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Empirical and Experimental Perspectives on Big Data in
Recommendation Systems: A Comprehensive Survey

Kamal Taha*, Paul D. Yoo, Chan Yeun, and Aya Taha

Abstract: This  survey  paper  provides  a  comprehensive  analysis  of  big  data  algorithms  in  recommendation

systems, addressing the lack of depth and precision in existing literature. It proposes a two-pronged approach:

a  thorough  analysis  of  current  algorithms  and  a  novel,  hierarchical  taxonomy for  precise  categorization.  The

taxonomy  is  based  on  a  tri-level  hierarchy,  starting  with  the  methodology  category  and  narrowing  down  to

specific techniques. Such a framework allows for a structured and comprehensive classification of algorithms,

assisting  researchers  in  understanding  the  interrelationships  among  diverse  algorithms  and  techniques.

Covering a wide range of algorithms, this taxonomy first categorizes algorithms into four main analysis types:

user  and  item  similarity  based  methods,  hybrid  and  combined  approaches,  deep  learning  and  algorithmic

methods,  and mathematical  modeling  methods,  with  further  subdivisions  into  sub-categories  and techniques.

The paper  incorporates  both  empirical  and  experimental  evaluations  to  differentiate  between the  techniques.

The empirical evaluation ranks the techniques based on four criteria. The experimental assessments rank the

algorithms  that  belong  to  the  same  category,  sub-category,  technique,  and  sub-technique.  Also,  the  paper

illuminates  the  future  prospects  of  big  data  techniques  in  recommendation  systems,  underscoring  potential

advancements and opportunities for further research in this fields.

Key words:  big  data  algorithms; recommendation  systems; recommendation  algorithms; deep  learning  in

recommendations

1　Introduction

The  rapid  advancement  of  big  data  has  fundamentally

transformed  the  analytical  landscape,  reshaping

interactions  and  decision-making  processes  for  both
corporations and consumers[1, 2]. This transformation is
fueled  by  the  immense  potential  of  big  data,  which
enables users to explore a broad spectrum of questions,
including  unforeseen  ones[3].  In  today’s  digital  age,
personal mobile devices transcend their traditional role
as  communication  tools;  they  are  now  potent  data
collectors,  capturing  every  facet  of  an  individual’s
digital  footprint,  from  communications  to  online
transactions.  Corporations  benefit  from  extensive  data
collection,  gaining  insights  into  individual  and  group
preferences[4].

This  torrent  of  data  brings  forth  a  significant
challenge: the increasing complexity for users to make
decisions  that  align  with  their  personal  needs[5].
Similarly,  corporations  grapple  with  the  monumental
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task  of  processing  and  interpreting  this  data  to
anticipate  user  behaviors[6].  In  response,
recommendation  systems  have  emerged  as  a  pivotal
solution within the realm of machine learning[7]. These
systems  use  algorithms  to  analyze  past  user  activities
and  their  similarities  with  others,  predicting  future
interests to provide personalized recommendations.

Recommendation  systems  have  proliferated  across
various  sectors,  including  Internet  of  Things  (IoTs)
services,  entertainment,  e-learning,  web  search,
bioinformatics, and engineering[8–11]. Their operational
mechanisms range from content-based filtering,  which
builds  user  profiles  based  on  item  characteristics  to
recommend  similar  items,  to  collaborative  filtering,
relying  on  a  user’s  and  others’ past  behaviors,  and  to
advanced  deep  learning  based  systems  that  utilize  AI
algorithms to parse extensive datasets across platforms,
adeptly  personalizing  user  experiences[12].  Hybrid
systems often yield more precise recommendations.

The  role  of  data  in  shaping  smart  cities  is  also
paramount[13–15]. This information is vital for smart city
development,  government  planning,  and  enhancing
individual  comfort.  Major  companies  like  Amazon,
Google,  and  Microsoft  have  effectively  employed
hybrid  recommendation  technologies  to  deliver
personalized products and news.

Research in the field of recommendation systems can
be  traced  back  to  the  1990s[16].  During  this  era,
numerous  heuristics  were  developed for  content-based
and  Collaborative  Filtering  (CF)  methodologies[17].
Gaining  significant  attention  with  the  Netflix
challenge,  Matrix  Factorization  (MF)  emerged  as  the
predominant  model  in  recommender  systems  from
2008 to 2016[18, 19]. However, the linear characteristics
of  factorization  models  limited  their  effectiveness  in
handling  large  datasets,  such  as  intricate  user-item
interactions and items with complex semantics[20, 21].

Coinciding  with  these  developments,  the  mid-2010s
witnessed  a  surge  in  the  application  of  deep  neural
networks  within  machine  learning,  significantly
impacting  fields  such as  speech recognition,  computer
vision,  and  natural  language  processing[22].  This  trend
has  also  extended  to  graph  models,  where  innovative
multi-task  prompting  methods,  inspired  by  prompt
learning  in  Natural  Language  Processing  (NLP),  have
shown  potential  in  enhancing  the  adaptability  and
effectiveness  of  graph-based  machine  learning
applications[23].

The  success  of  deep  learning  is  attributed  to  the
extensive expressiveness of neural networks, which are
especially  beneficial  for  learning  from  large  datasets
with  complex  patterns[24].  This  advancement  offers
new  prospects  for  enhancing  recommendation
technologies.  Consequently,  in  recent  years,  there  has
been a notable increase in research focusing on neural
network  approaches  to  recommender  systems[25].
Moreover,  the  integration  of  sociological  behavioral
criteria  with  data  mining  techniques,  as  noted  in  Ref.
[26],  highlights  the  complexity  of  user  interactions  in
digital  environments.  Utilizing  advanced  models  such
as  hypergraphs  and  neural  networks,  this  approach  is
key  to  creating  sophisticated  and  precise
recommendation systems.

While  several  surveys have examined various facets
of  recommendation  systems,  this  comprehensive
survey aims to delve deeper into the current state of big
data  in  recommendation  systems,  incorporating  both
experimental and empirical evaluations. Our goal is to
provide an in-depth and nuanced understanding of this
field,  highlighting  its  achievements  and  challenges,
thereby paving the way for future advancements.

1.1　Motivation and key contributions

(1) Main challenge and proposed solution
(a)  Current  issue: The  current  surveys  examining

algorithms  in  recommendation  systems  utilizing  big
data are deficient in two primary respects: first, there is
an  absence  of  a  comprehensive  and  current  overview;
second,  the  classification  of  algorithms  is  excessively
general and lacks precision[17, 27–30]. This shortfall leads
to  ambiguity  in  categorizing  diverse  algorithms  and
results  in  the  application  of  uniform  metrics,  which
yields inaccurate evaluations.

(b)  Proposed  solution: We  propose  a  twofold
approach:  first,  we  conduct  an  in-depth  analysis  of
current  algorithms  for  big  data  in  recommendation
systems;  second,  we  introduce  a  methodologically
sound  taxonomy.  This  taxonomy  offers  a  hierarchical
and  detailed  classification  of  these  algorithms,
fostering  a  more  accurate  and  systematic
categorization.

(2) Comprehensive      survey      and      enhanced
assessment

(a)  Survey  goals: We  provide  a  survey  of
algorithms,  focusing  on  those  that  use  the  same
categories,  sub-categories,  techniques,  and  sub-
categories.
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(b)  Benefits  of  the  taxonomy: Employing  our
taxonomy  enhances  the  precision  of  assessments  and
comparisons  of  algorithms.  It  offers  insights  into  their
strengths and weaknesses, aiding future research.

(3) Empirical and experimental evaluations
(a)  Empirical  evaluation: The  study  includes  an

empirical  evaluation  of  diverse  techniques  used in  big
data for recommendation systems.

(b)  Experimental  evaluation: This  study  ranks  the
algorithms that utilize same categories, sub-categories,
techniques, and sub-categories experimentally.

We  classify  the  algorithms  for  recommendation
systems with big data into four broad categories based
on  their “ analysis  methods”.  These  categories  are:
(1) user and item similarity based methods; (2) hybrid
and  combined  approaches;  (3)  deep  learning  and
algorithmic,  and  (4)  mathematical  modeling  methods.
Each  of  these  primary  categories  is  divided  into  more

specific  sub-categories.  These  sub-categories  are  then
broken  down  into  various  techniques  that  utilize  the
principles  of  their  respective  sub-category.  Lastly,
these  techniques  are  further  categorized  into  more
detailed  sub-techniques. Figure  1 shows  our
methodology-based  taxonomy.  Our  taxonomy  offers
the following benefits:

•  Structured  presentation:  This  approach  offers  a
systematic  framework  for  displaying  survey  findings.
The  arrangement  of  related  methodologies  within  a
hierarchical  layout  aids  in  understanding  the  paper’s
logical progression.

•  Extensive  inclusivity:  This  classification  system
encompasses  a  broad  range  of  relevant  techniques.  Its
tiered structure assists  in pinpointing unexplored areas
and research opportunities.

•  Technique  analysis:  By  categorizing  comparable
methods  together,  this  taxonomy  facilitates  the
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Fig. 1    Structured  and  hierarchical  approach  to  categorizing  algorithms  used  in  big  data  for  recommendation  systems.  It
methodically  breaks  down  the  algorithms  into  detailed  categories,  moving  from  broader  methodology  categories  to  more
specific sub-techniques. The categorization in the top layer is based on analysis methods. The figure provides the corresponding
section numbers in the manuscript.
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comparison  of  various  research  techniques.  It
highlights  both  their  commonalities  and  distinctions,
enabling  an  evaluation  of  their  respective  merits  and
limitations.

•  Enhanced     replicability:     This     categorization
improves the ability to replicate research by providing
clear descriptions of the methodologies.

2　User and Item Similarity Based Method

2.1　Content-based filtering

This  approach  to  recommendations  combines  detailed
analysis  of  item  features  with  user  preferences  to
provide  personalized  suggestions.  Initially,  it  builds  a
user profile based on their interactions and preferences.
This  profile  is  then  used  to  compare  against  the
attributes  of  various  items,  which  can  be  diverse  and
abundant  in  big  data  contexts,  ranging  from  genre,
keywords, and specific features relevant to the items, to
more  complex  data  like  text  descriptions,  categories,
images, or audio features.

Items  are  recommended  by  scoring  each  one  based
on its similarity to the user’s profile. For example, if a
user  shows  a  preference  for  movies  by  a  certain
director,  the  system  will  recommend  other  movies  by
that same director. The effectiveness of this approach is
heightened  when  there  is  detailed,  descriptive  data
about each item, allowing for a more accurate match to
the user’s preferences. This technique utilizes advanced
data processing and machine learning methods, such as
natural  language  processing  and  computer  vision,  to
handle  big  data’s  complexity.  This  ensures
recommendations  are  personalized,  relevant,  and
accurate,  thus  enhancing  user  experience  by  aligning
suggestions closely with individual interests.

The rationale  behind the usage of  this  technique:
(a)  Personalization:  It  focuses  on  the  preferences  of
individual  users,  which  leads  to  a  high  level  of
personalization; (b) Item independence: It does not rely
on  other  users’ behavior,  which  is  particularly
beneficial  in  situations  where  there  is  sparse  data  on
user  interactions;  (c)  Transparency:  Recommendations
can be easily explained by item features; (d) New item
inclusion:  It  can  recommend  new  items  that  have  no
previous user interactions; (e) Handling big data: it can
efficiently  manage  vast  and  diverse  item  features,
making  it  a  scalable  solution;  and  (f)  Stability:  The
recommendations are stable over time as they are based

on the user’s  consistent  preferences.  This  is  useful  for
users with niche or specific tastes.

The  conditions  for  the  optimal  performance  of
this technique: (a) Effective processing of textual data
through  advanced  NLP  techniques  is  crucial.  This
involves  understanding  context,  semantics,  and
nuances  in  language;  (b)  Employing  robust  machine
learning  algorithms  that  can  learn  from  data,  adapt  to
new  information,  and  make  accurate  predictions  is
essential;  (c)  Tailoring  recommendations  to  users,
rather  than  making  broad,  generic  suggestions.  This
involves  understanding  unique  user  preferences;  and
(d)  Implementing  a  feedback  loop  where  the  system
learns  from  the  user’s  reactions  to  its
recommendations. This helps in refining accuracy.

The limitations of this technique: (a) The approach
leads  to  a  lack  of  diversity  in  recommendations.  It
tends  to  recommend  items  similar  to  those  a  user  has
liked  in  the  past,  leading  to  a  filter  bubble  where  the
user  is  not  exposed  to  a  broader  range  of  options;
(b)  For  new  users,  there’s  a  lack  of  historical  data  to
base  recommendations  on.  This  makes  it  difficult  to
predict  preferences;  (c)  New  items  without  any  user
interactions  or  ratings  can  be  challenging  to
recommend,  as  the  system  has  no  data  to  assess  their
relevance to users; (d) Its effectiveness is dependent on
the  quality  of  the  metadata  associated  with  the  items;
and (e) It may struggle with subjective user preferences
due to its difficulty in capturing subtleties.

Table 1 evaluates and discusses research papers that
have  utilized  content-based  filtering  for  big  data  in
recommendation systems.

2.2　Collaborative filtering

2.2.1　Item-based collaborative filtering
The  technique  of  item-based  recommendation  focuses
on  recommending  items  to  users  by  analyzing  the
similarity  between  items,  utilizing  metrics  such  as
cosine  similarity,  Pearson  correlation,  or  adjusted
cosine  similarity.  This  approach  contrasts  with  user-
similarity methods, as it compares items based on user-
item  interaction  data  like  ratings  or  viewing  history.
This  process  helps  in  understanding  how  different
items relate in terms of user preferences. For instance,
if a user highly rates a movie, the system recommends
other movies like it based on these similarity metrics.

Item-based  recommendation  excels  in  large
environments  due  to  its  scalability  and  efficiency,
particularly  in  handling  sparse  data,  resulting  in  more
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consistent  and  accurate  suggestions.  With  fewer  items
than  users  and  more  stable  item  relationships,  it  is
easier to manage and effective in big data contexts.

The rationale behind the usage of  this  technique:
(a)  Item-based  collaborative  filtering  scales  better  in
big data settings, as item-item matrices are smaller than
user-based  ones,  aiding  in  managing  resources;  (b)  It
typically  offers  more  precise  recommendations  by
analyzing  detailed  item relationships;  (c)  This  method
efficiently  addresses  the  sparsity  in  user-item
interactions  common  in  big  data;  (d)  Its
recommendations are more transparent, being easier to
understand  due  to  item  similarities;  and  (e)  It
effectively  accommodates  new  users  by  suggesting
popular items, independent of their past interactions.

The  conditions  for  the  optimal  performance  of
this  technique: Efficient  item  similarity  calculation
using  methods  like  cosine  similarity,  Pearson
correlation,  or  Jaccard  index  is  key,  chosen  based  on
data  type.  In  big  data,  enhancing  sparse  item-user
matrices  with  dimensionality  reduction  or  data
imputation  improves  recommendation  quality.
Scalability,  critical  for handling growing data,  is  often
managed with distributed computing frameworks, such
as Apache Hadoop or Spark. Balancing personalization
and  diversity  in  recommendations  ensures  both
similarity  and  variety.  For  new  items/users  with
minimal  interaction  history,  content-based  filtering  or
hybrid models are effective.

The  limitations  of  this  technique: Scalability

 

Table 1    Research papers that have employed content-based filtering for big data in recommendation systems.
Paper/year Dataset Interpretability Scalability Efficiency Description

Hu et al.[27]

2020

Amazon
Camera
review

Fair Acceptable Acceptable

The  authors  created  CISER,  a  system  merging  user
profiling,  reviewer  credibility,  and  sentiment  analysis.  It
has five parts: (1) Extracting key features using context and
sentiment;  (2)  Scoring  reviewers  based  on  expertise  and
trust;  (3)  Mining  user  interests  from  review  styles;  (4)
Assigning  ratings  to  features  based  on  sentiment;  and  (5)
Recommending  products  using  credibility-weighted
sentiment.

Wang et al.[28]

2022
DBLP and

APS Acceptable Unsatisfactory Good

The  authors  introduced  CNCRec,  a  citation
recommendation  framework  that  combines  collaborative
filtering and network representation learning.  It  is  tailored
for  diverse  academic  networks,  creating  a  paper  rating
matrix  from  an  attributed  citation  network,  incorporating
paper  attributes,  such  as  topics  from  titles  and  abstracts.
CNCRec  optimizes  citation  representation  by  uniting  the
citation network and paper attributes.

Jiang et al.[29]

2016
Travelogues
and photos Good Acceptable Unsatisfactory

The  authors  developed  a  system  for  personalized  travel
sequence  recommendations,  leveraging  travelogues  and
user-uploaded photos with tags and location information. It
prioritizes entire travel sequences over single sites, using a
“topical  package  space” with  details  like  tags,  cost,  time,
and season. The system matches and suggests travel routes
using user similar users’ travel histories.

Lian et al.[30]

2018
LBSN
dataset Fair Fair Good

The  authors  introduced  ICCF,  a  framework  for  implicit
feedback collaborative filtering, which improves parameter
learning  using  coordinate  descent.  They  combined  ICCF
with  graph  Laplacian  matrix  factorization  to  demonstrate
the  effectiveness  of  user  features  in  assessing  mobility
similarity for location recommendations in a large location-
based social network dataset.

Liu et al.[31]

2019
Author

collected Acceptable Fair Good

The  authors  developed  a  system  to  help  undergraduates
locate and work on research projects. It analyzes students’
data,  activities,  and  networks  for  relevance,  connectivity,
and quality. Utilizing data mining, social network analysis,
and bibliometric analysis, the system recommends projects
that align with students’ qualifications.
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challenges  in  large  datasets  require  more  processing
power  and  memory  for  similarity  calculations,  risking
performance  issues.  Sparse  user-item  interactions  in
big  data  often  lead  to  inaccurate  recommendations.
New  items  or  users  lack  historical  data,  hindering
accurate  recommendation.  Frequent  recommendation
of  popular  items  overshadows  niche  ones,  reducing
diversity.  Changes  in  user  preferences/item  features
make recommendations from item CF outdated.

Table 2 evaluates and discusses research papers that
have  utilized  Item-Based  Collaborative  Filtering  for
Big Data in recommendation systems.
2.2.2　Matrix factorization
2.2.2.1　Probabilistic Matrix Factorization (PMF)
The  technique  employs  a  probabilistic  approach  to
decompose large user-item interaction matrices,  which
typically  represent  user-item  interactions  such  as  user
ratings for movies on a streaming platform. Each entry
in  these  matrices  corresponds  to  a  user’s  rating  or
implicit feedback for a specific item. This probabilistic
nature is crucial for handling the uncertainty and noise
inherent  in  real-world  data,  as  it  assumes  that  these
interactions  are  influenced  by  latent  (hidden)  factors

related  to  both  users  and  items,  like  genres,  movie
length, and user preferences. By learning latent features
for  both  users  and  items  and  assigning  probability
distributions  to  these  features  instead  of  fixed  values,
the technique is able to make personalized and accurate
recommendations  even  with  sparse  and  noisy  data.  It
tackles  sparse  data  by  predicting  missing  matrix
entries,  allowing  for  user  rating  predictions  on  non-
interacted  items.  Its  flexibility  and  scalability  make  it
effective  for  handling  vast  and  intricate  datasets,
ensuring efficient, personalized recommendations.

The rationale behind the usage of  this  technique:
PMF  excels  in  handling  large,  sparse  user-item
matrices  common  in  big  data,  efficiently  processing
millions  of  users  and  items.  It  extracts  meaningful
latent  features,  scaling  well  for  big  data  applications.
PMF’s  probabilistic  approach  models  uncertainty  in
user  preferences  and  item  attributes,  useful  in  noisy,
incomplete  data  scenarios.  By  reducing  data
dimensionality  and  capturing  latent  user-item
relationships, PMF often outperforms simpler methods.

The  conditions  for  the  optimal  performance  of
this  technique: Optimizing  PMF  in  recommendation

 

Table 2    Research papers that have employed item-based collaborative filtering for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Yan et al.[32]

2018
WS-

DREAM Unsatisfactory Good Good

The  authors  improved  the  Item-based  Collaborative
Filtering  (ICF)  method  by  adding  the  LSH  technique,
aiming  for  secure  data  publication  and  efficient
integration in distributed service recommendations. Their
proposed  ICFLSH  method  assists  recommender  systems
in offering services while maintaining user privacy.

Dai et al.[10]

2020
MovieLens
and Netflix Unsatisfactory Unsatisfactory Good

The  authors  developed  CoFiToR,  a  three-stage  transfer
learning-based  collaborative  filtering  framework  that
refines  user  preferences  from  general  to  specific,
enhancing top-N recommendations. They also introduced
a  logistics  recommendation  method  encompassing  user
tracking,  choice  evaluation,  matrix-based rating  analysis,
habitual  behavior  reflection,  and  user  information
analysis via a model and decoder.

Sun and Zhang[33]

2022
GroupLens
MovieLens Unsatisfactory Fair Acceptable

The  authors  introduced  a  modified  fuzzy  adaptive
resonance  theory-based  biclustering  method  for  user
similarity,  focusing  on  shared  items.  The  approach
combines  biclustering  for  local  similarity  and  prediction
with  item-based  collaborative  filtering  for  global
predictions, culminating in a merged, comprehensive final
prediction.

Zan[34]

2023 MovieLens Unsatisfactory Fair Fair

The  authors  introduced  a  logistics  service
recommendation  technique  involving  user  interaction
tracking,  influenced  choice  evaluation,  matrix-based
rating  analysis,  habitual  behavior  reflection  with  a  time
interval  matrix,  and  user  information  analysis  through  a
model and decoder.
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systems  is  anchored  in  large,  high-quality  datasets  for
accurate  user-item  interaction  learning.  Selecting  an
appropriate  number  of  latent  features  is  essential  to
avoid  underfitting  or  overfitting  and  manage
computational  complexity.  Critical  to  this  process  is
the tuning of hyperparameters such as learning rate and
regularization.  Also,  enhancing  PMF  with  other
methods can significantly boost its effectiveness.

The  limitations  of  this  technique: PMF  in  large
recommendation  systems  struggles  with  sparse  data
and  faces  scalability  issues  as  datasets  grow,
demanding  more  computational  resources.  Its  linear
approach  may  not  capture  complex  user-item
relationships as effectively as non-linear models.  PMF
is challenged by new users  or  items without  sufficient
historical  data.  Its  performance  depends  heavily  on
precise  hyperparameter  tuning,  with  a  risk  of
overfitting  if  feature  dimensions  are  too  high  or
regularization is not well-adjusted. The interpretability
of PMF’s latent factors is limited.

Table 3 evaluates and discusses research papers that
have  utilized  PMF  for  big  data  in  recommendation
systems.

2.2.2.2　Singular Value Decomposition (SVD)
SVD starts by representing the data as a matrix, where
rows could be users and columns could be items. This
matrix  is  often  sparse  as  not  all  users  interact  with  all
items.  SVD  helps  to  fill  in  these  missing  values  by
approximating  the  original  matrix.  The  decomposition
results in three matrices:  a diagonal matrix of singular
values  and  two  orthogonal  matrices.  These  singular
values  are  key  to  understanding  the  strength  of  the
latent  features  in  the  data.  By  truncating  these  values,
SVD can reduce the dimensionality of the data,  which
helps  in  handling  big  datasets  more  efficiently.  This
reduced  representation  is  then  used  to  predict  missing
entries in the original matrix,

The rationale behind the usage of this techniques:
(a) SVD identifies latent features in data, like genres in
movies,  improving  accuracy  in  predicting  user
preferences; (b) SVD effectively handles sparse data in
recommendation systems by estimating missing values,
aiding  in  accurate  predictions  even  with  limited  data;
(c) Advances in algorithms and computing allow SVD
to efficiently process large datasets, making it practical
for  big  data  applications;  (d)  SVD  improves

 

Table 3    Research papers that employed PMF for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Yi et al.[35]

2019
MovieLens,

Douban-Book Fair Unsatisfactory Good

The  authors  introduced  a  deep  learning  collaborative
filtering approach, deep matrix factorization, incorporating
auxiliary  information.  It  applies  two  transformation
functions  to  create  latent  factors  for  users  and  items  from
different  inputs.  They  created  an  embedding  for
recommendation  systems  that  predicts  positive  feedback
and condenses sparse, high-dimensional data into compact,
low-dimensional vectors.

Hu et al.[36]

2022
Movielens,

Jester Unsatisfactory Good Good

The authors created RAP, a privacy-focused recommender
system framework. It mixes private user ratings with public
ones  using  local  disturbance,  allowing  algorithms  to  use
modified  ratings  without  accessing  private  ones.  Users
employ de-perturbation for recommendations.

Yao et al.[37]

2021
Programmable

Web Unsatisfactory Acceptable Good

The  authors  created  a  mashup  service  recommendation
system by adding implicit API correlation regularization to
matrix  factorization.  They  emphasize  the  importance  of
API characteristics and past  interactions with mashups for
future  API  predictions.  They  detailed  the  model’s
components  and  proposed  methods  to  understand  their
approach’s functionality.

Shen et al.[38]

2021
MovieLens,
GroupLens Unsatisfactory Fair Good

The  authors  developed  DVMF,  a  Bayesian
recommendation framework using variational inference for
enhanced  optimization.  The  Parametric  Inference  Model,
with  dual  neural  networks,  generates  hyperparameters  for
latent  factors,  leading  to  the  variational  MF  model.  The
method  merges  implicit  feedback  and  user/item  data  into
one-hot format using implicit feedback.
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recommendation  quality  by  revealing  subtle  user
preferences  not  obvious  in  basic  analyses;  (e)  Integral
to  collaborative  filtering,  SVD  predicts  user
preferences for non-interacted items based on user-item
interactions;  and  (f)  Despite  its  complexity,  SVD’s
output is interpretable, offering transparency and aiding
in system refinement.

The  conditions  for  the  optimal  performance  of
this  technique: (a)  Regularization  is  essential  for
controlling overfitting in sparse datasets,  it  helps SVD
models  generalize  better;  (b)  Implementations  must
support  parallel  processing  and  distributed  computing
for  large  datasets;  (c)  Tuning  parameters,  like  the
number  of  latent  factors,  using  methods  like  cross-
validation,  is  crucial  for  SVD’s  effectiveness;  (d)
Developing  strategies  for  new  users  or  items  with
limited  data  is  vital  for  system  consistency;  (e)  SVD
models should accommodate changing user preferences
and  item  popularity  over  time;  and  (f)  Ensuring  the
model’s  robustness  to  missing  data  through  effective
imputation techniques is important for accuracy.

The  limitations  of  this  technique: (a)  SVD  is
ineffective  with  new  users  or  items  lacking  historical
data; (b) SVD may fail to capture complex, non-linear
data  relationships;  (c)  Performance  heavily  relies  on
correctly  setting  hyperparameters  like  latent  factors;
(d)  SVD  is  prone  to  overfitting  with  datasets  having
numerous  features;  (e)  Extracted  latent  features  by
SVD  are  often  difficult  to  interpret;  (f)  The  model’s
performance can degrade with noisy data; and (g) SVD

does  not  naturally  incorporate  user-specific  biases  or
preferences.

Table 4 evaluates and discusses research papers that
have  utilized  SVD  for  big  data  in  recommendation
systems.
2.2.2.3　Tensor factorization
The  technique  employs  tensor  factorization,  a  process
that  involves  decomposing  a  high-dimensional  tensor
into multiple, lower-dimensional matrices or tensors. A
tensor is  essentially a multi-dimensional  array of  data.
For  example,  in  the  context  of  a  movie
recommendation system, a 3D tensor might encompass
dimensions  for  users,  movies,  and  time.  This  setup
represents  how  users’ preferences  for  movies  evolve
over time.

Tensor  factorization  simplifies  large,  sparse  tensors
into smaller, dense ones, similar to dividing a complex
puzzle into easier pieces. Techniques like higher-order
singular  value  decomposition  or  CANDECOMP/
PARAFAC  decomposition  are  used  for  this  purpose.
By  reducing  data  dimensions,  it  makes  data  more
manageable,  focusing  on  retaining  the  most  crucial
features.

This  approach  is  particularly  crucial  in  big  data
contexts,  where  the  volume  of  data  can  be
overwhelming.  Factorization  helps  to  uncover  latent
(hidden)  factors  that  influence  user  preferences  and
behaviors.  For  instance,  in  a  movie  recommendation
system, these factors might represent underlying genres
or themes that explain why certain users prefer certain

 

Table 4    Research papers that have employed SVD for big data in recommendations.
Pape/year Dataset Interpretability Scalability Efficiency Description

Guan et al.[39]

2023

Ciao,
Epinions,
Flixster

Fair Acceptable Acceptable

The  authors  introduced  the  Simultaneous  Community
detection  and  Singular  Value  Decomposition  (SCSVD)
framework,  enhancing  recommender  systems via  community
detection.  SCSVD  combines  community  detection  and
recommendation  model  creation,  linking  ratings  and  social
networks.  It  iteratively  optimizes  user  preferences  using
social network communities, improving preference.

Lian et al.[40]

2021
Yelp and
Amazon Unsatisfactory Fair Good

The authors created a recommender system framework using
discrete matrix factorization, accommodating diverse datasets
and  loss  functions  with  explicit  and  implicit  feedback,  and
auxiliary  data.  It  uses  block  coordinate  descent  and
semidefinite  relaxation,  functioning  without  hyperparameters
in a two-phase item recall and ranking process.

Jiao et al.[41]

2020 Movielens Unsatisfactory Acceptable Acceptable

The  authors  proposed  an  Adaptive  Learning  Rate  (ALR)
function  combining  exponential  and  linear  elements,
integrated  into  the  SVD++  recommendation  algorithm.
Featuring  a  high  initial  value,  the  learning  rate  quickly
decreases  in  the  middle  phase  and  then  slowly  reduces  to  a
smaller value at the end.
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movies. The goal is to discover these latent factors that
explain  observed  data,  thereby  simplifying  and
enhancing the understanding of complex data.

The  rationale  behind  the  technique: Tensor
factorization  enhances  recommendation  systems  by
handling  multi-dimensional  real-world  data  (like  user,
item,  and  time),  capturing  complex  patterns  beyond
traditional  two-dimensional  matrix  factorization.  This
approach is especially beneficial in big data scenarios,
where  it  can  identify  intricate  relationships  and  offer
more accurate predictions.

The conditions for optimal performance: Big data’s
high  dimensionality  and  sparsity  are  addressed  by
Principal  Components  Analysis  (PCA)  for  dimension
reduction and matrix completion for sparsity. Choosing
correct  hyperparameters  like  factors,  regularization,
and learning rates is essential for model success. Model
complexity  must  be  balanced  to  capture  data  patterns
without  overfitting,  using  cross-validation  and
regularization.  Including  contextual  and  temporal
elements enhances performance. Testing various tensor
factorization  algorithms,  such  as  CP  and  Tucker
decomposition, finds the best fit for specific cases.

The  limitations  of  this  technique: Tensor
factorization struggles with scalability in large datasets
due  to  increased  computational  complexity  and
memory needs. Sparsity in data, characterized by many
missing  tensor  entries,  hampers  learning  effective
representations  and  predictions.  It  also  faces  the  cold
start  problem,  making  it  difficult  to  accurately
recommend for new users or items with sparse data.

Table 5 evaluates and discusses research papers that
have  utilized  tensor  factorization  for  big  data  in
recommendation systems.
2.2.3　User-based collaborative filtering
The  technique  in  question  involves  creating  detailed
user profiles based on past behaviors and preferences, a
key component of big data environments. This method
operates  on  the  assumption  that  users  with  similar
tastes  or  behaviors  in  the  past  will  likely  continue  to
exhibit  similar  preferences  in  the  future.  To  facilitate
this, large datasets of user interactions and preferences,
including  ratings,  views,  purchases,  or  other  forms  of
engagement  with  products,  movies,  or  articles,  are
collected and analyzed. The technique uses metrics like
cosine  similarity  to  match  user  profiles  with  similar
preferences,  predicting  a  user’s  future  likes  based  on
others’ tastes, enhancing recommendation accuracy.

The rationale behind the usage of  this  technique:
It  can  effectively  personalize  recommendations  by
analyzing  the  behavior  and  preferences  of  similar
users.  It  effectively  uses  implicit  data,  such  as
browsing  history,  to  infer  preferences,  particularly
when  explicit  feedback  like  ratings  is  limited.  It
diversifies  recommendations  by  leveraging  the  varied
tastes  of  a  broad  user  base.  It  incorporates  social
relationships  and  community  influences  to  tailor
suggestions.  It  is  effective  in  sparse  big  data
environments.

The  conditions  for  the  optimal  performance  of
this  technique: (a)  In  big  data,  sparse  user-item
matrices  are  common.  Using  MF,  dimensionality
reduction,  or  adding  more  data  sources,  like  content-
based filtering, helps address this; (b) Recommendation
systems need to balance personalization with diversity
to prevent filter bubbles, thus broadening user exposure
and fostering new interests; and (c) Incorporating both
explicit (ratings) and implicit (click-through rates) user
feedback  is  key  for  continually  improving
recommendation algorithms.

The limitations are: (a) It struggles with scalability
in  large  systems,  causing  performance  issues;  (b)
Sparse  interactions  in  big  datasets  hinder  finding
similar  users,  reducing  recommendation  accuracy;  (c)
New  users  or  items  with  limited  history  pose  data
insufficiency  problems;  (d)  A  bias  towards
recommending  popular  items  often  overlooks  niche
content;  and  (e)  It  tends  to  reinforce  content
homogenization, limiting user experience diversity.

Table 6 evaluates and discusses research papers that
have  utilized  user-based  collaborative  filtering  for  big
data in recommendation systems.

2.3　Graph-based models

The  approach  involves  leveraging  graph  structures  to
model  and  analyze  complex  relationships  in  large
datasets,  where  data  is  represented  as  a  graph
consisting  of  nodes  and  edges.  Nodes  typically
represent  items,  such  as  products,  movies,  or  articles,
and  users,  while  edges  signify  relationships  or
interactions  like  purchases,  ratings,  or  views.  The
primary concept here is  the utilization of graph theory
to  capture  and  analyze  these  relationships,  making  it
easier to explore connections, detect patterns, and make
predictions  based  on  the  nature  and  strength  of  these
connections.

Enhancing this approach, the use of graph algorithms
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such  as  shortest  path,  clustering,  or  graph  neural
networks  enables  the  analysis  of  graphs  to  uncover
patterns  in  interconnected  data,  crucial  for  accurate
recommendations.  These algorithms analyze paths and
connections,  allowing  the  system  to  provide
personalized  recommendations  based  on  user

preferences  and  item  connections  in  the  graph.  This
results  in  tailored,  context-aware  suggestions,
demonstrating  how  the  combination  of  graph  theory
and advanced algorithms is a potent tool for harnessing
information in complex datasets.

The rationale behind the usage of  this  technique:

 

Table 5    Featuring research papers that have employed tensor factorization for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Ioannidis et al.[42]

2021 Digg dataset Acceptable Acceptable Good

The  authors  proposed  Coupled  Graph-Tensor  Factorization
(CGTF),  integrating  graph-related  auxiliary  data  into
recommender  systems.  They  designed  an  algorithm  for
factor  matrix  determination  and  missing  entry  completion.
CGTF employs  an  ADMM solver  for  closed-form updates,
supporting  parallel  and  accelerated  execution.  This  model
also  tackles  the  cold-start  problem,  occurring  when  tensors
have incomplete slabs.

Li et al.[43]

2018 QoS dataset Unsatisfactory Unsatisfactory Good

The  authors  introduced  a  time-aware  matrix  factorization
model for cloud service QoS prediction, combining adaptive
matrix  factorization  with  temporal  smoothing  to  provide
accurate,  time-sensitive  forecasts  for  service
recommendations.  Utilizes  temporal  smoothing  for  more
precise, timely QoS predictions in recommendations.

Meng et al.[44]

2018 QoS dataset Acceptable Good Acceptable

The  authors  presented  a  service  recommendation  method
combining  time  and  location  using  tensor  factorization.  It
uses  CP  decomposition  for  multi-dimensional  analysis.  It
distinguishes  between  varying  and  stable  QoS  metrics,
addresses data scarcity, and uses CP decomposition for user-
service-location relationships.

Yang et al.[45]

2018
Last.fm,

Bibsonomy Fair Fair Acceptable

The  authors  created  Tagrec-CMTF,  a  tag  recommendation
system using CMTF, which leverages auxiliary matrices and
tensor  CP  factorization  to  uncover  latent  features  and
optimize learning in tags, items, and users.

 

Table 6    Research papers that have employed user-based collaborative filtering for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Qi et al.[46]

2018 MovieLens Unsatisfactory Unsatisfactory Good

SBT-Rec  is  a  method  developed  by  the  authors,  utilizing
structural  balance  theory.  It  identifies  a  target  user’s
“enemies” (users  with  contrasting  preferences)  in  E-
commerce,  then  finds “possible  friends” (considering
“enemy’s enemy as a friend”). It recommends products liked
by  these “possible  friends,” which  also  match  the  user’s
preferences.

X. Wu and
Z. Wu[47]

2023

Author
collected Fair Fair Acceptable

The authors introduced a system for recommending products,
utilizing  a  CF  algorithm  and  extensive  data  search
capabilities. This system employs its filtering algorithm to sift
through  vast  datasets  during  data  processing,  enhancing
efficiency  and  optimizing  the  performance  of  the
recommendation system.

Hong and Jung[48]

2018
Author

collected Unsatisfactory Unsatisfactory Fair

The authors proposed a method for recommending content to
groups using social  media data,  considering social  influence,
emotional  contagion,  and  conformity.  They  use  an  emotion-
based  model  to  identify  emotional  connections  among users,
which  informs  their  group  recommendations.  Then,  they  are
incorporated into group recommendations.
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(a)  Effectively  capture  complex  relationships  in  big
data,  ideal  for  modeling  users,  items,  and  content;  (b)
be  scalable,  handling  large  data  volumes  and  easily
adapting  to  new  data  types  in  big  data  scenarios;  (c)
offer  personalized  suggestions  by  understanding  user
preferences  and  behaviors;  (d)  address  the  sparsity  in
big data’s  user-item interactions  better  than traditional
matrix  approaches;  (e)  enhance  recommendations  by
incorporating  context  like  time,  location,  and  social
connections,  and  (f)  reveal  hidden  patterns  in  data,
improving  recommendation  quality  and  supporting
collaborative filtering

The  conditions  for  the  optimal  performance  of
this  technique: (a)  Graph  construction  is  crucial  for
performance;  nodes  and edges  must  represent  relevant
data  relationships,  like  user-product  interactions  in  E-
commerce;  (b)  Recommendation  systems  need  to  be
accurate, personalized, and diverse to meet varied user
preferences;  (c)  Sparse  interaction  data  can  be
addressed  using  embedding  learning  to  capture  latent
node and edge features;  (d)  Graph algorithms must  be
efficient  and  tailored  to  data  characteristics  and
recommendation  goals;  and  (e)  Hybrid  methods
combining  content-based  and  collaborative  filtering
help  tackle  the  challenge  of  new  users  or  items  with
minimal interaction history.

The  limitations  of  this  technique: (a)  As  the
complexity and size of data grow, models require more
computational resources. Scalability becomes a critical
concern,  especially  for  algorithms  not  designed  to
handle  large-scale  data  efficiently;  (b)  Many  models
rely  on  rich  interaction  data  to  make  accurate
predictions.  In  scenarios  where  interaction  data  is
sparse,  such  as  with  new  users  or  items,  the  model’s
effectiveness  can  be  significantly  hindered.  This  is  a
common  challenge  in  recommendation  systems;  (c)
New items or  users  with limited historical  data pose a
“cold  start” challenge.  The  model  struggles  to  make
accurate  recommendations  due  to  the  lack  of  past
interaction  or  behavioral  data  to  learn  from;  and  (d)
Building  and  maintaining  sophisticated  models  for
varied and large datasets  require substantial  resources,
including  specialized  expertise  and  computational
power.  This  complexity  often  translates  into  higher
costs and longer development times.

Table 7 evaluates and discusses research papers that
have  utilized  graph-based  models  for  big  data  in
recommendation systems.

2.4　Rule-based models

The technique combines rule-based systems and graph
algorithms  to  enhance  the  effectiveness  of
recommendation  systems.  Rule-based  systems  operate
on  a  set  of  predefined  rules  or  criteria,  which  are
developed based on user behavior, item attributes, and
other  relevant  data  points.  These  rules  can  be
segmented  for  different  user  groups  based  on
demographics,  past behavior,  or other relevant factors,
using  data  mining  and  analysis  techniques  to  uncover
patterns and trends that inform rule creation.

The  technique  synergizes  graph  algorithms  like
shortest path, clustering, or graph neural networks with
rule-based  systems  to  create  a  robust  recommendation
system.  These  algorithms  analyze  graph
interconnections,  uncovering  patterns  that  enable
highly  personalized,  context-aware  recommendations
based on user preferences.

This  integration  not  only  harnesses  predefined  rules
based on user data and item attributes but also exploits
the  data  graph’s  complex  interconnections.  Further
enhanced  by  recommendation  models  like
collaborative and content-based filtering, this approach
ensures  a  comprehensive  and  effective  strategy  for
recommendations.

The  rationale  behind  the  usage  of  this  technique
can be summarized as follows:

(a) The models are simpler and more transparent than
complex machine  learning models,  making them ideal
for sectors like finance or healthcare where explaining
recommendations is crucial.

(b)  They  offer  greater  control  and  customization,  as
rules can be easily modified, making them suitable for
dynamic environments.

(c)  They efficiently manage large,  varied datasets in
big  data  contexts,  quickly  filtering  relevant  data  using
predefined criteria.

(d)  They  are  stable  and  reliable,  not  relying  on
variable  training  data,  and  are  apt  for  applications
requiring consistent behavior over time.

(e) Rule-based models complement machine learning
by handling well-understood,  codifiable aspects,  while
machine  learning  deals  with  more  complex  data
nuances.

The  conditions  for  the  optimal  performance  of
this technique can be summarized as follows:

(a) Base the system’s rules on sound logic and a deep
understanding of user behavior and preferences.

(b)  Use  scalable  and  efficient  algorithms  and  data
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Table 7    Featuring research papers that have employed graph-based models for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Chen et al.[49]

2021

Amazon
Musical

Instruments
Fair Fair Acceptable

The  authors  presented  TMER,  utilizing  a  knowledge  graph
to model dynamic interactions between users and items over
time.  Simplifying  the  complexity  of  traditional  neural
networks,  TMER  captures  user  history  and  item
relationships  using  attention  mechanisms,  enhancing  both
the  accuracy  and  explainability  of  recommendations.  The
approach  effectively  integrates  users’ sequential  behavior
and  broader  contextual  information,  enhancing  existing
recommendation  methods  by  emphasizing  temporal  and
path-based analysis.

Qi et al.[50]

2022 PW dataset Unsatisfactory Unsatisfactory Good

The authors introduced Web APIs Recommendation (WAR)
to  aid  developers  in  discovering  web  APIs  via  keyword
searches,  streamlining  app  development.  This  method
integrates  planning,  discovery,  and  API  selection  through
data-driven  techniques.  Developers  input  keywords  to  find
suitable  web  APIs.  WAR  uses  a  data  graph  with  APIs  as
nodes and compatibility connections, creating subgraphs for
each keyword set to outline app solutions.

Zhou et al.[51]

2019 MovieLens Fair Unsatisfactory Fair

The  authors  developed  a  model  merging  cyber  and  social
computing  for  Large-Scale  Group  Decision-Making
(LSGDM) in online service social recommendation systems.
They  used  a  graph  model  in  scholarly  big  data  to  depict
LSGDM, profiling academic network decision-makers. This
model  assesses  researchers’ academic  performance,
connecting them through collaborative network interactions.
Their  method  includes  a  network  partitioning  algorithm  to
identify  key  experts,  and  an  improved  random  walk
algorithm with restart.

Peng et al.[52]

2022
Comments

dataset
Unsatisfactory Unsatisfactory Acceptable

The  authors  presented  a  privacy-focused  stock
recommendation  method  using  federated  learning,  training
word  embeddings  with  encrypted  investment  forum  data.
Their  federated  meta  embedding  blends  insights  from
private  forums and public  social  media.  they  expanded this
with  federated  graph  meta  embedding,  adding  graph-based
modeling to integrate public and private.

Zhu[53]

2022

User-
commodity

behavior
Unsatisfactory Unsatisfactory Fair

The  authors  introduced  a  data  fusion  method  for
recommending  mobile  commerce  services  in  tree-based
networks.  It  entails  storing  tree-node  relationships  with
redundant  data  to  fully  separate  tree-type  nodes  for
accessibility.  The  main  objective  is  to  efficiently  store  and
retrieve  structured data,  using a  tree  synchronization model
to boost server data buffering and access on mobile devices
for enhanced efficiency.

Song et al.[54]

2023
Foursquare

dataset
Fair Unsatisfactory Unsatisfactory

The authors created a precise spatiotemporal network-based
recommender for suggesting Points of Interests (PoIs). Their
model  prioritizes  spatial  and  temporal  data,  incorporating
essential  elements  for  accurate  POI  recommendations.  It
features  well-designed  meta-paths  that  account  for  both
temporal and spatial aspects.

(To be continued)
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structures  to  manage  large  data  volumes  without
performance loss.

(c)  Ensure  the  system can  process  data  in  near-real-
time,  crucial  for  adapting  to  rapidly  changing  user
preferences.

(d)  Personalize  recommendations  using  individual
user  profiles  and  contextual  information  for  relevance
and effectiveness.

(e) Offer a diverse set of recommendations to prevent
overfitting to known preferences and introduce users to
new items.

(f) Design the model to handle sparse data, ensuring
accurate recommendations in big data environments.

The  limitations  of  this  technique  can  be
summarized as follows:

In  big  data  contexts,  rule-based  systems  face
challenges  with  large  data  volumes,  necessitating  too
many rules. More rules increase complexity and reduce
agility,  especially when adapting to new data patterns.
These  systems,  limited  by  set  rules,  offer  less
personalization  and  are  less  adept  at  predicting
preferences than machine learning models.

They  tend  to  overfit  historical  data  and  struggle  to
adapt to new trends or unforeseen user behaviors. Their
inflexibility  in  novel  situations  and  data  types,  along
with  a  focus  on  short-term,  rule-defined  patterns,
means  they  may  overlook  longer-term  user  interests.
They risk creating a “filter bubble”, showing users only
content like their past interactions.

Table 8 evaluates and discusses research papers that
have  utilized  rule-based  models  for  big  data  in
recommendation systems.

3　Hybrid and Combined Approach

3.1　Ensemble models

This  integrated  approach  leverages  the  ensemble

technique,  combining  multiple  recommendation
algorithms  or  models  to  enhance  the  accuracy  and
reliability  of  recommendations.  By  merging  various
algorithms, it aims to utilize the strengths of each while
addressing  their  individual  weaknesses.  A  key  aspect
of  this  technique  is  diversity,  employing  different
models  like  collaborative  filtering,  content-based
filtering,  and  others  in  tandem.  This  ensures  a  more
thorough  analysis  of  data,  capturing  various
dimensions of user preferences and behaviors.

The  ensemble  approach excels  in  handling  big  data,
characterized  by  complexity  and  high  dimensionality.
It  outperforms  single-model  systems  by  integrating
various  algorithms,  including  machine  learning
techniques like decision trees,  neural  networks,  and k-
nearest neighbors. This method employs strategies such
as  voting  and  averaging  for  different  tasks,  and
advanced  techniques  like  boosting  and  bagging  to
refine  model  weighting,  significantly  improving  the
precision  and  robustness  of  its  predictions  and
recommendations.

The rationale behind this technique: These models
in  recommendation  systems  enhance  accuracy  by
merging diverse algorithmic strengths,  addressing user
preferences  and  item  characteristics.  They  reduce
overfitting  by  balancing  individual  model  biases,
ensuring more stable predictions. These models adeptly
manage  big  data’s  complexity  and  heterogeneity,
including  varied  data  types.  Their  diversity  also
fortifies  system  robustness,  compensating  for
individual  model  weaknesses,  particularly  in  handling
data anomalies.

The  conditions  for  the  optimal  performance  of
this  technique: (a)  Ensemble  models  improve  by
merging  diverse  models  with  different  algorithms,
architectures,  and parameters,  enhancing robustness  in
recommendations;  (b)  They  need  to  balance

Table 7　Featuring research papers that have employed graph-based models for big data in recommendations.

(Continued)
Paper/year Dataset Interpretability Scalability Efficiency Description

Wang et al.[55]

2023
Douban
Movie

Unsatisfactory Unsatisfactory Unsatisfactory

The  authors  presented  a  framework,  combining  multi-
community  clustering  and  equitable  decision  fusion.  This
framework  has  three  main  parts:  community  exploration,
local  recommendations,  and  equitable  decision  fusion.  It
starts by creating overlapping communities through random
walks  on  a  user-item  bipartite  graph  to  connect  users  with
similar  motivations.  The  next  step  includes  item  ranking
algorithms for each community.
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complexity  and  simplicity  to  avoid  overfitting  or
underfitting, ensuring effective pattern recognition; (c)
In  big  data,  these  models  must  be  scalable  and
efficient,  using  parallel  processing  and  dimensionality
reduction  for  large  datasets;  and  (d)  Regularization  is
crucial  to  prevent  overfitting  and  enhance  model
generalization on new data.

The  limitations  are Ensemble  models,  combining
multiple  predictive  models,  require  substantial
processing  power  and  memory,  especially  with  big
data. They risk overfitting, performing well on training
data  but  poorly  on  new  data,  if  individual  models  are
too complex or poorly tuned. Integrating these models
into existing systems can be complicated and resource-
intensive.

Table 9 evaluates and discusses research papers that
have  utilized  ensemble-based  models  for  big  data  in
recommendation systems.

3.2　Ranking models

The  integrated  approach  to  delivering  personalized,
relevant,  and  timely  recommendations  in  big  data
environments involves a sophisticated interplay of data
analysis,  machine  learning,  and  user-centric
methodologies.  It  hinges  on  the  use  of  advanced
machine  learning  and  data  analytics  techniques  to
interpret  and  navigate  the  immense  datasets
characteristic of these environments.

At the core of  this  process are sophisticated ranking
algorithms  that  order  items  or  services  according  to  a
user’s  preferences.  These  algorithms  often  utilize
advanced  methods  like  matrix  factorization,  deep
learning, neural networks, and other pattern recognition
techniques.  The  complexity  of  these  algorithms  can
vary,  ranging  from  simpler  statistical  models  to  more
complex  neural  networks,  each  chosen  based  on  the
nature of the data and the specific requirements of the

 

Table 8    Featuring research papers that have employed rule-based models for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Varlamis et al.[56]

2023
Electric power
consumption

Unsatisfactory Good Good

The  authors  designed  a  collaborative  filtering  approach
where  users  with  comparable  profiles  share  best  practices.
This  system  is  bolstered  by  a  sensor  network  that  gathers
extensive  data  on  behavior  and  environment.  By  analyzing
this  data,  the  system  identifies  user  habits  and  the  specific
micro-moments  (or  cues)  that  initiate  these  habits.  It  offers
rule-based,  personalized  recommendations,  tailoring  these
based  on  the  user’s  latest  activities  and  the  information
stored in the knowledge base.

Sumathi[57] and
Akilandeswari

2020

Multilevel
datasets

Fair Unsatisfactory Acceptable

The  authors  introduced  an  enhanced  fuzzy  weighted-
iterative  method  to  address  the  shortcomings  in  applying
association  rules  focused  on  user  requests  and  the
visualization  of  rule  discovery.  This  approach  begins  by
integrating  user  feedback  with  post-processing  to  leverage
semantic  information.  Following  this,  they  developed  rule
schemas  designed  to  accommodate  and  predict  complex
rules based on user expectations.

Zhang et al.[58]

2018 T10I4D Unsatisfactory Unsatisfactory Good

The  authors  created  MCRS,  a  course  recommendation  tool
that  enhances  the  Apriori  algorithm  using  distributed
computing.  MCRS  efficiently  detects  enrollment  trends  by
initially  preprocessing  data  with  Hadoop,  then  analyzing  it
with  Spark  to  extract  association  rules.  These  insights  are
then transferred to MySQL via Sqoop.

Liao and
Yang[59]

2021

Author
collected

Unsatisfactory Fair Fair

The  authors  designed  a  rule-based  system  that  employs
social  network  data  and  purchase  behaviors  to  recommend
fan pages. Their objectives encompassed user categorization,
understanding  the  link  between  fan  motivations  and  social
network  choices,  analyzing  fan  page  followers’ online
purchases, creating purchase-based profiles for enhancing e-
business social network recommendations
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system.
In  big  data  recommendation  systems,  machine

learning  models  like  decision  trees,  neural  networks,
and  gradient  boosting  machines  are  essential.
Continuous refinement through reinforcement learning,
feedback loops, and A/B testing ensures their relevance
and  accuracy.  Regular  assessment  with  metrics  like
click-through  and  conversion  rates  helps  adapt  these
systems  to  evolving  user  behaviors,  maintaining  their
effectiveness in the dynamic big data landscape.

The    rationale    behind    the    usage    of    this    technique
can  be  summarized  as  follows: Traditional
recommendation  techniques  struggle  with  the  vast
datasets typical in big data environments,  but machine
learning  and  AI-powered  ranking  models  can  process
these  efficiently,  ensuring  timely  and  relevant
recommendations.  These  advanced  models  can  detect
complex, non-linear patterns in user behavior and item
attributes,  uncovering  relationships  that  are  too
intricate  for  manual  analysis  or  simpler  algorithms.
ranking models play a crucial role in personalizing user
experiences by sorting items such as products, movies,
and  articles  based  on  the  user’s  past  behavior  and
preferences.  This  enhances  user  satisfaction,  as  it
allows users to find relevant content.

The  conditions  for  the  optimal  performance  of
this technique:

(a)  Model  complexity:  Balance  is  key;  overly
complex  models  risk  overfitting  and  poor
generalization,  while  too  simple  models  may  not
capture data nuances.

(b)  Algorithm  selection  and  tuning:  Essential  for
optimal  performance,  as  different  algorithms  have
varying  strengths  and  weaknesses  depending  on  the
data and task.

(c)  Handling  data  sparsity:  Common  in  big  data,
effectively  addressed  using  techniques  like  matrix
factorization, embedding, or deep learning.

(d) Models must efficiently manage the vast volumes
of  big  data,  often  necessitating  distributed  computing
and efficient algorithms.

(e)  Mitigating  bias  in  recommendations  is  vital  for
ethical and effective system performance.

The limitations of this technique:
(a)  Ranking  models  may  unintentionally  magnify

existing  biases  in  the  training  data,  causing
recommendations  to  be  unfair  or  discriminatory,
potentially favoring specific user groups or item types.

(b)  There  is  a  danger  of  models  overfitting  to
complex,  high-dimensional  training  data,  impairing

 

Table 9    Featuring research papers that have employed ensemble-based models for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Jain et al.[60]

2022
Airline
Dataset

Unsatisfactory Fair Fair

The  authors  analyzed  customer  reviews  and  ratings  to
predict  product  recommendations.  They  used  a  two-part
approach:  sentiment  analysis  of  reviews  using  an  LSTM
model  to  assess  sentiments  about  airline  services,  and
evaluation of customer ratings for different aspects of these
services.  Combining  these  methods,  they  formed  an
ensemble to predict recommendations

Silva et al.[61]

2021
Iris, Glass,

Sonar
Good Unsatisfactory Acceptable

The  authors  introduced  methodologies  for  recommending
classifier  ensemble  structures,  using  meta-learning  for
optimal settings of classifier type, number of base classifiers,
and aggregation method. The aim is to efficiently establish a
robust ensemble structure.

Hammou et al.[6]

2019
Yahoo!

Webscope
Unsatisfactory Good Fair

The authors developed a distributed group recommendation
system  on  Apache  Spark  for  large-scale  data.  It  merges
dimension  reduction  with  supervised  and  unsupervised
learning,  tackling  the  curse  of  dimensionality,  identifying
user groups, and improving prediction accuracy.

Huang et al.[62]

2019 MovieLens Unsatisfactory Fair Fair

The  authors  introduced  AMRE,  which  includes  agents,  a
reward-function,  and  a  roulette  system.  Each  agent  is  a
recommendation  algorithm  with  a  reward  value  based  on
accuracy,  affecting  its  retention.  The  reward  function
modifies  this  value,  rewarding  accuracy  and  penalizing
errors.
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their  ability  to  generalize  to  new,  unseen  data  and
reducing real-world effectiveness.

(c)  Focusing  on  accuracy,  ranking  models  might
compromise on diversity and novelty, often suggesting
items  too  similar  to  users’ past  choices,  thereby
limiting exposure to new or varied options.

(d)  Incorporating  ranking  models  into  existing
systems  and  workflows  in  complex  big  data
ecosystems  can  be  difficult,  demanding  technical
effort.

Table 10 evaluates and discusses research papers that
have  utilized  ranking-based  models  for  big  data  in
recommendation systems.

4　Deep Learning

4.1　Context-aware models

The  technique  represents  a  significant  evolution  from
traditional, generic recommendation methods to a more
personalized  and  dynamic  approach.  It  excels  in

leveraging  contextual  information  such  as  location,
time,  user  preferences,  and  environmental  conditions,
which  enhances  the  relevance  and  personalization  of
recommendations.  This  method  employs  big  data
analysis,  utilizing  large  and  complex  datasets  to
identify  patterns,  trends,  and  user  behaviors.  This
improves  the  accuracy  and  effectiveness  of
recommendations by processing and analyzing diverse
data types, from structured data like purchase histories
to unstructured social media interactions.

This technique enhances recommendation systems by
integrating  detailed  user  profiling  with  advanced
machine  learning  algorithms.  These  algorithms
continuously evolve, adapting to new data and refining
recommendations  based  on  user  interactions  and
current  context.  This  approach  not  only  improves  the
system’s  accuracy  and  relevance  over  time  but  also
creates  a  more  intuitive  and  responsive  user
experience.  Moving  from generic  recommendations  to
a  nuanced,  context-aware  strategy,  it  significantly

 

Table 10    Featuring research papers that have employed ranking-based models for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Huang et al.[63]

2019
GPS

trajectory Fair Unsatisfactory Good

The  authors  developed  a  recommendation  system  using  the
wide  and  deep  model,  which  combines  wide  linear
frameworks and deep neural networks for improved passenger
identification  in  taxis.  This  system  mimics  experienced  taxi
drivers  by  focusing  on  passenger  demand,  road  conditions,
and potential earnings.

Li et al.[64]

2019
Wisdom
Tourist Unsatisfactory Fair Acceptable

The authors introduced a hybrid recommendation system that
merges  the  Hierarchical  Sampling  Statistics  (HSS)  model
with  the  MultiModal  Visual  Bayesian  Personalized  Ranking
(MM-VBPR) algorithm. This system uses the DCA model to
extract  semantic  correlations  from  image  features  and
integrates  them  into  the  VBPR  model,  enhancing
recommendation effectiveness.

Wang et al.[65]

2019
Video
dataset Good Good Acceptable

The  authors  proposed  the  Category-aided  Multi-channel
Bayesian  Personalized  Ranking  (CMBPR)  method.  It
combines  content-based  recommendations  with  a  multi-
channel  BPR  technique,  using  category-aided  sampling  and
multi-channel sampling for a more nuanced understanding of
user preferences in short video categories.

Lak et al.[66]

2022
Gowalla
dataset Fair Unsatisfactory Fair

The  authors  conducted  a  comparative  study  of  various
Bayesian  personalized  ranking  algorithms,  including  NBPO
and  LightGCN,  using  multiple  datasets.  They  focused  on
hyperparameter  tuning  to  determine  the  most  effective
configurations for these recommendation algorithms.

He et al.[67]

2019
Amazon
dataset Acceptable Fair Unsatisfactory

The  authors  explored  the  integration  of  style  features  in
personalized  recommendations  with  their  Style-aware  BPR
(SBPR)  model.  This  approach  uses  a  convolutional  neural
network  to  extract  style  features  and  a  hierarchical  gram
matrix  to  capture  stylistic  elements,  enhancing  the
representation of style in recommendation task.
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elevates  user  satisfaction,  marking  a  transformative
development in recommendation system design.

The  rationale  behind  this  technique: (a)  The
technique  enhances  personalization  by  considering
current  context  factors  like  location,  time,  device,  and
user mood, alongside past  behavior;  (b)  It  offers more
accurate,  real-time  recommendations  compared  to
traditional systems that rely on historical data, adapting
to  changing user  preferences;  (c)  Suited  for  big  data’s
volume,  velocity,  and  variety,  it  efficiently  processes
and  adapts  to  diverse  and  rapidly  generated  data;  and
(d)  It  increases  user  engagement  by  offering
recommendations  that  align with  the  user’s  immediate
needs and preferences,

The  conditions  for  the  optimal  performance  of
this  technique: (a)  The  ability  to  understand  and
utilize  context  effectively  is  crucial.  This  means  the
system  should  adapt  its  recommendations  based  on
changing  contexts,  such  as  time  of  day,  user  location,
or  current  events;  (b)  The model  should be capable of
learning  individual  user  preferences  and  adapt
recommendations  accordingly.  This  requires
sophisticated  machine  learning  algorithms  that  can
evolve  with  user  behavior;  and  (c)  The  algorithms
should  be  transparent  and  avoid  biases.  There  should
be mechanisms to avoid reinforcing stereotypes.

The  limitations  of  the  technique  are: (a)  Context
modeling  is  complex  due  to  the  diversity  in  user
location,  time,  social  settings,  and  preferences.
Efficiently  capturing  and  processing  this  varied  data
poses  a  significant  challenge;  (b)  Big  data  often  has
sparse  datasets  with  many  unobserved  context-user-
item interactions, making accurate predictions difficult;
(c)  Context-aware  systems  struggle  with  new users  or
items  that  lack  interaction  data,  making  accurate
recommendations  challenging;  and  (d)  There  is  a  risk
of  bias  in  models,  favoring  certain  items  or  users.
Ensuring  fairness  in  recommendations  is  essential  yet
difficult.

Table 11 evaluates and discusses research papers that
have  utilized  context-aware  models  for  big  data  in
recommendation systems.

4.2　Attention and memory networks

The  integration  of  sophisticated  concepts  such  as
Attention  Mechanism,  Memory  Networks,  and
Contextual  Awareness  significantly  enhances  the
accuracy and relevance of recommendations in big data
environments.  Attention  networks  play  a  crucial  role

by  prioritizing  key  user  behaviors  or  items.  For
instance, if a user frequently purchases certain types of
books, the system will focus more on these preferences
when  suggesting  new  books.  This  selective  focus  on
aspects  of  data  most  relevant  to  a  user’s  preferences
ensures  that  the  recommendations  are  more  aligned
with individual interests.

Memory  networks  store  and  retrieve  user  data,
enhancing  personalization  in  big  data  contexts  by
leveraging  past  behaviors  for  tailored
recommendations.  Contextual  Awareness  further
refines  this  by  considering  factors  like  time  and
location, ensuring recommendations align with current
user circumstances. The combination of these networks
with  attention  networks,  which  focus  on  key  data
points,  enables  efficient  navigation  of  extensive  data,
resulting  in  precise,  individualized  recommendations
that  reflect  both  comprehensive  analysis  and  unique
user needs.

The rationale behind this technique: Attention and
memory  networks  are  better  suited  for  Big  data
environments as they can effectively process and learn
from  large  datasets.  Attention  mechanisms  in  these
networks  focus  on  parts  of  the  data  more  relevant  to
user  preferences,  leading  to  personalized  and  accurate
recommendations.  Memory  networks  enhance  this  by
using  a  memory  component  to  store  and  retrieve
information  from  past  user  interactions,  making
recommendations  more  contextually  relevant.  These
networks  are  particularly  adept  at  handling  sequential
data,  like  in  movie  or  music  recommendations,
understanding patterns over time. They also effectively
manage  data  sparsity  by  focusing  on  the  most
informative interactions. Scalable, they adapt and learn
efficiently with the growing volume of data in big data
environments.

The  conditions  for  the  optimal  performance  of
this  technique: (a)  The  attention  mechanism  must
differentiate essential from non-essential data points to
boost  recommendation  precision;  (b)  The  memory
network  must  manage  substantial  data  and  retrieve
pertinent information when necessary; (c) Scalability is
crucial for coping with the growing amount, speed, and
diversity of big data, requiring effective algorithms and
expandable  infrastructure;  (d)  Personalized
recommendations  based  on  individual  user  data  are
vital,  necessitating  an  understanding  of  user  behavior,
preferences,  and  context;  and  (e)  The  system  must
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continually  learn  from  new  data  and  adjust  its
recommendations.

The  limitations  are: (a)  Attention  and  memory
networks  need  considerable  computational  power,
limiting their suitability for real-time environments; (b)
Their  effectiveness  suffers  from  data  scarcity,  with
accurate  recommendations  dependent  on  both  the
amount and quality of user data; (c) These networks are
prone  to  overfitting  on  non-diverse,  affecting  their
performance  on  new  data;  (4)  They  face  challenges
with  new  users  or  items  due  to  their  reliance  on
extensive  historical  data  for  accurate  predictions;  and
(5)  These models  risk learning and propagating biases
from their training data, potentially leading to unethical
recommendations.

Table 12 evaluates and discusses research papers that
have  utilized  attention  and  memory  networks  for  big
data in recommendation systems.

4.3　Neural graph-based

4.3.1　Graph Neural Networks (GNNs)
GNNs  efficiently  process  data  represented  as  graphs,
comprising  nodes  (like  users  or  products)  and  edges
(indicating  relationships).  These  networks  excel  in
extracting  features  from  graph  structures  by
aggregating  information  from  neighboring  nodes,

enabling  them  to  understand  complex  node
relationships  and  overall  graph  dynamics.  Central  to
GNNs  is  the  message  passing  mechanism,  allowing
nodes  to  update  their  information  through  interactions
with  adjacent  nodes,  revealing  intricate  data  patterns.
GNNs employ techniques like convolution and pooling
to disseminate  information across  the  graph.  This  aids
in  offering  personalized,  context-aware
recommendations by considering user-item interactions
and  the  user’s  network  position,  leading  to  precise
predictions.  GNNs  also  refine  these  recommendations
by learning user and item characteristics.

The  rationale  behind  this  technique: GNNs  excel
in  big  data  environments,  adeptly  modeling  complex
interactions  between  entities  like  users  and  products.
They  provide  a  deep  understanding  of  data
relationships.  GNNs  are  particularly  suited  for  graph-
structured  data  common  in  big  data  scenarios  such  as
social  networks,  enabling  direct  leveraging  of  this
structure  with  less  preprocessing.  GNNs  generate
accurate  results  by  considering  data’s  relational
context,  identifying  patterns  that  other  methods  might
miss. They effectively tackle sparsity in big data.

The  conditions  for  the  optimal  performance  of
this  technique: (a)  Given  the  vastness  of  big  data,

 

Table 11    Featuring research papers that have employed context-aware models for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Liu et al.[68]

2022
BEIJING
dataset Unsatisfactory Good Good

The  authors  developed  Hydra,  a  multi-modal  transportation
planning system using deep learning. This system is sensitive
to  local  points  of  interest  and  weather,  integrating  routing
systems  with  urban  data  in  a  dual-layer  framework.  Hydra
customizes routes for various travel modes, adapting to urban
settings and user preferences.

Motwani et al.[69]

2023
Patient
dataset Fair Fair Good

The authors developed SPM for advanced patient monitoring.
SPMR  uses  data  from  Ambient  Assisted  Living  devices  to
monitor  vital  signs,  symptoms,  and  activities,  assessing  and
predicting patient health, and activating necessary services. It
is  compatible  with  technologies  like  IoT,  ML,  and  AI,  and
integrates medical guidelines with patient data.

Gao et al.[70]

2020
Phoenix
dataset Unsatisfactory Unsatisfactory Fair

The  authors  developed  N-PRA,  a  latent  factor  model-based
algorithm, integrates social media contexts with user interests
and dynamic POI popularity. It considers both POI types and
geographic  proximity,  and  factors  in  users’ social  networks,
significantly  improving  the  accuracy  of  personalized  POI
recommendations.

Chou et al.[71]

2020
CoMoDa,

Frappe Fair Good Acceptable

The  authors  developed  DropTF,  a  fast  tensor  factorization
method  for  context-aware  recommendations  using  implicit
feedback.  DropTF  excels  by  leveraging  large  volumes  of
unobserved  data,  showcasing  the  benefits  of  including  all
unobserved  data  in  training  a  TF-based  context-aware
recommendation system.
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GNN should be scalable and efficient. Techniques like
graph  sampling,  parallel  processing,  and  efficient
memory  management  are  essential  to  handle  large-
scale graphs;  (b) Choosing the right GNN architecture
(like  Graph  Convolutional  Networks  (GCNs),  Graph
Attention  Networks  (GANs),  etc.)  and  tuning
parameters (like the number of layers, type of pooling,
learning  rate,  etc.)  is  critical  for  optimal  performance;
(c) Regularization techniques (like dropout and weight
decay) are important to prevent overfitting; and (d) The
training strategy, including the choice of loss function,
optimization,  and  training/validation  split,  impacts
performance.

The  limitations  are: (a)  GNNs  struggle  with
scalability  in  big  data  scenarios,  as  they  require
processing  a  large  number  of  nodes  and  edges,

increasing  computational  complexity;  (b)  GNNs  with
multiple layers can cause over-smoothing, where node
features  become  too  similar,  leading  to  information
loss  and  decreased  performance  in  recommendation
tasks;  (c)  The  presence  of  heterogeneous  data  (varied
types  of  nodes  and  edges)  in  big  data  poses  a
significant  challenge in  developing GNN architectures
that can effectively utilize this diversity; and (d) GNNs
may  inherit  and  amplify  biases  from  training  data,
making  ensuring  fairness  and  avoiding  discrimination
in recommendations a major challenge.

Table 13 evaluates and discusses research papers that
have  utilized  GNNs  for  big  data  in  recommendation
systems.
4.3.2　Neural Collaborative Filtering (NCF)
At its core, NCF uses collaborative filtering, predicting

 

Table 12    Research papers that have employed attention and memory networks for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Zhang et al.[72]

2022
Xing and

Reddit Fair Unsatisfactory Acceptable

The  authors  created  A-PGNN,  combining  a  Personalized
Graph  Neural  Network  (PGNN)  and  a  dot-product
attention  mechanism.  PGNN  captures  individual  user
behavior  graph  structures,  focusing  on  the  user’s  role  in
node  embedding  updates,  unlike  standard  GNN  models.
The  dot-product  attention,  inspired  by  Transformers,
accurately  represents  the  impact  of  past  sessions  on  the
current one.

Chiang et al.[73]

2023
MovieLens,

Pinterest Unsatisfactory Fair Good

The  authors  developed  a  recommendation  system  that
dynamically  adapts  to  user  preferences  by  analyzing  user
behavior  and  recent  interactions.  It  features  a  contextual
item attention module for tracking preference changes and
item  relevance,  and  a  multi-head  attention  module  for
handling  diverse  preferences.  The  system’s  accuracy  is
enhanced  by  including  time-related  item  information,
allowing for a personalized item representation in context.

Liu et al.[74]

2020
Patio/Lawn

dataset Fair Fair Good

The  authors  developed  the  AAMN  model,  which  uses
historical reviews and ratings with an attention mechanism
to  assess  data  relevance  and  create  user  and  product
profiles. The model excels in extracting crucial information
from  reviews  and  combines  static  and  adaptive  features
through  a  non-linear  fusion  layer  and  a  deep  interaction
layer for detailed insights into user-item interactions.

Yin and Feng[75]

2022
Amazon &

Taobo Good Unsatisfactory Acceptable

The  authors  developed  a  framework  with  enhanced
attention,  notably  an  external  attention  method,  to  better
understand  attention  mechanism  correlations  and  simplify
complex self-attention processes.  Aimed at  visual  tasks,  it
reduces  computational  load  and  captures  relationships
between  samples.  The  framework  also  includes  a  multi-
head mechanism for better performance.

Wang et al.[76]

2019 MovieLens Unsatisfactory Fair Fair

The authors developed a recommendation system for top N
items, using attention-based Seq2Seq and LSTM to analyze
user  behavior  and  optimize  input  selection  and  output
simulation.  It  focuses  on balancing training loss  for  better
recommendation list generation and performance.
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user  preferences  based  on  past  interactions  and
similarities among users or items. NCF integrates deep
learning  to  capture  the  non-linear  and  complex
relationships  in  user-item  interactions,  going  beyond
traditional matrix factorization methods. The technique
employs a multi-layer neural  network architecture that
allows for learning user-item interaction functions from
data,  offering  a  more  flexible  approach  compared  to
traditional collaborative filtering.

The  rationale  behind  this  technique: (a)  NCF
overcomes  sparsity  and  high  dimensionality  in  big
data,  unlike  traditional  methods  like  matrix
factorization,  by  leveraging  deep  neural  networks  to
manage  sparse  data  and  extract  features  from  high-
dimensional  spaces,  thus  enhancing  recommendation
accuracy;  (b)  NCF,  with  its  neural  network
architecture,  introduces  non-linearity  to  effectively
capture  complex  patterns  in  user-item  interactions,

addressing  the  limitations  of  traditional  collaborative
filtering  in  understanding  non-linear  relationships;  (c)
NCF  scales  efficiently  for  big  data  using  advanced
optimization  and  neural  network  parallel  processing;
and (d) integrates extensive auxiliary data for enhanced
user preference understanding.

The  conditions  for  the  optimal  performance  of
this technique: (a) Choose neural network architecture
that matches data complexity to prevent overfitting, (b)
optimize hyperparameters like learning rate and neuron
counts  for  better  performance,  (c)  employ  L2
regularization  and  dropout  in  complex  models  to
generalize  better,  (d)  apply  advanced  techniques  such
as  embedding  layers  for  complex  interactions,  and  (e)
Consider  ethics  and  mitigate  bias  in  recommendation
systems for fairness.

The  limitations  are: (a)  NCF models  struggle  with
scalability  in  large  datasets,  leading  to  high

 

Table 13    Research papers that have employed graph neural networks for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Cui et al.[77]

2024
MovieLens,

LastFM
Unsatisfactory Unsatisfactory Acceptable

The  authors  proposed  recommendation  model  combines
graph  diffusion  with  the  Ebbinghaus  curve  to  understand
user interactions and memory patterns. The model identifies
crucial  memory  paths  in  user  interactions  through  a  unique
graph  diffusion,  facilitating  a  deeper  analysis  of  these
interactions.  By  integrating  the  Ebbinghaus  curve,  they
personalize  the  model  to  reflect  individual  user’s  evolving
interests and memory behaviors.

Wang et al.[78]

2023
MovieLens,

Last.FM
Fair Good Unsatisfactory

The  authors  introduced  MI-KGNN,  a  knowledge  graph-
based  recommendation  model  that  links  users  and  items.  It
advances  node  representation  through  interaction  analysis
and a dual attention mechanism, allowing users and items to
affect  neighboring  nodes’ significance  and  highlight
interaction patterns in the graph.

Sun et al.[25]

2023
MovieLens,

Douban
Good Unsatisfactory Good

They  authors  proposed  separated  graph  neural
recommendation model which is a graph system that divides
interaction  networks  into  user  and  item  segments.  It
effectively  processes  varied  data,  merges  different  methods
for  coefficient  calculation,  and  uses  a  three-level  attention
mechanism  for  enhanced  feature  fusion,  leading  to
effective/adaptable data propagation.

Sang et al.[79]

2023
YouTub,

Yelp
Unsatisfactory Unsatisfactory Acceptable

The  authors  developed  a  model  that  uses  a  hierarchical
heterogeneous graph neural network and adversarial training
to improve user and item embeddings for recommendations.
The  model  uses  fake  nodes  to  challenge  its  accuracy,
adjusting to reduce reliance on extra regularization.

Xie et al.[80]

2022 DivMat Unsatisfactory Unsatisfactory Good

The  authors  developed  GraphDR,  a  neural  network  for
recommendations,  comprising  a  diversified  preference
network  linking  various  nodes,  a  field-level  heterogeneous
graph attention network for learning node representations.

  Kamal Taha et al.:  Empirical and Experimental Perspectives on Big Data in Recommendation Systems... 983

 



computational  costs  and  processing  times;  (b)  They
face  challenges  with  data  sparsity  and  the  cold  start
problem, making it hard to predict for new users/items;
(c)  Overfitting  is  common  in  NCF  models,  causing
poor  performance  on  unseen  data;  (d)  These  models
lack  transparency  in  decision-making,  affecting  user
trust  and  satisfaction;  (e)  NCF  models  favor  popular
items,  neglecting  less  popular  ones  and  reducing
recommendation  diversity;  (f)  Their  effectiveness  is
compromised in  scenarios  with  limited historical  data;
and  (g)  Using  deep  learning  in  recommendation
systems  raises  privacy  concerns  due  to  the  need  for
detailed user data.

Table 14 evaluates and discusses research papers that
have  utilized  NCF  for  big  data  in  recommendation
systems.

4.4　Autoencoders

Autoencoders,  utilizing  dimensionality  reduction
techniques,  are  highly  effective  in  managing  the
complexity  of  big  data.  These  techniques  compress
high-dimensional  data  into  a  more  manageable  form
while  preserving  essential  information.  Autoencoders
achieve  this  through  a  process  that  involves
compressing  data  into  a  lower-dimensional  space
(encoding)  and  then  reconstructing  it  back  to  its
original  high-dimensional  space  (decoding).  This
capability  makes  them  particularly  suitable  for
handling  big  data  scenarios,  like  user-item  interaction
matrices  in  recommendation  systems,  which  often
contain sparse data.

Autoencoders,  leveraging  their  neural  network
architecture,  are  adept  in  recommendation  systems,
capturing  complex  data  relationships  and  generating
detailed  embeddings  of  users  and  items.  These

embeddings  accurately  reflect  user  preferences  and
item  features,  enhancing  behavior  and  preference
prediction.  Through  learning  from  user-item
interactions,  autoencoders  improve  collaborative
filtering,  identifying  and  utilizing  patterns  to
recommend  items  matching  user  preferences.  Their
ability to record these patterns in a latent  space is  key
for  tailored  recommendations,  adapting  to  each  user’s
unique  behaviors  and  preferences.  This  capability
makes  autoencoders  highly  effective  in  personalized
recommendation  systems,  notably  enhancing  the
accuracy of predicting user preferences.

The  rationale  behind  this  technique  are: (a)
Autoencoders  compress  high-dimensional  data  into
lower-dimensional,  dense  representations,  ideal  for
recommendation systems with sparse data (many users
and  items,  few interactions),  facilitating  the  extraction
of  meaningful  patterns;  (b)  They  learn  to  encode  data
in a way that preserves relevant information, capturing
underlying  patterns  in  user  preferences  or  item
characteristics for accurate recommendations; (c) They
excel  in  managing  sparse  data  in  recommendation
systems, learning to reconstruct missing data or predict
preferences  with  limited  interaction  data;  (d)  They
adapt  with  variations  like  Variational  Autoencoders
and  enhanced  collaborative  filtering;  and  (e)  They
capture  non-linear  relationships  as  neural  networks,
crucial for complex systems.

The conditions for the optimal performance of the
technique: (a)  The  architecture  of  the  autoencoder,
such as  deep or  variational  autoencoders,  significantly
affects  performance.  Tuning  the  number  of  layers  and
neurons  per  layer  to  match  data  complexity  is
necessary;  (b)  The  choice  of  optimization  algorithm
(like Adam or Stochastic Gradient Descent (SGD)) and

 

Table 14    Research papers that have employed neural collaborative filtering for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Rehman et al.[81]

2023 MovieLens Acceptable Unsatisfactory Fair

The  authors  created  the  weighted  context-based  neural
collaborative  filtering  model,  which  improves  neural
collaborative  filtering  by  using  weighted  contextual
information.  This  model  evaluates  user  interactions  with
items  in  different  contexts,  assigning  varying  weights  to
these contexts based on their relevance.

Wu et al.[82]

2023 Yelp Fair Unsatisfactory Fair

The  authors  examined  neural  network-based
recommendation  models  for  accuracy,  classifying  them
into  collaborative  filtering,  content-based,  and  sequential
types.  They  reviewed  major  studies  and  innovations  in
each  group,  provided  insights,  and  discussed  future
research  areas  like  basic  concepts,  model  development,
evaluation, and reproducibility in these systems.
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learning  rate  is  critical.  A  too  high  learning  rate  can
miss  the  global  minimum,  while  a  too  low  rate  may
slow down convergence; (c) Optimizing batch size and
the  number  of  training  epochs  is  important.  Smaller
batch  sizes  can  improve  generalization  but  may
increase  training  time;  (d)  Autoencoders  require
substantial  hyperparameter  tuning  due  to  their
complexity  and  big  data  diversity  for  optimal
performance.

The  limitations  of  this  technique: (a)  Training
autoencoders  for  recommendation  systems  is
challenging  due  to  sparse  user-item  interaction
matrices,  leading  to  difficulty  in  learning  meaningful
data  representations;  (b)  Autoencoders  face  scalability
problems  with  extremely  large  datasets,  resulting  in
high  training  time  and  computational  resource
demands;  (c)  They  have  the  risk  of  overfitting,

especially  with  complex  models  and  limited  training
data;  (d)  They  struggle  with  providing
recommendations for new users or items with minimal
historical  data,  a  significant  issue  in  dynamic
environments;  (e)  They  are  sensitive  to  data  quality
variations,  affecting  recommendation  accuracy  in  big
data environments.

Table 15 evaluates and discusses research papers that
have  utilized  autoencoder  for  big  data  in
recommendation systems.

4.5　Recurrent Neural Networks (RNN) and LSTM

RNNs excel  at  processing  sequential  data  due  to  their
ability  to  remember  past  inputs,  which  is  crucial  for
pattern  analysis  and  prediction.  LSTMs,  a  specialized
form  of  RNNs,  are  designed  to  learn  long-term  data
dependencies.  Their  advanced architecture,  featuring a

 

Table 15    Featuring research papers that have employed autoencoders for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Selvi and
Kavitha[83]

2022

Medhelp
dataset Unsatisfactory Acceptable Good

The  authors  presented  a  secure  health  data
recommendation  method  using  a  stacked  de-noising
convolution  auto-encoder-decoder  and  a  modified
blowfish  algorithm  for  privacy.  This  approach  organizes
patient  data  with  Hadoop  and  analyzes  both  explicit  and
implicit  patient  information.  It  combines  these  features
for effective recommendations.

Dong et al.[84]

2020
MovieLens,
MovieTwe Fair Unsatisfactory Fair

The  authors  integrated  matrix  factorization  with
autoencoder  learning  to  analyze  user/item  ratings  and
learn  low-dimensional  representations,  reducing  time
complexity. It includes user/item attributes to mitigate the
cold  start  issue.  The  algorithm  produces  a  prediction
matrix by multiplying learned user and item features.

Nguyen and Cho[85]

2020
Gowalla
dataset Fair Unsatisfactory Acceptable

The authors created the Variational AutoEncoder Mixture
Model  (VAE-MM)  to  improve  online  behavior
suggestions. It combines individual and group preferences
using VAE. Individual preferences reflect past behaviors,
while  group  preferences  capture  common  interests.
Enhancements like dropout layers and skip connections in
the VAE increase its accuracy.

Drif et al.[86]

2020
Amazon
Review Unsatisfactory Unsatisfactory Acceptable

The  authors  developed  EnsVAE  for  recommender
systems,  blending  multiple  sub-recommenders  with  a
VAE  to  convert  user-item  interactions  into  interest
probabilities, increasing accuracy. It offers enhanced data
representation  and  adapts  to  various  user  interactions.
EnsGG, a form of EnsVAE, combines GRU-MF CF with
GloVe-content based filtering.

Zeng et al.[87]

2021 MovieLens Unsatisfactory Unsatisfactory Fair

The  authors  created  NCAR,  an  autoencoder  framework
for  collaborative  recommendations  using  implicit  user
trust.  NCAR  combines  trust  data  and  user-item
interactions  by  embedding  a  user  co-occurrence  matrix
and  employing  a  neural  recommendation  process.  It
extracts  this  matrix  from ratings,  applies  an  autoencoder
with correlation regularization for user embeddings.
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cell  state  and  three  types  of  gates  (input,  output,  and
forget),  allows  them  to  manage  information  flow
effectively.

In big data and recommendation systems, RNNs and
LSTMs  are  highly  effective.  They  handle  large
volumes  of  sequential  user  data,  capturing  temporal
user  behavior  patterns  for  accurate,  personalized
recommendations.  LSTMs  are  adept  at  understanding
extended  user  behavior,  crucial  for  distilling  user
preferences  or  item  characteristics.  Autoencoders
complement  RNNs  and  LSTMs  by  processing  non-
sequential  data,  like user  profiles  or  item descriptions.
They reduce high-dimensional data into simpler forms,
facilitating easier handling by RNNs or LSTMs within
a temporal framework.

The rationale behind this technique: (a) RNNs and
LSTMs excel in handling sequential data like browsing
and  purchase  histories,  essential  for  predicting  user
actions  in  recommendation  systems;  (b)  LSTMs
remember  long-term  user  interactions,  crucial  for
understanding  current  interests  and  predicting  future
preferences in recommendation; (c) RNNs and LSTMs
continuously  update  their  understanding  of  user
behavior,  adapting  to  changing  preferences,  beneficial
for evolving big data scenarios; (d) The architecture of
RNNs  and  LSTMs  enables  them  to  identify  intricate
patterns,  leading  to  more  personalized
recommendations;  (e)  RNNs  and  LSTMs  are  adept  at
processing unstructured data like text and images, vital
for recommendations.

The  technique’s  conditions  for  optimal
performance: (a) The complexity of the model should
be  balanced.  Overly  complex  models  might  overfit,
while  overly  simple  models  might  underperform;  (b)
Carefully  choose  the  sequence  length  to  capture
relevant  temporal  dependencies;  (c)  Optimize  these
parameters  for  stable  and  efficient  training;  (d)  Use
methods  like  grid  search  or  random search  to  find  the
optimal  set  of  hyperparameters  for  your  model;  (e)
Employ  techniques  to  handle  sparsity  in
recommendation data, such as using embedding layers;
(f)  Implement  a  mechanism  for  model  adaptation  in
response  to  user  feedback  and  evolving  data  patterns;
and (g) integrating RNNs/LSTMs with techniques like
CNNs for improved feature extraction.

The  limitations  of  this  technique: (a)  RNNs  and
LSTMs  are  complex  and  computationally  intensive,
making  scaling  difficult  for  large-scale

recommendation  systems;  (b)  LSTMs  struggle  with
very  long  sequences,  affecting  their  ability  to  capture
long-term  user  preferences;  (c)  RNNs  and  LSTMs
perform  poorly  with  sparse  data  and  in  cold  start
scenarios;  (d)  The sequential  processing  of  RNNs and
LSTMs  may  not  efficiently  adapt  to  the  rapidly
evolving data in recommendation systems; and (e) The
opaque nature of  RNNs and LSTMs makes it  difficult
to understand their decision-making.

Table 16 evaluates and discusses research papers that
have  utilized  RNNs  for  big  data  in  recommendation
systems.

4.6　Sequence-aware models

The  technique  involves  sequential  pattern  mining,
where frequent patterns in user behavior are identified.
This  involves  identifying  and  extracting  patterns  from
sequences  of  user  activities  or  behaviors,  which  helps
in  understanding  and  predicting  future  preferences.
Temporal  dynamics  are  crucial,  as  they  consider  the
timing  of  user  interactions  and  acknowledge  that
preferences  evolve  over  time.  Context-awareness  is
another  key  element,  focusing  on  the  context  of  user
actions  like  location/time  to  enhance  the
recommendations.

Sequence-aware  models  often  employ  predictive
algorithms  like  Markov  chains,  LSTM  networks,  or
Gated  Recurrent  Unit  (GRU)  networks  to  forecast
future  user  actions  based  on  past  sequences.  By
analyzing  sequential  data,  these  models  offer  highly
personalized  recommendations.  For  example,  a  music
streaming  service  might  suggest  songs  based  on  the
sequence of previously listened tracks. Techniques like
word2vec  or  Bidirectional  Encoder  Representations
from  Transformers  (BERT)  can  be  adapted  to
transform  sequences  of  user  interactions  into  vector
space,  making  it  easier  to  apply  machine  learning
models.

The  rationale  behind  this  technique: (a)  The
models  predict  user  preferences  based  on  action
sequences,  offering  nuanced  insights  in  complex
scenarios,  such  as  E-commerce,  to  discern  immediate
interests  and  purchase  intentions;  (b)  These  models
excel  at  capturing  changes  in  user  preferences  over
time,  useful  for  platforms  like  streaming  services  to
understand  evolving  tastes;  (c)  The  models  enhance
accuracy  and  user  experience  by  analyzing  user
interaction  sequences  for  highly  personalized
recommendations;  (d)  These  models  use  interaction
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sequences  in  low  user-item  interaction  settings  to
enhance  recommendations,  addressing  data  sparsity
effectively; and (e) These models merge sequence data
with  context  factors  (time,  location,  and  device)  for
more relevant recommendations in data-rich settings.

The  technique’s  conditions  for  optimal
performance: (a)  Employing  advanced  sequence
modeling  techniques  such  as  RNNs,  Long  LSTM
networks,  or  Transformer-based  models  can
significantly  improve  the  ability  to  capture  temporal
dynamics in user-item interactions; (b) Personalization
and  context-awareness:  The  model  should  be  capable
of  offering  personalized  recommendations  by
understanding individual user sequences. It should also
consider  contextual  information  like  time  of  the  day,
location, or specific user states; (c) Maintain a balance
between  leveraging  known  user  preferences  and
exploring  new  items  to  enhance  user  experience;  and
(d)  Ensure  the  model  is  resilient  to  anomalies  and
generalizes well to new data or users through extensive
validation and testing.

The limitations of this technique: (a) Models excel
in short-term patterns but struggle with long-term user
behavior due to diverse, prolonged interactions; (b) As
data  volume  increases,  these  models  become  less
efficient, demanding more computational resources and

reducing  scalability;  (c)  With  limited  historical  data,
especially  for  new  users/items,  models  encounter  the
cold  start  problem,  affecting  recommendation
accuracy;  (d)  Deep  learning  based  sequence-aware
models often overfit on large, diverse datasets, leading
to  poor  performance  on  unseen  data;  (e)  The  opaque
nature  of  deep  learning  recommendations  complicates
scenarios  requiring  clear  reasoning;  and  (f)  Sequence-
aware  models  find  integrating  and  processing  varied
data  types  (text,  images,  and  videos)  in  big  data
challenging.

Table 17 evaluates and discusses research papers that
have  utilized  sequence-aware  models  for  big  data  in
recommendation systems.

4.7　Convolutional operations

4.7.1　Graph Convolutional Networks (GCN)
GCNs  for  Big  Data  Recommendation  seamlessly
merge  graph-based  data  representation  with  the
powerful capabilities of convolutional neural networks,
tailored to meet the demands of large-scale and diverse
data sets. This innovative technique transforms the way
data  is  handled,  making  it  particularly  effective  for
personalized and context-aware recommendations.

GCNs  revolutionize  recommendation  systems  by
representing users and items as interconnected nodes in

 

Table 16    Research papers that have employed RNNs for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Wang et al.[22]

2022
Beijing taxi

dataset Good Fair Unsatisfactory

The  authors  developed  a  method  using  a  neural  network
with A* for improving personalized route recommendation.
This  model  combines  an  attention-based  RNN  for
calculating  costs  from  the  starting  point  to  potential
destinations  and  a  position-aware  graph  attention  network
for estimating costs to the destination.

Zhang et al.[88]

2020 DBLP dataset Unsatisfactory Acceptable Unsatisfactory

The  authors  introduced  a  system  for  academic  social
network friend recommendations using scholars’ academic
attributes  from  digital  libraries.  Their  method  employs  an
attributed  random  walk  approach  and  a  graph  RNN
framework, focusing on both network structure and scholar
attributes.

Zhao et al.[89]

2016
Microblogging

dataset Acceptable Good Acceptable

The  authors  proposed  using  social  and  E-commerce
network  data  for  product  recommendations.  They  utilized
recurrent  neural  networks  for  E-commerce  feature
representation  and  modified  gradient  boosting  trees  for
social  network  feature  embedding,  applying  matrix
factorization for cold-start product recommendations.

Shen et al.[90]

2020 Boston dataset Fair UnsatisfactoryUnsatisfactory

The  authors  explored  the  connection  between  listing
descriptions  and  pricing,  creating  a  price  recommendation
system  for  competitive  pricing  of  new  listings.  Their
approach  used  feedforward  networks,  LSTM,  and  mean
shift algorithms, to enhance price prediction accuracy.
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a  graph,  capturing  relationships  through  edges.  This
graph-based  structure,  combined  with  convolutional
neural network operations, allows GCNs to process and
learn  from  the  network’s  topology  effectively.  GCNs
excel  in  extracting  rich  feature  representations  from
nodes,  uncovering  latent  user  preferences  or  item
characteristics  that  raw  data  might  not  reveal.  They
aggregate  information  from  neighboring  nodes,
enriching  each  node’s  context  and  enhancing
recommendation quality. Also, GCNs incorporate both
node  and  edge  attributes,  like  user  demographics  or
interaction  types,  making  them  highly  effective  and
scalable for personalized recommendations in complex
datasets.

The rationale behind this technique are: (a) GCNs
excel in big data applications like social  networks and
E-commerce  by  modeling  relationships  in  graph  data;
(b)  They  efficiently  manage  sparse  data  in
recommendation  systems  by  aggregating  neighboring
node information, aiding in predictions despite limited
data;  (c)  GCNs  enhance  learning  by  incorporating
additional  data  such  as  user  demographics,  crucial  in
big  data  for  improved  recommendations;  (d)  Capable
of  learning  complex  data  representations;  GCNs
capture  intricate  user-item  interactions  for  nuanced,
personalized  recommendations;  and  (e)  By  utilizing
user-item  graph  structures,  GCNs  identify  latent  user
behavior factors, boosting accuracy.

The  technique’s  conditions  for  optimal
performance: (a)  The  architecture  of  the  GCN,
including  the  number  of  layers,  type  of  convolutional
layers,  and  activation  functions,  needs  to  be  carefully
designed.  Hyperparameter  tuning,  including  learning
rate,  dropout  rate,  and  regularization,  is  also  essential
for  optimizing  performance;  (b)  Employing  graph
sampling,  mini-batch  training,  and  efficient  matrix
operations  are  key  strategies  for  managing  large-scale
data;  (c)  To  prevent  overfitting/ensure  generalization,
regularization  techniques,  dropout,  and  data
augmentation  methods  should  be  utilized;  and  (d)
Performance  enhancement  can  be  achieved  by
integrating  GCNs  with  other  models  like  matrix
factorization,  deep  learning  models  (e.g.,
autoencoders), or other graph-based models.

The  limitations  of  this  technique  are: (a)  GCNs
can  struggle  with  scalability  due  to  the  computational
complexity of convolutions over large graphs. Big data
environments  often  involve  very  large  user-item
graphs;  (b)  GCNs  might  not  perform  optimally  in
sparse  user-item interaction matrix  as  they rely  on the
graph structure for learning, and sparse data can lead to
less  informative  graph  structures;  (c)  Multiple  graph
convolutions  can  make  node  representations  too
similar,  reducing  accuracy;  (d)  GCNs  have  difficulty
recommending  for  new  users  or  items  due  to  few
connections;  (e)  GCNs,  as  deep  learning  models,  lack

 

Table 17    Featuring research papers that have employed sequence-aware models for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Chen et al.[91]

2023 MovieLens Fair Unsatisfactory Unsatisfactory

The  authors  developed  a  data  augmentation  framework
for  sequential  recommendation  systems,  employing
counterfactual thinking in user behavior sequences. This
framework  includes  seven  models  categorized  into
heuristic-based  (four  models),  learning-based  (two
models),  and  reinforcement  learning  methods  (one
model).

Xu et al.[92]

2019 e-government Fair Acceptable Good

The  authors  developed  e-government  recommendation
system  combining  probabilistic  semantic  analysis  with
collaborative  filtering,  focused  on  user  and  item
attributes,  and  utilizing  historical  data  for  group
formation and sequence mining. It uses sequence mining
tailored to e-government.

Cheng et al.[93]

2023 TripAdvisor Acceptable Fair Unsatisfactory

The authors introduced Seq2CASE, a weakly supervised
framework  for  extracting  aspect  scores  from  review
comments.  This  method  addresses  the  challenge  of  the
absence  of  ground  truth  data  for  these  scores,
simplifying  complex  comments  to  estimate  aspect
scores.  Seq2CASE  demonstrates  a  strong  correlation
with actual user feedback.
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clear  explainability;  and  (f)  GCNs  are  prone  to
performance issues in noisy big data environments.

Table 18 evaluates and discusses research papers that
have  utilized  GCNs  for  big  data  in  recommendation
systems.
4.7.2　Convolutional neural networks
The  integration  of  CNNs  in  recommendation  systems
has transformed the way data is analyzed, especially in
sectors  like  E-commerce  and  media  streaming.  The
architecture  of  CNNs  is  intricately  layered,  enabling
them to automatically detect and learn relevant features
from  raw  data.  This  feature  of  learning  is  crucial  for
making accurate recommendations.

CNNs  have  a  multi-layered  structure  where  each
layer detects different data aspects, from basic patterns
in  initial  layers  to  complex  features  in  deeper  ones.
Key  to  this  are  convolutional  layers  that  filter  and
process  data,  and  pooling  layers  that  focus  on

significant  features,  with  non-linear  functions  like
ReLU  enhancing  pattern  recognition.  CNNs  excel  in
analyzing visual content, extracting characteristics such
as  color  and  texture,  and  processing  user  interaction
data  (clicks,  views,  purchase  history)  for  in-depth
understanding  of  user  preferences.  They  are  often
combined  with  other  neural  networks,  like  RNNs,  to
merge  diverse  data  types,  boosting  recommendation
accuracy and making CNNs vital in personalizing user
experiences.

The  rationale  behind  this  technique: (a)  CNNs
excel  in  extracting  complex  features  from  high-
dimensional  data  like  images  and  videos,
outperforming  traditional  algorithms  in
recommendations  by  identifying  key  patterns;  (b)
CNNs  adeptly  handle  and  interpret  unstructured  data
such  as  images,  text,  and  videos,  making  them
invaluable in recommendation systems; (c) CNNs offer

 

Table 18    Research papers employed graph convolutional networks for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Yu et al.[5]

2022
LastFM,
Douban Acceptable Unsatisfactory Good

The authors introduced an adversarial framework with GCN.
It features a GCN-based autoencoder for improving relation
data  by  detecting  intricate  connections  and  reconstructing
social  profiles,  clarifying  each  user’s  social  relations.  Also,
they  crafted  a  GCN-based  social  recommendation  module
sensitive to varying social relation strengths.

Yue et al.[12]

2023
Movielens,

Douban Fair Unsatisfactory Good

The  authors  developed  the  attribute-fusing  graph
convolutional  network  for  recommendation  systems,
focusing on the role of attributes in representation learning.
They employed an attention-based approach to combine user
and  item  attributes  into  a  unified  representation  within  a
<user, item, attribute> graph. A specialized Laplacian matrix
is formulated for this graph.

Rang et al.[94]

2023
Yelp and

Beibei Unsatisfactory Unsatisfactory Fair

The authors developed the MBHCR model, which utilizes a
heterogeneous  graph  to  analyze  complex  user  behaviors
through  varied  interactions.  This  model  features  a  multi-
behavior  relational  aggregator  to  identify  common
interaction  patterns,  addressing  user  sparsity  issues.
Additionally, it incorporates a behavior comparison learning
enhancer  to  differentiate  and  highlight  key  aspects  of
primary and secondary user behaviors.

Liu et al.[95]

2023
Gowalla &

Yelp Fair Unsatisfactory Good

The authors presented a method for modeling multi-grained
popularity features and high-order connectivity, focusing on
diverse user preferences in popularity features. They created
the  JMP-GCF  model,  which  utilizes  popularity-aware
embeddings  and  a  joint  learning  strategy  to  analyze  multi-
level popularity signals.

Yang et al.[96]

2023
Amazon
Musical Good Unsatisfactory Fair

The authors developed the PGIR model that fuses enhanced
graph convolution with review properties, aligning property
data  with  review  text  for  in-depth  content  analysis.  This
model  focuses  on  complex  user-item  relationships  and
employs sophisticated graph convolution to capture dynamic
user-item features and collaborative patterns.

  Kamal Taha et al.:  Empirical and Experimental Perspectives on Big Data in Recommendation Systems... 989

 



advanced  understanding  of  context  and  spatial
relationships  in  data;  (d)  CNNs’ adaptability  through
transfer  learning  allows  systems  to  use  pre-trained
models,  reducing  the  need  for  new  data;  (e)  CNNs
boost  collaborative  filtering  by  leveraging  auxiliary
data  to  address  cold  start  and  data  sparsity,  thus
enhancing  recommendation  accuracy;  and  (f)  CNNs
excel  in  recommending  visual  content,  like  fashion  or
movies,  due  to  their  proficiency  in  image  and  video
analysis, ensuring relevancy.

The  technique’s  conditions  for  optimal
performance: (a)  Selecting  the  appropriate  number
and  types  of  layers  (convolutional,  pooling,  and  fully
connected),  filter  sizes,  and  network  depth  is  critical.
Integrating  CNNs  with  other  neural  networks  like
RNNs enhance the understanding of sequential patterns
in  user  behavior,  especially  for  recommendation
systems;  (b)  Optimizing  parameters  such  as  learning
rate,  batch  size,  and  epochs  is  crucial  for  CNN
performance.  Advanced  techniques  like  Bayesian
Optimization  can  further  refine  this  process;  (c)
Regularization  methods  like  dropout,  L1/L2
regularization,  and  data  augmentation  are  vital  in  big
data  scenarios  to  avoid  overfitting;  and  (d)  Utilizing
pre-trained  models  is  advantageous,  especially  with
limited labeled data.

The limitations of this technique: (a) CNNs are not
ideal  for  processing  non-visual,  non-spatial  data  like
user  behavior  or  preferences  in  recommendation
systems; (b) Due to their deep architectures, CNNs risk
overfitting,  especially  with  insufficient  training  data,
which  is  often  the  case  in  specific  recommendation
tasks;  (c)  CNNs  require  substantial  computational
resources,  making  them  impractical  for  organizations
with limited hardware or in scenarios demanding quick
updates; (d) CNNs face challenges in scaling for large
datasets  and  lack  flexibility  due  to  their  fixed
architecture;  (e)  The “black box” nature  of  CNNs is  a
drawback in  where  understanding the  rationale  behind
recommendations  is  crucial;  and  (f)  CNNs  struggle  to
make accurate recommendations for new users or items
with minimal historical data.

Table 19 evaluates and discusses research papers that
have  utilized  CNNs  for  big  data  in  recommendation
systems.

4.8　Deep Reinforcement Learning (DRL)

DRL  algorithms  in  big  data  recommendation  systems
learn  through  trial-and-error  by  interacting  with  vast

datasets  of  user  preferences  and  behaviors.  Central  to
these  systems  is  an  agent,  usually  an  algorithm,  that
makes  decisions  based  on  the  observed  user  data,
aiming  to  maximize  rewards.  DRL  adapts  its
recommendations  continuously,  enhancing
personalization  by  understanding  and  predicting  user
preferences.  It  excels  in  sequential  decision-making,
focusing  on  long-term  rewards  and  balancing  the
exploration  of  new  recommendations  with  the
exploitation  of  known  preferences.  This  approach  is
vital in dynamic big data environments, allowing DRL
to  effectively  adapt  to  constantly  evolving  user
preferences  and  data,  ensuring  more  relevant  and
engaging recommendations over time.

The  rationale  behind  this  technique: (a)  DRL
thrives  in  changing  environments,  such  as
recommendation  systems  where  user  preferences  and
trends  are  always  shifting.  It  continuously  updates  its
learning based on new data, ensuring recommendations
stay  relevant;  (b)  DRL  excels  at  identifying  complex
patterns,  offering  personalized  recommendations  for
each  user,  even  in  large-scale  scenarios;  (c)  DRL
focuses  on  long-term  user  engagement,  offering
recommendations  that  enhance  satisfaction  and
retention;  and  (d)  DRL  effectively  manages
recommendation systems by strategically assessing the
long-term impact of decision sequences.

The  technique’s  conditions  for  optimal
performance: (a)  In  DRL  for  recommendation
systems,  the  reward  function  must  focus  on  long-term
user  satisfaction  and  engagement,  incorporating
complex metrics beyond immediate clicks or views; (b)
DRL  algorithms  need  to  be  scalable  for  big  data  and
stable  for  consistent  learning.  Techniques  like
experience  replay,  target  networks,  and  distributed
learning  are  crucial;  (c)  DRL  models  in
recommendation  systems  should  continuously  learn
and  adapt  to  changing  user  preferences  in  dynamic
environments,  requiring  online  learning;  and  (d)  DRL
must  strike  a  balance  between  exploring  new
recommendations  and  exploiting  known  user
preferences,  using  strategies  like  ε-greedy  or  upper
confidence bound.

The  limitations  of  this  technique  are: (a)  DRL
models  are  complex  and  need  substantial  computing
resources,  making  them  less  suitable  for  real-time
systems  that  require  quick  responses;  (b)  DRL  faces
challenges in recommendation systems with new items
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or users, as it depends heavily on extensive interaction
data;  (c)  Developing  effective  reward  functions  for
DRL  is  difficult,  particularly  in  recommendation
systems  where  rewards  are  indirect  or  delayed;  (d)  In
DRL,  finding  a  balance  between  introducing  new
recommendations  and  adhering  to  known  user
preferences  is  challenging.  Too  much  exploration  can
irritate  users,  while  too  little  can  lead  to  suboptimal
strategies;  and  (e)  DRL  models  may  perpetuate  and
intensify biases present in their training data, leading to
fairness issues in recommendations.

Table 20 evaluates and discusses research papers that
have  utilized  DRL  for  big  data  in  recommendation
systems.

4.9　Self-attention mechanisms

The  self-attention  mechanism  in  models  is  pivotal  in
understanding  and  processing  user  interaction  data,
such  as  clicks,  views,  and  purchases.  By  focusing  on
different parts of the input sequence, the mechanism is
adept  at  capturing  the  dependencies  and  relationships
between various items in a dataset. This is particularly
useful  as  it  enables  the  model  to  not  just  consider
individual items in isolation but to understand how one

item in a user’s history might influence their interest in
another. Consequently, this approach allows the model
to dynamically adapt to the input data, emphasizing the
most  relevant  parts  for  making  predictions  or
recommendations.

Self-attention  enhances  user  experience  in
E-commerce,  content  streaming,  and  social  media  by
accurately  discerning  user  history  for  personalized
recommendations.  It  contextually  analyzes  behavior,
distinguishing  between  casual  browsing  and  specific
purchase  intentions,  and  dynamically  adjusts  to  align
recommendations  with  current  preferences  and  future
behavior.

The rationale  behind this  technique  are: (a)  Self-
attention  is  adept  at  handling  sequential  data  like  user
histories  in  recommendation  systems.  It  processes
sequences  in  parallel,  unlike  traditional  models  like
RNNs  or  LSTMs,  enhancing  training  and  inference
efficiency; (b) Self-attention is effective in recognizing
relationships between distantly placed items in a user’s
interaction  history,  essential  for  recommendation
systems.  It  computes  attention  across  the  sequence,
allowing  full  contextual  consideration;  (c)  Inherent
flexibility  and  scalability  make  self-attention  ideal  for

 

Table 19    Research papers that employed CNNs for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Liu et al.[21]

2021

Amazon
Product
Review

Good Unsatisfactory Acceptable

The  authors  created  the  NCTR  model,  a  hybrid  neural
network  that  combines  text  and  rating  data  for  item
recommendation.  NCTR  uses  a  convolutional  neural
network  to  analyze  text  context  and  a  fusion  layer  to
integrate  these  features.  Also,  it  employs  multilayer
perceptrons  to  manage  the  nonlinear  interactions  of
combined  item  and  user  latent  features,  enhancing  the
accuracy.

Chen et al.[97]

2022
Douban
and Yelp Acceptable Unsatisfactory Fair

The  authors  created  a  recommendation  system  that
combines  a  heterogeneous  information  network  and  deep
learning.  This  system  uses  network  embedding  and  deep
learning to analyze auxiliary data and extract features from
reviews.  It  employs  an  attention  mechanism  and  dual
parallel CNNs for processing user and item word vectors.

Ahammad et al.[98]

2023 Yelp Good Acceptable Unsatisfactory

The  authors  developed  a  hotel  recommendation  system
combining  user  collaboration,  preference  analysis,  and
similarity-based recommendations.  It  utilizes collaborative
filtering  and  classified  data  management,  incorporating
capsules  with  convolutional  kernels  for  in-depth  feature
analysis.

Wang et al.[99]

2023
Amazon
& Yelp Fair Unsatisfactory Fair

The authors introduced the AUR framework, combining an
uncertainty  estimator  with  traditional  recommendation
models.  Using  aleatoric  uncertainty,  it  aims  to  improve
niche  item  recommendations  while  preserving  general
performance.  AUR  is  successfully  integrated  with  matrix
factorization, LightGCN, and VAE models.
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big  data  environments  with  high  volume,  variety,  and
velocity.  It  adapts  well  to  large  datasets  and  complex
user  behavior  patterns;  and  (d)  It  improves
recommendation  systems’ accuracy  by  deeply
understanding  user  preferences  and  behavior,  leading
to precise, personalized recommendations.

The  technique’s  conditions  for  optimal
performance: (a)  Self-attention  mechanisms  must
balance  user  preferences  over  time  with  immediate
interests,  necessitating  an  adept  attention  design;  (b)
These  models,  complex  in  nature,  risk  overfitting,
especially  with  large  datasets.  Employing
regularization methods like dropout and early stopping
is crucial; (c) The success of self-attention depends on
hyperparameters  like  attention  head  count,  embedding
size, and learning rates. Precise tuning of these is key;
(d) In big data contexts, adapting self-attention to user
behavior  changes  and  contextual  shifts,  possibly  by
adding  temporal  or  contextual  elements,  is  vital;  and
(e)  While  self-attention  is  effective,  optimal
performance  often  requires  integration  with  other
elements, such as CNNs for feature extraction or RNNs
for  sequence  processing,  customized  to  the
recommendation system.

The  limitations  of  this  technique  are: (a)  Self-
attention  requires  significant  memory  resources,  as  it

involves  storing  and  processing  all  pairwise
interactions between elements in the input sequence. In
big  data  contexts,  where  the  input  size  can  be
extremely  large,  this  can  lead  to  excessive  memory
demands; (b) While self-attention is adept at capturing
global  dependencies,  it  may  not  always  efficiently
capture  very  long-term  dependencies  in  sequences,
which  is  important  in  recommendation  systems  where
historical  data  plays  a  crucial  role;  (c)  In
recommendation  systems,  self-attention  can
underperform due  to  sparse  data  and  cold  start  issues;
(d)  Self-attention  risks  overfitting  in  data-rich  but
pattern-repetitive  environments;  (e)  Self-attention  can
amplify biases, reducing recommendation diversity and
perpetuating  existing  patterns;  and  (f)  Self-attention
models  are  computationally  intensive,  increasing
training time.

Table 21 evaluates and discusses research papers that
have utilized self-attention mechanisms for big data in
recommendation systems.

5　Algorithmic and Mathematical Modelling
Method

5.1　Probabilistic and statistical models

The approach to big data challenges employs machine

 

Table 20    Research papers that have employed DRL for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Huang et al.[13]

2023
Geolife,
Chengdu Fair Fair Unsatisfactory

The  authors  created  FedDSR,  a  daily  schedule
recommendation  system  using  deep  reinforcement
learning  within  a  federated  learning  framework.  They
applied  curriculum  learning  for  better  local  optimization
and generalization and introduced a similarity aggregation
algorithm to  refine  model  quality  using  locally  uploaded
parameters.  The  system  operates  on  encrypted  local
devices, ensuring privacy.

Zhou et al.[100]

2021
DBLP,

ResearchGate Fair Unsatisfactory Acceptable

The  authors  created  a  Hierarchical  Hybrid  Network
(HHN) using deep reinforcement learning and a modified
random  walk  algorithm  for  analyzing  large  dataset
correlations  in  recommendation  systems.  This  system,
tailored  for  collaborative  scholarly  big  data  projects,
effectively  evaluates  complex  multi-level  entity
interactions,  showcasing  the  HHN’s  capability  in
intelligent routing and data analysis.

Wang et al.[101]

2023
New York
Check-in Acceptable Fair Acceptable

The  authors  created  a  deep  interactive  reinforcement
learning framework for studying geo-human interactions,
consisting  of  representation  and  imitation  modules.  The
representation  module  converts  geo-human  interactions
into embeddings (state), and the imitation module, acting
as a reinforced agent, recommends the next POI based on
these  states,  imitating  user  visit  patterns.  The  model’s
success improves through feedback.
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learning  algorithms,  notably  those  based  on  Bayesian
methods,  to  provide  accurate  and  personalized
recommendations  to  users.  Central  to  this  approach  is
the  use  of  statistical  inference,  which  infers  user
preferences  and  patterns  from  data,  embracing  the
complexities  and  uncertainties  inherent  in  big  data.  It
frequently  uses  probabilistic  methods,  like  Bayesian
networks,  probabilistic  latent  semantic  analysis,  and
Markov decision  processes,  to  manage the  uncertainty
in predicting user preferences. These methods estimate
the likelihood of a user’s preference for an item, based
on their history and the item’s characteristics.

In  this  approach,  Statistical  Learning  methods  like
CF and SVD analyze user behavior and preferences to
predict  interests.  Additionally,  advanced  models
incorporate  contextual  factors  like  time  and  location,
refining recommendations. These algorithms adapt and
improve  over  time,  enhancing  prediction  accuracy  in
complex data environments.

The  rationale  behind  this  technique: (a)
Probabilistic  models  are  adept  at  handling  the
uncertainty  and  complexity  inherent  in  user  behavior
and  preferences.  Big  data  environments  often  involve
noisy,  incomplete,  or  inconsistent  data,  and
probabilistic  models  can  effectively  manage  these
challenges  by  making  probabilistic  inferences  about
user  preferences;  (b)  Statistical  models  allow  for  the
personalization of recommendations. They can analyze
large datasets to identify patterns and trends specific to
an individual. This enables recommendation systems to
offer  more  tailored  suggestions,  improving  user
satisfaction; (c) These models are adaptable to various
data  types like ratings and clicks,  crucial  in  big data’s
diverse  data  landscape;  (d)  Leveraging  historical  data
and  user  interactions,  these  models  precisely  predict
preferences,  leading  to  efficient,  learning-based
recommendations; (e) Proper regularization techniques
enable  these  models  to  avoid  overfitting  in  high-

 

Table 21    Research papers that have employed self-attention mechanisms for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Meng et al.[102]

2023
MIND-small and
Adressa-1week Acceptable Fair Acceptable

The  authors  introduced  GAINRec,  a  news
recommendation  model  that  leverages  both
personalized  preferences  and  collective  behavior
patterns.  It  uses  self-attention  and  cross-attention
mechanisms to understand user preferences from news
titles  semantically,  and  a  global  transition  graph  to
capture  common  behavior  patterns.  GAINRec
combines  these  insights  with  a  heterogeneous
transition  graph  attention  network,  improving  news
recommendation accuracy and trustworthiness.

Sun et al.[103]

2019
Yoochoose and

Diginetica Fair Unsatisfactory Good

The  authors  developed  SANSR,  a  self-attention
network  for  session-based  recommendation.  It  uses
attention  mechanisms  for  parallel  processing,
identifying  relevant  items  in  a  session  and  assigning
weights  for  predicting  the  next  item.  It  includes  an
embedding  layer,  self-attention  blocks,  and  a
feedforward  network,  concluding  with  incremental
training in the prediction layer.

Wang et al.[104]

2019
CAMRa2011 &

Meetup Good Fair Fair

The  authors  introduced  SACML,  combining  neural
networks with metric learning for recommendations. It
uses  self-attention  to  determine  the  significance  of
group  member  interactions,  accumulating  group
preferences and applying collaborative metric learning
for group recommendation tasks.

Yang et al.[105]

2023
MIND news

recommendation Unsatisfactory Unsatisfactory Good

The  authors  proposed  the  MIAR  method,  using
multichannel  information  fusion  for  user  interest
recommendations.  It  combines  user-clicked  news  and
title  embeddings  with  candidate  news.  MIAR consists
of  an  interactive  framework  (MIF)  and  a  distributed
framework with an interest activation module, refining
user profiles and personalizing user representations.
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dimensional  big  data,  maintaining  generalizable  and
relevant  recommendations;  and  (f)  Probabilistic  and
statistical  models  integrate  contextual  details  (time,
location,  etc.)  into  recommendations,  enhancing  their
relevance and timeliness.

The  technique’s  conditions  for  optimal
performance: (a) The complexity of the model should
be balanced. Complex models may overfit the training
data  and  not  generalize  well  to  new  data.
Regularization  techniques  and  cross-validation  can
help  in  managing  this  balance;  (b)  These  models
should  account  for  changes  over  time  in  user
preferences  and  item  popularity.  Incorporating
temporal  dynamics  can  improve  recommendation
quality;  (c) Big data environments require models that
can  efficiently  scale  with  data  volume,  using
techniques  like  stochastic  gradient  descent,  online
learning,  and  distributed  computing;  (d)  Probabilistic
models,  such  as  matrix  factorization  techniques,  are
effective  in  dealing  with  sparse  datasets,  where  many
user-item interactions are unknown; (e) Models need to
personalize  recommendations  based  on  user  profiles
and  contextual  information,  adapting  to  individual
preferences  and  contexts;  and  (f)  Addressing  the
challenge of making recommendations for new users or
items with limited data through content-based filtering
or hybrid models.

The limitations of this technique: (a) These models
are  prone  to  overfitting,  especially  when  the  data  is
sparse  but  high  in  dimensionality  (common  in
recommendation systems).  Overfitting leads to models
that perform well on training data but poorly on unseen
data;  (b)  Recommendation  systems  often  suffer  from
data sparsity issues. Probabilistic and statistical models
might not perform well  under these conditions as they
rely  on  sufficient  data  to  understand  and  predict  user
preferences  accurately;  (c)  These  models  have
difficulty  dealing  with  new  users  or  items  (cold  start
problem)  because  they  lack  historical  data  to  make
accurate recommendations; (d) Input data biases can be
amplified  in  the  recommendations,  posing  issues  in
scenarios requiring fairness and diversity; (e) Selecting
and  tuning  the  right  model  is  complex  and  resource-
intensive, necessitating extensive experimentation; and
(6)  Often  designed  for  short-term  preferences,  these
models  may fail  to  capture  and predict  long-term user
behavior.

Table 22 evaluates and discusses research papers that
have  utilized  probabilistic/statistical  for  big  data  in

recommendation systems.

5.2　Clustering-based models

The  approach  to  data  segmentation  and
recommendation  involves  employing  clustering
algorithms,  which  are  essential  to  the  core  of  these
models.  These  algorithms,  including  K-means,
hierarchical  clustering,  and  density-based  spatial
clustering of applications with noise, are selected based
on  the  specific  requirements  and  characteristics  of  the
data. Their function is to divide the data into groups or
clusters  based  on  similarities,  where  each  cluster
represents  a  group  of  users  or  items  sharing  similar
characteristics.  For  instance,  one  cluster  might  consist
of users who prefer action movies, while another could
include  those  who  frequently  purchase  sports
equipment.  Feature  selection  is  vital  in  this  process,
focusing  on  the  most  relevant  data  features  for
accurate,  efficient  clustering.  The  model  then  uses
these  clusters  to  generate  tailored  recommendations,
considering  both  the  cluster’s  common  attributes  and
individual user preferences within that group.

The rationale behind this technique: (a) Clustering
algorithms,  such  as  K-means,  hierarchical  clustering,
and  Density-Based  Spatial  Clustering  of  Applications
with  Noise  (DBSCAN),  can  efficiently  handle  large
datasets.  They  group  similar  items  or  users  into
clusters,  reducing  the  complexity  of  the  data.  This
makes  it  easier  to  process  vast  amounts;  (b)  By
clustering similar items or users, these models can offer
more  personalized  recommendations.  For  instance,  a
user can be recommended items that are popular within
their cluster but might not be widely known outside of
it.  This  approach  is  useful  when  niche  items  get
recommended  alongside  popular  ones;  and  (c)
Clustering  helps  in  uncovering  hidden  patterns  and
relationships  in  the  data,  leading  to  more  accurate
recommendations.

The  technique’s  conditions  for  optimal
performance: (a)  The  choice  of  clustering  algorithm
greatly  impacts  performance.  Algorithms  like  K-
Means, Hierarchical Clustering, or DBSCAN should be
chosen  based  on  the  dataset’s  characteristics  (size,
density,  and  dimensionality).  The  algorithm should  be
efficient  and  scalable  to  handle  big  data  volumes;  (b)
Finding the optimal number of clusters is crucial, using
methods like the elbow method, silhouette analysis, or
gap statistics to avoid overfitting and underfitting; and
(c)  In  big  data,  clustering  models  need  to  be  dynamic
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and  adaptable  for  rapid  preference  changes,  enabling
periodic cluster updates with low overhead.

The  limitations  of  this  technique  are: (a)  While
clustering  is  effective  for  grouping  similar  items  or
users,  it  may  not  scale  well  with  extremely  large
datasets  in  big  data  scenarios.  As  the  number  of  users
and  items  increases,  computational  complexity  can
become a significant challenge; (b) Clustering tends to
group similar items or users together, which can lead to
a  lack  of  diversity  in  the  recommendations.  This
homogeneity  might  not  always  align  with  the  users’
desire  for  varied  recommendations;  and  (c)  The

effectiveness  of  clustering-based  recommendations
relies heavily on the quality of clusters. Poorly defined
clusters result in inaccurate or irrelevant suggestions.

Table 23 evaluates and discusses research papers that
have  utilized  clustering-based  models  for  big  data  in
recommendation systems.

6　Experimental Evaluation

6.1　Evaluation methodology

The  following  methodology  is  utilized  in  conducting
the experimental evaluations:

 

Table 22    Featuring research papers that have employed probabilistic/statistical for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Cui et al.[106]

2023

Amazon
Beauty &
LastFM

Acceptable Acceptable Good

The authors  presented  the  Factors  Mixed  Hawkes  Process
(FMHP),  an  approach  for  incremental  recommendation
systems  that  analyzes  key  factors  influencing  event
generation. FMHP transforms events into sequences driven
by  these  factors,  using  the  Hawkes  process  for  modeling
based  on  past  events.  It  integrates  various  functions  to
evaluate  different  event  intensities  and  employs  an
incremental  updating  algorithm,  enabling  real-time
adjustments in event intensity, thus improving the system’s
adaptability to changing user interactions.

Liu and Zhao[24]

2023
Amazon food

dataset Acceptable Fair Fair

The  authors  created  SAMF,  a  recommendation  system
combining  sentiment  analysis,  matrix  factorization,  topic
modeling via latent Dirichlet allocation, and deep learning
with BERT. They generate topic distributions from reviews
to shape user and item matrices, forming a comprehensive
user-item preference matrix for rating predictions.

Mei et al.[107]

2020 AIS dataset Fair Fair Acceptable

The  authors  devised  an  innovative  algorithm  for
recommending  substitute  ports  for  container  ships.  This
method,  distinct  from  standard  adjacency  matrix
techniques,  utilizes  NLP  to  analyze  AIS  data.  It  creates
sequential  berth  records  and  models  ports  as  vectors  in  a
spatial  embedding.  The  algorithm  proposes  ports
comparable to the originally planned but inaccessible ones
and  verifies  these  suggestions  by  examining  sailing
distances.

Zhu and Sun[108]

2023
Author

collected Unsatisfactory Acceptable Fair

The  authors  studied  a  specialized  educational  information
system  that  uses  algorithms  to  recommend  personalized
content.  The  system  analyzes  user  history  and  tag
attributes,  incorporating  data  pre-cleaning  for  accuracy.  It
uses a clustering algorithm for more efficient and in-depth
analysis.  The  study  also  applies  collaborative  filtering,
enhanced with information entropy and standard deviation,
to identify user similarities.

Xia et al.[109]

2023 Taxi trajectory Unsatisfactory Acceptable Good

The authors developed BiA*-ACO, a hybrid algorithm that
efficiently  identifies  taxi  routes  in  urban  networks.  It
merges the bidirectional A-star algorithm’s cost estimation
with  the  Ant  Colony  algorithm’s  heuristic,  enhancing
search efficiency. Additionally, it  improves the ant colony
algorithm’s  pheromone  update  rules  by  incorporating  the
best routes from each iteration.
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● Evaluating  individual  techniques: After  a
comprehensive review of papers presenting algorithms
employing  a  specific  technique,  we  identify  the  paper
with the greatest impact. The algorithm detailed in this
influential  paper  is  chosen as  the representative for  its
respective technique. To determine the most significant
paper among those reporting algorithms using the same
technique,  we  consider  various  factors  including  its
innovative contributions and recency.

● Ranking  the  techniques  within  the  same  sub-
category: Initially,  the  Mean  Average  Precision
(MAP)  for  each  algorithm  is  calculated.  Next,  the
MAPs of  the  algorithms using  the  same technique  are
averaged  to  determine  the  MAP representative  of  that
technique.  Finally,  within  each  primary  sub-category,
the  techniques  are  ranked  based  on  their  computed
average MAPs.

● Ranking  the  sub-categories  within  the  same
category: First,  the MAPs of the algorithms using the
same sub-category are averaged to determine the MAP
representative  of  that  sub-category.  Then,  within  each
primary  category,  the  sub-categories  are  ranked  based
on their computed average MAPs.

● Ranking  the  categories  within  the  same
method: First,  the  MAPs  of  the  algorithms  using  the
same  category  are  averaged  to  determine  the  MAP

representative  of  that  category.  Then,  within  each
primary  method,  the  categories  are  ranked  based  on
their computed average MAPs.

6.2　Evaluation setup

In  the  process  of  tuning  the  hyper-parameters  for  the
selected  algorithms,  our  initial  step  involves
experimenting  with  various  parameter  values  for  each
algorithm. Subsequently, we select the set of parameter
values that enabled each algorithm to attain its optimal
recommendation  performance.  We  list  below  these
values:

•  Yu  et  al.[5]:  Number  of  layers:  3;  activation
function: ReLU; dropout rate: 0.3; learning rate: 0.001;
weight  decay:  0.0005;  number  of  epochs:  200;  early
stopping:  10  epochs  without  improvement;
neighborhood sampling: 10.

•  Wang  et  al.[22]:  Number  of  layers:  2;  number  of
units  per  layer:  128;  dropout  rate:  0.5;  learning  rate:
0.001; batch size: 32; number of epochs: 20; sequence
length: 50; and embedding dimension: 100.

• Hu et al.[27]: min_df: 0.01 (exclude terms that have
a  document  frequency  lower  than  1%);  max_df:  0.8
(exclude terms that have a document frequency higher
than 80%); ngram_range: (1, 2) (include both unigrams
and  bigrams);  max_features: 10 000;  λ:  0.01;  learning

 

Table 23    Research papers that have employed clustering-based models for big data in recommendations.
Paper/year Dataset Interpretability Scalability Efficiency Description

Rostami[110]

2022
Author

collected
Unsatisfactory Fair Good

The  authors  developed  a  two-phase  hybrid  food
recommender  system  to  overcome  limitations  like
disregarding ingredients, time factors, and new users/items.
The first phase involves graph clustering for content-based
recommendations,  and  the  second  uses  deep  learning  for
user and food item clustering. The system also incorporates
strategies to handle time-related and community factors.

Nie et al.[1]

2023
Movielens Fair Fair Acceptable

The  authors  created  the  UCMF  model  for  better  cross-
domain recommendations. It uses graph neural networks to
fuse  user  data  from  multiple  domains,  improving  user
representation, especially in data-scarce situations.

Yue et al.[12]

2023
MovieLens and

Douban
Acceptable Fair Good

The  authors  proposed  TCCF,  a  collaborative  filtering
algorithm,  combines  Time  Correlation  Coefficient  (TCC)
and  optimized  CSK-means  clustering.  It  simplifies  large
data  problems  through  clustering,  grouping  similar  users
for  efficient  recommendations.  This  includes  an  improved
K-means algorithm using Cuckoo search optimization and
a  time  factor  to  track  evolving  user  interests.  PTCCF
further  personalizes  this  approach,  focusing  on  user
preference patterns.
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rate: 0.001; number of epochs: 50; and batch size: 32.
• Yan et al.[32]: Neighborhood size: 20; rating scale: 1

to  5;  minimum number  of  ratings:  minimum 5  ratings
per  item;  data  sparsity  threshold:  at  least  10
interactions  per  user;  implementation  specific
parameters:  batch  size  =  32,  number  of  epochs  =  10:
and learning rate = 0.01.

•  Yi  et  al.[35]:  Number  of  factors:  50;  regularization
parameter  for  users:  0.1;  regularization  parameter  for
items: 0.1; learning rate: 0.02; and maximum iterations:
500.

• Guan et al.[39]: Tolerance: 0.0001; random seed: 42;
maximum iterations: 1000; and learning rate = 0.01.

•   Ioannidis   et   al.[42]:   rank:   10;   regularization
parameters (λ_users = 0.1; λ_items = 0.1; and λ_time =
0.1);  learning  rate:  0.01;  maximum  iterations:  1000;
initialization  method:  random;  convergence  criterion:
0.001; and loss function: RMSE.

• Qi et al.[46]: Number of neighbors: 20; threshold for
similarity: 0.5; and minimum number of ratings: 5.

•  Zhang  et  al.[72]:  Embedding  size:  128;  attention
layers:  2;  attention  heads:  4;  key  size:  32;  value  size:
32;  learning  rate:  0.001;  batch  size:  128;  number  of
epochs:  20;  regularization  term:  0.0001;  and  dropout
rate: 0.5.

•  Wang  et  al.[78]:  Number  of  layers:  3;  number  of
hidden  units:  64;  embedding  size:  128;  learning  rate:
0.001; number of epochs: 30; batch size: 100; dropout
rate:  0.5;  regularization  factor:  0.0001;  activation
function: ReLU; edge dropout rate: 0.1.

• Selvi and Kavitha[83]: Number of layers: 3; number
of  neurons  in  each  layer:  (input  layer:  100  neurons;
hidden  layer:  50  neurons;  and  output  layer:  100
neurons);  activation  function:  ReLU;  learning  rate:
0.001;  batch  size:  128;  number  of  epochs:  100;  and
dropout rate: 0.5.

•  Sun  et  al.[103]:  Number  of  layers  6:  model
dimension:  512;  number  of  heads  in  multi-head
attention:  8;  inner  layer  dimension  of  feed-forward
networks:  2048;  dropout  rate:  0.1;  positional  encoding
dimension:  512;  learning  rate:  0.0001;  and  batch  size:
64.

•  Rostami  et  al.[110]:  Number  of  clusters:  5;
initialization method: k-means++; maximum iterations:
300;  convergence tolerance:  0.0001;  random state:  42;
N_init: 10.

We  search  for  publicly  available  codes  for  these
algorithms.  We  could  obtain  codes  for  the  following

Refs.  [21]※,  [22]† ,  [27]‡ ,  [42]§,  [50]¶,  and  [72]☆.  For
the  remaining  representative  papers,  we  develop  our
own  implementations  using  TensorFlow,  as  described
by  Sinaga  and  Yang[111].  We  train  these
implementations  using  the  Adam  optimizer,  as
suggested by Sinaga and Yang[111]. TensorFlow’s APIs
provide  users  with  the  flexibility  to  create  their  own
algorithms[112].  Our  development  language  is  Python
3.6,  and  we  utilize  TensorFlow  2.10.0  as  the  backend
for the models.

6.3　Compiling datasets for evaluations

•  MovieLens  dataset◎:  It  is  a  repository  of  movie
ratings.  It  integrates  a  vast  array  of  user  ratings  along
with  movie  metadata  like  titles,  genres,  release  years,
and  user  demographics.  The  20M  version,  which  we
focus on, is substantial, featuring 2.0 × 107 ratings and
4.65  ×  105 tag  applications  for  2.7  ×  104 movies  by
1.38 × 105 users.

• Amazon Electronics dataset¤: It offers user reviews
and  detailed  product  information  from  Amazon.  It
encompasses  an  extensive  array  of  electronic  product
reviews,  featuring  user  ratings,  textual  feedback,  and
helpfulness  votes.  It  includes  product  metadata
descriptions,  categories,  pricing,  brands,  and  image
features. It encapsulates around 3.5 × 107 reviews up to
March 2013.

6.4　Experimental results

We run the algorithms using an Intel(R) Core(TM) i7-
6820HQ  processor  at  2.70  GHz,  with  16  GB  RAM,
operating  on  Windows  10  Pro.  We  utilize  the  Mean
Average  Precision  (MAP)  metric  for  the  evaluations.
MAP  calculates  the  average  precision  across  different
ranks,  emphasizing  the  order  of  retrieved  items.
Precision  at  K  (P@K)  gauges  the  ratio  of  relevant
items in the top K results.

• Table 24 shows the overall average MAP scores of
the selected algorithms, it also shows the following: (1)
the ranking the techniques within a same sub-category;
(2)  the  ranking  the  techniques  within  a  same  sub-
category;  (3)  the  ranking the  categories  within  a  same 
 

※ https://github.com/bioannidis/Coupled_tensors_graphs 
 

† https://github.com/qlyseven/source-code 
 

‡ GitHub - luojia527/NCTR_master: python 
 

§ https://github.com/CRIPAC-DIG/A-PGNN 
 

¶ https://github.com/bigscity/NASR 
 

☆ https://github.com/facebookresearch/fastText 
 

◎ https://grouplens.org/datasets/movielens/ 
 

¤ https://www.kaggle.com/datasets/saurabhbagchi/amazon-electronics-
data
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method, and (4) the ranking of the methods.
• Figures 2 and 3 illustrate the individual MAP@10,

MAP@30,  and  MAP@50  for  each  algorithm  using
MovieLense  dataset  (Fig.  2)  and  Amazon  Electronics
Dataset  (Fig.  3).  The  algorithms  in  each  figure  are
grouped based on the common methods they employ.

6.5　Discussion of experimental results

6.5.1　User and item similarity based methods
6.5.1.1　Content-based filtering[25]

The algorithm effectively suggests items across various
categories  but  tends  to  recommend  those  similar  to

previously  interacted  items,  suggesting  a “filter
bubble” with  reduced  exposure  to  diverse  content.  As
the  dataset  size  enlarges,  computational  time  linearly
rises,  showing  good  scalability.  However,  its
performance  dips  slightly  with  very  large  datasets,
indicating a need for optimization in handling large big
data.  Compared  to  collaborative  filtering  models,  this
content-based approach excells in scenarios with sparse
user  data  but  is  less  adept  at  capturing  complex  user
preferences.  It  effectively recommends items based on
demographic  data  but  struggles  with  items  lacking
historical data, highlighting the cold start problem. An

 

Table 24    Overall average MAP of each selected algorithm using MovieLense dataset (ML) and Amazon Electronics dataset
(AE).
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analysis  shows  a  bias  towards  popular  items,  risking
the  underrepresentation  of  niche  content.  Longitudinal
studies  suggest  users’ content  consumption  becomes
more homogenized over time.
6.5.1.2　Item-based CF[32]

Our  investigation  reveals  a  consistent  decrement  in
performance concurrent with an augmentation of latent
factors,  reaching  a  plateau  at  20  factors.  This  plateau
suggests  an  optimal  equilibrium  between  the
complexity  of  the  model  and  its  efficacy.
Comparatively,  the  algorithm  surpasses  most  existing
collaborative filtering algorithms in terms of precision.
However,  it  does  not  match  the  performance  of  deep
learning  based  algorithms,  particularly  in  addressing
cold-start  situations.  The  quantity  of  latent  factors
emerges  as  a  pivotal  element  influencing  model
efficiency.  We  observe  a  diminishing  return  on
performance  enhancement  beyond  the  threshold  of  50
factors, indicating an upper boundary for their practical
application.  Scalability  assessments  demonstrate  that
the  algorithm  upholds  reasonable  computation
durations  up  to  the  threshold  of  500  000  ratings.

Beyond  this  juncture,  there  is  a  marked  escalation  in
computational  demands.  The  algorithm  exhibits
commendable  capabilities  in  generating
recommendations for users with sparse interaction data,
addressing  a  prevalent  obstacle  in  recommendation
systems.  The  algorithm’s  effectiveness  diminishes  for
items  with  few  ratings,  highlighting  the  need  for
improved  strategies  to  enhance  recommendations  for
newly introduced items.
6.5.1.3　Matrix factorization[35, 39, 42]

In  comparison  to  the  other  user  and  item  similarity
based  algorithms,  the  algorithms  based  on  matrix
factorization  demonstrate  a  markedly  superior
performance, particularly in scenarios characterized by
high  data  sparsity.  This  superior  performance  implies
that  matrix  factorization  algorithms  are  more  adept  at
identifying latent  factors  within user-item interactions.
Our systematic experimentation indicates a pronounced
sensitivity of these algorithms to hyperparameters, such
as  the  number  of  latent  factors  and  the  regularization
coefficient.  Optimum  results  are  achieved  with
approximately 100 latent factors, beyond which there is
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Fig. 2    Individual  MAP@10,  MAP@30,  and  MAP@50  for  each  algorithm  using  MovieLense  dataset.  The  algorithms  are
grouped based on the common methods they employ.
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Fig. 3    Individual MAP@10, MAP@30, and MAP@50 for each algorithm using Amazon Electronics dataset. The algorithms
are grouped based on the common methods they employ.
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a noticeable trend of diminishing returns and emerging
risks  of  overfitting.  The  ability  of  these  matrix
factorization  algorithms  to  adeptly  manage  sparse
datasets, a prevalent issue in recommendation systems,
is particularly notable,  as evidenced by their enhanced
performance  in  datasets  exhibiting  over  about  60%
sparsity.  Scalability  assessments  reveal  that  although
these algorithms effectively process larger datasets, this
is  accompanied  by  an  increased  computational
duration,  suggesting  an  intrinsic  trade-off  between
accuracy  and  efficiency  that  must  be  weighed  in
practical  applications.  The  overemphasis  on
regularization  in  the  algorithm  leads  to  underfitting,
emphasizing  the  importance  of  careful  parameter
tuning.  Addressing  the  cold  start  problem  remains  a
major challenge for these algorithms.
6.5.1.4　User-based CF[46]

The  algorithm  demonstrates  robust  performance  with
regard  to  precision,  underscoring  its  efficacy  in
accurately  identifying  items  pertinent  to  users’
interests.  Although  the  recall  rate  is  somewhat  less
impressive  compared  to  precision,  it  remains
significant, suggesting that there is potential for further
enhancement  in  encompassing  a  broader  spectrum  of
relevant  items.  The  diversity  score  could  be  improved
to  ensure  that  users  are  exposed  to  a  wider  variety  of
items, potentially enhancing user satisfaction.
6.5.1.5　Graph-based models[50]

The  graph-based  algorithm  exhibits  noteworthy
precision,  surpassing  several  other  algorithms  in
contexts characterized by sparse user-item interactions.
This  significant  enhancement  underscores  the
algorithm’s  proficiency  in  deciphering  intricate
relationships  embedded  within  the  dataset.  In  a
comparative  analysis  with  matrix  factorization
algorithms,  the  graph-based  algorithm  not  only
matches in precision but also excells in managing cold-
start.

This  superiority  implies  its  enhanced  capability  in
navigating scenarios involving new users or items with
minimal  historical  data.  However,  scalability
assessments  indicate  that  while  the  algorithm
demonstrates  exceptional  performance  on  smaller
datasets,  a  discernible  escalation  in  computational
complexity arises as the dataset size expands, hinting at
a  possible  limitation  in  its  application  to  vast-scale
recommendation  systems  without  additional
optimizations.  Also,  a  slight  dip  in  performance  is

observed  in  exceedingly  dense  datasets,  signaling  a
necessity  for  more  precise  adjustments  in  such
environments.
6.5.1.6　Rule-based models[56]

In comparison to the other algorithms that rely on user
and  item  similarity,  the  rule-based  algorithm
demonstrates  a  lower  efficacy  in  tailoring
recommendations  to  individual  preferences  but  offers
faster  response  time.  In  scenarios  where  user
preferences  are  explicitly  defined,  this  algorithm
surpasses  collaborative  filtering  algorithms  in
achieving  greater  precision.  It  exhibits  notable
efficiency in  contexts  with  a  limited  number  of  items,
yet  faces  challenges  in  scaling  proportionately  with
expanding inventories.

The  algorithm  maintains  optimal  resource  usage  up
to a certain point; however, the complexity inherent in
managing  and  updating  an  extensive  rule  set  beyond
this  threshold  adversely  affects  its  performance.  A
significant  challenge  encountered  is  the  upkeep  of  an
extensive  rule  set,  necessitating  continual  revisions  to
align with evolving user behaviors. The algorithm also
exhibits inflexibility in adapting to emergent trends.
6.5.2　Deep learning based methods
6.5.2.1　Context-aware models[68]

The context-aware algorithm demonstrates potential in
augmenting  user  engagement,  notwithstanding  its
position  as  the  least  accurate  among  competing  deep
learning  based  algorithms.  It  exhibits  a  commendable
balance  between  precision  and  recall  metrics.  Of
particular  note  is  the  algorithm’s  about  20%
improvement in precision over the algorithms based on
user  and  item  similarity,  a  testament  to  its  effective
utilization  of  contextual  data.  Upon  evaluating  the
algorithm across  diverse  user  scenarios,  it  is  observed
to  perform  exceptionally  with  users  who  have
extensive interaction histories. Conversely, its efficacy
diminishes  for  users  with  limited  historical  data,
underscoring the necessity for an enhanced approach to
address the “cold-start” problem.
6.5.2.2　Attention and memory network models[72]

The  attention  and  memory  networks  algorithm
manifests  a  marked  enhancement  in  precision,
outperforming  all  other  deep  learning  methodologies
except  for  the  self-attention  mechanisms  algorithm.
This  advancement  is  highlighted  by  a  15% increment
in  precision  rate,  underscoring  a  heightened  relevance
in  item  selection  for  users.  The  algorithm’s  attention
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component is instrumental in augmenting the relevance
of recommendations. By assigning weights to user-item
interactions  according  to  their  significance,  the  model
is  adept  at  concentrating  on  impactful  factors,  thereby
yielding  more  tailored  recommendations.  This
enhancement  is  largely  attributed  to  the  effective
incorporation  of  attention  mechanisms,  which  adeptly
captures user preferences.

When  compared  with  collaborative  filtering  and
matrix factorization techniques, this algorithm exhibits
superior  prowess  in  both  recall  and  precision  metrics.
This superiority implies that the integration of memory
networks  offers  an  improved  approach  to  managing
sparse data. It shows proficiency in addressing the cold
start  problem.  Also,  in  terms  of  scalability,  the
algorithm  demonstrates  consistent  performance,  even
with escalating dataset sizes, signifying its applicability
in  real-world  scenarios.  However,  the  algorithm’s
computational  complexity  presents  a  hurdle  that
necessitates further refinement.  The algorithm exhibits
limitations  when  dealing  with  extremely  sparse
datasets  and  shows  a  propensity  for  bias  towards
frequently encountered items.
6.5.2.3　Neural graph-based models[78, 81]

The  neural  graph-based  algorithms  have  a  significant
advancement in the realm of recommendation systems,
surpassing  the  capabilities  of  the  matrix  factorization
algorithms.  A  notable  enhancement  of  over  20% in
precision  is  observed  when  these  algorithms  are
applied  to  the  MovieLens  dataset.  This  improvement
underscores  the  algorithms’ proficiency  in  harnessing
the  graph  structure  to  intricately  map  user-item
interactions.  A  critical  aspect  of  this  success  is
attributed  to  the  neural  network  layers,  which  adeptly
capture the non-linear and multifaceted nature of these
interactions.

Our  analysis  reveals  that  the  performance  of  these
algorithms  is  considerably  influenced  by  the
architectural choices, particularly the number of hidden
layers and the neurons within each layer. The optimum
architecture  is  identified  as  comprising  three  hidden
layers.  Expanding  the  architecture  beyond  this
configuration  does  not  result  in  substantial
improvements.  This phenomenon indicates a threshold
beyond  which  further  complexity  in  the  model  ceases
to offer proportional benefits. A challenge encountered
is  the  cold  start  problem.  In  terms  of  scalability,  the
algorithms demonstrate a consistent  performance level

as  the  dataset  sizes  expand.  When  handling  datasets
exceeding one million user-item interactions, a marked
escalation  in  computational  demands  is  observed.  The
algorithms’ performance  also  displays  sensitivity  to
specific  hyperparameters,  notably  the  embedding  size
and  the  number  of  graph  convolution  layers.  An
optimal  balance  between  precision  and  computational
efficiency  is  achieved  with  an  embedding  size  of  128
and three graph convolution layers.
6.5.2.4　Autoencoders-based models[8]

The  autoencoder  algorithm  has  exhibited  promise  in
recommendation  systems,  particularly  in  managing
datasets  that  are  both  sparse  and  intricate  in  nature.
When applied to the MovieLens dataset, the algorithm
attains  an  MAP  of  0.83,  signifying  a  commendably
high  level  of  precision  in  forecasting  user  ratings.  In
contrast, its application to the Amazon Reviews dataset
yields an average MAP of 0.81, denoting a marginally
reduced  accuracy,  which  may  be  attributed  to  the
dataset’s larger size.

Compared  to  collaborative  filtering  algorithms,  the
autoencoder demonstrates an enhancement of over 15%
in  precision  on  the  MovieLens  dataset.  The  sparsity
characteristic of the Amazon Reviews dataset  presents
a formidable challenge, resulting in a minor decline in
metric  performance.  Nonetheless,  the  autoencoder’s
proficiency  in  learning  complex,  nonlinear
representations  is  instrumental  in  discerning  deeper
user-item interactions,  even in contexts of sparse data.
The  training  of  the  autoencoder  is  executed  with  a
learning  rate  of  0.001  and  a  batch  size  of  128.
Increasing the batch size speeds up training but slightly
reduces precision. Implementing dropout regularization
prevents  overfitting,  especially  for  the  denser
MovieLens dataset.
6.5.2.5　Recurrent  neural  networks  and  LSTM

models[22]

The RNN algorithm exhibits a superior enhancement in
prediction accuracy compared to collaborative filtering
algorithms.  In  the  MovieLense  dataset,  the  RNN
achieves  an  over  10% improvement  in  precision.  This
indicates  the  RNN’s  proficiency  in  deciphering
sequential  user  behavior  patterns,  leading  to  more
accurate  recommendations.  When  juxtaposed  with
CNN-based  algorithms,  RNN  showcases  comparable
efficacy in sequential recommendation tasks, attributes
to  its  adeptness  in  temporal  sequence  modeling,  a
feature  not  intrinsic  to  CNNs.  However,  this  comes
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with  a  trade-off,  as  RNN  entails  a  notably  higher
computational  complexity,  with  training  durations
approximately  tripling  those  of  matrix  factorization
algorithms.  This  balance  between  precision  and
efficiency  is  pivotal  for  real-time  recommendation
systems.

Upon segment-based analysis, the RNN is especially
potent for users with varied and substantial interaction
histories. In contrast to other deep learning algorithms,
the  RNN,  while  slightly  less  precise,  offers  greater
interpretability, shedding light on the evolution of user
preferences  over  time.  Optimizing  the  RNN’s
performance  necessitates  extensive  hyperparameter
adjustments.  The  number  of  hidden  layers  and  the
choice  of  recurrent  unit  profoundly  influence  the
results,  with  optimal  configurations  varying  based  on
dataset  characteristics  like  sparsity  and  temporal
dynamics.  Another  limitation  of  the  RNN  is  its
susceptibility  to  the  sequence  of  user  interactions,
which  might  not  always  align  with  true  user
inclinations.  The  scalability  of  the  model  remains  a
challenge,  particularly  in  environments  encompassing
millions  of  users  and  items,  constrained  by
computational limitations.
6.5.2.6　Convolutional operations-based models[5, 21]

The  algorithms  leveraging  convolutional  operations
exhibit  noteworthy  enhancements  in  precision.  These
improvements  are  principally  attributed  to  the
algorithms’ proficient  ability  to  discern  and  utilize
spatial  hierarchies  within  the  data,  thereby  yielding
more  precise  and  contextually  relevant
recommendations.  Our  empirical  studies  further
highlight  the  algorithms’ adeptness  in  managing  large
datasets.  Notably,  as  the  data  volume  escalates,  the
algorithms  demonstrate  admirable  scalability,
sustaining  their  efficiency  without  a  corresponding
increase in computational burden.

However,  these  algorithms  necessitate  an
approximate  30% increase  in  computational  time
compared  to  most  collaborative  filtering  algorithms,
owing  to  the  integrated  convolutional  operations.
Nevertheless,  this  increase  in  resource  consumption  is
counterbalanced  by  an  enhancement  in  the  quality  of
recommendations.  Rigorous  testing  across  datasets  of
diverse  sizes  and  characteristics  confirms  the
algorithms’ consistent  efficacy,  underscoring  their
robustness  and  scalability.  This  aspect  is  particularly
vital  in  practical  scenarios,  where  the  volume  and

diversity of data can vary significantly.
6.5.2.7　Self-attention-based model[103]

The  empirical  evidence  from  our  study  clearly
indicates  that  the  algorithm  employing  the  self-
attention  mechanism  has  outperformed  all  other
examined  algorithms  in  terms  of  precision.  This
enhanced  performance  can  be  primarily  attributed  to
the mechanism’s sophisticated capability to discern and
interpret  intricate user-item interactions and sequential
trends  within  the  dataset.  The  algorithm  is  notably
proficient  in  managing  sparse  datasets,  a  frequent
challenge  in  recommendation  systems,  by  effectively
addressing  long-range  dependencies.  In  terms  of
scalability,  the  self-attention  algorithm  exhibits  linear
progression  in  performance  with  the  escalation  in
dataset size.

Remarkably,  its  accuracy  remains  consistent  and
commendable,  even  when  confronted  with  a  tenfold
augmentation  in  data  volume.  This  feature  is
particularly  vital  in  real-world  applications,  where
enormous data volumes are the norm. The algorithm’s
prowess  in  analyzing  and  anticipating  user  behavioral
patterns  is  significantly  bolstered  by  the  self-attention
mechanism.  Despite  its  complex  structure,  the
algorithm  maintains  computational  efficiency,
achieving  reduced  latency  in  generating
recommendations  when  compared  to  the  RNN-based
algorithm.  However,  the  algorithm  presents  certain
limitations,  particularly  in  scenarios  involving  highly
diverse user interests.
6.5.3　Algorithmic  and  mathematical

modelling[24, 110]

The  analysis  of  the  clusters  generated  by  these
algorithms  reveals  uniformity  within  the  groups.  This
uniformity  strongly  indicates  the  algorithms’ efficacy
in accurately discerning user preferences. Impressively,
the  algorithms  maintain  robust  functionality,  even
when  applied  to  larger  datasets,  consistently
demonstrating  quick  response  time  coupled  with
minimal  computational  demands.  A  key  feature  of
these algorithms is their capacity to create coherent and
meaningful  clusters,  as  evidenced  by  the  high  intra-
cluster  similarity.  Notably,  the  algorithms  exhibit
enhanced  proficiency  in  processing  sparse  data  and
accommodating  diverse  user  profiles,  thereby  yielding
more  tailored  and  pertinent  recommendations.  The
algorithm  displays  remarkable  scalability,  sustaining
stable performance despite increases in dataset size.
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7　Challenges  and  Limitations  of  Current
Methods  for  Big  Data  in
Recommendation Systems

Content-based  filtering  methods: (a)  Challenges:
Difficulty  in  handling  unstructured  data,  reliance  on
item descriptions, and potential for limited diversity in
recommendations;  and  (b)  Limitations:  Tends  to
recommend items similar to those the user has already
consumed, leading to a lack of novelty.

Item-based  collaborative  filtering  methods: (a)
Challenges:  Scalability  issues  with  large  datasets  and
sparsity  of  user-item interactions;  and  (b)  Limitations:
May  not  perform  well  when  new  items  are  added,  as
they lack user interactions.

PMF  methods: (a)  Challenges:  Computational
complexity  and  difficulty  in  incorporating  context  or
content information; and (b) Limitations:  Can struggle
with  very  sparse  data  and  cold  start  problem  for  new
users or items.

SVD  methods: (a)  Challenges:  Computationally
intensive,  especially  for  large  matrices;  and  (b)
Limitations:  Less  effective  when  dealing  with  highly
sparse  matrices  and  not  suitable  for  dynamic  datasets
where user preferences change frequently.

Tensor factorization methods: (a) Challenges: High
computational  cost  and  complexity  in  model  tuning;
and  (b)  Limitations:  May  overfit  on  smaller  datasets
and struggle with scalability.

User-based  collaborative  filtering  methods: (a)
Challenges:  Scalability  with  a  large  number  of  users
and  sparsity  in  user-item  interactions;  and  (b)
Limitations:  Often  less  accurate  than  item-based
methods and sensitive to user profile changes.

Graph-based  models: (a)  Challenges:
Computational  complexity  and  difficulty  in  handling
dynamic changes in the data; and (b) Limitations: Can
be  less  effective  for  sparse  datasets  and  may  require
extensive parameter tuning.

Rule-based  models: (a)  Challenges:  Rigid  structure
that  may  not  adapt  well  to  changes  in  user  behavior;
and (b) Limitations: May not capture complex patterns
or relationships in the data.

Ensemble  models: (a)  Challenges:  Complexity  in
combining  various  models  effectively  and  in  tuning
hyperparameters;  and  (b)  Limitations:  Risk  of
overfitting and high computational cost.

Ranking  models: (a)  Challenges:  Difficulty  in
accurately  modeling  user  preferences  and  handling

large  item  sets;  and  (b)  Limitations:  May  not  account
for long-term user preferences.

Context-aware  models: (a)  Challenges:
Incorporating  contextual  information  effectively  and
dealing  with  dynamic  contexts;  and  (b)  Limitations:
Complexity  in  model  design  and  potential  privacy
concerns.

GNNs  methods: (a)  Challenges:  Scalability  issues
and  computational  complexity;  and  (b)  Limitations:
Can  struggle  with  very  sparse  graphs  and  require
significant training data.

NCF  methods: (a)  Challenges:  Require  large
amounts  of  data  and  computational  resources;  and  (b)
Limitations:  Can  overfit  smaller  datasets  and  may  not
generalize well across different domains.

Autoencoders methods: (a) Challenges: Sensitive to
hyperparameter settings and require significant training
data;  and (b)  Limitations:  Can struggle  with  capturing
complex user-item interactions.

RNNs  and  LSTM  methods: (a)  Challenges:
Difficulty  in  capturing  long-term  dependencies  and
computational  intensity;  and  (b)  Limitations:  Can  be
prone  to  overfitting  and  struggle  with  very  long
sequences.

Sequence-aware  models: (a)  Challenges:
Complexity in capturing the temporal dynamics of user
interactions;  and  (b)  Limitations:  Can  be
computationally  expensive  and  require  extensive
tuning.

GCNs methods: (a) Challenges: High computational
cost  and  complexity  in  handling  large  graphs;  and  (b)
Limitations: May require extensive domain knowledge
for effective implementation.

CNNs  methods: (a)  Challenges:  Requirement  for
large  training  datasets  and  computational  resources;
and  (b)  Limitations:  May  not  be  suitable  for  data  that
lacks spatial or temporal structure.

DRL  methods: (a)  Challenges:  Require  extensive
training  data  and  computational  resources;  and  (b)
Limitations: Can be difficult to converge and sensitive
to hyperparameter settings.

Self-attention  mechanisms  methods: (a)
Challenges:  High  computational  complexity  and
memory  requirements;  and  (b)  Limitations:  Can
struggle  with  very  long  sequences  and  require  careful
tuning.

Probabilistic  and  statistical  models  methods: (a)
Challenges: Complexity in model formulation; and (b)
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Limitations:  Can  be  less  effective  with  non-linear
relationships in data.

8　Real-World  Applications  and  Case
Studies  of  the  Methods  for  Big  Data  in
Recommendation Systems

We provide in  this  section examples  that  illustrate  the
diverse  and  innovative  ways,  in  which  big  data  and
various  recommendation  system  methods  are  being
applied  across  industries  to  enhance  user  experience
and business efficiency.

Netflix’s  content-based  movie  suggestions[113]:
Netflix  uses  content-based  filtering  to  recommend
movies  and  TV  shows  by  analyzing  the  properties  of
the  content  (like  genre,  actors,  director)  and  matching
them with a user’s past preferences.

Amazon’s  item-based  collaborative  filtering
recommendations[114]: Amazon  employs  item-based
collaborative  filtering  to  suggest  products  based  on
similarities  between  items  and  user  interactions,  such
as purchasing history and item ratings.

Spotify’s  PMF  music  recommendations[115]:
Spotify  leverages  probabilistic  matrix  factorization  to
handle  scalability  and  sparsity  in  its  large  datasets,
providing  personalized  music  and  playlist
recommendations.

SVD  for  E-commerce  product
recommendation[116]: Many  E-commerce  platforms
use  SVD-based  recommendation  systems  to  suggest
products to users.  This includes not  only large players
like Amazon but also smaller E-commerce sites. These
systems  analyze  user  behavior  data,  including  views,
clicks,  and  purchases,  to  recommend  products  that
users are likely to buy.

Tensor  factorization  in  E-commerce
personalization[117]: Online retail platforms use tensor
factorization  to  analyze  multidimensional  data  (user,
item, time) for personalized shopping experiences.

LinkedIn’s  user-based  collaborative  filtering
recommendations[118]: LinkedIn  uses  user-based
collaborative  filtering  to  suggest  new  connections  by
looking  at  the  similarities  between  users  and  their
networks

Google’s  knowledge  graph  for  search
recommendations[119]: Google  uses  graph-based
models  to  enhance  its  search  engine,  offering  relevant
search suggestions and semantic search results.

Rule-based  recommendations  in  travel

(Booking.com,  Airbnb)[120]: In  these  sectors,
recommendation  systems  might  use  rules  based  on
travel  history,  search  behavior,  and  preferences.  For
example,  if  a  user  often  books  seaside  hotels,  the
system  might  prioritize  similar  destinations  or
properties near the beach in future recommendations.

Google  Play’s  ensemble  learning
recommendations[121]: Google  Play  uses  ensemble
learning  in  its  recommendation  systems  to  suggest
apps, games, books, and movies. The system combines
user  data  with  app  attributes  and  contextual
information,  using  a  variety  of  machine  learning
models to create personalized recommendations.

YouTube’s  recommendation-driven  video
ranking[122]: YouTube utilizes ranking models to order
video  recommendations  based  on  predicted  user
engagement and relevance.

Uber’s  context-aware restaurant
recommendations  in  Uber  Eats[123]: Uber  Eats  uses
context-aware models to recommend restaurants based
on the user’s location, time, and previous orders.

Friend  recommendations  via  GNNs  in  social
media[124]: Social  networks  like  Facebook  could  use
GNNs  to  suggest  friends  by  analyzing  the  complex
connections in the social graph.

NCF  in  E-commerce[125]: NCF  methods  can  be
applied  in  E-commerce  platforms  for  personalized
product recommendations based on deep learning user-
item interactions.

Autoencoder-powered  content  discovery  (e.g.,
Pinterest)[126]: Platforms  like  Pinterest  could  use
autoencoders  for  unsupervised  learning  of  user
preferences and content features to recommend similar
items.

RNN  and  LSTM  for  sequential  recommendation
systems[127]: Platforms like Netflix may use RNN and
LSTM  for  sequence-aware  recommendations,  such  as
suggesting the next episode in a TV.

Sequence-aware music  recommendations  (e.g.,
Spotify)[128]: Services like Spotify use sequence-aware
models to recommend songs that fit  the context of the
user’s current playlist.

GCNs  in  PinSage’s  producer-consumer
recommendations [129]: PinSage is built on the concept
of  GNN,  which  allows  it  to  efficiently  process
information  structured  in  the  form  of  a  graph.  This  is
particularly suitable for platforms like Pinterest, where
items (like pins) can be naturally represented in a graph
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structure,  with nodes representing the items and edges
representing relationships between them.

Visual  recommendations  with  CNNs  in  fashion
retail[130]: Fashion retailers like ASOS may use CNNs
for  visual  search  and  recommendations,  analyzing
images to suggest visually similar items.

E-commerce strategies with DRL[131]: E-commerce
sites  might  use  deep  reinforcement  learning  for
inventory  recommendations  based  on  dynamic  market
conditions.

Product  review  analysis  with  self-attention
mechanisms[132]: Recommendation  systems  could  use
models  with  self-attention  mechanisms,  like
Transformer  models,  to  analyze  and  summarize
product reviews for better recommendations.

Marketing  customer  segmentation  via  clustering
methods[133]: Clustering-based  models  are  used  in
marketing  for  segmenting  customers  into  groups  for
targeted product recommendations.

9　Future  Directions  for  Big  Data  in
Recommendation Systems: Improvement,
Ethics, and Bias Perspectives

9.1　Improvement perspectives and directions

9.1.1　User and item similarity based methods
• Enhanced personalization through deep learning:
Big  data  can  enable  more  sophisticated  deep  learning
models  that  understand  nuanced  user  preferences  and
item  characteristics.  These  models  can  learn  complex
patterns  and  relationships,  improving  the  accuracy  of
recommendations based on user and item similarities.

• Dynamic user profiling: As big data continuously
evolves,  recommendation  systems  can  dynamically
update user profiles. This means that recommendations
can  adapt  in  real-time  to  changes  in  user  behavior,
preferences,  or  circumstances,  maintaining  relevance
and engagement.

• Cross-domain recommendations: Leveraging big
data  from  various  domains  can  enable  cross-domain
recommendation  systems.  For  example,  understanding
a  user’s  preferences  in  music  might  inform
recommendations in movies or books, assuming certain
overlap in taste.

• Improved item similarity detection: Big data can
enhance  item  similarity  algorithms  by  incorporating  a
wider range of attributes and metadata. This can lead to
more nuanced and accurate item categorization, which
in turn leads to more relevant recommendations.

• Scalability and performance optimization: With
the growing size of datasets, optimizing the scalability
and performance of similarity-based methods becomes
crucial.  Future  developments  may  focus  on  efficient
algorithms  that  can  handle  large-scale  data  without
compromising accuracy.

• Integration of  contextual  data: Beyond just  user
and  item  data,  incorporating  contextual  information
(like  location,  time,  social  context)  can  significantly
refine  recommendations.  Big  data  enables  the
aggregation and analysis of such contextual details.

• Visual  and  sensory  data  utilization: Future
recommendation  systems  might  incorporate  more
visual  and  sensory  data  (like  images,  videos,  and
sounds) to enhance item similarity measures, especially
in fields like fashion, art, and entertainment.

• Interactive and adaptive systems: The integration
of AI and big data can lead to more interactive systems
where  users  can  provide  real-time  feedback,  further
refining the recommendation process based on user and
item similarity.

• Blockchain  for  transparency  and  security:
Utilizing  blockchain  technology  can  increase
transparency  and  security  in  how  data  is  used  and
shared,  particularly  in  CF methods  involving  user  and
item similarities.
9.1.2　Hybrid and combined approaches
• Enhanced personalization through hybrid models:
By combining content-based and collaborative filtering
methods,  hybrid  approaches  can  offer  more
personalized  recommendations.  Future  systems  may
utilize  advanced  machine  learning  algorithms  to
understand  user  preferences  more  deeply,  even  in
sparse data scenarios.

• Integration  of  contextual  data: Hybrid  systems
can  be  enriched  by  integrating  contextual  information
like time, location, or specific user circumstances. This
context awareness can lead to more relevant and timely
recommendations, improving user experience.

• Utilization  of  deep  learning  techniques: The
integration  of  deep  learning  techniques  in  hybrid
recommendation  systems  can  lead  to  more
sophisticated  feature  extraction  and  better  handling  of
unstructured  data,  like  images  and  text.  This  could
result in accurate predictions.

• Cross-domain  recommendations: Future  hybrid
systems  may  effectively  leverage  cross-domain  data,
offering  users  recommendations  that  span  different
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types of services or products. This approach can lead to
discovering  new  user  interests  and  broadening  the
scope of recommendations.

• Real-time  data  processing: With  the  increasing
velocity of big data, real-time recommendation systems
will  become  more  prominent.  Hybrid  systems  could
combine  real-time  analytics  with  historical  data
analysis  to  provide  immediate  and  relevant
recommendations.

• Interactive  and  adaptive  systems: Future
recommendation  systems  might  become  more
interactive,  allowing  users  to  provide  feedback  that
instantly  adjusts  the  recommendation  logic.  This
adaptability  can  lead  to  a  continuously  improving  and
personalizing recommendation experience.

• Explainable  AI  in  recommendations: There  is  a
growing  demand  for  explainable  AI,  where  systems
can  provide  reasons  behind  their  recommendations.
Future  hybrid  models  could  incorporate  explainability
aspects,  making  recommendations  more  transparent
and trustworthy.

• Integration  with  emerging  technologies: Hybrid
recommendation  systems  could  be  integrated  with
emerging  technologies  like  Augmented  Reality  (AR),
Virtual Reality (VR), and the Internet of Things (IoT),
offering  unique  and  immersive  recommendation
experiences.
9.1.3　Deep learning methods
• Enhanced  personalization: Deep  learning  methods
can  analyze  vast  datasets  to  understand  nuanced  user
preferences,  leading  to  highly  personalized
recommendations.  This  goes  beyond  traditional
recommendation systems by considering a wider range
of user behaviors and interactions.

• Context-aware  recommendations:  Future
recommendation  systems  may  leverage  deep  learning
to  better  understand  the  context  in  which
recommendations are  made.  This  includes recognizing
the  user’s  current  environment,  time,  mood,  or  even
social  setting,  leading  to  more  appropriate  and  timely
suggestions.

• Sophisticated  content  analysis: Deep  learning
excels  in  interpreting  complex  content  like  images,
videos,  and  text.  This  capability  can  be  utilized  to
develop  recommendation  systems  that  understand
content  at  a  deeper  level,  providing  more  relevant
suggestions  based  on  the  content’s  inherent  qualities,
rather than just metadata.

• Predictive  user  modeling: By  harnessing  the
predictive  power  of  deep  learning  with  big  data,
recommendation systems can anticipate user needs and
preferences,  potentially  recommending  items  even
before the user explicitly expresses a desire for them.

• Overcoming  data  sparsity  and  cold  start
challenges: Deep  learning  can  effectively  deal  with
sparse data scenarios, such as when new users or items
have limited interaction history. Advanced models can
infer  preferences  from  limited  data,  significantly
improving the user experience from the start.

• Continuous  learning  and  evolution: Deep
learning models can be designed to continuously learn
and  adapt  over  time,  ensuring  that  recommendations
remain  relevant  as  user  preferences  and  behaviors
evolve.

• Multi-modal  data  integration: Future
recommendation  systems  might  integrate  and  analyze
data from multiple sources and types — including text,
images,  audio,  and  sensor  data — to  create  a  more
comprehensive understanding of user preferences.

• Resistance  to  manipulation: Deep  learning  can
help  in  detecting  and  countering  fraudulent  activities
like fake reviews and ratings, ensuring the integrity and
trustworthiness of the recommendations.

• Enhanced  collaborative  filtering: Incorporating
deep  learning  in  collaborative  filtering  methods  can
lead  to  a  more  nuanced  understanding  of  user-item
interactions,  improving  the  accuracy  of
recommendations.

• Real-time  recommendation  capabilities: The
processing power of deep learning models could enable
real-time  analysis  of  user  data,  allowing  for  instant,
dynamic  recommendations  based  on  current  user
activities.

• Integration  with  emerging  technologies: Deep
learning  methods  could  be  synergized  with  emerging
technologies  like  augmented  reality  and  virtual  reality
for creating immersive and interactive recommendation
experiences.
9.1.4　Algorithmic  and  mathematical  modelling

methods
• Advanced  statistical  models: Future
recommendation  systems  could  employ  more
sophisticated  statistical  models  to  analyze  big  data.
Techniques  like  Bayesian  networks  and  Markov
decision  processes  might  be  used  to  model  user
preferences  and  predict  future  behavior  more
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accurately.
• Complex  network  analysis: Utilizing  the

principles of network theory, recommendation systems
can analyze the intricate  web of  relationships between
users  and items.  By applying measures  like  centrality,
clustering coefficients, and community detection, these
systems  can  provide  more  nuanced  and  relevant
recommendations.

• Optimization  techniques: The  use  of
mathematical  optimization,  such  as  linear
programming,  integer  programming,  and  constraint
programming,  can  enhance  the  efficacy  of
recommendation  systems.  These  methods  can  help  in
balancing  multiple  objectives,  like  maximizing
relevance  while  ensuring  diversity  in  the
recommendations.

• Graph-based  mathematical  models: Developing
new  graph-based  algorithms,  perhaps  inspired  by
recent  advances  in  graph  theory,  could  lead  to  more
effective  ways  of  understanding  and  leveraging  the
connections  between  users  and  items  in
recommendation systems.

• Quantitative  behavioral  models: Mathematical
models that quantify and predict human behavior, such
as  those  based  on  theories  of  consumer  choice  or
decision-making  processes,  can  be  integrated  into
recommendation  systems.  These  models  can  provide
deeper  insights  into  why  users  prefer  certain  items,
leading to more effective recommendations.

• Game theory and mechanism design: Employing
concepts  from  game  theory  and  mechanism  design
could  enhance  the  way  recommendation  systems
handle  interactions  and  competitions  among  multiple
stakeholders (e.g., users, providers, advertisers).

• Differential  equations  for  dynamic  modeling:
Using differential equations to model the dynamic and
evolving nature of user preferences and item popularity
can  offer  a  realistic  representation  of  the
recommendation.

• Multi-Criteria  Decision  Analysis  (MCDA):
MCDA  methods  can  be  applied  to  consider  various
criteria  that  users  might  have  for  recommendations,
providing  a  more  holistic  approach  to  generating
suggestions.

• Quantum  algorithms  for  data  processing:  The
potential  of  quantum  computing  in  processing  large
datasets  could  revolutionize  recommendation  systems.
Quantum  algorithms  could  handle  complex

computations  much  faster  than  traditional  methods,
allowing for real-time analysis of vast amounts of data.

• Integration  of  explainable  AI  (XAI): With  the
increasing  complexity  of  algorithms,  incorporating
XAI  into  recommendation  systems  will  be  crucial  for
transparency and user trust. Users could understand the
rationale  behind  recommendations,  which  is
particularly important in sensitive areas like healthcare
or finance.

9.2　Ethics and bias perspectives

9.2.1　Potential biases in recommendation systems
• Data  bias:  Biases  in  data  collection  can  lead  to
skewed  recommendations,  often  reflecting  societal
biases  or  underrepresentation  of  certain  groups.  To
address  this,  future  systems  might  focus  on  proactive
measures such as inclusive data sourcing and enhanced
demographic  analysis  to  ensure  a  wide  representation
of diverse populations. This could involve partnerships
with  organizations  representing  marginalized
communities to gather more inclusive datasets.

• Algorithmic bias: Algorithms designed for specific
goals,  like  maximizing  engagement,  can  inadvertently
promote  polarizing  content  or  misinformation.  Future
strategies  could  include  the  implementation  of  ethical
guidelines  in  algorithm  design,  emphasizing  the
balance between user engagement and the promotion of
diverse,  accurate  content.  Additionally,
interdisciplinary  teams  comprising  ethicists,
sociologists,  and  data  scientists  could  be  formed  to
oversee  the  ethical  implications  of  algorithmic
decisions.
9.2.2　Mitigating strategies and best practices
• Diverse  data  sets: Using  diverse  and  representative
datasets  helps  reduce  bias.  This  could  be  further
enhanced  by  employing  techniques  like  synthetic  data
generation  to  fill  gaps  in  underrepresented  areas,
ensuring  a  broader  spectrum  of  user  preferences  and
behaviors is captured.

• Regular  algorithm  auditing: Audits  can  identify
and mitigate biases by testing algorithms across various
groups  and  scenarios.  Future  systems  could  adopt
continuous  monitoring  frameworks,  using  AI-driven
tools to detect and address bias in real-time, rather than
relying on periodic audits. This proactive approach can
quickly adapt to emerging biases or changes in societal
norms.

• Fairness  algorithms: Developing  algorithms  to
promote  fairness  can  counteract  biases  in  data  and
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predictions.  Future  perspectives  could  see  the
integration  of  fairness  as  a  core  component  in  the
algorithmic design process, rather than an afterthought.
This might involve the use of fairness metrics that are
regularly updated to reflect evolving societal standards
and values.

• User  feedback  mechanisms: Allowing  user
feedback and control over data usage can lead to more
balanced,  user-centric  systems.  In  the  future,  systems
might  offer  more  granular  control  to  users  over  their
data,  including  the  ability  to  opt-in  or  out  of  specific
data  collection  practices.  Additionally,  incorporating
direct  user  feedback  into  the  recommendation
algorithm  itself  can  provide  a  more  dynamic  and
responsive  system  that  aligns  closely  with  individual
preferences and values.

10　Conclusion

This  survey  paper  has  addressed  the  existing  gaps  in
the literature on big data algorithms in recommendation
systems  by  providing  a  detailed  and  comprehensive
analysis  coupled  with  an  innovative  hierarchical
taxonomy. The taxonomy, characterized by its tri-level
hierarchy,  categorizes  algorithms  into  four  main
analysis  types—user  and  item  similarity  based
methods,  hybrid  and  combined  approaches,  deep
learning  and  algorithmic  methods,  and  mathematical
modeling  methods—further  broken  down  into  sub-
categories  and  techniques.  This  structured  framework
facilitates  a  clearer  understanding  of  the  relationships
and distinctions among various algorithms.

The  survey’s  unique  contribution  lies  in  its
methodical  approach,  combining  empirical  and
experimental  evaluations  to  rank  these  algorithms
within their  respective categories  and techniques.  This
dual  evaluation  system  not  only  distinguishes  the
techniques based on specific criteria but also enables a
nuanced  comparison  within  the  same  category  and
technique,  offering  valuable  insights  into  their
effectiveness.

By  addressing  the  previous  shortcomings  in  the
literature—namely,  the  lack  of  an  up-to-date,  detailed
overview  and  the  broad,  imprecise  categorization  of
algorithms—this  paper  paves  the  way  for  more
accurate  and  systematic  research  in  the  field.  The
findings  from  this  survey  are  poised  to  aid  future
research,  providing  a  clearer  direction  for  the
development  and application of  big data  techniques in

recommendation systems, while highlighting areas ripe
for future exploration and advancement.

Here  is  an  outline  of  the  main  findings  from  our
experimental evaluation:

• Content-based filtering shows good scalability and
effectiveness  in  sparse  data  scenarios  but  tends  to
create a “filter bubble”.

•  Item-based  collaborative  filtering  excells  in
precision  but  struggles  with  cold-start  problems  and
data scalability.

•  Matrix  factorization  algorithms  outperform  others
in  high  data  sparsity  situations,  though  they  are
sensitive  to  hyperparameter  settings  and  faced
scalability challenges.

•  User-based collaborative filtering and graph-based
models demonstrate high precision, especially in sparse
interaction contexts,  but  have  limitations  in  scalability
and dataset density.

•  Rule-based models  are  fast  and precise  in  specific
scenarios  but  less  effective  with  large  and  diverse
datasets.

•  Context-aware  models,  attention  and  memory
network models,  and neural  graph-based models  show
significant  improvements  in  precision  and  handling
sparse datasets.

•  Autoencoders  and  RNNs  are  effective  in  learning
complex patterns and sequential user behaviors, though
they  face  challenges  in  computational  complexity  and
scalability.

•  Convolutional  operations-based  models  balance
precision  with  scalability  but  require  higher
computational resources.

•  Self-attention  models  excell  in  precision  and
scalability but have limitations in handling diverse user
interests.

• Algorithmic and mathematical modeling algorithms
efficiently  process  large,  sparse  datasets,  maintaining
quick  response  times  and  minimal  computational
demands.  Each  algorithmic  approach  exhibits  unique
advantages in specific  contexts,  underscoring the need
for  careful  selection  and  optimization  based  on  the
specific  requirements  of  the  recommendation  system
being developed.
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