reliance on AI in the metaverse can motivate 

attackers to target the ML algorithms or datasets used for 
training, compromising their effectiveness and increasing 

vulnerabilities to attacks 

TABLE IV  

CYBERATTACKS AND THEIR IMPACT ON THE METAVERSE 
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private information or manipulate others within the metaverse.  

3) Scenario 3: Virtual Asset Trading: This scenario outlines 

cyberattacks that target asset trading in the metaverse. Attackers 

can use sophisticated phishing attacks to gain unauthorized 

access to users' assets, enabling them to conduct illegal 

transactions. Additionally, a MiTM attacker can eavesdrop on 

communications during asset transactions, aiming to capture 

sensitive information like user credentials, digital wallet details, 

and transaction data. Such breaches not only compromise the 

financial security of individuals, but it also undermines trust 

and integrity of the virtual marketplace's security mechanisms.    

B. Emerging Threats in the Metaverse    

The unique characteristics of the metaverse introduce 

potential cybersecurity and privacy risks, which can be 

generalized as follows: 

1) Scalability: The metaverse allows a massive number 

of users to log into virtual worlds simultaneously. 

Thus, significant amounts of data are collected, 

increasing the risk of highly sensitive information. 

2) Availability: DoS and ransomware attacks pose 

significant impact on users and enterprises due to its 

integration into various aspects of daily life and 

operations.   

3) Interoperability: The presence of multiple metaverse 

sub-worlds increases the attack surface and raises 

issues concerning privacy and authentication.  

4) Immersion: Biometric and behavioral information is 

collected via headsets, putting sensitive information at 

risk. Additionally, the immersive nature of the 

metaverse can amplify the impacts malicious 

behaviors such as cyberbullying. 

5) Hyper-Spatiotemporality: Integrity compromises will 

arise as distinguishing between what is real and fake 

in the metaverse can become challenging.   

6) Decentralization: Concerns regarding virtual asset 

transactions and user authentication are heightened in 

the decentralized environment of the metaverse, 

posing additional security challenges. 

We discuss metaverse threats based on six aspects, as 

summarized in Fig. 10: Data threats, digital identity threats, 

privacy threats, digital well-being threats, legal and regulations 

issues, and security risks associated with blockchain and NFTs. 

The figure also illustrates how some metaverse elements are 

linked to potential threats.  

1) Data Threats: Data security and privacy are ongoing 

concerns in the current Internet. Attackers target sensitive 

information for monetary gains, data theft, and political 

motives. As shown earlier in Table IV, data is vulnerable to 

various traditional cyberattacks aimed at damaging or stealing 

information. The metaverse is still susceptible to these 

cyberattacks due to its reliance on traditional IT hardware 

[125]. However, the complexity of the metaverse and the vast 

amount of data collected by third-party companies heighten 

concerns about cyberattacks and privacy issues.  

In Information Security, the three principles for a secure 

infrastructure are confidentiality, integrity, and availability, 

known as the “CIA triad”. Confidentiality relates to privacy, 

integrity refers to data consistency, and availability ensures data 

accessibility at any time and place. From an attacker’s 

perspective, they target confidentiality through data theft, 

integrity via data manipulation, and availability by denying 

users access to computer and network systems.  

a) Data Confidentiality Risks: Confidentiality in 

cybersecurity refers to protecting sensitive data from 

unauthorized access, closely tied to privacy. It ensures that only 

authorized users can access specific information. Data breaches 

are a major concern in today's Internet, and it is expected that 

they will amplify in the metaverse due to the amount and 

sensitivity of data. Data breaches occur when confidential 

information is exposed to unauthorized parties, significantly 

impacting reputation and user privacy. In some cases, data 

breaches can cause financial losses [126]. For instance, 165 

million LinkedIn records were compromised in 2012, which led 

the company to compensate users who paid for services with an 

estimated value of 1.25 million dollars [127]. Similarly, the 

online game Second Life, one of the earliest versions of the 

metaverse, suffered a data breach in 2006 affecting 660 

thousand users [128]. Cyberattacks like phishing and malware 

injections can occur in the metaverse, with potentially greater 

impact due to the larger amount of data at stake. Biometric 

information, which is permanently linked to users, poses a 
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Fig 9. Attack models based on three scenarios. Scenario 1 illustrates integrity attacks on digital twin environments. Scenario 2 highlights possible attacks that can 

lead to user impersonation in the metaverse. Scenario 3 is set to show a combination of traditional attacks (phishing and MiTM) that can occur when metaverse 

users are involved in asset trading.  
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significant privacy risk if compromised, far exceeding the 

impact of traditional credentials loss.     
b) Data Integrity Threats: Data integrity ensures that digital 

information is reliable, trustworthy, and uncorrupted 

throughout its lifecycle. Cyberattacks targeting data integrity 

involve data manipulation for various purposes, such as 

tampering with records or accessing backup data for 

ransomware. In the metaverse, data manipulation can have 

severe consequences. For example, attackers could exploit 

vulnerabilities in metaverse hardware or software to redirect 

payments or tamper with medical records, leading to false 

prescriptions and potential fatalities [129]. 

The hyper-spatiotemporal nature of the metaverse allows for 

extensive personalization in content creation. If wearable 

devices are compromised, attackers could inject malware to 

manipulate data. For instance, overlay attacks generate 

malicious content on the user's VR view, which cannot be 

removed and can deceive users into divulging personal 

information [130]. Another manipulation scenario includes 

misleading users by altering location directions in GPS-based 

applications.  

c) Data Availability Threats:  The third CIA triad element is 

availability, which aims to guarantee that information is 

consistently accessible to authorized users. Common 

cyberattacks threatening data availability include DoS and 

DDoS attacks, as discussed in Table IV. DoS attacks can disrupt 

user workflow, time, and convenience, with severe reputational 

and financial impacts on organizations. The metaverse, with its 

multi-billion-dollar market, is an attractive target for 

ransomware. Additionally, as a multi-application space 

utilizing IoT and HMDs, any weaknesses in these devices can 

be exploited for DoS attacks, significantly affecting healthcare, 

education, and work dependent on the metaverse. 

2) Identity Threats: Digital identity is one of the key features 

of the metaverse. Users represent themselves as multiple digital 

avatars, which are customizable, interoperable, and sometimes 

valuable (e.g., if they were NFTs). Virtual assets and social 

interactions are also aligned with the user's identity. Thus, 

identity management in the metaverse is crucial, as the user's 

virtual identity is associated with their physical attributes, 

whether it is their biometrics, behaviors, connections, or 

possessions. Identity-related issues include identity theft, 

impersonation, fake AI-generated virtual objects, and user 

authentication.  

a) Impersonation: Cybercriminals carry out impersonation 

attacks to imitate a legitimate user's identity to steal credentials 

or financial information from targeted individuals or 

organizations. Common impersonation tactics include 

manipulating email addresses to mimic the original, creating 

fake social media accounts, and posing as users or company 

executives. In the metaverse, detecting such attacks is more 

challenging. Attackers can use ML techniques to manipulate 

visuals and sounds, creating avatars that resemble specific 

users. For example, deepfake technology leverages deep 

learning techniques (i.e., encoders and GAN networks) to 

capture a person's facial expressions, voice, and behavior, 

generating realistic images or videos of that person [131].  

Impersonation leads manipulation of other users, sabotaging 

the reputation of the impersonated user, gaining unauthorized 

access to assets, spreading fake news, cyberbullying, extortion, 

and the creation of illegal content. These activities can cause 

physical, psychological, political, and financial harm to both 

individuals and companies.   

b) Identity Theft: Social network users are more susceptible 

to identity theft crimes as they are more willing to share their 

private information [132]. In 2021, identity theft increased by 

20% compared to 2020 due to rapid digitalization [119]. The 

identity of metaverse users will include more critical 

information than social media applications, such as biometric 

data, digital assets, and secret keys, which can be obtained via 
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Fig. 10. Cybersecurity issues discussed in this paper are based on threats related to data, identity, privacy, digital wellbeing, legal regulations, and NFTs. The figure 

illustrates how some characteristics/elements of the metaverse cause such issues. Scalability is generally related to data issues as more information will be put at 

risk. Interoperability leads to issues in authentication and asset management, while Digital Twin technology is related to identity and anonymity issues. Immersion 

causes concerns regarding the data collected (biometrics) and can amplify the impact of physical and social issues on users due to the high sense of presence. 

Hyper-Spatiotemporality can lead to integrity and crime issues, while decentralization is mainly associated with NFTs and blockchain.  
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hacking wearable devices and phishing scams [27]. Therefore, 

having a user's identity stolen in the metaverse poses a 

significant risk. Philipp Pointner, the chief of digital identity at 

Jumio, emphasized the risks to users if their digital possessions 

were stolen, since they are tied to monetary value in the physical 

world. He called for exploring more innovative methods to 

protect users' digital identities [133].  

c) User Authentication: Avatar authentication is necessary in 

the metaverse to prevent issues like impersonation and identity 

theft. However, two main challenges arise. First, despite the 

high security and better usability of utilizing biometrics for 

authentication systems (such as face and voice), compromising 

such sensitive traits poses significant risks to user privacy. 

Additionally, with advanced technology, attackers gain access 

to users’ biometrics or imitate them and perform spoofing 

attacks, granting them false access to the system. Therefore, 

more robust and privacy-preserving methods are needed to 

safely authenticate users in the metaverse. 

Second, as pointed out by Wang et al. [134], interoperability 

in the metaverse allows users to move between different 

platforms and domains. This calls for research on fast and 

efficient cross-platform authentication, which should provide a 

secure and user-friendly experience by allowing users to travel 

and use their assets across different applications without the 

need for reauthentication.  

3) Privacy Issues: Ensuring user privacy is essential to 

prevent unauthorized access to sensitive information. The 

privacy concerns of the metaverse discussed in this paper focus 

on data sensitivity and theft, as well as the anonymity of avatars.   

a) Sensitive Data Collection and Tracking: In the current 

web, organizations have access to user data for marketing 

purposes [135]. For example, Google's search engine utilizes 

web tracking technologies to learn about user preferences and 

customize advertisements accordingly. This trend will continue 

in the metaverse, but the nature of the data will be highly 

sensitive. Metaverse hardware can capture the user's biometric 

information, including eye and head movements, facial 

patterns, voice, and possibly brainwaves and health-related data 

like blood pressure, heart rate, and breathing rates. Moreover, 

biometrics can be utilized to detect human emotions [136], 

adding a new level of privacy concerns in the metaverse.  For 

instance, Quest Pro VR headset, released by Meta in 2022, has 

high capabilities for accurately imitating the user’s facial 

expressions, eye movements, and eye contact with other users, 

as shown in Fig. 11 [137],[138]. According to Meta's privacy 

policy [139], headset position, audio data, hand tracking, eye 

tracking, and facial expressions are collected to provide the user 

with immersive experiences. Therefore, companies investing in 

the metaverse are expected to implement invasive data 

collection in the future, putting the user's privacy at risk.   

b) Date Theft in Physical and Virtual Environments: 

Compromised VR and IoT equipment can lead to the theft of 

information directly and physically related to the user, such as 

voice, facial features, behavioral information, brain signals, etc. 

Attackers can target metaverse hardware to use it as spyware, a 

type of malware used to track the user’s physical environment 

to steal private information [140]. Data theft can also occur 

within the virtual metaverse itself. For example, AI bot avatars 

can target a user’s avatar to monitor their behaviors, leading to 

impersonation attacks.  

c) Anonymity:  Online anonymity is a critical issue in the 

metaverse. While shielding one's identity is essential for 

protecting user privacy, it can also be exploited for harmful 

purposes like cyberbullying and illegal activities [141]. 

Anonymity in the metaverse raises concerns about the 

accountability of user identities, as individuals can create 

multiple avatars for diverse intentions. Consequently, there is a 

pressing need for further research to explore policies that 

balance users' rights to remain anonymous in specific contexts 

and prevent potential misuse of this feature for malicious 

purposes in the metaverse.  

 Granting full anonymity to users might be challenging. 

However, users can create pseudonymous avatars and accounts 

with optional identity verification, allowing them to remain 

partially anonymous or opt for verified accounts, depending on 

their preferences. Users can create pseudonymous avatars for 

unofficial applications, such as video games, art events, and 

virtual concerts. However, the identity of an avatar needs to be 

visible and represent the user’s physical attributes in settings 

such as work, education, and virtual asset transactions. In the 

case of criminal activities, regardless of the activity the user is 

engaged in, legal authorities should be able to track the offender 

by having access to information about their physical identity, as 

proposed in Fig. 12. Policies such as real-name registration, 

where users are obligated to provide legal documents for 

authorities to use in case of any criminal investigation, can be 

deployed in the metaverse to manage the issue of anonymity.  
4) Digital Wellbeing Threats: VR and AR are two of the key 

Fig. 12. Anonymity framework for metaverse users. 
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Fig. 11. Facial expressions accurately reflected onto avatars using Oculus Pro 

headset [138] 
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enablers that build the metaverse. However, there are some 

concerns about the effect of these technologies on the 

psychological and physical wellbeing of users. 

a) Social Issues: The flexibility, hyper-spatiotemporality, and 

decentralization of content creation in the metaverse allow 

users to control what happens rather than adhering strictly to 

central authorities and regulations. For example, on current 

social media platforms, users can create content that meets 

certain requirements and specifications, and interaction with 

others is restricted (e.g., liking a post or commenting). 

However, the lack of regulations and physical restrictions in the 

metaverse can lead to social misconduct. Negative user-to-user 

interactions, already prevalent on social media platforms, are 

inevitable in the metaverse. 

From a culprit's perspective, it is more convenient to engage 

in harmful behaviors in the metaverse compared to the real 

world due to the lack of physical limitations and the relatively 

lower risk of getting caught. Such acts include cyberbullying, 

harassment, verbal abuse, and stalking, which have significant 

impacts on victims due to the immersion and realism of 

metaverse environments. Recently, a researcher reported that 

her avatar was physically harassed and assaulted in Meta's 

Horizon Worlds app. In response, Meta developed a "Personal 

Boundary" feature that prevents avatars from approaching 

within about four feet of other avatars [142]. 

Falchuk et al. [143] proposed solutions for social and 

behavioral issues in the metaverse, such as allowing users to 

clone their avatars, teleport, or activate an invisibility feature to 

hide their avatars in the virtual world. While these solutions 

contribute to user safety, their effectiveness depends on whether 

users can use them appropriately. Additionally, malicious users 

might misuse such features, causing other potential risks.  

b) Physical Risks: In VR environments, immersion attacks 

can manipulate virtual environments and potentially lead to 

physical harm. For example, chaperone attacks occur when 

attackers alter the walls in the environment, putting the user's 

safety at risk [144]. Attackers can also manipulate the physical 

movement of the user without their knowledge, known as 

Human Joystick attacks [145]. Moreover, disorientation attacks 

induce dizziness and confusion in VR users [144]. Casey at el. 

[130] conducted an experiment in which these attacks were 

implemented using OpenVR software. The results showed that 

the impact of these attacks was magnified due to the immersion 

in VR environments. Furthermore, the authors found that VR 

systems, in general, are prone to cyberattacks, regardless of the 

hardware used. Therefore, developing secure VR systems is 

especially essential for the metaverse.  

5) Legal and Regulation Issues:  As the metaverse introduces 

new ways for people to interact with technology and the 

Internet, legal issues concerning criminal laws, intellectual 

property, and virtual asset regulations might arise [146]. 

a) Cybercrime and the Darkverse: Data theft, money 

laundering, fraud, assault, and crimes against children are 

examples of potential crimes that can take place in the 

metaverse. While these cybercrimes already exist on today's 

Internet, the immersive characteristics of the metaverse can 

introduce new methods for committing crimes. Trend Micro, a 

cybersecurity company, predicts the emergence of the 

Darkverse, a virtual dark web where criminals conduct illegal 

activities anonymously [147]. For instance, criminals can use 

XR technologies to simulate and prepare for real-world crimes 

and create their own marketplaces for illegal trading. 

Omar Al Olama, Minister of State for Artificial Intelligence 

in the United Arab Emirates, discussed the Darkverse and 

emphasized the need for strict regulations regarding criminal 

activities in the metaverse, as these behaviors can significantly 

affect victims due to the high sense of presence [148]. Kasiyano 

and Kilinc [149] argue that the state of criminal activities in the 

metaverse is still unclear and requires further investigation to 

understand how criminal law and regulations can be applied in 

this new environment. 

b) Intellectual Property: Property laws dictate ownership 

rights of personal property, which can include land, physical 

items, or intellectual property (IP) [150]. The lack of physical 

boundaries in the metaverse can cause uncertainty regarding IP 

laws since such regulations differ according to each country. 

Unlike physical trading, the identity of a virtual property owner 

might be difficult to determine due to the anonymity of users 

representing themselves as avatars. While NFTs play a 

significant role in providing proof of ownership of virtual goods 

online, the real identity behind the creators and consumers of 

assets still needs to be verified, which can affect fair use laws 

regarding the right to reuse copyrighted material 

Another potential legal issue in the metaverse is trademark 

dilution, which refers to using a brand or trade name for one's 

commerce [151]. For example, in early 2022, NFT creator 

Mason Rothschild was sued by the fashion company Hermes 

for creating a digital asset line called "Metabirkins", which 

included duplications of a bag design produced by the company 

[152]. Cloning people's identities in the metaverse is also 

concerning. For instance, an avatar could represent a known 

public figure, leading to impersonation issues and violation of 

the person’s IP (in this case, their own avatar). There have been 

several incidents where public figures filed lawsuits against 

companies for using their physical features without permission 

[153]. Therefore, it is essential to establish laws and regulations 

for IP in the metaverse while considering that individuals from 

diverse demographics with different laws are involved. 

6) NFT Threats: Recent studies have explored the potential 

of integrating NFTs in the metaverse [154]-[156]. Despite the 

advantages of NFTs in securing digital assets and enhancing 

relationships between consumers and brands, their market 

status has been inconsistent. Notably, the NFT market 

experienced a significant decline by the end of 2022 [157], 

which may be attributed to issues related to cryptocurrency 

liquidity and a decrease in public interest. A recent study [158] 

indicates that the restriction of using a crypto wallet affects 

users’ acceptance of NFT trading. Additionally, security 

concerns have been identified as a significant factor 

contributing to market fluctuations, highlighting the importance 

of addressing these issues to stabilize and grow the NFT 

marketplace. 

Wang et al. [159] reviewed NFT security issues using the 

STRIDE security evaluation method, which stands for 
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Spoofing, Tampering, Repudiation, Information Disclosure, 

DoS, and Elevation of Privilege. Another work by Das et al. 

[160] discussed the security risks of NFT marketplaces. In this 

paper, we highlight several cyber threats to NFTs. Table V lists 

several cyberattack incidents that targeted cryptocurrency and 

NFT platforms, highlighting the affect platforms and financial 

damages of such attacks. 

a) Blockchain Vulnerabilities: Due to its decentralized 

nature, blockchain lacks a central authority that can address 

misconduct, making it crucial for users to confirm the 

credibility of parties they interact with to avoid potential fraud. 

Moreover, Proof of Work (PoW), a blockchain mechanism 

(known as the mining process), requires participants (miners) 

to perform computationally intensive tasks to validate 

transactions and receive rewards. This process introduces 

challenges, such as the 51% attack, where miners acquire more 

than half of the network’s mining power, enabling double-

spending [161].  

b) Traditional Attacks: NFTs are susceptible to traditional 

cyberattacks such as DoS attacks, where the data of an NFT 

stored outside the blockchain is targeted to disrupt its service 

availability. Another common threat is phishing attacks. In 

February 2022, NFTs worth an estimated $1.7 million were 

stolen from OpenSea due to a phishing attack in which users 

were manipulated into signing a contract that appeared 

legitimate [162]. Furthermore, spoofing attacks occur when a 

malicious user exploits authentication vulnerabilities in 

marketplaces or manages to steal a user’s private key, gaining 

illegal ownership of the NFT. 

c) Smart Contract Vulnerabilities: Smart contract 

vulnerabilities represent a critical area of concern in blockchain 

security [163]. Reentrancy attacks exploit code in smart 

contracts to unauthorizedly execute functions. Overflow and 

underflow errors handling values outside intended ranges can 

also occur, leading to the acceptance of unauthorized 

transactions. Moreover, Address Attacks exploit weaknesses in 

the Ethereum Virtual Machine (EVM) with crafted addresses to 

inject address-related bugs. 

d) Crypto Wallet Issues: A user’s crypto wallet contains 

cryptocurrency used to purchase assets, which can be accessed 

using a private key or a passphrase. Cybercriminals attempt to 

gain access to the crypto wallet via malware and MiTM attacks 

[164]-[166]. 

e) Verification and Authentication: Verification during 

transactions is essential to ensure the legitimacy of a user’s 

identity online. For example, online banking companies have 

strict regulations to verify a customer’s identity by requiring 

specific information. In contrast, identity verification for NFTs 

is a concern. Das et al. [160] found that none of the NFT 

marketplaces execute robust verification measures, allowing 

users to register anonymously and create multiple accounts, 

posing an issue of tracing accounts to their respective users. 

Another identity-related issue for NFTs is user authentication. 

Das et al. [160]  also analyzed authentication methods in several 

NFT marketplaces and found that most do not implement two-

factor authentication, with Nifty being an exception and Sorare 

enabling optional authentication. Spoofing attacks exploit weak 

authentication mechanisms to steal a user's private key and 

illegally transfer their NFT ownership into their own wallets 

[159].  

 

V. AI TECHNIQUES FOR CYBERSECURITY IN THE METAVERSE 

As discussed so far, the emerging risks the metaverse is 

expected to bring require investigating innovative solutions. 

Our paper focuses on reviewing the role of AI in metaverse 

threat mitigation based on three core aspects: Identity 

management, network security, and securing digital asset 

transactions. We investigate recent advancements, current 

industrial status, and limitations of existing solutions, with a 

particular emphasis on their applicability and implications 

within the metaverse framework. 

Our review begins with AI-based user authentication 

methods, focusing on biometric multimodal and continuous 

authentication for the metaverse. Next, we explore AI 

techniques for intrusion detection systems (IDS), highlighting 

current challenges and reviewing state-of-the-art solutions for 

the metaverse. Finally, we discuss AI techniques aimed at 

securing blockchain and NFT transactions, acknowledging that 

this area is still at an early stage with many security 

vulnerabilities to consider. The taxonomy of this review is 

presented in Fig. 13, providing a general overview of how such 

methods can mitigate cybersecurity threats in the metaverse. 

A. AI-based Biometric User Authentication  

 Authentication is a critical element of digital security. It 

protects personal information by verifying the legitimacy of 

users requesting access to a device, system, application, or 

network. Traditional password-based methods, the earliest 

forms of authentication, are becoming inadequate due to their 

vulnerability to breaches and user errors. Examples of common 

user errors include forgetting a password, using a weak one, or 

using the same password across several platforms, increasing 

the chance of gaining unauthorized access to user information.  

The emergence of AI-based authentication mechanisms, 

particularly those utilizing biometrics, has significantly 

enhanced security and adaptability across various applications. 

By integrating machine learning and deep neural networks, 
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these systems can analyze unique biometric data such as iris 

patterns, facial features, and behavioral traits to verify user 

identities accurately. 

 In the context of the metaverse, where virtual interactions 

and transactions are frequent, AI-based biometric 

authentication offers highly secure and efficient solutions. The 

topic of user authentication for the metaverse has gained 

considerable attention from researchers. However, there is a 

clear need for more dedicated research into this area, especially 

concerning integrating AI and biometrics in the metaverse. The 

works in [15] and [173] examined the feasibility of employing 

biometric and continuous authentication within the metaverse, 

suggesting robust authentication methods beyond traditional 

face and voice recognition, such as user identification via brain 

and heart signals.  

This survey takes a unique approach by conducting a 

comprehensive analysis of authentication methods with a 

metaverse-centric focus. We first review existing authentication 

schemes utilized in metaverse-related applications. We then 

examine the strengths and weaknesses of various biometric 

modalities, highlighting their current industrial status and 

applicability in the metaverse. Finally, we discuss the 

deployment of multimodal and continuous authentication, 

reviewing current research that combines both approaches. 

1) Current Authentication Methods: User authentication is 

the process of validating a user requesting access to a device, 

network, or computer system, ensuring the protection of 

sensitive information from unauthorized access. This process 

typically begins with identification or identity verification, 

where the user provides evidence to confirm their claimed 

identity. There are three main types of authentication 

mechanisms categorized based on the type of factors utilized:  

• Knowledge-based: Something the user knows (e.g., 

usernames, passwords, and PINs). 

• Possession-based: Something the user owns (e.g., device 

and tokens). 

• Biometric-based: Something the user is (e.g., facial and 

voice recognition). 

Authentication methods can also be classified into three 

categories based on the number of factors employed: 

• Single-factor Authentication (SFA): Relies on one type 

of credentials (identifier), often usernames and passwords. 

SFA is relatively insecure because it can be easily 

compromised through phishing and brute force attacks. 

• Two-factor Authentication (2FA): Enhances security by 

requiring two types of credentials. An example of 2FA is 

One-Time Password (OTP) authentication, an 

automatically generated code sent to the user's device to 

verify a single action. While more secure than SFA, 2FA 

has issues such as susceptibility to SIM swapping [174], 

user inconvenience, and risks from lost or stolen tokens. 

• Multi-factor Authentication (MFA): Requires two or 

more factors (knowledge-based, possession-based, 

biometric-based). MFA significantly enhances security by 

incorporating additional layers of protection, making it 

more challenging for attackers to gain unauthorized access, 

even in case one factor was compromised. However, MFA 

can still suffer from usability issues [175]. 

 Table VI shows various verification and authentication 

methods used in current metaverse-related environments, 

mainly devices, gaming applications, and gaming platforms. 

Verification refers to validating the authenticity of users' 

information during registration, which typically involves 

official documents. Some mobile devices offer optional 

biometric authentication, like fingerprint scanning and facial 

recognition. Notably, the newly released Apple Vision Pro 

headset is the first commercially available device to incorporate 

Fig.13. Taxonomy for AI-based cybersecurity solution in the metaverse. AI-based authentication utilizes biometrics and enables real-time monitoring of users’ 

identities and behaviors, enhancing the security system against unauthorized access, impersonation and insider attacks. AI for IDS provides advanced detection 

mechanisms and real-time monitoring of network traffic, limiting network-related attacks and malware injections. AI for blockchain security contributes to detecting 

fraud attacks in NFT marketplaces, preventing smart contract attacks, and providing content verification of NFTs to detect plagiarism.  
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iris recognition with its Optic ID technology, allowing users to 

perform authentication at any given time during the session.  

 In gaming applications, most MMOGs provide optional 

2FA, often recommended during sign-up. Users can enhance 

security and usability by installing authenticator apps such as 

Google Authenticator and Microsoft Authentication, which 

generate time-based one-time passwords every thirty seconds. 

Additionally, platforms like Roblox offer hardware-based 

secure authentication through security keys. As for NFT 

platforms, users are typically authenticated via their crypto 

wallets, a necessity for blockchain-based applications that 

involve cryptocurrency and NFT trading.  

Identity verification can be optional but is sometimes 

necessary for certain scenarios. For instance, Meta users can 

verify their identity to boost business credibility, and age-

restricted activities on Roblox may require official ID 

documents, depending on the user's country of residence. The 

Sandbox platform combines face recognition and official 

documents for optional identity verification, granting access to 

additional in-game activities.  

According to this review, most current authentication 

methods are optional, with a strong reliance on 2FA. This trend 

is a direct response to the challenge of balancing security and 

usability, as the integration of additional steps and security 

layers can potentially disrupt the user experience, a particularly 

undesirable outcome in the metaverse. However, there have 

been significant developments in integrating biometrics in 

certain applications and devices, such as the Apple Vision Pro 

headset's iris recognition. This technology allows users to 

authenticate before performing sensitive tasks, like making a 

payment, by simply selecting the authentication option from the 

user interface. Despite these advancements, the metaverse 

presents unique challenges that necessitate further research to 

develop authentication methods that effectively balance 

usability and security while also considering privacy issues. 

2) AI-based Biometric Authentication: Biometric 

authentication verifies users based on their unique 

characteristics, broadly categorized into behavioral and 

physical traits (see Fig. 14). Behavioral traits include patterns 

such as voice, gait, keystroke dynamics, and physical activities 

(e.g., head or hand movements). Physical attributes are 

biological measurements categorized as static or physiological. 

Static biometrics remain constant, including fingerprints, facial 

features, iris, retina, hand geometry, and DNA. Physiological 

biometrics, such as brain signals (EEG), heart signals (ECG), 

and blood volume changes (PPG), not only authenticate but also 

confirm the user's presence and vitality. 

 Biometrics, intrinsically linked to individuals, offer a 

reliable confirmation of identity. They present advantages over 

traditional methods like passwords, which are susceptible to 

loss, forgetfulness, or forgery. Advances in technology, 

especially in computer vision and AI, are contributing to the 

growth of the biometrics market, increasingly replacing 

conventional authentication methods [176].  

a) Biometric Authentication Models and Protocol: AI-based 

authentication systems operate through a multi-phase process 

consisting of training, enrollment, and verification (or 

authentication) phases [177], as illustrated in Fig. 15.  

Training phase: This phase precedes the deployment of the 

authentication system, aiming to optimize the performance of 

the AI model based on requirements that vary according to the 

application/system. Typically, the training phase consists of the 

following steps:  

• Data Collection: Biometric data is systematically gathered 

to capture a wide range of characteristics across diverse 

demographics and environmental conditions. The collected 

dataset is segmented into distinct training and testing sets. 

This separation ensures that the model is trained on one 

subset of data and subsequently tested on a completely 

unseen subset to verify its predictive performance.   

• Data Preprocessing: The dataset undergoes preprocessing 

techniques that aim to standardize input data and ensure 

Platform Application ID Verification Authentication 

Devices 

Apple ID ID documents for Apple Cash or Apple Card 
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Biometrics: Face ID and Finger ID 

Android Device Not Applicable MFA: Optional Biometrics: Face, Fingerprint 
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VRChat Not Applicable 2FA: Optional via Authentication app. 
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Meta Account Photo ID requirements for business verification 2FA: Optional 

NFT 
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Decentraland Not Applicable Authentication via connecting to a crypto wallet. 
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optimal analysis. This phase may include normalizing data 

to uniform sizes, cleaning noise, and enhancing quality.  

• Feature Extraction: The system identifies and isolates 

specific attributes of the biometric data. Effective feature 

extraction ensures that each feature selected offers a 

distinct representation of an individual, thus laying a solid 

foundation for differentiating between users during the 

authentication process. 

• Model Training: Techniques such as supervised learning 

are typically used, where models are trained on labeled data 

(training set) to learn the correlation between biometric 

features and individual identities. ML Algorithms like 

SVM, RF, and Logistic Regression (LR) are commonly 

employed for their efficiency in classification tasks [177]. 

DL models like CNNs (image data) and RNNs (time-series 

data like voice signals) are also used for their ability to 

handle complex patterns.  

• Model Testing and Evaluation: The final step is to test 

and validate the trained model using new data unseen by 

the model during the training phase (testing set). This step 

is crucial to evaluate the model's performance in real-world 

scenarios (Refer to Section III-2 for details on performance 

metrics). Ongoing testing and periodic re-training with 

updated data are necessary to maintain the model's 

performance and adaptability to changes. 

Enrollment Phase: During this phase, a user's biometric 

data is captured using the sensor designated for the specific 

biometric trait being measured. The system employs the 

preprocessing and feature extraction methods developed and 

refined in the training phase to process this new data. The 

resulting features are securely stored in a database, forming the 

reference biometric template for the user. During this phase, 

the user must engage in typical activities, as this ensures the 

sensor's readings accurately reflect the user's natural behavior, 

enhancing the system's reliability and performance.  
 Verification Phase: When the user attempts to access the 

system, their biometric data is captured. This new input data 

undergoes the same preprocessing and feature extraction 

process to ensure consistency and accuracy. The system then 

compares these extracted features against the stored biometric 

templates in the database. A matching score is generated by the 

trained AI model, which determines the user's legitimacy. 

Access is granted if the AI model recognizes the data with 

sufficient confidence based on thresholds established during the 

training and validation phases. It is worth noting that for each 

biometric modality, diffident pre-processing and feature 

extraction techniques are used.   

b) Biometric Modalities: Several survey papers have 

thoroughly investigated biometric authentication modalities, 

providing insights into their strengths and vulnerabilities [180]- 

[185]. In our paper, we investigate a combination of biometrics 

while focusing on their deployment in the metaverse. Note that 

when discussing metaverse deployment in this section, we refer 

to the full immersive experience achieved by innovative 

technologies and hardware such as XR and haptics, so any 2D 

smart devices or applications are not considered.  Table VII 

provides an overview of each biometric method in terms of 

security aspects, applicability in the metaverse, possible 

challenges, and relevant existing products and/or research.   

Fingerprint recognition is a leading form of biometric 

authentication due to its robust security, ease of use, and short 

verification times [184]. Initially used in forensic applications 

to identify individuals, it has expanded to various consumer 

sectors, including unlocking digital devices, securing personal 

storage lockers, and automotive systems. The technology 

identifies unique minutiae patterns within fingerprints, which 

are captured via specialized sensors. Integrating fingerprint 

scanning into VR technologies, particularly VR gloves, is an 

underexplored area. However, ongoing advancements in haptic 

technology by companies like Meta and TESLA suggest 

promising avenues for research. Including fingerprint scanners 

in VR gloves could lead to seamless authentication methods 

that can enhance usability in the future metaverse.  

 Facial recognition automatically verifies a user's identity by 

analyzing their facial features from images, videos, or real-time 

captures. Initially, the face is detected using cameras combined 

with various ML algorithms, followed by an analysis and 

measurements of unique facial features [185]. Research on 

facial recognition In VR applications mostly focuses on 

identifying facial expressions and emotions [186]. However, a 

significant challenge in VR facial recognition is the face 

occlusion caused by the HMD, which can hinder full facial 

Fig. 14. Examples of biometric modalities used for user authentication.   
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then verifies access requests by comparing user data with enrolled records 
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recognition. To address this problem, Ciftci et al. [187] 

developed a real-time, depth-based recognition framework that 

focuses on mouth gestures visible beneath VR headsets using a 

novel 3D edge map technique. Similarly, Houshmand and Khan 

[188] utilized transfer learning with pre-trained models like 

VGG and ResNet, which were fine-tuned on datasets modified 

to simulate the occlusion caused by VR headsets. Wen et al. 

[189] also reviews this issue and highlight advancements like 

Modular Codec Avatars and inward-facing cameras in VR 

headsets to capture facial expressions effectively despite partial 

face coverage. Therefore, facial recognition can be 

implemented in the metaverse to enable more realistic avatars, 

enhance social interactions, identify user emotions, and 

potentially identify and authenticate users. 

Iris recognition identifies users based on the unique patterns 

of the iris, which is the colored tissue around the eye's pupil. 

Iris recognition is considered one of the most efficient biometric 

systems for several reasons, such as the uniqueness of the two 

irises, data stability, and low verification time [190], [191]. In 

iris recognition, images of the user's eye are acquired using 

cameras with infrared illumination, which aim to highlight the 

detailed texture of the iris for a more accurate performance. 

Low image resolution and distortion can negatively affect the 

performance of the iris recognition system [192]. However, 

several studies investigated methods to tackle such issues. For 

instance, Ribeiro at el. [193] showed that utilizing CNNs can 

help balance edge preservation and the smoothness of images, 

providing good performance for iris recognition systems in 

mobile devices and images taken from a distance. Another 

recent study [194] proposed a deblurring method that aims to 

enhance the quality of the images for accurate iris recognition 

results. Regarding VR applications, Shanghai Pixsur Smart 

Technology Co., Ltd has launched an iris recognition algorithm 

and hardware that captures images of the iris for VR and AR 

headsets [195]. Similarly, as mentioned earlier, Apple has 

released Optic ID, which uses high-performance eye-tracking 

with LEDs and infrared cameras to provide secure and intuitive 

authentication. Optic ID adapts to various lighting conditions 

and works with prescription lenses, ensuring accurate 

performance. That said, iris recognition is potentially suitable 

for user authentication in the metaverse due to its robustness 

and applicability in HMDs.  

EEG-based authentication is an emerging verification 

technique that relies on capturing the brain activities. As 

discussed in Section III, the Brain-Computer Interface (BCI) is 

a technology that enables direct communication between the 

brain and external devices by interpreting brain signals to 

perform specific commands [196]. In the metaverse, BCI is 

presumed to play a significant role in user interactivity, as the 

stimulation of the brain can replicate immersive sensory 

experiences [197]. EEG is a BCI application defined as 

recordings of the neural activities in the brain generated from 

internal or external stimuli, and they are recorded via 

electrodes, known as channels, placed on the scalp [198]. 

Depending on the application, EEG systems can vary in the 

number of channels used, ranging from a single channel up to 

256. Five main frequency bands of EEG waveforms can help 

provide information about the mental and behavioral states of 

the user, including delta, theta, alpha, sigma, and beta [199]. 

Moreover, Event-Related Potentials (ERPs) are very small 

voltages generated in the brain structures in response to specific 

events or stimuli, and they can be useful in classifying the 

emotional states of the user [200].  

As an authentication method, EEG has gained interest due to 

its characteristics. EEG signals differ for each individual even 

if they perform the same task, and repeating the task for the 

same individual does not change the corresponding signals. 

Therefore, EEG signals attain the uniqueness and stability 

factors required for authentication. EEG outperforms other 

static biometric traits like fingerprint and iris recognition 

Biometric 

Modality 
Description  Applicability in the Metaverse  Relevant Products  

Fingerprint 

Recognition  

Captures unique patterns of the 

finger, known as minutiae   
Applicable if sensors are implemented in VR gloves  NA 

Facial 

Recognition 
Analyses distinct facial features 

Applicable: Partial facial occlusion due to VR headsets is a challenge. 
However, ongoing research is dedicated to tackle this issue, making 

facial recognition possible in the future metaverse. 

Modular Codec Avatars 

Iris 

Recognition 

Scans the unique patterns in the 

coloured part of the eye 
Available: gaze tracking is already implemented in HMDs 

Pixsur Iris Recognition 

Optic ID (Apple)  

EEG 

Signals 

Identifies users based on their 
brain activity in certain scenarios 

Applicable: The integration of EEG sensors into a metaverse headset 

might be possible in the future, considering the extensive research 

into BCI for the metaverse and single-channel EEG authentication 

Emotive headsets 

ECG 

Signals 

Identifies users based on unique 

patterns in heart activity 

Applicable: ECG is already deployed into wearable devices for 

mounting users’ health, which can also be used for authentication  

TESLA Glove  

Wearable Devices  

PPG 

Signals 

Measures cardiac signals and 

volumetric blood flow changes   

Applicable: PPG authentication is applicable in the metaverse since it 

can be measured with wearable sensors (e.g. TESLA suit) 

TESLA Suit  

Wearable Devices 

Voice 

Recognition 

Analyses voice signals to extract a 

voiceprint  

Available: Microphones exist in all hardware devices, so voice 

recognition would be easily implemented in the metaverse  
All HMDs  

TABLE VII  

OVERVIEW OF BIOMETRIC AUTHENTICATION SYSTEMS AND THEIR APPLICABILITY IN THE METAVERSE 
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because brain signals are not easily exposed to the attacker, 

making them extremely difficult to capture and forge. They also 

depend on the user’s emotions, so they cannot be invoked under 

force [201]. Moreover, EEG supports liveness detection, a 

method to ensure that the biometric sample is obtained from a 

live person and not a spoof attack [201]. The pattern and 

features of EEG signals correspond differently according to the 

activity the individual is undertaking.  

Emotive Inc. is a tech company that produces headsets for 

EEG brain interface, which has been used for biometric 

research. Their collection of hardware includes multi-channel 

devices, the maximum being a 32-channel headset. Muse Inc. 

and OpenBCI are other companies that also provide special 

headsets for EEG collection. Most works utilize multiple 

channels of EEG data to achieve high accuracy and a relatively 

low-time process. However, this technique can be impractical 

in the metaverse due to the high cost, obstruction of user 

mobility, and overall convivence. Studies in [202], [203], and  

[204] investigated single-channel EEG with deep learning 

techniques and achieved an accuracy of 80%, 86%, and 97-

98%, respectively. Balancing security and usability for user 

authentication in the metaverse is essential. Since HMDs are the 

main hardware used to provide a fully immersive experience in 

the metaverse, there is potential for metaverse users to use 

EEG-based authentication if compatible devices are designed. 

On another note, Li et al. [205] found that the performance of 

EEG authentication is not affected by whether the brainwaves 

are collected via 2D or VR-based visuals. Thus, collecting EEG 

signals in virtual environments would not be an issue. 

ECG-based authentication verifies the user's identity based 

on the heart's electrical activity, known as Electrocardiogram 

(ECG) readings. ECG is often used to monitor and evaluate 

patients' medical conditions in real time and detect 

cardiovascular issues [206]. In addition to ECG being a 

diagnostic tool, researchers are investigating its potential for 

identification and authentication applications. Like EEG, ECG 

is more resistant to cyberattacks than other biometrics since 

they are very difficult to forge. ECG contains unique patterns 

for each individual, such as the variations in the amplitude and 

distances between heart pattern waves [207]. ECG is also 

applicable for liveness detection and continuous authentication. 

Several recent studies [208]-[210] proposed ECG 

authentication systems and achieved high accuracies of 98-

99%, 99.05%, and 100%, respectively.  

In the medical field, specifically in hospitals, ECG is 

recorded using electrodes attached to the chest area and limbs 

(wrists, ankles). This process is relatively complex as it requires 

special preparations of the patient’s skin, and multiple 

electrodes are used in addition to an external monitor for high-

accuracy results [207]. Alternatively, wearable devices have 

functionalities for recording ECG, including smartwatches, 

patches, and sensors embedded in clothing [211]. Notably, the 

new TESLA Glove by TESLA incorporates ECG monitoring to 

gather biometric information like the user's heart rate, 

enhancing its functionality for real-time physical reaction 

assessments during XR experiences. This innovative use of 

ECG in VR gloves presents a promising research opportunity 

for seamless authentication in the metaverse. Wearable devices 

are ideal for ECG authentication in the metaverse, as they are 

portable and can provide real-time results without disrupting 

the user's experience. Uwaechia and Ramli [207] pointed out 

that despite the good performances of ECG authentication in 

research, these studies are conducted in controlled 

environments with datasets obtained from medical databases 

that perform intensive user preparation data collection. Thus, 

the authors argue that for wearable devices, the quality of 

acquired data will be of much lower quality, which is an issue 

that can be solved if ECG is implemented in a multimodal 

authentication system [212]. 

PPG-based authentication is emerging as a non-invasive 

method for verifying identities through Photoplethysmography, 

which measures blood flow changes via optical sensors [213]. 

This technique is reliable due to the complexity of duplicating 

an individual’s unique cardiovascular pattern, offering a robust 

defense against spoofing attacks. However, Li et al. [214] 

highlight several challenges currently faced by PPG 

technology, such as signal accuracy issues caused by motion 

and varying ambient lighting conditions. Ongoing research is 

actively addressing these challenges, aiming to refine PPG into 

a more reliable component of multimodal and continuous 

authentication systems [215],[216].  

PPG technology is readily implementable in wearable 

devices, as the TESLA suit exemplifies. This suit utilizes PPG 

sensors to monitor vital signs such as heart rate and blood 

oxygen levels, which are crucial for health monitoring during 

interactive experiences. This capability enhances safety by 

alerting users to potential health issues in real time and 

integrates seamlessly with user authentication processes in the 

metaverse. Such dual functionality of the TESLA suit shows the 

potential of PPG to provide both secure and immersive user 

experiences in virtual environments. 

Voice recognition systems receive and analyze sound signals 

to verify a user based on their voiceprint. A voiceprint includes 

unique patterns such as the shape and movement of the mouth 

while speaking, airways, and soft-tissue cavities [217]. A voice 

sample can be captured using a microphone, so a voice 

authentication system would not require complex hardware. 

Voice assistants are examples of existing voice recognition 

applications, which include Siri, Amazon Echo, and Google 

Home. Despite its advantages, voice recognition can be affected 

by unstable environments (noise) and medical throat 

conditions. Sound samples can also be easily faked using a 

recording. Hence, it is important to implement liveness 

detection to ensure the user is the one who is providing the voice 

sample. 

3) Multimodal and Continuous Authentication: Despite the 

high level of security that biometrics provide, there are still 

possible attacks that can target the system, which can be 

mitigated when deploying the concept of multimodality and 

continuous authentication. 

a) Multimodal Authentication: Biometric authentication 

methods can be classified based on the number of traits used in 

the system: unimodal and multimodal. One modality is utilized 

in unimodal systems, whereas multimodal techniques integrate 

two or more biometric factors [218]. In biometric systems, 

fusion techniques are employed to enhance the accuracy and 

reliability of authentication by integrating data from multiple 

sources, as shown in Fig. 16. These techniques can be 

categorized into four main levels: sensor-level, feature-level, 
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score-level, and decision-level fusion. Sensor-level fusion 

involves combining raw data from different sensors before any 

processing, which can enrich the data quality and detail. 

Feature-level fusion merges the extracted features from 

multiple biometric sources, creating a comprehensive feature 

set that is more informative and discriminative. Score-level 

fusion combines the matching scores from several classifiers 

corresponding to different modalities, often using strategies like 

weighted sums or statistical methods to refine the overall score. 

Lastly, decision-level fusion aggregates the final decisions from 

multiple biometric systems, using methods such as majority 

voting or consensus theory to arrive at a final authentication 

verdict. Each fusion level has its own advantages and 

limitations, which can depend on the system requirements.   

 While unimodality is easier and less expensive to build, its 

main drawback is that it can be a single point of failure in the 

system. Other issues can arise from using a single biometric 

trait, including [219]: 

• Vulnerability to spoof attacks: These attacks refer to 

deceiving a system through impersonating the biometric 

traits.  For example, images or videos of a user can be 

forged (DeepFake) and fake fingerprints made of silicon or 

rubber can deceive a fingerprint recognition system. EEG 

signals can also be faked if intruders use advanced 

technologies (GAN models) [201]. 

• Noisy data: Data acquisition might be inaccurate in 

abnormal or unstable conditions. For example, high 

anxiety levels can affect the ECG readings, and images 

taken from a wrong angle can affect a facial recognition 

system. This issue affects FRR and FAR.   

• Non-universality: Some biometrics might not be 

compatible with all users. For example, faded or burnt 

fingerprints might work poorly for fingerprint detection, 

and certain eye conditions can affect iris recognition [184]. 

Multimodal authentication systems merge a group of 

biometric factors, which helps overcome the limitations caused 

by single biometric techniques. Thus, multimodality 

outperforms unimodality as follows [219]: 

• Protection against spoofing attacks: The integration of 

multiple biometric traits increases the protection of the 

system against spoofing attacks because manipulating and 

forging of all modalities at once is significantly difficult.     

• Reliability and accuracy: Multimodal systems provide 

better accuracy, reduce errors, and eliminate the issue of 

single-point-of-failure in the system. 

• Flexibility: If certain biometric cannot be obtained from 

the user, the other biometrics can be used for 

authentication, solving the issue of non-universality in 

unimodal systems.  

 Multimodal authentication addresses the limitations of 

unimodal systems, making it crucial for user authentication in 

the metaverse. By combining different biometrics, it 

compensates for the weaknesses of individual identifiers, 

enhancing security and usability. This approach adapts flexibly 

to various devices used in the metaverse, such as HMDs, haptic 

gloves, smartphones, and smart glasses, offering a seamless and 

convenient user experience.  

b) Real-time Continuous Authentication: Traditional 

authentication methods like SFA, 2FA, and MFA are typically 

one-time based. Thus, they do not ensure that the user remains 

authenticated throughout the session, allowing malicious 

individuals to gain unauthorized access during periods of user 

inactivity [220]. Continuous Authentication (CA), powered by 

AI and biometric technologies, addresses this issue by 

providing ongoing verification of the user's identity, which 

helps to reduce unauthorized access, credential stuffing, and 

phishing attacks. This system operates seamlessly in the 

background, requiring no repeated credential inputs from the 

user, thus enhancing both security and usability. 

Advantages of Continuous Authentication in the 

Metaverse: Integrating CA with multimodal systems offers 

significant benefits in the metaverse. Firstly, CA enhances 

security by promptly detecting unauthorized access or session 

hijacking, reducing impersonation risks [221]. For example, if 

a user's account in an NFT marketplace is compromised, a well-

integrated multimodal CA system would quickly detect 

anomalies in the user's biometric data, such as unusual EEG 

signal patterns, and lock the account before further malicious 

activities occur. This prompt response necessitates 

reauthentication, preventing the attacker from further access. 

Secondly, CA can enhance usability. As users navigate multiple 

virtual worlds, they do not need to re-enter their credentials, 

preserving their experience's continuity. For instance, an avatar 

can be automatically authenticated during transitions from a 

virtual meeting to a virtual shopping center without any action 

required by the user. Moreover, continuous monitoring of user 

behavior, such as real-time ECG signal analysis by wearable 

devices, can enhance safety by detecting potential health issues 

during critical activities like virtual driving, thereby 

contributing to a safer metaverse environment. 

Existing Work on Multimodal and Continuous 

Authentication: Various works on CA utilize behavioral 

attributes, physiological traits, or a combination of both. Ryu et 

al. [222] review works that combine multimodality with CA. 

They found that most researchers prefer behavioral attributes 

for CA because they do not require additional hardware, are less 

intrusive to collect, cost-effective, and require less 

computational complexity. However, the authors also found 

that combining behavioral and physiological biometrics 

provides better performance and measurability, which is 

practically feasible in the metaverse since its enabling 

technologies and hardware are variant, allowing the integration 

of different types of biometrics.  

We review several recent studies on CA systems (Table 

VIII), categorized based on the hardware used: Touch-based 

devices, wearable devices, and HMDs, all part of the future 

Fig. 16. Fusion techniques in multimodal authentication can occur at the sensor 

level, feature extraction level, score level, and decision level.   

Sensor level 
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Image 
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level Fusion 
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metaverse essential gear. The table summarizes the biometrics 

used in each work, AI methods, fusion techniques, and 

performance metrics. 

In mobile devices, built-in accelerometers, gyroscopes, and 

magnetometers capture and analyze user behaviors. Lamiche et 

al. [223] utilized accelerometers in smartphones to measure the 

user’s gait and keystroke dynamics for their CA systems. As the 

user walks, data is collected under different scenarios, such as 

having the device in their pockets, holding the phone, and 

answering a call. The proposed system achieved an overall 

good performance, even when tested under realistic conditions, 

such as uneven grounds, wearing high heels, and various fatigue 

levels. In [225], the authors also deployed behavioral attributes 

using three datasets that contain activities such as walking, 

sitting, standing, eating, typing, writing, and combinations of 

reading and sitting. Using a DL network with CNN and LSTM, 

the authors outperformed other baseline DL algorithms. Wang 

et al. [224] implemented face recognition and phone movement 

for CA, obtaining high classification metrics using SVM. 

Several studies investigated ECG with other biometrics for 

CA in wearable devices. In [226], gait and breathing audio 

signals were integrated with ECG.  In [227], the authors 

proposed a multimodal CA system with ECG and finger vein. 

Their work showed that EER is significantly less with 

multimodal feature-level fusion than unimodal authentication 

and score-level fusion. Ahamd et al. [228] fused ECG and PPG 

for a device-level authentication system, focusing on healthcare 

IoT devices. According to their findings, ECG authentication 

outperformed PPG and ECG-PPG. However, the multimodal 

ECG-PPG system still achieved a high performance with an 

accuracy of 99.8% and an EER of 0.16.   

HMDs typically include sensors for eye tracking and head 

movement tracking. User authentication in HMDs widely 

studied using behavioral and physiological biometrics, such as 

head movement [234], eye movement [235], and iris 

recognition [236]. However, only a few works implemented 

multimodality with real-time authentication for XR 

applications, as shown in the table. Krishna et al. [229] 

integrated EEG signals and eye tracking, leveraging inter-user 

differences to enhance user authentication and incorporating the 

SVM and RF classifiers.  Bhalla et al. [231] utilized behavioral 

biometrics for AR headsets, such as head movement and hand 

gestures, and Olade et al. [232] integrated physical movements 

with head and eye gaze patterns. While these two works show 

promising results and potential for behavioral biometrics in 

VR/AR applications, their main limitation is that they are 

application-specific, which is not feasible for a CA system in 

the metaverse. In [230], a CA system is implemented for 

AR/VR applications using iris and periocular recognition while 

considering low computation resources. The experiments have 

shown acceptable results even when using a computationally 

light model. Finally, Luo et al. [233] explored the use of 

electrooculography signals (EOG) for CA, which are typically 

captured to study eye movements. EOG contains both 

physiological (eyelid features, Retinal Pigment Epithelium 

(RPE), eye globe size and shape) and behavioral (eye 

movement and fixations) features. The proposed system 

achieved relatively low computational time and can provide 

Hardware Ref. Biometric Modalities  AI Techniques Fusion Technique  Performance 

Mobile 

Devices 

[223] 

2018 

Behavioural: Gait and keystroke 

dynamics  

Multilayer Perceptron (MLP) 

outperformed other algorithms  

Feature Level 

Fusion 

Accuracy: 99.11% 

FAR: 0.684% 
FRR: 7%, EER: 1% 

[224] 

2020 

Combination: Face recognition and 

movement of phone 
SVM 

Score Level 

Fusion 

Accuracy: 98.53% 

FAR: 5.86%, FRR: 0.33% 

[225] 
2021 

Behavioural:  Multiple activities. 
DL techniques (Novel model: 
DeepConvLSTM) 

Feature Level 
Fusion 

Accuracy and EER are 
calculated for each activity 

Wearable 

Devices 

[226] 

2020 

Combination: EEG, Gait, Breathing 

audio signals. 

K-Nearest Neighbours (kNN), 

RF, SVM 

Feature Level 

Fusion 

Accuracy: 93% 

F1 score: 93%, FPR <0.08 

[227] 
2022 

Physiological: ECG and Finger vein Combination of DL and ML 
Feature and Score 
Level Fusions  

EER: Feature level: 0.12%,  
Score level: 1.40% 

[228] 
2022 

Physiological: ECG and PPG 
(Photoplethysmography) 

- CNN for feature extraction 

-LSTM for CA 

- ML algorithms for classification 

Feature level 
Fusion 

Accuracy: 99.8% 
EER = 0.16 

 

Head 

Mounted 

Displays 

[229] 
2019 

Combination: EEG and Eye Tracking 
- SVM for EEG  
- RF for eye tracking  

Score Level 
Fusion 

FAR: 23.6%FRR: 29.2% 

[230] 

2020 

Physiological: Iris and periocular 

biometrics 
Deep Learning (CNN) 

Score Level 

Fusion  
ERR: 0.0586 

[231] 

2021 

Behavioural: Head movements, hand 

gestures. 
KNN, SVM, RF, AdaBoost 

Feature Level 

Fusion 

Accuracy: 92.67% 

EER: 11% 

[232] 
2020 

Behavioural: Physical movements, head 
pose, gaze. 

KNN 
Feature Level 
Fusion 

Accuracy: 98.6% 

[233] 

2020 

Combination: EOG signals: 

Physiological: eyelid features, RPE, eye 

globe size and shape 
Behavioural: eye movement and fixation. 

 SVM 
Feature Level 

Fusion 
EER: 3.55%, 4.97%. 

TABLE VIII  

EXISTING WORKS ON MULTIMODAL AND CONTINUOUS AUTHENTICATION 
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both security and usability for users. 

Current research highlights the potential for using 

multimodal biometrics and continuous authentication in the 

metaverse, focusing on security and usability. However, studies 

often explore limited modalities and are application-specific, 

only partially suitable for the diverse metaverse environments. 

Future work should test these systems in realistic settings to 

ensure they are adaptable and robust across various metaverse 

applications.  

B. Intrusion Detection Systems in the Metaverse 

The metaverse utilizes next-generation technologies to 

enable seamless high-speed communication structures, such as 

6G, intelligent sensing, multi-access edge computing (MEC), 

and digital twins [48]. Integrating such advanced technologies 

requires innovative research into network security to handle the 

metaverse’s complex ecosystem. Intrusion Detection Systems 

(IDS) are central to any cybersecurity framework as they 

monitor digital and network systems for unusual activities that 

violate security policies. IDS alerts network administrators if 

anomalies are identified, allowing prompt action against 

potential attacks [237], which can provide proper threat 

mitigation in the metaverse.  

IDS can be categorized based on environmental deployment 

and detection mechanism, as shown in Fig. 17. In terms of 

deployment, there are two primary types of IDS: 

• Network Intrusion Detection Systems (NIDS): NIDS 

monitor network traffic for signs of intrusion or malicious 

activity. They are typically placed at strategic points 

within a network to analyze packets and identify abnormal 

behaviors. NIDS can detect attacks at the network level, 

such as DDoS, intrusion attempts, malware propagation, 

and MitM attacks.    

• Host Intrusion Detection Systems (HIDS): HIDS are 

typically installed directly on individual hosts to monitor 

system logs, files, and activities. HIDS can detect 

unauthorized access and malware activity.  

Intrusion detection can also be categorized based on the 

detection process (Fig. 17): Signature-based detection and 

Anomaly-based detection. Signature-based techniques use a 

database of existing attack patterns. During detection, the 

network traffic being analyzed is compared with the database, 

which generates an alarm in case of matching. This method 

minimizes false alarm rates and is relatively less complex [238].  

However, one of its major limitations is its inability to detect 

emerging or zero-day attacks, making it insufficient for 

metaverse security.  

Anomaly-based detection, on the other hand, constructs 

patterns of normal traffic via algorithms and advanced models 

that rely on datasets, detecting “malicious” traffic that does not 

conform to normal behavior. Therefore, anomaly-based IDS 

has a stronger defense mechanism and adaptability, which has 

more potential to be deployed in the metaverse. Several types 

of anomaly-based methods exist, such as statistical techniques 

and AI algorithms.  The scope of this paper is focused on 

reviewing AI-based IDS.  

In this section, we first address the unique challenges of 

implementing IDS within the metaverse and then discuss the 

role of AI in enhancing IDS performance. We then review 

existing IDS solutions designed specifically for the metaverse, 

comprehensively analyzing their contributions and limitations 

1) IDS Challenges in the Metaverse: Several challenges are 

associated with current IDS solutions, including management 

of alerts, false positives and negatives, and response time [239]. 

Implementing IDS within the metaverse presents novel 

challenges, specifically traditional systems such as static 

firewalls and signature-based methods. Fig. 18 illustrates a 

high-level representation of possible IDS implementation 

(NIDS and HIDS) in the metaverse, pinpointing the following 

challenges: 

Scalability: Truong et al. [240] highlight that traditional IDS 

encounter scalability issues due to the vast number of end 

devices and monitoring points within the metaverse. The 

extensive network traffic demands that NIDS scale effectively, 

while HIDS must ensure the security of each device/server 

[240], making current IDS solutions insufficient for metaverse 

security.  

Diverse Data Streams: Data of various types are collected 

from different sources to empower the metaverse, including IoT 

Fig. 18. Challenges of NIDS and HIDS implementation in the metaverse in 

terms of scalability, diverse data, continuous detection, and cross-platform 

detection.   

Statistical AI 

Deployment Detection Mechanism 

Intrusion Detection Systems 

HIDS NIDS Signature-based Anomaly-based 

Fig. 17. Intrusion detection categorization based on deployment and detection 

mechanisms. 

 

 

HIDS HIDS HIDS HIDS HIDS HIDS 

B
io

m
et

ri
c 

d
at

a
 

G
az

e 
d
ir

ec
ti

o
n

 

T
ra

je
ct

o
ry

 d
at

a
 

G
es

tu
re

 d
at

a 
 

L
o
ca

ti
o
n
 d

at
a
 

S
te

er
in

g
 a

n
g
le

 

Scalability: HIDS must handle numerous devices 

Continuous 

feedback 

NIDS Scalability: Massive  

network traffic 

Diverse data streams 

Continuous feedback 
NIDS 

  

  

The Metaverse 

NIDS NIDS 

Cross 

platform 
Cross 

platform 

   

  

Enabling  

Technologies  

AI, XR 

Digital Twins 

  

  

HIDS 

Infrastructure 

HIDS HIDS 

NIDS 

Continuous 

feedback 

NIDS 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3442475

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



27 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) 

device sensors, real-time updates from the physical world, user 

interactions, spatial data (information related to position, 

movement, and orientation within a three-dimensional space), 

3D models, virtual assets, audio streams, textual data, and non-

structured data [241]. The diversity and complexity of such data 

inputs are considered a challenge for traditional IDS, as they 

must be capable of analyzing and protecting a vast array of 

information sources to maintain the integrity of the metaverse 

environments and users’ privacy.   

Dynamic and Real-time Detection: The metaverse's 

dynamic nature leads to the constant evolution of its virtual 

environments and real-time data synchronization. For instance, 

digital twin technology requires continuous updates from real-

world data sources to converge the digital and virtual worlds 

[242]. User interactions and content generation in the metaverse 

also evolve, requiring IDS to adapt quickly to these changes. 

Cross-platform Security: The interoperability of the 

metaverse allows users to interact with diverse virtual 

environments, assets, and experiences via moving across 

multiple meta-worlds [243]. Consequently, having diverse 

platforms with unique architecture and user interaction models 

can pose a challenge for IDS, especially when detecting 

abnormalities. Some behaviors can be considered normal on 

one platform and might be anomalous on another, which 

complicates the establishment of behavior baselines for IDS.  

Therefore, it can be challenging for IDS to maintain consistent 

security policies within the metaverse, which demands 

innovative solutions requiring high interoperability, 

adaptability, threat intelligence collaboration [244], and 

standards.  

Table IX compares these challenges within diverse 

environments relevant to the metaverse, showing how growth 

in technology increases the complexity and factors involved in 

implementing IDS. The comparison is conducted between 

traditional networks, IoT networks, and the metaverse. 

Traditional networks represent the foundational digital 

infrastructure that enables enterprises and organizations to 

operate. IoT, on the other hand, is one of the core building 

elements of the metaverse, characterized by its vast network of 

interconnected devices and sensors, which introduces more 

security challenges. The table addresses additional factors such 

as user interactions, decentralization, and the threat landscape, 

all of which are areas where expertise and research can make a 

significant impact.  

As pointed out by Ooi et al. [245], integrating physical and 

virtual spaces amplifies the need for IDS to adapt to new 

vulnerabilities and safeguard the seamless user experience 

against sophisticated cyber threats. Thus, the development of 

advanced, scalable, and efficient IDS solutions is paramount in 

the evolving landscape of the metaverse.  

  2) Overview of AI-based Intrusion Detection Systems: In the 

context of the rapid technological advancement and the 

emergence of sophisticated cyberattacks, the research area of 

AI-based IDS, particularly in complex network infrastructures, 

is of paramount importance. The deployment of AI in intrusion 

detection offers numerous advantages over traditional methods, 

including adaptability to emerging threats and dynamic 

behaviors, detection of day-zero attacks, effective pattern 

recognition for threat detection in large data volumes, real-time 

response, reduced false alerts, and overall enhanced prediction 

accuracy [246].  

Numerous survey papers examine the employment of AI 

techniques in IDS. Table X summarizes the key findings and 

limitations of the latest comprehensive surveys, aiming to 

provide readers with up-to-date insights into the application of 

various AI methods in IDS.   

Abdallah et al. [247] focus on supervised ML techniques, 

concluding that RF achieves the highest accuracy while 

AdaBoost has the lowest performance. The authors discuss one 

challenge: IDS requires large datasets to predict abnormalities, 

which might need to be more efficient with ML algorithms.  

Darley et al. [248] highlight the importance of utilizing ML 

algorithms for intrusion detection in IoT systems, as they have 

shown promising results. However, the authors discuss some 

challenges related to IoT systems regarding computation 

capabilities, storage demands, and scalability issues. Khan et al. 

[249] highlight cyber-attacks emerging with IoT, such as DoS, 

device failures, sniffer attacks, and unauthorized access. The 

authors conclude that deep learning techniques are highly 

Challenge 
Traditional 

Networks 
IoT Networks The Metaverse 

Scalability 
Essential, but 
uniform 

High, 

dependant on 
device 

capabilities   

Extremely high due 

to rapidly growing 

virtual spaces 

Data 

Diversity 

Primarily 

structured 
data, less 

variation  

High, variant 

data types and 

formats 

Enormous diversity 
due to additional 

sources such as VR, 

user interactions, 
virtual assets 

Connectivity  
Predictable 

and static  

Dynamic (ad-

hoc and 
intermittent) 

Highly dynamic 

Real-time 

Detection  

Important for 
critical 

systems 

Critical for 
real-time 

response to 
sensors and 

control 

devices  

Crucial to maintain 
user experience and 

security 

Cross-

platform 

Security  

Less 
complex 

Challenges in 
device-to-

device 

communicatio
n security 

Complex due to 

interoperability with 
various platforms 

and devices  

User 

Interaction 

Relies on 

access 

control and 
network 

policies  

Varies due to 

the diversity 

of user and 
device 

interaction 

Highly complex due 

to varied, immersive 
interactions 

Decentraliz-

ation  

Low, mostly 

centralized 

networks 

Typically 

centralized, 
but growing 

use of 

decentralized 
approaches  

Significant, the 
metaverse is posed 

to rely on 

decentralized tech 

Threat 

Landscape 

Traditional 

cybersecurity 
threats 

Traditional 

cybersecurity 
threats and 

device-

specific 
vulnerabilities  

More AI-based 

sophisticated attacks 

and advanced 
persistent threats 

(APT) 

TABLE IX 

COMPARISON OF IDS CHALLENGES IN TRADITIONAL IT 

AND IOT NETWORKS WITH THE METAVERSE  
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effective in intrusion detection, with neural networks (DNN) 

achieving remarkable accuracies. However, several challenges 

are discussed, such as computational constraints and privacy 

concerns in DL-based IoT intrusion detection.  

Vanin et al. [250] focus on reviewing AI-based NIDS in IoT, 

covering both ML and DL algorithms. This study shows that 

while DL methods achieve higher accuracies for IDS than ML, 

they require additional computational resources and training 

time. Moreover, the authors discuss IoT challenges, 

highlighting that IoT devices primarily operate on wireless 

networks and often consist of sensor nodes that generate 

substantial data. These nodes typically have limited computing 

capabilities. Therefore, creating effective IDS solutions for IoT 

necessitates the development of lightweight systems that 

demand fewer computational resources and can efficiently 

process smaller data volumes for threat detection.   

One of the most recent surveys [252] provides a review of 

AI-enabled intrusion detection for smart digital infrastructures, 

discussing ML, DL, and ensemble learning methods.  The 

author emphasizes the need for research on AI-based IDS to 

focus on enhancing current solutions in terms of prediction 

accuracy to adapt to emerging technologies and systems such 

as cyber-physical systems, IoT networks, smart cities, digital 

twins, and the metaverse.  

These survey papers illustrate the significant potential that AI 

methods hold in enhancing IDS. However, examining the 

challenges and limitations, all these papers highlight two 

primary concerns: computational restrictions and imbalanced 

datasets. These challenges present a notable research gap in 

metaverse-based IDS, given that the metaverse demands access 

to high-quality datasets and requires efficient security measures 

to provide a seamless user experience. 

3) AI-based Solutions for Metaverse IDS: Several works 

investigate intrusion detection within the metaverse, as 

summarized in Table XI. Since numerous studies propose AI 

frameworks for intrusion detection in various applications (e.g., 

web-based, IoT, critical infrastructure, vehicle networks), it is 

important to identify the specific solutions these metaverse-

based papers propose, which is shown in the "Motivation and 

Relevance to the Metaverse" column in the table. Additionally, 

the table highlights the AI technique(s) used for each work, 

datasets, performance metrics, and limitations. 

Most research in IDS for the metaverse is motivated by 

tackling challenges associated with its enabling technologies, 

such as IoT, 5G, and blockchain. Ding et al. [253] emphasize 

the importance of IoT and 5G in building the future metaverse, 

which requires real-time data processing to bridge the physical 

and virtual worlds. Consequently, the attack surface and 

vulnerabilities are magnified. The authors proposed a hybrid 

model integrating DAE, GAN, and RF to enhance metaverse 

security and prevent disruptions. This model, designed to 

achieve high classification accuracies and produce true 

predictions and speed, significantly advances efficient IDS. 

Using the InSDN dataset [254], DAE is deployed for feature 

dimensionality reduction, optimizing the model's efficiency and 

convergence speed. GAN enhances the imbalanced dataset by 

increasing training samples, while RF is used for classification.   

The model is evaluated for binary classification (normal and 

abnormal network traffic) and multi-class classification to 

predict attack types. The proposed model outperforms other DL 

models, including CNN, LSTM, and CNN-LSTM, in both 

binary and multi-class classifications, yielding significantly 

lower error predictions. However, it is important to note that the 

training time for binary classification is double that of LSTM, 

Ref. Year Research Focus  Key Findings Challenges and Limitations  

[247] 2022 

IDS using 

supervised ML 
techniques 

1) Supervised ML techniques have promising results for IDSs.  
2) Work with RF achieved the highest accuracy of 99.9%.  

3) Feature selection in supervised ML is critical and affects the 

performance of the model.  

1) Data imbalance affects the performance.  

2) IDS require large datasets, which might not 
be feasible with ML algorithms.  

[248] 2022 
ML-based IDS in 

IoT systems 

1) ML techniques are effective in intrusion detection.  

2) Data preprocessing is essential and has high impact on IDS 
performance.  

1) Imbalanced datasets.  
2) Scalability issues in IoT.  

3) IoT requires high computation demands and 

storage.  

[249] 2022 DL for IDS of IoT 

1) DNNs achieve high accuracies and low loss rates. (99.91%) 

2) Image-based DL (DCNN) were introduced for anomaly 
detection and classification, also achieving 99% accuracy rates  

3) Two-Stage DL (TSDL) was developed for the prevention of 

new attack variation, achieving high accuracy (99.96%) 
4) Datasets affect the performance of the models. 

1) Imbalanced datasets. 

  
2) IoT challenges such as real-time updates, 

computational restrictions, complexity, and 

privacy concerns.   
 

[250] 2023  AI/ML for NIDs  

1) ML improves the efficiency of IDSs.  

2) Datasets play a crucial part in determining IDS efficiency. 
3) Compared to ML, DL techniques significantly improve IDS 

accuracy. However, they require high computation resources and 

time. 

1) Many works use outdated datasets.  
2) Class imbalance in datasets leads to lower 

detection rates.  

3) Lack of real-world testing.  
4) IDS design for IoT is challenging.  

 

[251] 2023 
ML, DL, ensemble 

learning 

1) DL achieves higher accuracy in IDS comapred to ML.  

2) Feature reduction is imporatned in AI-based IDS.  

1) Most owrks focus on the accuracy metric.  

2) Most works do not explore multiple 
classication 

3) Noisy data affect IDS 

4) Time complexity and CPU utlization 

TABLE X 

SUMMARY OF RECENT SURVEY PAPERS THAT INVESTIGATE AI FOR IDS 
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which is a significant limitation given the criticality of speed in 

metaverse security solutions.  

Bütün et al. [255] address the fast-response challenge with a 

novel approach that deploys ML (RF) algorithms in the user 

plane for real-time intrusion detection within SDN-based 

metaverse environments. This approach, which outperforms 

traditional methods operating in the control plane, is a 

significant leap in the field. It efficiently forwards data packets 

and achieves real-time detection without any delays associated 

with control plane processing. The research's novelty lies in its 

evaluation of the model at both software and hardware levels, 

employing Intel Tofino programmable switches and the P4 

Ref. IDS Type 

Motivation and 

Relevance to the 

Metaverse 

AI Techniques Dataset Performance Metrics Limitations/Future Work 

[253]

2022 

Anomaly 

Detection  

The metaverse is based on 

5G and IoT, making it 

complex and in need for 
real-time detection 

Hybrid (ML/DL) 

DAE, GAN, RF 
InSDN 

For binary and multiple 
classifications:  

- Acc: 99.8% & 99.6% 

- Recall: 99.9% and 99.6% 
- Prec: 99.8% and 99.5%  

- Time: 613s and 623s  

- GAN is unstable 

- Training time is high 
compared to LSTM 

- Dataset limited in size 

 

[255]

2023 
IDS for IoT 

The metaverse requires 
fast cyberthreat mitigation 

methods since it is driven 

by emerging technologies 
that require real-time 

solutions  

User-plane 

machine learning 

inference with 
RF 

ToN-IoT  

Results in Python and Switch 

(best model): 
- F1 Score: 99.28% - 99.27% 

- TPR: 99.93%-99.93% 

- FPR: 0.74% – 0.77% 
- TNR: 99.26% - 99.23% 

- FNR: 0.07% - 0.07% 
- Latency: 73-91 ns 

- Centralized 
- Privacy concerns 

- Best performing RF model 

has the most complex 
configurations  

- FPR can be further improved   

[256] 

2023 

MetaCIDS: 
Collaborative 

IDS 

MetaCIDS: A framework 

to secure the large-scale, 

distributed, and 
decentralized 

(blockchain) metaverse, 

while also addressing 
privacy concerns 

FL, MLP 
CIC-

IDS2017 

- Accuracy: 99.05% 

- Precision: 0.99 
- Recall: 0.99 

- F1 score: 0.99 

- False Negaives: 5 to 15 

- The model cannot collect 

labelled data for new attacks 

- Issue of data heterogeneity in 
decentralized training  

[257] 

2023 

MetaCIDS: 
Collaborative 

IDS 

Integration of FL, 

blockchain and AI to 
enhance security and 

privacy of IDS in the 

metaverse  

Attention-based 

DAE, FL 

CSE-CIC-

IDS2018, 

CIC-
IDS2017, 

NSL-KDD, 

UNSW-
NB15 

Accuracy: 95-99% 

 

- Low performance against the 

NSL-KDD dataset 

- Diverse attacks in diverse 
devices  

[258] 

2023 
IDS 

High data volume from 

IoT and sensitive data 

from digital twins 

requires privacy-

preserving and efficient 

IDS for the metaverse + 
imbalanced datasets issue 

FL, meta-

learning, 

Clustering 

RL 

ResNet-9 

UNSW-

NB-15, 

NSL-KDD 

 
- F1 Score: 83.69 

- AUC: 83.05 

- Recall: 78.96 
- Precision: 89.03 

 

- Performance metrics can still 

be improved.  

- Lack of investigation of 
resource utilization.  

[259] 
2023 

Anomaly 

Detection for 

Healthcare 

Sensitive nature and 

unique data challenges in 

healthcare for the 
metaverse requires 

efficient and cost-friendly 

IDS  

LSHiForest 

SMTP and 

HTTP 

datasets 

Accuracy 

Time cost 
AUC 

F1 score 

Future work includes 

optimizing the model update 

process and improving data 
distribution estimation 

techniques for enhanced 

detection accuracy. 

[260]

2023 
IDS for IoT 

- Securing IoT 
- Ensuring integrity 

- Advanced solutions for 

future metaverse  

DT, RF, 

XGBoost 

NSL-KDD, 

UNSW-

NB15, 
CIC-

IDS2017 

Acc >99% for all datasets 

Future work: 
- Test on datasets with more 

classes.  

- Analyse time utilization.  
- Investigate hybrid AI 

techniques.  

- Evaluate on diverse dataset.  

[261]

2024 
NIDS 

Integrating explainable AI 

for NIDS in metaverse-

based learning 

environments aims to 
ensure secure and 

transparent cybersecurity 

measures 

DNN, XAI 

(SHAP and 
LIME) 

EdgelloT, 
CICoT202

3, UNSW-

NB15 

DNN-based NISA for 
metaverse learning platforms. 

Achieved high accuracy for 

binary classification 

- Limited datasets 

- Specific to learning 
environments 

TABLE XI 

SUMMARY OF STUDIES ON AI-BASED IDS FOR THE METAVERSE  
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programming language to test the model against the ToN-IoT 

dataset. Several RF models with different configurations were 

evaluated, achieving accuracies that exceed 99%. The results 

also showed that the model has a minimal hardware resource 

consumption of below 5% and latency below 100ns. While this 

work offers promising insights into securing the future 

metaverse network, there are aspects that are not considered, 

such as the decentralized nature of the metaverse and potential 

privacy concerns.  

Considering the distributed and decentralized aspects of the 

metaverse, several works combine blockchain with AI solutions 

[256],[257]. Troung and Le [256] present MetaCIDS, a 

collaborative IDS that leverages federated learning (FL) and 

blockchain technology to enhance the security and privacy of 

the decentralized metaverse. MetaCIDS utilizes FL to enable 

decentralized and collaborative intrusion detection, allowing 

metaverse devices to contribute to a shared intelligence model 

without compromising user data privacy. To further enhance 

privacy, differential privacy noise is added during the training 

process to minimize the exposure of sensitive information.  

Additionally, a token-based incentive system is incorporated, 

and users are rewarded for participating in the training process 

and verifying alerts. These tokens serve as virtual currency, 

which can motivate metaverse users to indulge in and enhance 

intrusion detection training on their local devices. The role of 

AI is demonstrated through an attention-based Multi-Layer 

Perceptron (MLP) model that achieved an accuracy rate of 99% 

in identifying intrusion attacks. MetaCIDS was robust against 

several attacks, including fake alerts, DDoS, privacy attacks, 

zero-day attacks, and poisoning attacks.  

Despite the model's high efficiency, the authors highlight a 

significant challenge posed by the lack of metaverse-specific 

datasets, emphasizing the need for future research in metaverse 

security. MetaCID cannot be trained on unlabeled data or 

collect labeled data for new attack types, making the system 

insufficient for real-world scenarios in the metaverse. However, 

the authors address these limitations in their next work [257], 

roposing an improved MetaCIDS version incorporating semi-

supervised learning. The model integrates attention-based 

techniques with DAE, wherein the latter serves as an 

unsupervised learning module that can extract features from the 

network data without needing labeled data. The extracted 

models then pass through an attention-based weighting module, 

which assigns importance to features based on their relevance 

to intrusion detection. Subsequently, a lightweight neural 

network classifier is designed to evaluate the model against four 

datasets (see Table XI). Results show that MetaCIDS 

outperformed other models in multi-class and zero-day attack 

detection. It also demonstrated scalability and resilience against 

various attacks, providing a robust solution for metaverse 

security.  

He et al. [258]  recognize that digital twin-enabled 6G 

devices operating within the metaverse are vulnerable to 

security and privacy risks. Specifically, the authors highlight 

data-related IDS challenges within the heterogenous metaverse 

environment, namely the imbalance of classes in IDS datasets 

and non-independent and identically distributed (non-IID) data. 

To address these issues, the authors proposed a federated meta-

learning approach that deploys FL for privacy preservation and 

meta-learning (a subfield of ML that aims to train models to 

self-adapt to new environments with minimal data) for tackling 

imbalanced datasets. 

A meta-sampler is designed and optimized through 

reinforcement learning (RL) techniques to learn a sampling 

strategy and select effective data samples during training. It is 

worth noting that the meta-sampler is trained without needing 

access to the client's local data, thus ensuring data privacy 

protection. Additionally, a federated clustering algorithm is 

proposed to address the issue of non-IID data problems by 

dynamically clustering and ranking client-side models, leading 

to improved model performance. Through comprehensive 

experiments conducted on two datasets, it was found that the 

proposed model outperformed baselines in terms of accuracy 

and stability while also maintaining privacy.  

Wu et al. [259] also address data-related issues in the 

metaverse, focusing on healthcare applications. The authors 

present a novel 6G-enabled Data Stream Anomaly Detection 

(DS AD) approach tailored for healthcare analytics within the 

metaverse, focusing on addressing cybersecurity challenges 

such as DDoS, probe, and port scanning attacks. Given the 

unique characteristics of medical data streams in the metaverse, 

including infiniteness, correlation, and distribution change, 

traditional static data anomaly detection algorithms must 

improve accuracy and efficiency. Thus, the proposed DS AD 

method integrates a sliding window model update and change 

detection mechanisms into the LSHiForest framework. This 

structure employs hash functions to partition data spaces to 

identify anomalies efficiently. 

The core innovation lies in DS AD's ability to process data in 

one pass using a sliding window that stores the latest data, thus 

addressing the issue of data infiniteness. The model employs 

hash functions via LSHiForest to map data points, considering 

the correlations within the data stream. A change detection 

mechanism is introduced at the end of each sliding window to 

determine the necessity of model updates, ensuring the model 

remains accurate over time despite changes in data distribution. 

The effectiveness of DS AD is validated through extensive 

experiments on SMTP and HTTP datasets, demonstrating 

superior accuracy and efficiency compared to traditional 

methods. This approach not only enhances the detection of 

anomalies in healthcare data streams within the metaverse but 

also does so with consideration for the computational 

constraints of the 6G network, ensuring a high level of detection 

efficiency.  

In [260], the authors deployed ensemble learning methods 

(XGBoost) on several intrusion detection datasets, achieving 

accuracies of over 99% for all of them. A recent study [261] 

introduced the integration of deep neural networks (DNN) with 

Explainable AI (XAI) for a network intrusion detection system 

designed specifically for mitigating threats in metaverse-based 

learning environments. In designing their model, the authors 

utilized a DNN architecture known for its automatic feature 

learning process, scalability, and accelerated training. The 

model is evaluated against IoT datasets for training and 

evaluation, achieving a high accuracy rate of 99.9% in 

establishing a secure learning environment. By incorporating 

explainable AI methods like SHAP and LIME, the model 

provides transparent and trustworthy explanations for its 

predictions, enhancing the understanding and trustworthiness 

of the NIDS in the context of the metaverse. 
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C. Blockchain and NFT Security  

Blockchain technology is highly associated with the future 

metaverse due to its potential in digital asset management [37], 

data privacy [267], and interoperability [268]. Several studies 

discuss the integration of blockchain technology with AI to 

enhance the security and interoperability of data in the 

metaverse [35][269][270]. This survey investigates the 

utilization of AI techniques to solve security issues in 

blockchain, focusing mainly on NFTs. To our knowledge, [271] 

is the first work to discuss AI deployment for NFT security. The 

authors highlight the integration of AI-based solutions with the 

International Financial Reporting Standard (IFRS) guidelines in 

NFT minting and transactions. Specifically, they suggest that 

AI solutions should be incorporated for smart contract creation, 

valuation, and verification, and ML techniques should be 

utilized for fraud detection.  

This section reviews existing literature that uses AI 

techniques for NFT fraud detection, smart contracts security, 

and NFT verification. We then summarize how these solutions 

and identity verification can help enhance NFT transactions 

within the metaverse.  

1) NFT Fraud Detection: The issue of fraud in NFT 

marketplaces is rising, as was discussed in Section V. Utilizing 

AI technology can limit such by detecting anomalies that 

indicate fraudulent activities. Several studies have 

demonstrated the efficiency of using AI for fraud detection in 

blockchain and cryptocurrency transactions. A recent example 

is the research conducted by Bhowmik et al. [272], in which the 

authors compare several ML algorithms to detect fraudulent 

transactions in the blockchain, concluding that AdaBoost, 

SVM, and RF classifiers achieved the best results with 

accuracies of 97%. Ashfaq et al. [273] integrated ML 

algorithms (XGboost and RF) and blockchain to design a model 

that can predict the legitimacy of blockchain transactions. It 

was tested against double-spending and Sybil attacks and 

proved robust against them. 

Research on fraud detection for NFTs has emerged recently 

(See the summary in Table XII). In [262],  the authors utilized  

 

a time-series classification model to predict whether a given 

collection of NFTs is legitimate (whitelisted) or suspicious 

(blacklisted), aiming to identify fraudulent activities such as 

Pump & Dump and Wash Trading. The dataset used in this 

study includes transactional information collected from NFT 

marketplaces (e.g., OpenSea and AtomicHub) [263]. The 

authors deployed K-means clustering and a Multiple 

Convolutional Neural Network (MCNN), previously developed 

by [274], because it provides enhanced feature extraction 

capabilities compared to other models, achieving an overall 

accuracy of 71.1%. 

2) AI for Smart Contract Security: Smart contracts are 

utilized in blockchain for minting and holding the metadata of 

NFTs, making them susceptible to security threats and 

cybercriminal attacks, as was discussed in Section V. 

Considering the serious impact and financial loss that such risks 

can cause, multiple studies attempted to enhance the security of 

smart contracts, specifically through the deployment of AI 

techniques. By training ML algorithms on datasets of known 

vulnerabilities, the model learns to identify patterns or 

anomalies in smart contract code, resulting in detecting security 

flaws before they are exploited. Moreover, the adaptive nature 

of ML systems supports continuous monitoring of potential 

breaches and ensures that smart contracts can evolve in 

response to new threats. Jiang et al. [275]  conducted a 

comprehensive survey investigating ML algorithms for smart 

contract security, focusing on reviewing supervised, 

unsupervised, semi-supervised, and reinforcement learning 

methods. It was found that supervised learning is the most used 

technique for detecting vulnerabilities in smart contracts due to 

its high predictive accuracy and applicability. Its main 

disadvantage is that it requires large amounts of labeled data to 

perform effectively. Furthermore, the authors suggest 

combining ML with statistical methods for future research in 

smart contract security.   

Krichen [276] also conducted a comprehensive survey on 

applying AI techniques in enhancing smart contract security. 

The author compared classical and AI-based techniques, 

Ref.  Year Addressed Issue  Contribution Dataset Method(s) Limitations  

[262] 2022 

Fraudulent Activity 

(Wash Trading, 
Pump and Dump) 

A time series classification model to 

identity and predict fraudulent activity 
based on NFT collections.  

NFT transactional data 

[263] 

Clustered 

MCNN 
 

- Model cannot predict new 

frauds.   
- Small labeled data. 

[264] 2023 

 

Wash Trading 

accounts 

Systematic categorization of NFT user 

(trader) behaviours to identify potential 

fraud using ML.  

Data collected includes 

transaction detailed 

from OpenSea  

K-mean 
clustering 

- Limited labels.  
- Small sample.  

- Limited data source.  

- Limited to wash trading 
accounts.  

[265] 2023 
Phishing, Pre-mint, 
and Rugpull Scams  

An ML classifier tool that detects 
fraudulent NFT projects on Twitter.  

Tweets that promote 
NFT projects 

Random 
Forest 

- Small dataset.  

- Focused on specific 

blockchains.  

[266] 2023 Anomality Detection  
A classifier model to predict anomalies 

in the Top Shot NFT platform.  

Transactions in Top 

Shot (collectibles 

information) 

Linear 

Regression 

- Dataset is up to 2021.  
- Absence of ground truth 

labels.  

- Platform-specific.  

TABLE XII 

AI-BASED FRAUD DETECTION FOR NFTS  

 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3442475

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



32 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) 

highlighting the advantages of using AI for securing smart 

contracts, such as high accuracy and scalability. AI models can 

also analyze the smart contract code to detect and fix flaws and 

identify ambiguities and inconsistencies within the contract via 

a natural language processing (NLP) algorithm. The author also  

highlights the role of deep learning models, such as LSTM, 

ANN, and RNN, for vulnerability detection. Graph-based 

approaches, such as temporal message propagation networks, 

are also reviewed, highlighting their role in defining 

irregularities in financial transition in the blockchain. The 

author outlines significant challenges that must be addressed for 

AI-based smart contract security, including adversarial attacks, 

data privacy, scalability, and interoperability.  

  3) Content Verification: Verifying the legitimacy of the 

contents of an NFT is a pressing concern. Despite each token 

having a distinct identifier, the digital asset linked to an NFT 

may face duplication or plagiarism issues. Given the niche area 

of NFT research, especially in cybersecurity solutions, only a 

few papers attempted to investigate this problem, as 

summarized in Table XIII. Kimura et al. [277] proposed a 

distributed authenticity verification scheme integrating 

blockchain technology and deep learning. The study addresses 

blockchain poisoning, where malicious data aims to 

compromise blockchain integrity, focusing on NFTs as they are 

increasingly susceptible to such threats due to their growing 

popularity and market value. The authors analyzed the process 

from digital content creation to NFT distribution, identifying 

two main attack vectors: fake attacks and reuse attacks. A 

decentralized verification scheme was proposed to mitigate 

these attacks. Variational Auto Encoder (VAE) - a generative 

deep learning model- was incorporated to create a compressed 

representation of the original content, which serves as an 

irreversible transformation of content to ensure the 

confidentiality of the data and authenticity of NFTs without 

compromising privacy. This compressed representation is then 

used in a distributed verification scheme that involves a 

“verification game”, in which blockchain participants 

collectively verify the authenticity of the content proposed for 

NFT minting. The authors highlighted the issue of content 

policies in NFT trading, emphasizing the need for clear 

guidelines regarding content use and licensing.  

A recent study [278] proposed an NFT image plagiarism 

detection method using an advanced deep learning approach. 

The authors utilized EfficientNet-B0, a highly efficient deep 

learning architecture optimized for accuracy and computational 

efficiency. Coupled with the Triplet Semi-Hard Loss function, 

the system is trained to distinguish between original and 

plagiarized NFT images. The study utilized a publicly available 

NFT-Classifier dataset from Kaggle, which includes images 

from popular NFT collections. The method was tested against 

other models like Resnet50, DenseNet, and MobileNetV2, 

showing superior performance in terms of loss and accuracy. A 

notable limitation of this work is the reliance on a specific 

dataset that only partially represents the diversity of NFT 

images across different platforms and collections. Additionally, 

the study focuses on image-based plagiarism detection and does 

not consider other forms of content plagiarism within the NFT 

ecosystem, such as audio or video files.  
The study in [279] highlighted the vulnerabilities of classical 

cryptographic schemes that can be broken by quantum 

computing. The authors proposed a novel solution combining 

quantum-resistant technologies with deep learning to protect 

NFT content against emerging threats. The proposed 

framework utilized ConvNext, a deep learning model 

distinguished by its optimized architecture. Through 

experimental evaluations, the study demonstrated the 

effectiveness of the proposed method in terms of accuracy, 

scalability, and resilience against quantum threats.  

4) General Framework: In addition to the possible solutions 

discussed so far, the deployment of an efficient biometric 

continuous authentication system in the metaverse provides 

robust verification of the identities participating in NFT trading 

(sellers and buyers), preventing any potential imposters from 

engaging in unauthorized transactions. Moreover, mutual 

authentication schemes can be incorporated into the NFT 

marketplace to verify the transactions between users and 

marketplaces, ensuring that both entities are legitimate. Fig. 19 

illustrates an overview of a general framework that 

demonstrates the application of various AI methods for 

enhancing security in NFT transactions within the metaverse, 

including biometric continuous user authentication, mutual 

authentication, detection of fraudulent activities in NFT trading, 

plagiarism detection and content verification of NFTs, and 

finally smart contract security.  

   
VI. SUMMARY AND LESSONS LEARNED 

In this section, we highlight the key lessons learned from this 

survey, providing an overall summary of the main sections. 

A. Lessons Learned from Metaverse Security Overview 

 1) Existing Literature: Since the metaverse is still an 

Ref Year  Methodology AI Algorithm(s) Dataset  Challenges and Limitations  

[277] 2022 
Integrates blcokchain and deep 
learning for NFT content 

verification.  

VAE for feature compression 

and content protection 
MNIST dataset  

1) Study used a non-NFT dataset.  

2) Scalability issues.  

[278] 2023 
Deep learning-based approach to 

detect plagiarism in NFT images 

EfficientNet-B0 DNN with 

Triplet Semi-Hard Loss 
fuction 

Public NFT 

dataset images 
 

1) Specific dataset.  

2) Limited to image-based NFTs. 

[279] 2024 

A verfification framework for NFT 

images based on quantum 
blockchain and deep learning.  

ConNeXt deep learning 

model 

Public NFT 

dataset 
 

1) Specific dataset.  

2) Computational and scalability 
issues. 

TABLE XIII 

STUDIES ON AI METHODS FOR NFT CONTENT VERIFICATION 
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emerging concept, most existing surveys and research are 

focused on investigating technological solutions for achieving 

the envisioned metaverse.  Several notable survey papers [134] 

[43]  comprehensively review the plausible security and privacy 

threats of the metaverse. However, there are still limitations in 

academic works that propose solutions to such risks. Moreover, 

further research is still needed to explore innovative solutions, 

such as AI, that can handle the complex and dynamic nature of 

the future metaverse.    

2) Industrial Solutions: Many companies invest in the 

metaverse, but only a few publicly address cybersecurity and 

privacy concerns. For example, Meta has acknowledged the 

critical need to focus on privacy, open standards, and 

governance as integral parts of their metaverse strategy. 

Similarly, Microsoft has initiated discussions about identity-

related threats and emphasized the importance of collaborative 

approaches to overcome these challenges effectively. However, 

standards, policies, and legal concepts still need to be 

considered to ensure the safety and privacy of users and 

enterprises indulging in the metaverse.   

3) Security and Privacy Issues: The metaverse presents 

unique cybersecurity challenges and significant privacy risks 

due to its expansive scalability, multi-tech integration, and 

extensive user data collection. Specifically, sensitive 

information such as user biometric and behavioral data 

collected through head-mounted displays (HMDs) introduces 

vulnerabilities that could compromise user privacy. 

Additionally, users enter the metaverse as customizable digital 

avatars and interact with other avatars that could be other 

human users or AI-generated virtual assistants, which raises 

concerns related to impersonation, integrity, and anonymity. 

The highly immersive nature of the metaverse also increases the 

impact of malicious behavior, such as cyberbullying and 

harassment [143], which affects the digital wellbeing of users. 

Other potential attacks target the safety of users, such as altering 

the walls of the virtual environment, manipulate the physical 

movement of users without their knowledge (Human Joystick 

attack), and disorientation attacks that can induce dizziness for 

virtual reality (VR) users.  

4) NFTs in the Metaverse: Non-fungible tokens (NFTs) have 

gained considerable attention in discussions about the 

metaverse's economic framework [37][154][280]. NFTs are 

unique cryptographic identifiers that offer promising means to 

establish digital asset ownership, supported by the security of 

blockchain technology. However, given the substantial market 

value of cryptocurrencies and NFTs, they have become prime 

targets for cybercriminals. Security risks associated with NFTs 

include fraudulent activities in digital marketplaces, social 

engineering attacks, vulnerabilities in smart contracts, instances 

of NFT plagiarism, and the absence of proper authentication 

mechanisms in NFT marketplaces.  

B. Lessons Learned from AI-based User Authentication  

1) Authentication for Metaverse-related Applications: Most 

platforms rely on optional two-factor authentication (2FA). 

While 2FA represents an improvement in security over 

traditional single-factor methods, it remains vulnerable to 

cyberattacks and inadequate for the security demands of the 

metaverse, considering the high risk of compromising users’ 

digital identity (personal information, biometric data, digital 

assets). Additionally, NFT marketplaces lack robust user 

authentication and verification mechanisms, leaving them 

susceptible to security vulnerabilities, such as Man in the 

Middle attacks, phishing attacks, and hacking of crypto wallets.  

2) Biometric Authentication: The metaverse offers unique 

opportunities for advanced biometric technologies. Metaverse 

hardware, like head-mounted displays (HMDs), collect 

biometric data such as facial features, head movements, and 

body movements to enable the generation of realistic avatars 

and immersive experiences.  Since biometrics are already part 

of the metaverse ecosystem, it offers opportunities to utilize 

them for user authentication. Several studies have shown the 

potential of using biometric attributes in identifying and 

verifying users, including physical and behavioral traits like 

facial features, iris, retina, gait, and keystroke 

patterns.  Additionally, physiological signals, such as EEG, are 

part of the Brain-Computer Interface (BCI) research dedicated 

to the metaverse. They have also been utilized for user 

authentication, making them suitable as identifiers in the future 

NFT  
Marketplace/dApp 

Smart Contract Minted NFT 

AI for smart contract security  

Crypto wallet 

AI-based Content Plagiarism Detection 

AI-based Fraud Detection in NFT Marketplaces 
  

Buyer 

Mutual Authentication  

(Buyer and Marketplace) 

Blockchain 

Artist/ 
Seller 

Crypto wallet 

Mutual Authentication  

(Seller and Marketplace) 

Fig. 19. AI can be deployed for NFT security as follows. Robust authentication systems (biometric and real-time) provide identity verification for the seller and 
buyer when they trade on an NFT platform or when they access their crypto wallets, preventing unauthorized access and impersonation attacks. AI models can also 

be deployed to verify the content of an NFT before it is listed on the marketplace. Furthermore, fraud detection can occur within the NFT platform to alert users of 

potential scams. Lastly, AL techniques can help prevent attacks directed at smart contracts. 
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metaverse. ECG and PPG (measurements of heart activity) are 

also biometric identities used for user authentication, and like 

EEG, they are relatively robust against spoofing attacks and can 

provide liveness detection.  

3) Multimodal and Continuous Authentication: Multimodal 

and continuous authentication can significantly enhance 

security and user experience within the metaverse. By 

integrating multiple biometric modalities, multimodal 

authentication effectively counters risks associated with single 

biometric systems, such as spoof attacks and data inaccuracies, 

increasing the overall robustness of security frameworks. 

Continuous authentication further builds on this by maintaining 

user verification throughout the session, which is crucial for 

preventing unauthorized access post-initial login. Recent 

research shows potential in integrating multimodality with 

continuous authentication. However, further investigations are 

needed on how they can be applied in the metaverse while 

considering computational requirements, usability, and privacy. 

C. Lessons Learned from AI-based Intrusion Detection 

Systems  

1) Intrusion Detection Challenges in the Metaverse: he 

metaverse presents unique challenges for Intrusion Detection 

Systems (IDS) due to its expansive scale and the diverse array 

of data it encompasses, from IoT device sensors to virtual 

interactions and 3D models. This diversity and scale necessitate 

scalable IDS solutions that can process a broad array of 

information efficiently to ensure comprehensive security. 

Moreover, the metaverse's dynamic nature—with its 

continuous data updates and evolving virtual spaces—requires 

IDS that can adapt in real time. Additionally, the 

interoperability feature of the metaverse allows users to move 

seamlessly across various virtual environments, which 

introduces further security challenges. IDS must effectively 

manage security across different platforms, each with 

potentially varying user behavior and interaction norms. The 

decentralized nature of the metaverse complicates security 

management even further, requiring innovative IDS solutions 

that can operate effectively within a decentralized architecture 

while ensuring user privacy and data integrity.  

2) AI Solutions for Intrusion Detection Systems: The 

integration of AI into IDS has shown promising enhancements, 

particularly in terms of detection accuracy and operational 

efficiency. AI techniques enable the detection of complex 

attack patterns and support the handling of large-scale data 

environments. However, the reliance on AI also introduces 

challenges such as the need for large and diverse datasets, 

computational intensity, and potential issues with data privacy. 

Future research needs to focus on optimizing AI-driven IDS in 

terms of computational demands, data management, and 

privacy preservation to ensure they are suitable for the 

expansive and multifaceted metaverse. 

D. Lessons Learned from AI for Blockchain and NFT Security 

Integrating blockchain technology with AI holds immense 

potential for shaping the future metaverse, offering enhanced 

security, data management, and interoperability [37][267]. 

Incorporating AI techniques for NFT transactions can 

significantly reduce risks and ensure the trustworthiness of NFT 

marketplaces. For example, several works used ML techniques 

to detect fraudulent activities in NFT marketplaces, enhancing 

the security and integrity of NFT transactions [262],[264]. 

Moreover, AI methods can identify vulnerabilities in smart 

contracts, contributing to their improved security and reliability 

[275],[276]. Lastly, ensuring the uniqueness and security of 

data content within NFTs is a critical concern. Therefore, the 

deployment of DL models showed effective performance in 

detecting duplication and plagiarism, which is needed in the 

NFT market and future metaverse to ensure the integrity of 

NFTs and the rights of content creators.  

 

VII. CHALLENGES AND RESEARCH OPPORTUNITIES 

This section highlights research challenges and future 

research opportunities.   

A. Research Challenges   

1) Privacy Concerns: The metaverse presents several privacy 

issues regarding data and personal information. As users 

immerse themselves in this digital realm, they generate 

significant data, including their movements, interactions, and 

preferences. This data can be collected and analyzed by 

metaverse platforms and potentially shared with third parties 

for various purposes, such as targeted advertising or user 

profiling [146]. Concerns about data privacy in the metaverse 

revolve around the potential for unauthorized data collection, 

surveillance, and the risk of personal information falling into 

the wrong hands. Additionally, the anonymity often associated 

with the metaverse can give rise to instances of cyberbullying 

and harassment, raising further privacy and safety concerns for 

users [281],[282]. The metaverse, like any innovative 

technology, brings significant privacy concerns. The vast user 

data expected to be collected increases privacy risks, not to 

mention that collecting biometrics is an essential part of the 

metaverse since this data is needed for enabling the immersive 

virtual environments making up the metaverse. Additionally, 

the deployment of AI, despite its significant advantages, also 

has privacy concerns since training AI algorithms requires 

datasets, which puts them at risk 

Addressing these privacy concerns in the metaverse requires 

a comprehensive approach, especially when implementing AI 

techniques for cybersecurity, including biometrics. While AI 

can be crucial in detecting and preventing cyber threats in the 

metaverse, it also introduces privacy issues, particularly in 

handling biometric data. AI systems may inadvertently access 

and analyze sensitive biometric information during 

cybersecurity operations, potentially exposing private details to 

unauthorized entities. The deployment of biometric 

authentication methods in the metaverse raises concerns about 

the storage and protection of biometric templates, as any breach 

could have lasting consequences for users.  

2) Limitations in Datasets: The quality of datasets is crucial 

for AI systems, as it directly influences the accuracy and 

reliability of the resulting models. Several challenges arise 

regarding collecting, processing, and utilizing datasets intended 

for AI models in the metaverse.  

User Authentication: In the metaverse, user authentication 

heavily relies on biometric data to verify identities uniquely. 
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However, the challenge arises from limited datasets, often 

needing to be more diverse to train AI models effectively. This 

lack of diversity can result in models that fail to recognize less 

common biometric traits, leading to higher false rejection rates. 

Moreover, small datasets may need to adequately represent the 

range of variations in biometric data caused by different 

environmental conditions or user behaviors. 

Intrusion Detection Systems (IDS): The challenge for IDS 

in the metaverse is training AI models on datasets that 

comprehensively represent the diverse ways a system can be 

attacked or compromised. The importance of this aspect is 

highlighted by the fact that limited datasets might not 

encompass the full spectrum of attack vectors, particularly 

newer or more sophisticated strategies that have yet to be 

widely documented, such as zero-day attacks or novel 

exploitation techniques. 

NFT Security: AI models in NFT security must detect and 

prevent fraud, such as duplication attempts or unauthorized 

transfers. Limited datasets can restrict the training of these 

models by not providing enough examples of fraud patterns or 

the variety of legitimate transactions. This limitation can result 

in higher false positives, where legitimate transactions are 

flagged as suspicious, or worse, false negatives, where 

fraudulent activities go undetected. The unique nature of NFTs 

requires datasets that are not only large but also rich with varied 

and complex transaction data to train accurate and reliable 

models. 

3) Adversarial Attacks on AI Models: AI models, integral to 

the functionality and security of the metaverse, face significant 

risks from targeted attacks, such as data poisoning. This type of 

threat involves maliciously altering training data to affect the 

learning process of AI models, leading to compromised outputs 

or decisions. For example, data poisoning could target AI-based 

biometric systems such as facial recognition [283] and voice 

authentication [284], manipulating them to incorrectly verify 

user identities and potentially allowing unauthorized access to 

sensitive areas or user accounts. Data poisoning attacks can also 

target physiological biometric systems such as EEG [285] and 

ECG [286]. Another critical concern is the poisoning attacks on 

federated learning (FL) systems, where the decentralized nature 

of FL poses unique vulnerabilities [287]. In FL, malicious 

participants can send model updates derived from mislabeled 

data, which, as studies have shown, can cause substantial drops 

in classification accuracy and recall. These attacks could be 

particularly damaging in the metaverse, where AI needs to 

operate reliably across diverse and dynamic virtual 

environments. 

B. Research Opportunities and Future Directions   

1) AI and Biometrics for Metaverse Security: Given that 

biometrics are essential in supporting the metaverse for realistic 

avatar generation, XR interactions, health applications, and 

Brain-Computer Interfaces (BCI), there is a research 

opportunity to also investigate their deployment for security 

and safety of metaverse users.  

User Authentication: A common application is biometric 

authentication, which has already been implemented in smart 

devices (facial recognition), HMDs (iris recognition), and voice 

recognition in banking applications. However, research is still 

needed on metaverse-specific datasets that cater to the diverse 

range of metaverse users and applications. Given the 

importance of user experience, particularly as the metaverse 

integrates into daily activities and works, investigating 

continuous and seamless authentication methods is crucial as it 

can provide high security without disrupting user activity, 

ideally operating in the background. Considering the 

computational limitations of emerging metaverse hardware like 

XR headsets, VR gloves, and VR suits, it is vital to design AI 

biometric systems using lightweight methods compatible with 

current hardware specifications and requirements. 

Insider Threat Detection: Insider threats—malicious 

actions by individuals with system access—are particularly 

critical for enterprises and national infrastructure, making 

insider threat detection a significant research area. While still 

niche, studies have explored using biometric modalities to 

monitor users in critical infrastructure to detect and prevent 

insider threats [288]. AI can identify anomalies indicating 

malicious activities or unauthorized access by analyzing 

patterns in movement, speech, and interactions within the 

environment. This capability is essential for mitigating risks 

associated with insider threats, where seemingly legitimate 

users might exploit their access for harmful purposes. Research 

into using EEG for insider threat detection has also shown 

promising results [289]. 

Emotion Recognition: AI-driven emotion recognition 

systems can autonomously discern human emotional states, 

offering valuable applications in mental health assessment, 

behavior tracking, and marketing strategies. These systems can 

evaluate student engagement in virtual learning environments, 

improve healthcare outcomes, and enhance safety by 

monitoring driver behavior and detecting potential threats. 

Various biometric modalities, including facial expressions, 

EEG, and ECG, can reflect emotions [186],[290]. Facial 

emotion recognition can be adapted for avatars in the 

metaverse, while EEG and ECG signals can provide objective 

emotional insights, particularly in VR environments.  

2) Exploring Network Security for the Metaverse: As the 

metaverse continues to evolve, it is imperative to emphasize 

ongoing research and development in network security. The 

dynamic and complex nature of the metaverse presents unique 

challenges. Therefore, it is essential to focus on several key 

research areas. Firstly, implementing real-time network traffic 

monitoring solutions is crucial to detect and respond promptly 

to emerging threats within this interconnected virtual space. 

Secondly, integrating AI-driven firewall technologies can 

enhance the metaverse's security posture by autonomously 

identifying and mitigating potential vulnerabilities and attacks. 

Furthermore, developing robust threat intelligence systems 

tailored to the metaverse environment is essential for proactive 

defense. Given the increasing adoption of 5G networks, the 

metaverse will benefit from dedicated research into DDoS 

mitigation strategies optimized for the high-speed, low latency 

demands of 5G. Additionally, the security of Internet of Things 

(IoT) devices and virtual environments within the metaverse 

warrants dedicated attention, as these endpoints represent 

potential entry points for cyber threats. In summary, advancing 

research in these areas is pivotal to ensuring robust 

cybersecurity within the metaverse. 

3) AI for NFT Security and NFT for Metaverse Security: 
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Integrating AI and NFTs within the metaverse presents a 

significant research opportunity, particularly in enhancing 

security and user experience. AI can be used to develop more 

sophisticated security protocols for NFT transactions, 

potentially reducing fraud and phishing attacks. Furthermore, 

AI could assist in automating the verification of NFT 

authenticity and provenance, adding a layer of trust to 

transactions. There is also potential to explore how AI can 

optimize NFT metadata to enhance searchability and 

interoperability within the metaverse ecosystems. 

4) Privacy-preservation: To address privacy concerns in the 

metaverse, it is essential to explore innovative strategies that 

can ensure the protection of user data, and that can also handle 

AI training in a way that limits, and ideally prevents, the 

possibility of data leakages or data breaches. In general, 

metaverse platforms should limit data collection to those that 

are extremely necessary for the required functionality. This 

strategy is related to regulations and legal standards that should 

be set up by the authorities. In terms of research opportunities 

on the other hand, there are several research areas that can be 

explored to tackle privacy concerns in the metaverse. 

Homomorphic Encryption:  Encryption refers to a method 

that converts data into another form of unreadable text or a 

secret code that hides the meaning of information to protect it. 

Researchers can explore emerging forms of encryption that can 

balance security with the high performance required for real-

time virtual interactions in the metaverse. Homomorphic 

encryption (HE), for instance, enables computations to be 

performed on encrypted data without having to decrypt it, 

allowing for privacy preservation during processing. In their 

comprehensive review, Yang et al. [291] discuss the application 

of HE in biometric systems, highlighting its ability to protect 

data without affecting the systems’ recognition accuracy, and 

discussing challenges to consider such as computational 

complexity and management of keys. 

Privacy-Preserving Biometrics: As biometrics become 

integral to the metaverse for various applications, developing 

methods to ensure data privacy is essential. Arman et al. [292] 

provides a comprehensive review on privacy-preserving 

technologies for biometrics that are worth investigating for the 

metaverse, such as cryptography, hashing algorithms, and 

biometric template protection. Notable examples of such 

techniques discussed in the paper are: 1) Cancelable biometrics, 

which distorts data features to prevent intruders from accessing 

the original biometric information. 2) Differential Privacy 

(DP), a statistical technique that adds controlled random noise 

to data or its extracted features to obscure individual identities.   

is another technique that can be used to protect biometric 

templates in AI systems. While it is not restricted to biometrics. 

VIII. CONCLUSION 

The metaverse is an emerging concept described as the future 

3D Internet, where users engage in various experiences and 

interact with others online as digital avatars in an immersive 

virtual environment.  Many companies are investing in the 

metaverse, aiming to achieve an immersive, decentralized, 

interoperable, scalable, and multi-technological cyber-physical 

world that revolutionizes the way people interact with 

technology. Despite the significant opportunities of the 

metaverse for various applications, there are cybersecurity 

concerns that need to be addressed. The technological 

innovation and vast economy of the metaverse will increase 

surface attack and attract cybercriminals.  This paper 

highlighted potential cybersecurity threats related to data, 

identity, user privacy, digital wellbeing, legal regulations, and 

NFTs based on the characteristics and enabling technologies of 

the metaverse, highlighting current cyberattack incidents and 

demonstrating how they can be magnified in the metaverse. The 

dynamic nature of the metaverse requires advanced techniques 

to mitigate evolving cyber threats. Therefore, we investigated 

several AI techniques for cybersecurity and privacy in the 

metaverse, focusing on user authentication, intrusion detection 

systems, and blockchain security. According to our findings, 

most applications and devices provide optional two-factor 

authentication, which is inefficient for the metaverse. 

Therefore, we proposed a multifactor, multimodal, and 

continuous authentication system for metaverse users, in which 

various biometric identifiers are utilized. The novelty in our 

system is that it integrates multiple biometrics and utilizes EEG 

and ECG to provide liveness check and constant validation of 

metaverse users and NFT transactions. Furthermore, AI 

techniques hold potential for intrusion detection in the 

metaverse. However, there are still limitations and research 

directions to consider when it comes to network security within 

the metaverse. Finally, we highlighted the potential of AI for 

securing blockchain and NFT transactions via fraud detection, 

maintaining smart contract security, and content verification of 

NFT. As the metaverse continues to grow, the use of AI 

techniques will become increasingly important for enhancing 

security and protecting users from a range of security threats. 
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