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A B S T R A C T

Geopolitical instability is exacerbating the risk of catastrophic cyber-attacks striking where defences are weak.
Nevertheless, cyber-attack trend forecasting predominantly relies on human expertise, which is susceptible
to subjectivity and potential bias. As a solution, we have recently presented a novel study that harnesses
machine learning for long-term cyber-attack forecasting. Building upon this groundwork, our research advances
to the next level, by predicting the disparity between cyber-attack trends and the trend of the relevant
alleviation technologies. The proposed approach applies key constructs of Protection Motivation Theory while
introducing a proactive version of the theory. Our predictive analysis aims to offer strategic insights for the
decision of investment in cyber security technologies. It also provides a sound foundation for the strategic
decisions of national defence agencies. To achieve this objective, we have expanded our dataset, which
now encompasses records spanning 42 distinct cyber-attack types and various related features, alongside
data concerning the trends of 98 pertinent technologies, dating back to 2011. The dataset features were
meticulously curated from diverse sources, including news articles, blogs, government advisories, as well
as from platforms such as Elsevier, Twitter, and Python APIs. With our comprehensive dataset in place,
we construct a graph that elucidates the intricate interplay between cyber threats and the development of
pertinent alleviation technologies. To forecast the graph, we introduce a novel Bayesian adaptation of a
recently proposed graph neural network model, which effectively captures and predicts these trends. We further
demonstrate the efficacy of our proposed features in this context. Furthermore, our study extends its horizon
by generating future data projections for the next three years, encompassing forecasts for the evolving graph,
including predictions of the gap between cyber-attack trends and the trend of the associated technologies.
As a consequential outcome of our forecasting efforts, we introduce the concept of ‘‘alleviation technologies
cycle’’, delineating the key phases in the life cycle of 98 technologies. These findings serve as a foundational
resource, offering valuable guidance for future investment and strategic defence decisions within the realm of
cyber security related technologies.

1. Introduction

Over the past decade, there have been numerous waves of cyber-
attacks with varying extent of damages to governments, organisations,
and enterprises (Ghafur et al., 2019; Linkov et al., 2023). While reactive
cyber-defences (Gaurav et al., 2022) may not prevent these incidents
from happening, they can possibly reduce the resulting damage. By
leveraging the availability of data, a proactive defence strategy can
be implemented to address potential cyber threats before they escalate
into actual incidents (Goel, 2011). Similar proactive approaches also
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have proven effective in mitigating non-cyber threats like terrorism
and military attacks. For instance, with the aid of advanced software
programs, it is now possible to assess the intentions, potential dam-
ages, attack methods, and alternative options associated with terrorist
attacks (Kebir et al., 2022). We posit that the same proactive approach
can be applied to cyber-attacks.

The primary motivation of this work lies in the critical need for
accurate and objective forecasting of cyber threats over the foresee-
able future. In today’s digital landscape, cyber-attacks are becoming
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increasingly sophisticated and prevalent. Hence, the ability to antic-
ipate and prepare for future threats ahead of time is paramount for
effective cyber security management. The long-term forecast of cyber
threats provides cyber security agencies sufficient time to assess ex-
isting defence measures and identify areas where preventive solutions
can be developed proactively. However, existing methods for long-term
prediction of cyber threats often rely on subjective assessments made by
human security experts (Stephens, 2008; Adamov and Carlsson, 2017).
This human-centric approach is inherently prone to bias influenced
by individual perspectives and lacks the scalability required to handle
the growing complexity of cyber threats. Moreover, relying solely on
human expertise offers no guarantee of accuracy or reliability, as there
is no ‘‘safety in numbers’’ when it comes to expert judgement (Shoufan
and Damiani, 2017). Consequently, there is a pressing need for a
fully automated procedure that can provide scientifically objective
predictions based on quantitative metrics (Cha and Hao, 2022). Such
an approach enhances the credibility and reliability of threat forecasts.

In our previous work (Almahmoud et al., 2023), we conducted the
first study on the long-term cyber-attack trend forecasting, employ-
ing a fully automated approach. Nonetheless, achieving an informed
decision-making process in the context of technology investment for the
mitigation of these forthcoming threats necessitates a more forward-
looking perspective (Kuwahara, 1999). This perspective encompasses
the discernment of the divergence between the trajectory of cyber
threats and Pertinent Alleviation Technologies (PATs). For instance, be-
ing able to predict a substantial future disparity between the trajectory
of an attack and the corresponding technical solution empowers us to
make judicious choices regarding our investments. Consequently, we
can prioritise our defence strategies based on these predictive insights.

Our work advances the Protection Motivation Theory (PMT)
(Rogers, 1975), by addressing specific gaps in the literature related to
its application in cyber security forecasting frameworks. While PMT has
been extensively applied in various domains to understand individuals’
responses to threats and the adoption of protective measures (Tsai
et al., 2016; Ruthig, 2016; Alshammari et al., 2024), its integration
into proactive cyber security methodologies has been limited. This
study fills this gap by directly incorporating PMT principles into the
development of a proactive framework for cyber threat prediction and
mitigation.

One of the core components of PMT is threat appraisal, which
involves assessing the severity and vulnerability associated with a
threat (Rogers, 1975). In the context of cyber security, our study
employs a data-driven approach to analyse and forecast trends in cyber
threats, thereby providing a quantitative and proactive assessment of
the evolving landscape of cyber-attacks. Also, by leveraging big data
analytics, we move beyond the traditional reliance on subjective expert
assessments. This unbiased and systematic threat appraisal aligns with
PMT’s emphasis on understanding perceived threats and enhances our
ability to anticipate future cyber threats more accurately.

Another essential aspect of PMT is the appraisal of coping strate-
gies (Rogers, 1975), which evaluates the efficacy of available measures
to mitigate perceived threats. Our study extends this principle by
forecasting the trends of PATs and assessing their disparity with rel-
evant cyber threats. By analysing and predicting the development and
effectiveness of these technologies, we provide insights into how well
current and emerging solutions can address future cyber threats. This
proactive appraisal of coping strategies ensures that organisations can
strategically invest in and develop technologies that are most likely to
be effective, thus aligning with PMT’s focus on motivating protective
behaviours based on the perceived efficacy of coping mechanisms.

Moreover, our work bridges the gap between psychological theories
and technical methodologies in cyber security. By integrating PMT prin-
ciples into a machine-based forecasting framework, we demonstrate the
applicability of PMT beyond its traditional domains, such as health
psychology, into the domain of cyber security. This interdisciplinary
approach enriches the theoretical framework of PMT and highlights

its practical relevance in guiding proactive cyber defence strategies.
Our study is guided by the principle that understanding psychological
motivations and perceptions can significantly enhance the effectiveness
of technical solutions in cyber security, thereby contributing to the
broader application and advancement of PMT.

Overall, we advance PMT by proposing a proactive version that
extends the traditional PMT’s focus on current threats and coping
strategies to include future forecasting. By evaluating anticipated cy-
ber threats and relevant alleviation technologies, our approach en-
hances individuals’ and organisations’ confidence and preparedness.
This proactive stance fosters sustained protection motivation and facil-
itates strategic investment and planning, ensuring long-term resilience
against cyber threats. This contribution not only enriches the theo-
retical framework of PMT but also provides practical implications for
developing more effective and forward-looking protective behaviours.

Out of 42 attack types analysed in our previous work, we classified
26 as emerging or rapidly increasing (Almahmoud et al., 2023). These
classifications were made based on the findings of our prior research,
indicating the urgency and significance of these threats in the cyber
security landscape. In this study, we have selected these 26 threats for
detailed examination due to their heightened importance and potential
impact on cyber security. Emerging and rapidly increasing threats
pose the highest risk as they have the propensity to escalate quickly
and cause significant harm to individuals, organisations, and critical
infrastructure. Compared to other categories, such as declining threats,
these emerging and rapidly increasing threats are more critical because
they represent ongoing challenges that demand immediate attention.
By focussing our analysis on these critical threats, we aim to provide
actionable insights that enable policymakers to prioritise their cyber
security efforts effectively and timely.

For instance, emerging threats include adversarial attacks and deep-
fakes, which exploit vulnerabilities in machine learning (ML) algo-
rithms to manipulate data or deceive systems for malicious purposes.
Adversarial attacks involve the deliberate manipulation of input data
to fool ML models, leading to misclassification or incorrect deci-
sions (Zeng et al., 2020). Deepfakes, on the other hand, utilise artificial
intelligence to generate highly realistic but fabricated images, videos,
or audio recordings, often for spreading disinformation or conducting
fraud (Chadha et al., 2021). Another emerging threat is ransomware
attack, which encrypts critical data or systems and demand payment
for their release, causing substantial financial losses and operational
disruptions to targeted organisations (Ghafur et al., 2019). Addressing
such emerging threats is crucial as failure to do so could precipi-
tate their proliferation, which leads to severe consequences such as
compromised data integrity, reputational damage, financial losses, and
disruptions to essential services.

Rapidly increasing threats include a wide array of attacks, such as
Distributed Denial of Service (DDoS), and insider threats, which have
demonstrated a notable escalation in frequency or severity (Wueest,
2014; Almahmoud et al., 2023). DDoS attacks flood targeted systems
or networks with an overwhelming volume of traffic, rendering them
inaccessible to legitimate users and disrupting services (Wueest, 2014).
Insider threats involve individuals within an organisation exploiting
their access privileges or knowledge to compromise security, steal
sensitive information, or sabotage operations (Yuan and Wu, 2021).
Being prepared to counter these rapidly increasing threats before they
escalate is imperative as neglecting to do so may exacerbate their
prevalence, potentially resulting in significant harm such as prolonged
service disruptions, compromised data confidentiality, and loss of trust
in organisational security measures.

The PATs identified for each of these threats are essential compo-
nents of comprehensive cyber security defence strategies. For instance,
technologies such as Anomaly Detection, ML/DL, and Intrusion Detec-
tion/Prevention Systems (IDS/IPS) are instrumental in detecting and
mitigating adversarial attacks and deepfakes by identifying anoma-
lous patterns or behaviours indicative of malicious activity (National
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Academies of Sciences, Engineering et al., 2019; Shao et al., 2022).
Similarly, measures such as Access Control, Data Loss Prevention, and
User Behaviour Analytics are crucial for addressing insider threats by
monitoring and controlling access to sensitive resources and detecting
aberrant behaviours or unauthorised activities (Singh et al., 2020).

By forecasting the trend of the emerging and rapidly increasing
threats, our study aims to provide actionable insights into evolving
cyber threats and inform proactive risk management strategies. By
adopting this approach, organisations can effectively prioritise their
cyber security efforts, judiciously allocate resources, and implement
targeted measures to mitigate emerging risks before they escalate into
significant threats. Furthermore, by predicting the trend of PATs tai-
lored to specific attack vectors, organisations can anticipate future gaps
between each threat and its corresponding PATs. This foresight enables
them to make informed investment and strategic defence decisions,
ultimately strengthening their resilience against evolving cyber threats
and more effectively safeguarding their assets, data, and operations.

In this work, we construct a comprehensive graphical representation
known as the Threats and Pertinent Technologies graph (TPT). This
graph links cyber threats with their respective PATs. The connections
between threats and PATs are established through edges, with the
weight of each edge quantifying the gap between the trend of these
interconnected nodes. To accomplish the construction of this graph, we
employ a semi-automated methodology, utilising the capabilities of the
Generative Pre-trained Transformer (GPT) model (GPT, 2023), in con-
junction with Elsevier Application Programming Interface (API) (API,
2023). This approach facilitates the extraction of PATs associated with
each threat. Furthermore, we acquire the monthly trend data for each
threat node by leveraging news, blogs, and government advisories
data, allowing us to tally the number of monthly incidents. Also, for
each PAT node, we use Elsevier platform to retrieve the monthly
mentions of that PAT, thereby augmenting the dataset proposed in
our prior work (Almahmoud et al., 2023). Our methodology extends
to the development of a new Bayesian variation of the Graph Neural
Network (GNN) model, building upon the framework introduced in
the study by Wu et al. (2020). This enhanced model is deployed for
the purpose of forecasting the TPT graph over a forthcoming 3-year
period, while addressing inherent model uncertainties. The ultimate
goal of this endeavour is to provide insightful recommendations for
future investments in the cyber threat landscape. In addition to the
aforementioned contributions, our analysis extends to the introduction
of a novel concept called the Alleviation Technologies Cycle (ATC),
which delineates the principal phases within the life cycle of 98 PATs.
The contributions of this paper are highlighted below:

• We constructed the graph of 26 emerging and rapidly increas-
ing threats and their PATs, through a semi-automated approach
using GPT-3 model and Elsevier API. A novel algorithm called
Extractive GPT (E-GPT) which prompts GPT-3 to extract PATs
from Elsevier research documents is presented.

• We used big data sources, such as news, blogs, government advi-
sories (Passeri, 2022), Elsevier research documents (Visser et al.,
2021), Twitter tweets (Twitter, 2023), and the Python Holidays
package (holidays, 2022), to expand upon the dataset introduced
in Almahmoud et al. (2023). This expansion includes incorporat-
ing monthly trends of 98 PATs from Elsevier, covering the years
2011 to 2022. Additionally, we included recent trends in cyber
threats from news articles and blogs, as well as other features
related to wars and conflicts from Twitter and public holidays up
to the end of 2022.

• We built a novel Bayesian variation of the Multivariate Time-
series Graph Neural Network model (B-MTGNN) proposed in Wu
et al. (2020) to forecast the graph while addressing the epistemic
uncertainty.

• We provided 3 years forecast for the TPT graph, followed by an
analysis and categorisation of future gaps, along with recommen-
dations for future investment and defence strategies.

• We proposed the first ATC, illustrating the state of 98 PATs in the
coming 3 years, and identifying the key phases in the life cycle of
these PATs.

• We provided comparative analysis to show the effectiveness of
the proposed model over traditional models and the importance
of the features in our dataset.

The remainder of this paper is organised as follows. Section 2
provides a comprehensive overview of existing literature on the topic.
Section 3 describes the framework design and development and the
building of the proposed model. Section 4 describes our results in-
cluding the forecast of the graph, our future recommendations, and
the proposal of the ATC. Comparative analysis that illustrates the
effectiveness of the proposed model and the features in our dataset is
provided in Section 5. Section 6 discusses the implications of this work
for both research and practice, and addresses its limitations. Finally,
Section 7 concludes the paper and suggests directions for the future
work.

2. Literature review

To the best of our knowledge, this study represents the pioneering
exploration of a machine-based approach to forecast the disparity be-
tween cyber threats and their PATs. It marks the inaugural application
of the MTGNN model to address this challenge. In the subsequent
sections, we provide an overview of relevant research in this domain.

2.1. Theoretical framework

The PMT serves as a robust theoretical framework for understand-
ing individuals’ responses to perceived threats and their adoption of
protective measures (Norman et al., 2015). Originating from the field
of health psychology, PMT has been widely applied in various domains,
including cyber security (Tsai et al., 2016), to elucidate the cognitive
processes underlying risk perception and risk management strategies.

Proposed by Rogers in 1975, PMT was initially developed to explain
how individuals respond to health-related threats, such as illness or dis-
ease (Rogers, 1975). Building upon earlier theories of fear appeals and
cognitive appraisal, PMT posits that individuals engage in protective
behaviours when they perceive a threat to be sufficiently severe and
when they believe that recommended actions are effective in reducing
that threat. Over the years, PMT has evolved to encompass a broader
range of threats, including those posed by cyber-attacks and online
security breaches (Loukaka and Rahman, 2017).

At the core of PMT lies the concept of threat appraisal, wherein in-
dividuals assess the severity and vulnerability associated with a threat.
In the context of cyber security, this involves analysing historical data
and current trends to evaluate the evolving landscape of cyber threats.
Unfortunately, experience has shown that human experts tend to show
poor inter-rater agreements when exposed to raw data (Shoufan and
Damiani, 2017). On the other hand, leveraging big data analytics en-
ables the quantification of the severity and likelihood of various cyber-
attacks, ranging from malware infections to sophisticated phishing
campaigns (Almahmoud et al., 2023; Werner et al., 2017). Through this
comprehensive threat assessment, emerging patterns can be identified,
facilitating anticipation of future cyber threat trends.

PMT emphasises individuals’ evaluation of the efficacy of available
coping strategies in mitigating perceived threats. In the field of cy-
ber security, coping strategies include a wide array of technological
measures and behavioural interventions. Existing literature explores the
effectiveness of cyber security technologies, such as IDS and encryption
protocols, in combating identified cyber threats (Oggier and Mihaljević,
2013; Vinayakumar et al., 2017). Additionally, research investigates
the role of user education and training programmes in enhancing cyber
security awareness and promoting safe online behaviours (Sharma and
Thapa, 2023). By examining the perceived effectiveness of these coping
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strategies, insights can be gained to inform the development of targeted
interventions to enhance cyber-defence mechanisms.

Research in the field of cyber security has extensively utilised the
PMT to understand and improve individuals’ adherence to security
protocols. One work investigated employees’ compliance with organ-
isational security policies (Loukaka and Rahman, 2017), emphasising
the significance of self-efficacy and response efficacy in motivating
protective actions. Results indicated that employees are more likely
to adhere to security policies when they perceive the outcomes and
procedures as rewarding and convenient. Another work demonstrated
that PMT-based training effectively increased students’ threat knowl-
edge and self-efficacy, consequently influencing their cyber security
behaviour (Khan et al., 2023). These findings highlight the importance
of emphasising self-efficacy in cyber security training programmes,
suggesting a promising avenue for educators to develop cyber security
practices among students and employees.

Recent studies have further explored the application of PMT in
diverse cyber security contexts. One work addressed the motivations
of organisational insiders for self-protection (Vrhovec and Mihelič,
2021), emphasising the mediating role of perceived threats in shaping
protection motivation. Another work investigated the motivations of
entrepreneurs in adopting preventive measures against cyber threats
(Bekkers et al., 2023), revealing the complex relationship of factors
such as perceived severity, vulnerability, and subjective norms. Other
research underscored the importance of user-centred approaches in en-
hancing cyber security practices, advocating for tailored interventions
and acknowledging individual differences among users (Dodge et al.,
2023). Moreover, recent research has explored the influence of employ-
ees’ emotions on cyber security motivation, integrating PMT with other
frameworks to offer new insights into the role of emotions in cyber
security (Alshammari et al., 2024). These studies collectively highlight
the multifaceted nature of protection motivation in cyber security and
underscore the importance of tailored interventions and collaborative
approaches to effectively improve cyber security practices.

Despite the richness of existing literature in applying PMT to cyber
security, a critical gap emerges regarding the direct integration of PMT
into proactive cyber threat forecasting methodologies. None of the
existing studies explicitly link PMT to forecasting threats, thus limiting
our understanding of how psychological motivations can inform pre-
dictive models and algorithms for anticipating emerging cyber threats.
This gap hampers progress in enhancing cyber security preparedness
and resilience, as proactive approaches to threat forecasting remain
underexplored. Therefore, there is a pressing need to bridge this gap
by incorporating PMT into forecasting frameworks, thereby providing
a holistic understanding of individuals’ responses to cyber threats.

There is also a lack of application of key principles of the PMT,
including threat appraisal and coping strategies appraisal, in the design
and development of proactive frameworks aimed at predicting and
mitigating cyber threats. While past research has extensively investi-
gated these PMT principles and their application in various problem
domains, they have yet to be systematically applied in the context
of cyber security trend forecasting. Our work addresses this gap by
directly integrating PMT principles into the development of a proactive
framework for cyber threat prediction and mitigation. As a result, the
proposed approach is expected to enhance the effectiveness and success
of cyber security strategies.

Importantly, traditional PMT focusses on current perceptions of
threat severity and vulnerability. Our approach enhances this by fore-
casting future cyber threats, enabling individuals and organisations to
anticipate and prepare for these threats ahead of time. This foresight
improves the perceived relevance and urgency of potential threats,
maintaining a high level of perceived vulnerability and severity over
time. Also, while current PMT evaluates present coping mechanisms, a
proactive PMT includes the assessment of emerging and future allevia-
tion technologies. By identifying and investing in these technologies in
advance, individuals and organisations can ensure they are equipped

with the most effective tools and strategies to counteract anticipated
threats. This proactive stance boosts response efficacy and self-efficacy,
as confidence in future protective measures is reinforced.

Adopting a data-driven version of PMT as the basis for our research
framework provides a comprehensive understanding of individuals’ re-
sponses to cyber threats. By assessing the intensity of future threats and
bridging gaps with relevant mitigation technologies through continuous
evaluation and informed investments, individuals will have confidence
in the effectiveness of security measures and will engage in proactive
actions to improve cyber security preparedness and resilience. This
integration can lead to the development of more robust cyber security
strategies that not only address current threats but also anticipate and
mitigate future risks based on psychological motivations.

2.2. Cyber threat forecasting

We categorised cyber threat forecasting based on the prediction
timeframe into three main categories. These are long-term (years
ahead) (Almahmoud et al., 2023), midterm (months ahead) (Okutan
et al., 2019; Liu et al., 2015), and short-term (hours ahead) (Husák
and Kašpar, 2019; Husák et al., 2021). The practicality and usefulness
of each category depend on the specific objectives and the context of
cyber security efforts. Each category has its own set of advantages and
challenges as outlined below:

• Long-term Predictions (Years Ahead): Long-term predictions are
crucial for strategic planning, policy formulation, and setting
cyber security standards. They help organisations and govern-
ments anticipate major trends in cyber threats, such as the rise
of new types of malware or attack vectors, enabling proactive
development of defence mechanisms (Almahmoud et al., 2023).
By understanding potential future threats, organisations can al-
locate resources more effectively, investing in the development
of new technologies, training, and infrastructure improvements
that will be most relevant in the face of anticipated threats.
Yet, a primary challenge with long-term predictions is the high
level of uncertainty. The cyber threat landscape evolves rapidly
due to technological advancements, changes in attacker tactics,
and geopolitical developments (Okutan et al., 2019). Long-term
predictions may become outdated quickly, requiring continuous
monitoring and adjustment.

• Midterm Predictions (Months Ahead): Midterm predictions are
valuable for operational planning, including the deployment of
specific security measures, conducting targeted training sessions,
and performing security drills or simulations based on anticipated
attack scenarios. Organisations can adjust their security postures
based on midterm predictions, fine-tuning firewalls, intrusion
detection systems, and response protocols to guard against ex-
pected threats (Bilge et al., 2017). However, the accuracy of
midterm predictions can be affected by sudden changes in at-
tacker behaviour or the emergence of unforeseen vulnerabili-
ties (Almahmoud et al., 2023). These predictions require a bal-
ance between specificity and adaptability.

• Short-term Predictions (Hours Ahead): Short-term predictions are
critical for immediate threat detection and response. They can
enable real-time security measures, such as blocking an immi-
nent attack or isolating affected systems to prevent the spread
of malware. Predictions over shorter timeframes can be more
precise and actionable, leveraging real-time data analytics and
machine learning models to identify and respond to threats as
they emerge (Husák and Kašpar, 2019). Nevertheless, short-term
predictions require extensive monitoring and data analysis ca-
pabilities. The high volume of false positives and the need for
rapid, automated decision-making systems can be challenging to
manage (Almahmoud et al., 2023).
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Table 1
Cyber-attack forecasting - Literature review summary and our contribution.

Ref. Problem domain Forecast period Forecast coverage Methods

Werner et al.
(2017, 2018)

Forecast attack count 1–7 days Multiple targets ARIMA model

Okutan et al.
(2019)

Forecast attack count Months Organisation Unconventional signals, lagged feature
selection, concept drift training

Munkhdorj and
Yuji (2017)

Forecast attack motivation and
opportunity

1 week 1 target Social media analysis, SVM, CNN

Goyal et al.
(2018)

Forecast attack count 1 week or month Organisation Digital traces, ARIMA, ARIMAX, LSTM

Qin and Lee
(2004)

Predict next attack in the chain N/A 1 target Bayesian network

Husák and
Kašpar (2019)

Predict intrusion detection alerts Minutes or hours Organisation Stream processing, sequential rule mining

Liu et al. (2015) Forecast if a data breach will
occur

Months Organisation Externally measurable features, Random
Forest

Malik et al.
(2020)

Reconnaissance detection N/A N/A LSTM, CNN

Bilge et al.
(2017)

Forecast if a machine will be
infected

Months Machine Binary file analysis, semi-supervised learning

Husák et al.
(2021)

Forecast if an IP address will
attack

24 h N/A Entity reputation and scoring, decision trees

Ours Forecast cyber-attack trends 3 years 36 countries Big data, multivariate time series
analysis, graph neural network

Most of the existing studies on cyber threat forecasting focus on pre-
dicting the attacks in the short and midterm (Werner et al., 2017, 2018;
Okutan et al., 2019; Munkhdorj and Yuji, 2017; Goyal et al., 2018; Qin
and Lee, 2004; Husák and Kašpar, 2019; Liu et al., 2015; Malik et al.,
2020; Bilge et al., 2017; Husák et al., 2021), such as predicting the
expected number of attacks within a few hours, days, or months. Most
of this research is conducted within limited settings, such as against a
specific entity or organisation (Okutan et al., 2019; Bilge et al., 2017;
Munkhdorj and Yuji, 2017). Some approaches utilise statistical methods
assuming parametric data distributions (Werner et al., 2017, 2018),
while others employ ML models (Goyal et al., 2018). Compared to sta-
tistical methods, ML can capture complex relationships to provide more
accurate predictions. It is also possible to utilise a hybrid-approach
to improve the prediction performance (Athanasopoulou et al., 2021).
Bayesian methods have also been employed, constructing event graphs
to estimate the conditional probability of an attack based on a given
chain of events (Qin and Lee, 2004). However, these techniques rely
on predefined attack graphs and are incapable of addressing previously
unseen attacks. Other approaches aim to predict the source of the attack
using network entity reputation and scoring (Husák et al., 2021). A
growing body of research focusses on the utilisation of external features
or warning signals to forecast cyber threats using ML. These features
include the number of mentions of a victim on Twitter (Okutan et al.,
2019) or in the news articles (Munkhdorj and Yuji, 2017), or represent
digital traces from dark web forums (Goyal et al., 2018). Table 1
provides a summary for the related work on cyber-attack forecasting
and highlights our contribution.

Given the reactive nature of past cyber defence approaches and
the limited predictive capabilities of existing tools, long-term pre-
dictions offer significant value in shifting towards a more proactive
cyber security posture. Long-term predictions are essential for strategic
decision-making and guiding the development of future-proof security
technologies.

2.3. Technology forecasting

Many of the existing work on technology forecasting rely on the
judgement of human experts or adopt semi-automated approach
(GRAY, 2001; Adomavicius et al., 2008; Li et al., 2019; Chandra and
Collis, 2021). The early work forecasted future generations of tools

and technologies based on human imagination and creativity (GRAY,
2001). This is possible by exploring the idea that many of the high
technology products we use today were once conceptualised in science
fiction before becoming a reality through technological advancements.
In Adomavicius et al. (2008), a technology ecosystem model was intro-
duced, which offers analysts a tool to navigate the intricate relation-
ships among technologies. The model aids in dissecting the interplay of
various factors influencing technological change, enhancing technology
forecasts, investments, and development decisions. More recently, Li
et al. (2019) proposed a framework that utilises scientific papers and
patents as data sources, while incorporating text mining and expert
judgement techniques to predict technology trends.

The Gartner Hype Cycle (GHC) is a graphical representation and
methodology that helps organisations understand the maturity and
adoption of technologies over time (Chandra and Collis, 2021). It was
developed by the research and advisory firm Gartner, Inc (Gartner,
2023). The GHC is based on the premise that technologies go through
predictable stages of enthusiasm, disillusionment, and eventual adop-
tion. It was derived from observing and analysing the patterns of
technology adoption and understanding how people perceive and adopt
new technologies. Gartner’s analysts study the life cycle of various tech-
nologies, their visibility, and their market expectations to position them
on the GHC. Table 2 summarises the existing work on technological
forecasting compared to our approach.

2.4. Time series forecasting with graph neural networks

Time series forecasting with GNNs has been heavily applied in
the domain of traffic prediction (Yu et al., 2017; Guo et al., 2019).
In Yu et al. (2017), a deep learning framework called Spatio-Temporal
Graph Convolutional Networks (STGCN) was developed for learning
spatio-temporal correlations by modelling multi-scale traffic networks.
In Guo et al. (2019), dynamic spatial temporal correlations were stud-
ied through the use of spatial–temporal attention mechanism. Other
methods jointly learn inter-series correlations and temporal dependen-
cies in the spectral domain, by combining Graph Fourier Transform
(GFT) and Discrete Fourier Transform (DFT) (Cao et al., 2020).

A recent study introduced a generic GNN model for forecasting mul-
tivariate time series data (Wu et al., 2020), applicable across various
domains. The model includes a graph learning layer capable of learning
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Table 2
A comparison between existing approaches to technology forecasting and our
approach.

Ref. Problem domain Approach Methods

GRAY
(2001)

Forecast future
generations of tools
and technologies

Human-based Human imagination
and creativity

Adomavicius
et al.
(2008)

Understand
evolution in
technology
ecosystems

Human-based Navigating the
complex relationships
among technologies

Li et al.
(2019)

Forecast technology
trends

Semi-automated Text mining and
expert judgement

Chandra
and Collis
(2021)

Understand the
maturity and
adoption of
technologies over
time

Human-based Observation and
analysis by human
expert

Ours Forecast the trend
of cyber threat
related
technologies

Machine-based Big data,
multivariate time
series analysis,
graph neural
network

the hidden adjacency matrix in the graph using latent representation
of nodes. In addition, the model includes temporal convolution mod-
ules and graph convolution modules interleaved with each other for
learning both the temporal and the spatial dependencies in the graph.
The model was evaluated on multiple datasets and was shown to be
effective compared to the state-of-the-art baselines. In our work, we
propose the Bayesian variation of this model which expresses the model
uncertainty, and apply the model in the cyber security domain. Table 3
summarises the existing GNN models for time series forecasting and
highlights our contribution.

3. Methods

3.1. Research model

Our research model includes a comprehensive framework designed
to forecast the trend of cyber threats and PATs in the long-term,
providing actionable insights for proactive risk management strategies.
The model integrates various components, including data collection,
graph construction, forecasting methodology, and analysis of future
trends. Here, we outline the key elements of our research model:

3.1.1. Data collection
The foundation of our research model lies in the extensive collection

and expansion of data related to cyber threats and PATs. We utilise
diverse big data sources such as news articles, blogs, government
advisories, Elsevier research documents, Twitter data, and public hol-
idays to gather information spanning from 2011 to 2022. This dataset
includes monthly trends of 26 cyber threats and 98 PATs in addition to
external features, providing a robust basis for analysis.

3.1.2. Graph construction
We construct the TPT graph, linking emerging and rapidly increas-

ing cyber threats with their corresponding PATs. The graph facilitates
visual representation of the relationships between threats and tech-
nologies, with edges quantifying the gap in trend trajectories. The
identification of the edges involves leveraging the GPT model to iden-
tify the set of PATs relevant to each threat. The identification of the
gap value involves labelling each node with its trend value from our
dataset and labelling each edge with the trend difference between its
connected nodes.

Table 3
A comparison between existing GNN models for time series forecasting and our
model.

Ref. Model Description Domain

Yu et al.
(2017)

Spatio-Temporal
Graph Convolutional
Network (STGCN)

Learns
spatio-temporal
correlations by
modelling
multi-scale
traffic networks.

Traffic

Guo et al.
(2019)

Attention based
Spatial–Temporal
Graph Convolutional
Network (ASTGCN)

Learns dynamic
spatial temporal
correlations
using
spatial–temporal
attention
mechanism.

Traffic

Cao et al.
(2020)

Spectral Temporal
Graph Neural
Network (StemGNN)

Learns
inter-series and
temporal
dependencies in
the spectral
domain using
GFT and DFT.

Traffic, energy, ECG

Wu et al.
(2020)

Multivariate
Time-series Graph
Neural Network
(MTGNN)

Jointly learns
the adjacency
matrix and the
spatial and
temporal
dependencies.

Traffic, energy,
exchange

Ours Bayesian
Multivariate
Time-series Graph
Neural Network
(B-MTGNN)

Jointly learns
the adjacency
matrix and the
spatial and
temporal
dependencies,
and expresses
model
uncertainty.

Cyber security

3.1.3. Forecasting methodology
To forecast the TPT graph over a forthcoming 3-year period, we

develop a novel Bayesian variation of the MTGNN model (B-MTGNN).
This enhanced model addresses inherent uncertainties and leverages
the framework introduced by Wu et al. (2020). By incorporating both
historical trend data and current observations, the forecasting method-
ology provides insights into future cyber threat landscapes and identi-
fies potential gaps between threats and PATs.

3.1.4. Analysis and recommendations
The final stage of our research model involves analysis of forecasted

trends and formulation of actionable recommendations. We categorise
future gaps between threats and PATs, prioritise defence strategies,
and suggest investments based on predictive insights. Additionally, we
introduce the Alleviation Technologies Cycle (ATC), delineating the life
cycle phases of PATs and offering strategic guidance for cyber security
management.

Our research model contributes significantly to the field of cy-
ber threat forecasting and proactive risk management. By integrating
automated data collection, graph-based representation, advanced fore-
casting techniques, and strategic analysis, the model offers a holistic
approach to addressing evolving cyber security challenges.

3.2. Forecasting framework

The framework’s architecture for forecasting cyber threats and PATs
is shown in Fig. 1. As illustrated in the figure, our framework leverages
a variety of unstructured data sources to gather all relevant information
and extract valuable insights. Among these sources, the news, blogs,
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Fig. 1. The workflow and architecture of forecasting cyber threats and pertinent alleviation technologies. NoI: Number of Incidents, NoM: Number of mentions, ACA: Armed
Conflict Areas, PH: Public Holidays, PT: Pertinent Technology, WFC: Word Frequency Counter, TFC: Tweet Frequency Counter, HFC: Holiday Frequency Counter, DES: Double
Exponential Smoothing, TPT: Threats and Pertinent Technologies, PTC: Pertinent Technologies Cycle.

and government advisories’ websites play a crucial role, providing an
extensive collection of textual data on major cyber-attacks (approxi-
mately 18,000 incidents) since July 2011. The monthly count of attacks
represents the ground truth of the attacks’ trend, and is denoted as the
Number of Incidents (NoI). Furthermore, by utilising Elsevier API, we
gained access to a vast repository of scientific articles from numerous
sources. Through this API, we acquired the Number of Mentions (NoM)
for each attack type and each PAT, which indicates their frequency in
scientific publications, typically on a monthly basis. This NoM feature
is particularly significant as it serves as a reliable reference for attack
types that may not be present in other sources and also represents
the ground truth of the PATs’ trend. During the initial research phase,
we thoroughly examined all potential features and identified a strong
correlation between wars and political conflicts and the occurrence of
cyber-events. To capture this information, we extracted relevant tweets
using the Twitter API, specifically focussing on the number of tweets
about Armed Conflict Areas/Wars (ACA). Finally, considering that cyber-
attacks often coincide with holidays, we employed Python’s Holidays
package to obtain the count of public holidays per month for each
country, denoted as Public Holidays (PH).

For the extraction of NoI, the data preparation phase, as illus-
trated in Fig. 1, starts by collecting and arranging all incidents in a
tabular format including the date and attack type in addition to the
description and country. This is followed by noise reduction through
the handling of missing values, particularly in the earlier years. Here,
imputation techniques were employed, utilising information from the
description column or external sources such as reliable articles found
through Google searches to supplement missing country data. Next,
quantification of the textual data involved the implementation of a
Word Frequency Counter, tallying the occurrences of each attack type
per month for each country. Finally, cumulative aggregation facilitated
the calculation of attack counts per month for all countries collectively
(36 countries).

Prior to extracting NoM, we extracted the PATs by prompting GPT
to extract relevant technologies to each attack type from Elsevier

abstracts and also through a direct prompt to GPT. We then queried
Elsevier API to collect the research documents relevant to each attack
type and each extracted PAT. This was followed by running a Python
script to obtain NoM for each attack type and each PAT per month
within the collected documents.

The extraction of ACA from Twitter involved designing a script that
included a query for collecting all tweets about wars and political con-
flicts relevant to each of the 36 countries in the study and during each
month. A Tweet Frequency Counter was then used to count the number
of such tweets for each individual country per month, followed by a
cumulative aggregation to obtain the total number of tweets per month.
The extraction of PH was done by writing a Python script including a
Holiday Frequency Counter to obtain the number of public holidays per
month for each country followed by a cumulative aggregation to obtain
the total number of holidays per month.

While we focus in this study on 26 emerging and rapidly increasing
threats, our monthly dataset includes the trend of 42 attack types in 36
countries, in addition to 98 PATs. Based on the above, we obtain the
following columns for each month:

• NoI_C: The number of incidents for each attack type in each
country (42 × 36 columns) [News, blogs, government advisories].

• NoI: The total number of incidents for each attack type (42
columns) [News, blogs, government advisories].

• NoM_A: The number of mentions of each attack type in research
articles (42 columns) [Elsevier].

• NoM_P: The number of mentions of each alleviation technology
in research articles (98 columns) [Elsevier].

• ACA_C: The number of tweets about wars and conflicts related to
each country (36 columns) [Twitter].

• ACA: The total number of tweets about wars and conflicts (1
column) [Twitter].

• PH_C: The number of public holidays in each country
(36 columns) [Python].
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• PH: The total number of public holidays (1 column) [Python].

In the aforementioned list of columns, the name enclosed within
square brackets denotes the source of data. By matching and combining
these columns, we derive our monthly dataset, wherein each row
represents a distinct month. Further details about the data acquisition
process can be found in our previous work (Almahmoud et al., 2023).

To gain insights into the dataset’s main characteristics, an ex-
ploratory analysis was conducted. This analysis involved visualisations
to identify key patterns such as trends, seasonality, correlated features,
missing data, and outliers. Seasonal data was smoothed to unveil un-
derlying trends while mitigating noise, employing double exponential
smoothing (Lai et al., 2006).

In terms of modelling, B-MTGNN was constructed. The MTGNN
model has been successfully applied to traffic prediction among other
problems (Wu et al., 2020). The model captures both temporal and spa-
tial dependencies in the graph through temporal convolution and graph
convolution layers and can additionally learn hidden relationships be-
tween nodes using a graph learning layer. Learning such relationships
is useful for improving prediction performance. This is in contrast to
relying on fixed, pre-assumed relationships between the nodes. We
demonstrate this improvement experimentally in Section 5.

The proposed Bayesian variation of the MTGNN model treats the
model weights as random variables, allowing for the quantification of
epistemic uncertainty through approximate Bayesian inference. Epis-
temic uncertainty quantifies the prediction error resulting from insuffi-
cient information (Mae et al., 2021) and can be reduced by acquiring
more samples and informative features. The overall model development
phase produced an operational model that can be readily used for
forecasting the TPT graph. The performance of this model in predicting
the trends up to 36 months in advance was evaluated. The model was
ultimately used to forecast future trends and provide investment and
strategic defence recommendations based on the predicted disparities
between threats and PATs. Moreover, the analysis of past and future
trends facilitated the development of the ATC. This was achieved
through the categorisation of the trends and the analysis of their slope
and direction.

3.3. Graph construction

The TPT graph consists of nodes representing the threats and PATs,
supplemented by other feature nodes during the modelling step. The
value of the node represents the trend level (NoI for threats and NoM
for PATs). The edges link each threat to its PATs. The edge weight
represents the gap between the threat trend and the connected PAT’s
trend. Formally, we define 𝑇 as the total number of rows or months in
the dataset, 𝑁 as the total number of columns or features, and 𝐷 as the
feature dimension, which is set to 1 in our case. Let 𝑡 denote the threat
and 𝑝 denote the PAT. The gap between 𝑡 and 𝑝 in a given month 𝑚 is
given by the following formula,

G𝑡,𝑝(𝑚) =
𝑁 𝑜𝐼𝑚,𝑡

max𝑖∈,𝑢∈ 𝑁 𝑜𝐼𝑖,𝑢
−

𝑁 𝑜𝑀𝑚,𝑝

max𝑖∈,𝑣∈ 𝑁 𝑜𝑀𝑖,𝑣
(1)

where 𝐍𝐨𝐈 ∈ R𝑇×𝑁threats and 𝑁 𝑜𝐼𝑚,𝑡 represents the trend of threat 𝑡 in
month 𝑚. Similarly, 𝐍𝐨𝐌 ∈ R𝑇×𝑁pats and 𝑁 𝑜𝑀𝑚,𝑝 represents the trend
of PAT 𝑝 in month 𝑚. Also,  is the set of all threats,  is the set of all
PATs, and  is the set of all months.

The formula normalises the node value over the maximum NoI in
the dataset in the case of threats, and over the maximum NoM in the
dataset in the case of PATs. This normalisation approach is crucial as
it effectively bridges the significant scale disparities between NoI and
NoM. The resulting gap value falls within the range −1 to 1, with a
positive gap denoting a relatively lower research effort compared to the
number of incidents, while a negative gap signifies a higher research ef-
fort. Ideally, the gap value should approach zero to indicate a balanced
alignment between research efforts and incident occurrences.

In our study, we focus on the emerging and rapidly increasing
threats identified in Almahmoud et al. (2023) based on past and future
analysis, since these threats require the highest attention when invest-
ing in related technologies, compared to the other declining threats.
The threats in our study are shown in Table 4.

To extract the PATs of each threat, we propose the E-GPT algo-
rithm shown in Algorithm 1. Given a threat 𝑡, the algorithm starts
by collecting relevant abstracts from Elsevier database. These abstracts
include technology related keywords along with 𝑡. The second step is to
iteratively prompt the GPT model to extract PATs from each abstract.
The prompt to GPT contains an example for an expected answer in
order to improve the performance. Given that there are many abstracts
and many keywords that could be returned, the ranking of the PATs
is then performed to obtain the top 𝑛 PATs. In our study, we set 𝑛
to 10. The ranking is done by considering the frequency defined as
the number of times the PAT was returned by GPT. Intuitively, we
give higher priority to the PATs with higher frequency. Within the
same frequency groups, we perform a secondary ranking that prioritises
the PATs that appear closely to technology-related keywords in the
abstract, such as the word ‘‘solution’’. This is done by computing the
minimum distance within the abstract between the PAT and any of the
keywords that belong to a predefined list of keywords 𝑆. The average
distance is kept track of since a PAT can be returned multiple times by
GPT. This secondary ranking is motivated by the fact that technology
terms are frequently mentioned in close proximity to other keywords
in the text. When they appear further in the text, they are more likely
to be irrelevant.

One important benefit of the extractive method is to ensure that the
returned PATs reflect the state-of-the-art, since GPT can be outdated.
Another benefit is controlling the source of information to ensure data
reliability. However, to obtain more general answers and improve the
accuracy, the list of PATs for each threat is further appended with an
additional list that we obtain by asking GPT a direct question (e.g.,
What are the PATs to 𝑡?). Finally, manual adjustment by human experts
is performed to filter out irrelevant terms or add missing PATs. The
final list of threats and PATs in the graph is shown in Table 4. The
PATs abbreviations table can be found in Fig. 5.

Algorithm 1: Extractive GPT
input : Threat 𝑡, number of PATs 𝑛, number of abstracts 𝑏, list

of technology related keywords 𝑆

output: top 𝑛 PATs to 𝑡

1  = {}set, 𝑓 𝑟𝑒𝑞 𝑢𝑒𝑛𝑐 𝑦 = {}dict, 𝑚_𝑑 𝑖𝑠𝑡𝑎𝑛𝑐 𝑒 = {}dict

2  = Query_Elsevier_for_PATs_Abstracts(𝑡, 𝑏)
3 for 𝑎 in  do

4  = Prompt_GPT_to_Extract_PATs(𝑡, 𝑎)
5 for 𝑝 in  do

6 𝑓 𝑟𝑒𝑞 𝑢𝑒𝑛𝑐 𝑦[𝑝]++
7 𝑚_𝑑 𝑖𝑠𝑡𝑎𝑛𝑐 𝑒[𝑝] = avg_min_distance(𝑝, 𝑆 , 𝑎)
8  =  ∪

9 sort  by 𝑓 𝑟𝑒𝑞 𝑢𝑒𝑛𝑐 𝑦 in descending order
10 sort by 𝑚_𝑑 𝑖𝑠𝑡𝑎𝑛𝑐 𝑒 in ascending order within the same

frequency groups

11 return {𝑝1, 𝑝2,… , 𝑝𝑛} where 𝑝𝑖 ∈  for 𝑖 = 1 to 𝑛

3.4. Model development

To forecast the TPT graph, we developed a Bayesian variation of the
MTGNN model proposed by Wu et al. (2020). This model was originally
introduced as a general framework for forecasting multivariate time
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Table 4
Threats and pertinent alleviation technologies in our study.

Threat Type Pertinent alleviation technologies

Account Hijacking RI AC, AD, CAPTCHA, CR, IDS/IPS, IdM, LP, MFA, ML/DL, NLP/LLM, PT, SM
Adversarial Attack E AD, AdT, BN, DA, DD, DP, DR, DS, ML/DL, NI, NLP/LLM, OD, RRAM, SS, TAI
APT RI AC, DLP, DRM, DT, GT, IDS/IPS, LP, MFA, ML/DL, NLP/LLM, NS, PT, RA, UBA
Backdoor RI AD, DAS, IDS/IPS, ML/DL, PT, SA
Botnet RI AD, BC, BH, BT, CAPTCHA, GM, GT, HP, IDS/IPS, ML/DL, NLP/LLM, PF, PT, RC, RL, SDN, TS
Brute Force Attack RI CAPTCHA, CR, DBI, IDS/IPS, MFA, ML/DL, OTP, PH, PT
Cryptojacking E BT, ML/DL, PT, TA
DDoS RI BC, BH, BT, IDS/IPS, ML/DL, NLP/LLM, PF, PT, RC, RL, TS
Data Poisoning E AD, AdT, BN, DP, DS, ML/DL, NLP/LLM, OD, TAI
Deepfake E 3DFR, AD, BO, DW, LD, ML/DL, NLP/LLM
Disinformation RI BC, CA, DLT, DP, DT, GT, HG, IR, ML/DL, NLP/LLM, SI
DNS Spoofing RI BC, CR, DNSSEC, ML/DL, PT, RA
Dropper RI AW, CS, FIM, IDS/IPS, ML/DL, NLP/LLM, PT, SBX
Insider Threat RI AC, AD, AM, AT, CR, DLD, IDS/IPS, KD, LP, ML/DL, MTD, NLP/LLM, PT, UBA
IoT Device Attack E AD, BC, CR, IDS/IPS, IdM, MFA, ML/DL, MS, PT, SB
Malware RI AC, AD, AW, BBD, BC, CR, CS, DAS, DB, DM, DT, FIM, FV, GT, HP, IDS/IPS, ML/DL, NLP/LLM, PMT, PT, SA, SB, SBX, SHMM, SMF, VK
MITM RI BC, CAPTCHA, CP, CR, ML/DL, PKI, PT, SSL/TLS, SSP, VPN
Password Attack RI CAPTCHA, CR, GA, IDS/IPS, MA, MFA, ML/DL, NLP/LLM, OTP, PH, PM, PP, PSM, PT
Phishing RI AC, BT, CR, DT, MA, MFA, ML/DL, NLP/LLM, PKI
Ransomware E AC, AD, AW, BC, CR, DAS, DB, DT, IDS/IPS, ML/DL, NLP/LLM, PMT, PT, SA, SHMM
Session Hijacking RI AD, CA, CR, Https, IBE, ML/DL, PT, SAT, SM, SSL/TLS
Supply Chain Attack RI AC, AD, BC, CR, IdM, ML/DL, NLP/LLM, PT, SCRM
Targeted Attack RI AC, DRM, DT, GT, IDS/IPS, LP, MFA, ML/DL, NLP/LLM, NS, PT, RA, UBA
Trojan RI AD, BBD, CR, FV, GT, IDS/IPS, ML/DL, NLP/LLM, PT, SMF
Vulnerability RI CFI, IDS/IPS, ML/DL, NLP/LLM, PMT, PT, SC, SIEM, VA, VM, VS
Zero-day RI AD, DT, FIM, GT, IDS/IPS, ML/DL, NLP/LLM, PrP, VM, VPN

The list of attack types in the Threat column are the emerging and rapidly increasing threats identified in Almahmoud et al. (2023) based on past and future analysis. These
threats require the highest attention when investing in related technologies, compared to the other declining threats. In the Type column, RI refers to the rapidly increasing threats
and E refers to the emerging threats. The list of PATs for each attack type was extracted using Algorithm 1. The PATs abbreviations table can be found in Fig. 5.

series, while leveraging state-of-the-art graph neural network compo-
nents. The model’s efficacy was extensively examined and validated
across various datasets from different domains (Wu et al., 2020).

Within the context of our research, we apply the aforementioned
model to the task of TPT graph forecasting. Furthermore, we enhance
its capabilities by addressing the epistemic uncertainty inherent in the
model’s forecasts. This augmentation allows the model to articulate and
quantify its uncertainty during the prediction process, a valuable asset
when confronted with limited data or when seeking a measure of the
model’s confidence in its predictions (Gal and Ghahramani, 2016).

The developed model is depicted in Fig. 2. The first component in
the model is the graph learning layer, which aims to adaptively learn
the adjacency matrix in the graph. The learning process is designed in
such a way that the resulting adjacency matrix leads to more accurate
predictions in terms of node values. This approach is more effective
than assuming predefined relationships since these can be hidden,
unclear, or difficult to quantify. In our scenario, there are additional
feature nodes beyond the threats and PATs, including NoM of the
threats, ACA, and PH. The connections between these nodes and the
threat/PAT nodes are not predefined. Therefore, we opt to let the model
learn these hidden links and their weights within the graph.

Given randomly initialised node embeddings 𝐄1, 𝐄2 ∈ R𝑁×𝑉 ,
where 𝑉 is a hyper-parameter denoting the node dimension, the graph
learning layer extracts uni-directional relationships by computing the
adjacency matrix 𝐀 ∈ R𝑁×𝑁 as follows,

𝐌1 = tanh(𝛼𝐄1Θ1) (2)

𝐌2 = tanh(𝛼𝐄2Θ2) (3)

𝐀 = ReLU(tanh(𝛼(𝐌1𝐌𝑇
2 −𝐌2𝐌𝑇

1 ))) (4)

𝐀[𝑖,−argtopk(𝐀[𝑖, ∶])] = 0,∀𝑖 ∈ [𝑁] (5)

where Θ1, Θ2 ∈ R𝑉 ×𝑉 are model parameters, 𝐌1, 𝐌2 ∈ R𝑁×𝑉 , 𝛼 is
a hyper-parameter for controlling the saturation rate of the activation
function, and argtopk(.) returns the index of the top 𝑘 closest nodes

Fig. 2. The B-MTGNN model learns the adjacency matrix of the graph through the
graph learning layer, while capturing temporal and spatial dependencies using temporal
and graph convolution modules. The dilation factor d increases exponentially with the
increase in the number of layers m at the rate of q. The red arrows indicate the use
of dropout during inference to approximate a Bayesian model. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

to be selected as neighbours. This selection strategy makes the adja-
cency matrix sparse while reducing the computation cost of the graph
convolution (Wu et al., 2020).

The graph convolution module aims to fuse a node’s information
with its neighbours’ information to capture the spatial dependencies.
As shown in Fig. 2, it consists of two mix-hop propagation layers for
processing inflow and outflow information for each node. The mix-hop
propagation layer mainly consists of two steps. The first step is the
information propagation step defined as follows,

𝐇(𝑘) = 𝛽𝐇𝑖𝑛 + (1 − 𝛽)�̃�𝐇(𝑘−1) (6)

where 𝐇(𝑘) ∈ R𝐵×𝐶×𝑁×𝑂. Here, 𝐵 is the batch size, 𝐶 is the number of
convolution channels, and 𝑂 is the last dimension of the output from
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the previous layer. 𝛽 is a hyper-parameter for controlling the amount
of information to be retained from the root node’s original states, and
𝐇𝑖𝑛 ∈ R𝐵×𝐶×𝑁×𝑂 denotes the input hidden states from the previous
layer. The second step is the information selection step given by the
following formula,

𝐇𝑜𝑢𝑡 =
𝐾
∑

𝑘=0
𝐇(𝑘)𝐖(𝑘) (7)

where 𝐇𝑜𝑢𝑡 ∈ R𝐵×𝐼×𝑁×𝑂 denotes the output hidden states of the current
layer, where 𝐼 is a hyper-parameter that denotes the number of residual
channels. 𝐾 is the propagation depth, and 𝐖(𝑘) ∈ R𝐼×𝐶 is a feature
selector for controlling what to be retained from the original node’s
information. Further details about these steps can be found in Wu et al.
(2020).

As shown in Fig. 2, the temporal convolution module captures the
temporal dependencies by utilising dilated inception layers. Given that
the receptive field increases exponentially with the increase in the
number of layers, the dilation strategy is employed to handle large
sequences while reducing the model complexity (Oord et al., 2016). The
inception strategy is used to handle temporal patterns with different
ranges by using filters with multiple sizes (Szegedy et al., 2015).
Formally, given a sequence input 𝐳 ∈ R𝑇in and four filters of the form
𝐟1×2 ∈ R2, 𝐟1×3 ∈ R3, 𝐟1×6 ∈ R6, and 𝐟1×7 ∈ R7, the dilated inception
layer takes the following form,

𝐳 = concat(𝐳 ⋆ 𝐟1×2, 𝐳 ⋆ 𝐟1×3, 𝐳 ⋆ 𝐟1×6, 𝐳 ⋆ 𝐟1×7) (8)

Let 𝑑 denote the dilation factor. The dilated convolution denoted by
𝐳 ⋆ 𝐟1×𝑘 is defined as follows,

𝐳 ⋆ 𝐟1×𝑘(𝑡) =
𝑘−1
∑

𝑠=0
𝐟1×𝑘(𝑠)𝐳(𝑡 − 𝑑 × 𝑠) (9)

Since we have relatively short time series within our refined data
(i.e., 138 monthly data points between July 2011 and December 2022),
it is vital to extract the model’s uncertainty. Deterministic neural
network models that do not involve randomness are insufficient for
this task, since they offer single-point predictions of model parame-
ters. Instead, we employ a Bayesian approach to capture epistemic
uncertainty. Specifically, we employ the Monte Carlo dropout method
proposed by Gal and Ghahramani (2016), who showed that the use of
dropout neurons during inference provides a Bayesian approximation
of the deep Gaussian processes. The use of dropout mask in our model
during inference is highlighted in red arrows (Fig. 2). Therefore, during
the prediction phase, the trained model runs multiple times, which
results in a distribution of prediction (representing the uncertainty)
rather than a single point (Fig. 3).

3.5. Experimental settings

In our experimental setup, we partitioned the dataset into three
distinct subsets: 43% for training, 30% for validation, and 27% for
testing. This allocation was carefully chosen to ensure that ample
data was available for rigorous testing of the model’s performance.
Specifically, our model’s input comprises 10 months of historical data,
corresponding to 10 time steps, while the output encompasses forecasts
for the subsequent 36 months. This forecasting framework constitutes
a multi-horizon approach, wherein predictions are made for multiple
future time steps simultaneously.

Our experimental findings support the utilisation of a non-
autoregressive approach in our forecasting methodology. Training the
model to predict multiple time steps concurrently, without depen-
dence on previously generated predictions, yielded higher accuracy and
more comprehensive pattern capture. Unlike autoregressive models,
our approach solely utilises past observed values for forecasting the
subsequent months. By avoiding reliance on prior predictions, our
model mitigates the error propagation problem, leading to enhanced
forecasting accuracy and efficacy (Taieb et al., 2010).

3.6. Hyper-parameter optimisation

We performed a random search with 60 iterations, in order to
find the set of hyper-parameters that produces the model with the
lowest validation error. Random search is a simple method for hyper-
parameter optimisation, with several advantages including efficiency,
flexibility, and robustness. Extensive research in the literature has
demonstrated that this method outperforms grid search in numerous
cases (Bergstra and Bengio, 2012). For each set of hyper-parameters,
we trained the model using the mean absolute error (MAE) as the loss
function, and while using ADAM as the optimisation algorithm (Kingma
and Ba, 2014). The model then was validated by forecasting the graph
3 years in advance, and the average performance was recorded. Once
the set of hyper-parameters with the minimum error was found, we
assessed the model’s performance on the testing set and recorded the
corresponding error. As a last step, we employed the optimal hyper-
parameter settings to train the model using the entire dataset, followed
by generating forecasts for the forthcoming three years, extending up
to December 2025.

The first group of hyper-parameters includes the learning rate with
values that range from 1 × 10−4 to 1 × 10−2, the number of epochs
with values up to 200, the number of layers in the range 1 to 2, and
the dropout value between 0.2 and 0.7. Other hyper-parameters are
specific to the graph neural network including the graph convolution
depth in the range 1 to 3, the convolution channels in the range 4 to
16, the activation function controller 𝛼 (see Eq. (4)) within the range
of 0.05 to 9, and the information propagation controller 𝛽 (see Eq. (6))
ranging from 0.05 to 0.8. The range of these values was obtained from
the literature and online code repositories (Wu et al., 2020; Kim et al.,
2022).

3.7. Model evaluation

In the evaluation phase (validation and testing), we used two eval-
uation metrics namely the Root Relative Squared Error (RSE) and the
Relative Absolute Error (RAE) (Lai et al., 2018). These metrics compute
the model’s error relative to the error of a simple model that can predict
the average trend of each node. Formally, let 𝑌𝑗 ,𝑚 denote the actual
value in the test set of node 𝑗 during month 𝑚, and 𝑌𝑗 ,𝑚 denote the
predicted value, where 𝐘, �̂� ∈ R𝑁×𝑇test . Then, RSE and RAE are given
by the following formulas,

𝑅𝑆 𝐸 =

√

∑

(𝑗 ,𝑚)∈𝛺𝑇 𝑒𝑠𝑡 (𝑌𝑗 ,𝑚 − 𝑌𝑗 ,𝑚)2
√

∑

(𝑗 ,𝑚)∈𝛺𝑇 𝑒𝑠𝑡 (𝑌𝑗 ,𝑚 − mean(𝐘𝑗 ))2
(10)

𝑅𝐴𝐸 =

∑

(𝑗 ,𝑚)∈𝛺𝑇 𝑒𝑠𝑡 |𝑌𝑗 ,𝑚 − 𝑌𝑗 ,𝑚|
∑

(𝑗 ,𝑚)∈𝛺𝑇 𝑒𝑠𝑡 |𝑌𝑗 ,𝑚 − mean(𝐘𝑗 )|
(11)

These metrics provide readable evaluation, regardless the scale of
the data. For both metrics, the lower value is better.

The model validation results are provided in Fig. 3. As shown in
the figure, the predicted data points are aligned with the ground truth,
and the model is able to capture the time series patterns effectively.
For some nodes (e.g., NLP/LLM), we notice a slight increase in the
confidence interval as we move towards the later years, suggesting
less certainty about the prediction in those years. This increase in the
uncertainty can be reduced with more knowledge in terms of new
features or more samples (Almahmoud et al., 2023). Overall, in terms
of validation error, the average RSE computed over 142 nodes is 0.52,
and the average RAE is 0.66, which provides a noticeable improvement
over the benchmark model.
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Fig. 3. The B-MTGNN validation results of predicting threats and PATs from October, 2016 to September, 2019. (a) Password Attack with RAE = 0.37. (b) NLP/LLM with RAE
= 0.53. (c) Data Backups with RAE = 0.51. The 95% confidence interval of the predicted distribution using the Bayesian approach is shown in pink colour. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Results

4.1. Trend forecast

The forecast of the cyber threats and their PATs in the coming
3 years is provided in Fig. 4. Here, we focus on the most important
threats for which there will be a significant gap in the future with
the respective PATs based on the forecast, while including threats
from both categories (the rapidly increasing and emerging threats). We
also focus on the PATs that will likely have a positive gap with the
relevant threat. In other words, the PATs shown are those for which
the trend was forecasted to be below the trend of the relevant threat.
In Fig. 4, the gap area is visually represented using the same colour as
the corresponding PAT curve.

The malware attack stands out for having the most significant gaps
with respect to its PATs compared to other types of attacks. The forecast
illustrated in Fig. 4(a) indicates a considerable disparity reaching a
value of 0.8, and expected to persist over the next three years between
malware and various PATs, including Application Whitelisting, File
Integrity Monitoring, and Darknet Monitoring. Other PATs such as
Blockchain, Anomaly Detection, and ML/DL are also expected to trail
behind malware. However, the gaps of these PATs with respect to
malware are comparatively smaller, narrowing clearly in the case of
Blockchain, thanks to the recent growing body of research in these
fields (Kosmarski, 2020; Shaukat et al., 2020; Dwivedi et al., 2023).

The next concern is the vulnerability related attacks shown in
Fig. 4(b). Here, we observe a consistently widening gap with some
PATs including Standardised Communication, Security Information and
Event Management (SIEM), and Control Flow Integrity. Compared to
these PATs, Vulnerability Assessment and NLP/LLM are expected to be
more visible, even though the anticipated gaps are still large, exceeding
a value of 0.2.

Concerning the more recently emerging threats (Figs. 4(c) and 4(d)),
ransomware will likely exhibit gap values above 0.1 with respect to sev-
eral PATs including Application Whitelisting, Deception Technology,
and Data Backups, while having relatively smaller gaps with Access
Control and Anomaly Detection (below 0.05). The adversarial attack
is expected to have the largest gap of 0.09 with respect to Spatial
Smoothing, Defensive Distillation, and Noise Injection, and the smallest
gap with respect to NLP/LLM (around 0.05).

4.2. Trend categories

Our analysis for the future gaps between the threats and PATs
allowed us to categorise the gap trend into four main categories, as
shown in Tables 5 and 6. In these tables, PATs are listed in descending
order of the gap, while considering different types of threats and

Table 5
Widening gaps.

Strictly widening gaps

Threat PAT Gap forecast GD

2023 2024 2025

Vulnerability SC 0.202 0.218 0.244 ↑ ↑
Vulnerability SIEM 0.201 0.217 0.241 ↑ ↑
Vulnerability CFI 0.200 0.216 0.241 ↑ ↑
Account Hijacking LP 0.186 0.199 0.229 ↑ ↑
Account Hijacking SM 0.186 0.199 0.229 ↑ ↑
Account Hijacking MFA 0.182 0.195 0.226 ↑ ↑
Ransomware AW 0.146 0.149 0.170 ↑ ↑
Ransomware DT 0.146 0.149 0.169 ↑ ↑
Ransomware DB 0.146 0.148 0.169 ↑ ↑
IoT Device Attack MS 0.043 0.050 0.055 ↑ ↑
IoT Device Attack SB 0.043 0.049 0.054 ↑ ↑
IoT Device Attack MFA 0.039 0.046 0.052 ↑ ↑
Overall widening gaps

Threat PAT Gap forecast GD

2023 2024 2025

Malware AW 0.766 0.763 0.837 ↓ ↑
Malware FIM 0.766 0.763 0.836 ↓ ↑
Malware DM 0.766 0.763 0.836 ↓ ↑
Ransomware NLP/LLM 0.116 0.114 0.131 ↓ ↑
Adversarial Attack SS 0.080 0.079 0.088 ↓ ↑
Adversarial Attack DD 0.080 0.079 0.088 ↓ ↑
Adversarial Attack NI 0.079 0.078 0.087 ↓ ↑
Account Hijacking AC 0.074 0.068 0.086 ↓ ↑
Phishing AC 0.062 0.049 0.068 ↓ ↑
Ransomware AD 0.049 0.046 0.051 ↓ ↑
Deepfake 3DFR 0.047 0.046 0.051 ↓ ↑
Deepfake DW 0.046 0.045 0.049 ↓ ↑

Items are displayed in descending order of the gap. GD refers to the Gap Directions.
Please refer to Fig. 5 for the PAT abbreviations.

threat categories. Here, we computed the average gap in each year and
recorded the result for each of the three years (2023 to 2025).

The first category is the Strictly Widening Gaps (SWG) shown in
the first half of Table 5. These are the gaps that are predicted to be
consistently increasing between the years 2023 and 2025. Examples of
such gaps include the gaps between the vulnerability related threats
and each of Standardised Communication (SC), SIEM, and Control
Flow Integrity (CFI). Similarly, the gaps for IoT Device Attack with
respect to Merkle Signature (MS), Secure Boot (SB), and Multi-Factor
Authentication (MFA) are consistently widening, even though they
exhibit smaller values.

The second category is the Overall Widening Gaps (OWG) shown
in the second half of Table 5. These gaps are anticipated to increase
in the year 2025 compared to 2023, with expected fluctuations in
between. Among the top in the list are the gaps between malware
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Fig. 4. The forecast of the trend for four threats and their PATs. The period of the trend plots is between July, 2011 and December, 2025, with the period between January, 2023
and December, 2025 forecasted using B-MTGNN. The shown PATs are those for which the trend is predicted to be lower than the trend of the corresponding threat. The gaps are
highlighted in the same colour as the corresponding PAT curve. (a) Malware (b) Vulnerability (c) Ransomware (d) Adversarial Attack. The curves are smoothed using exponential
smoothing with 𝛼 = 0.1 to reduce the noise and capture the trend. The 95% confidence interval is shown for each trend prediction. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 6
Narrowing gaps.

Overall narrowing gaps

Threat PAT Gap forecast GD

2023 2024 2025

Malware CR 0.449 0.401 0.429 ↓ ↑
Ransomware AC 0.033 0.018 0.027 ↓ ↑
Deepfake NLP/LLM 0.017 0.011 0.012 ↓ ↑
MITM SSP 0.014 0.013 0.013 ↓ →
MITM PT 0.010 0.009 0.009 ↓ →
MITM VPN 0.007 0.006 0.006 ↓ →
APT UBA 14.2 × 10−4 7.1 × 10−4 9.5 × 10−4 ↓ ↑
APT NS 12.9 × 10−4 6.5 × 10−4 7.8 × 10−4 ↓ ↑
APT DLP 11.2 × 10−4 5 × 10−4 8.2 × 10−4 ↓ ↑
Disinformation CA 7.2 × 10−4 4.1 × 10−4 5.5 × 10−4 ↓ ↑
APT DT 8.1 × 10−4 2 × 10−4 4.1 × 10−4 ↓ ↑
APT LP 7.8 × 10−4 2.2 × 10−4 3.9 × 10−4 ↓ ↑
Strictly narrowing gaps

Threat PAT Gap forecast GD

2023 2024 2025

Malware EN 0.199 0.184 0.174 ↓ ↓
Malware BC 0.129 0.064 0.057 ↓ ↓
MITM PKI 0.006 0.004 0.003 ↓ ↓

and Application Whitelisting (AW), File Integrity Monitoring (FIM),
and Darknet Monitoring (DM). Other examples with smaller gap values
include the gaps between deepfake and each of 3 Dimensional Face
Reconstruction (3DFR) and Digital Watermark (DW).

Third is the Overall Narrowing Gaps (ONG) illustrated in the upper
part of Table 6. These gaps are likely to decrease in the year 2025
compared to their values in 2023, despite the expected fluctuations
in between. Among the top in the list are the gaps between malware
and Cryptography (CR) and between ransomware and Access Control
(AC). Examples with much smaller gap values include the gaps between
Advanced Persistent Threat (APT) and Deception Technology (DT), as
well as between APT and Least Privilege (LP).

The fourth and last category is the Strictly Narrowing Gaps (SNG).
As shown in the lower part of Table 6, these gaps are consistently
decreasing between the years 2023 and 2025. Examples include the
gaps between malware and each of Encryption (EN) and Blockchain
(BC), and the gap between Man-In-The-Middle attack (MITM) and
Public Key Infrastructure (PKI). It is worth noting that this category
comprises the fewest items, indicating the rarity of these gaps.

4.3. Recommendations

Our recommendations include the investment in the research and
development of the PATs with widening gaps with respect to the rele-
vant threats, which are listed in Table 5. These PATs can be prioritised
in the order of the table so that the PATs with wider gaps are given
higher priority. Similarly, the PATs in the SWG group should receive
higher attention compared to the PATs in the OWG group, since they
are more likely to persist this widening trend. It follows that the
investment in Standardised Communication (SC), SIEM, Control Flow
Integrity (CFI), Least Privilege (LP), and Session Management (SM) is
highly recommended (top five PATs in the SWG group). At the same
time, it is also important to consider the significant gap values observed
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in the OWG group, hence to invest in Application Whitelisting (AW),
File Integrity Monitoring (FIM), Darknet Monitoring (DM), NLP/LLM,
and Spatial Smoothing (SS). We note that the decision to invest in the
top five technologies in each category is only an example. Policymakers
may adjust this number according to their capacity and resources.

On the other hand, it is recommended that the PATs in the ONG and
SNG groups be given less priority when making an investment decision,
especially if they did not appear in the SWG or OWG groups. Here, less
priority can be given to the PATs with smaller gap values and PATs
with gaps that are consistently narrowing (SNG). Examples include
Encryption (EN), Blockchain (BC), and Public Key Infrastructure (PKI).
While these PATs play an important role in cyber security, the forecast
suggests that they are catching up with the trend of relevant threats
and it is time to consider additional technologies to effectively combat
evolving cyber threats.

4.4. Alleviation technologies cycle

Our large scale analysis for the PATs’ historical data and future
predictions spanning three years facilitated the development of a gen-
eralisable model that provides a comprehensive understanding of the
progression of these PATs as they transition through 5 phases, namely
the launch, growth, maturity, trough, and stability. This model is
referred to as the Alleviation Technologies Cycle (or ATC), which is
depicted in Fig. 5. During the launch phase, a new technology emerges
and is adopted by few agencies for a brief period. Subsequently, there is
a rapid surge in both the frequency and prominence of the technology
as more security agencies become acquainted with and adopt the new
PAT. Typically, PATs exhibit numerous variations in terms of speed of
progression. For most of the PATs, we observe a slow progression dur-
ing the growth phase compared to other types of technologies. This is
due to the presence of various challenges in the world of cyber security
including the resistance of attackers to the new security solution (Reddy
and Reddy, 2014). As the visibility reaches its peak, the PAT enters
the maturity phase, characterised by a sustained and stable pattern for
a short period of time. This is followed by a temporary decline into
the trough where enthusiasm diminishes as trials and executions fall
short of expectations. Based on the forecast, we identified two possible
troughs that the PAT can reach. One of these troughs is deeper than
the other, depending on the usability of the PAT and the demand for
it. Eventually, the PAT recovers and moves to either a higher or lower
plateau, depending on which trough it originated from. This recovery
takes place as additional examples showcasing how the technology can
advantage the organisation begin to solidify and gain broader compre-
hension. Within the plateaus, mainstream adoption accelerates as the
criteria for evaluating viability become more distinct, showcasing the
technology’s widespread market utility and effectiveness (Dedehayir
and Steinert, 2016).

As depicted in Fig. 5, the positioning of the PATs on the cycle
is determined by analysing their current trend slope, their historical
patterns, and their future projections. During the trough phase, PATs
exhibit either a trajectory towards the upper plateau or the lower
plateau. By leveraging the predicted trends, illustrated in Fig. 4, we
were able to indicate the future destination for some PATs near the
trough using distinct colours (blue or purple). For instance, Distributed
Ledgers Technology (DLT), Resistive Random-Access Memory (RRAM),
and Virtual Private Network (VPN) are displayed in blue colour, indi-
cating their likelihood of transitioning towards the upper plateau. It
is important to note that during the initial three phases, the ultimate
destination of a particular PAT, whether it will reach the upper or
lower plateau, often remains uncertain and challenging to predict, thus
denoted in grey. In addition, we distinguish each PAT by employing
distinct shapes, indicating their relevance to either rapidly increasing
or emerging threats (or possibly to both categories).

The ATC is similar to the well-known Gartner Hype Cycle (GHC)
(Dedehayir and Steinert, 2016), with some important differences. The

ATC has a slower rate of growth compared to GHC given that it is spe-
cific to the challenging field of cyber security, as previously mentioned.
Another notable distinction is the presence of two distinct troughs (and
two plateaus) in the ATC instead of a single trough observed in GHC.
This difference arises because the ATC is a specialised variant of GHC
designed specifically for the cyber security domain.

In the early stage of the growth phase, PATs are mostly related to
the emerging threats, as can be observed in Fig. 5. These PATs include
Defensive Distillation (DD), Deception Technology (DT), Trustworthy
AI (TAI), and Adversarial Training (AdT). In the later stages of the
growth phase, different types of PATs can be observed including those
relevant to the rapidly increasing threats. Examples include NLP/LLM,
Split Manufacturing (SMF), Certificate Pinning (CP), and Continuous
Authentication (CA). After the peak, and into the upper trough, we find
a combination of PATs (relevant to threats from different categories)
sliding down, including Distributed Ledgers Technology (DLT), Control
Flow Integrity (CFI), Static Analysis (SA), Dynamic Analysis (DAS),
and Data Augmentation (DA). On the upper plateau, most of the
PATs are relevant to the rapidly increasing threats including Session
Management (SM), Rate Limiting (RL), Activity Monitoring (AM), Rank
Correlation (RC), and Password Policy (PP). Many PATs are falling
into the lower trough, and those are mostly relevant to the rapidly in-
creasing threats. They include Supply Chain Risk Management (SCRM),
One Time Password (OTP), Domain Name System Security Extensions
(DNSSEC), and File Integrity Monitoring (FIM). On the lower plateau,
most of the PATs are relevant to the rapidly increasing threats. These
include Password Management (PM), Code Signing (CS), Data Loss Pre-
vention (DLP), Identity-based Encryption (IBE), and Behaviour-based
Detection (BBD).

5. Comparative analysis

5.1. Ablation study

In this section, we show experimentally the effect of our proposed
external features (NoM, ACA, and PH) on the performance of the
MTGNN model. In addition, we demonstrate the effectiveness of the
graph convolution layers and the graph learning layer. To this end, we
conducted multiple experiments to evaluate the performance of eight
different variations of the MTGNN model in predicting the trends up to
3 years in advance, while using unseen data. For each model variant,
we split the dataset into 70% training/validation and 30% testing. Each
model undergoes random search with 60 iterations to optimise the
set of hyper-parameters, and the final testing errors RSE and RAE are
averaged over 10 experiments.

The first four models (Table 7) do not utilise our external fea-
tures during the prediction and rather rely on the ground truth. The
first model does not include any graph convolution layer and only
performs temporal convolution. In the next three variations, we experi-
mented with models that utilise graph convolution layers including two
models that use a predefined adjacency matrix (uni-directional and bi-
directional variants), and one model that uses the adaptively learned
adjacency matrix through the graph learning layer. Intuitively, within
the uni-directional predefined adjacency matrix, the threat node points
to the relevant PAT node, since the threat often precedes the security
measure. In the case of bi-directional adjacency matrix, both types of
nodes point to each other. In the case of adaptive learning, we allow
the model to learn these relationships. We note that in the case of
predefined adjacency matrix, the edge weight is set to 1 or 0 (depending
on whether two nodes are connected), since it is challenging to identify
the level of relationship, which can be rather learned adaptively. This
relationship weight is only used during model training, and not to be
confused with the edge weight in the original graph, which represents
the gap (Eq. (1)).

The rest of four models utilise the external features with the fol-
lowing variations. The first model does not include any graph con-
volution layer and only performs temporal convolution. The second
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Fig. 5. The Alleviation Technologies Cycle (ATC). The PATs go through 5 stages, namely, launch, growth, maturity, trough, and stability. ATC captures the state of each PAT in
2023, where the colour of the PAT indicates which slope it would follow based on the model prediction until 2025 (e.g., blue: upper plateau or purple: lower plateau). The PATs
with unknown final destination are coloured in grey. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and third models utilise graph convolution layers with a predefined
adjacency matrix (uni-directional and bi-directional variants). In the
uni-directional variant, the feature node, such as ACA points to the
threat nodes (e.g., wars and conflicts precede the attack), and the
threat node points to the relevant PAT node. The fourth model employs
the graph learning layer along with the graph convolution layers to
adaptively learn the relationships in the graph.

The evaluation results are presented in Table 7. The use of the
external features made a significant difference, reducing the relative
error to a value below 1, which provides an improvement over the
simple model. The results also show that using graph convolution
leads to a lower error compared to relying solely on the temporal
convolution. In addition, we observe that the use of uni-directional pre-
defined adjacency matrix consistently resulted in a better performance
compared to the use of bi-directional variant. This is consistent with
the findings in Wu et al. (2020). However, the use of graph learning
layer to learn the adjacency matrix resulted in a better performance
than using any predefined adjacency matrix. This is explained by the

fact that the graph structure is not optimal and should be updated
during training (Wu et al., 2020). Overall, the best performance was
obtained when combining the graph convolution layers (in addition
to the temporal convolution layers), the graph learning layer, and the
external features. This justifies the use of these layers along with our
proposed features in our future forecast.

5.2. Comparative evaluation

5.2.1. MTGNN
We conducted a comprehensive comparative evaluation to assess

the performance of MTGNN against four established baseline models.
These are AutoRegressive Integrated Moving Average (ARIMA), Vector
AutoRegression (VAR), Long Short-Term Memory (LSTM), and Trans-
former Encoder-Decoder. Both ARIMA and VAR are statistical models
commonly used for time series analysis and forecasting (Thomakos and
Guerard, 2004). However, ARIMA is a univariate model, while VAR op-
erates in a multivariate context. LSTM and Transformer are ML models
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Table 7
Comparative evaluation for 8 variations of MTGNN.

Model RSE RAE

TCN 3.75 3.31

TCN, GCN with predefined adj. matrix (bi-directional) 3.25 2.98

TCN, GCN with predefined adj. matrix (uni-directional) 3.25 2.97

TCN, GCN with adaptively learned adj. matrix 3.20 2.89

TCN, external features 0.83 0.93

TCN, GCN with predefined adj. matrix (bi-directional),
external features

0.76 0.88

TCN, GCN with predefined adj. matrix (uni-directional),
external features

0.75 0.88

TCN, GCN with adaptively learned adj. matrix,
external features

0.73 0.85

TCN stands for temporal convolution and GCN stands for graph convolution.

commonly used for sequence-to-sequence prediction (Sutskever et al.,
2014; Song et al., 2021), and were evaluated both as univariate and
multivariate models. In contrast, MTGNN inherently operates as a mul-
tivariate model, leveraging its capacity to capture spatial relationships
among all features and adaptively learn their hidden relationships.

For each of the four baseline models, we trained separate models
to predict each feature in the dataset. This method aimed to facilitate
easier learning and convergence by reducing dimensionality. Univariate
models relied solely on the ground truth data for prediction (the
single feature at hand), while multivariate models integrated addi-
tional features. Here, we employed a domain-driven feature selection
approach, leveraging prior knowledge and assumptions to determine
which features to include in addition to the ground truth. For instance,
in models predicting NoI, additional features included external factors
(NoM, ACA, PH) alongside pertinent technologies (PATs). Conversely,
models predicting PATs incorporated relevant attack types as additional
features. In our experiment, each model underwent standardised data
partitioning, with approximately 70% allocated for training/validation
and 30% for testing. Model performance was assessed on the testing
set (unseen data). Random search with 30 iterations was employed to
optimise hyper-parameters for each model, and the final performance
was averaged over 5 experiments.

Analysis of the results, as depicted in Table 8, reveals MTGNN as
the top performer in terms of both RSE and RAE. With an RSE of 0.77
and RAE of 0.83, MTGNN demonstrates superior forecasting accuracy
compared to ARIMA, VAR, LSTM, and Transformer models, across both
univariate and multivariate settings. The notable performance enhance-
ment of MTGNN can be primarily attributed to its ability to adaptively
learn and capture intricate spatial relationships among features, while
effectively leveraging external information. While ARIMA and VAR
models display reasonable performance, LSTM and Transformer models
exhibit comparatively higher errors, indicating challenges in capturing
the underlying temporal dependencies. This underscores the advantage
of incorporating graph-based adaptive learning mechanisms, partic-
ularly in MTGNN, for time series forecasting tasks. Moreover, the
integration of external features further enhances MTGNN’s predictive
capabilities, underscoring its versatility and effectiveness in real-world
forecasting scenarios.

A notable trend observed from the comparative evaluation is the
consistent outperformance of univariate approaches over their mul-
tivariate counterparts across the four baseline models, as evident in
Table 8. With the exception of the MTGNN model, multivariate models,
including multivariate LSTM and Transformer, consistently exhibited
higher RSE and RAE compared to their univariate counterparts, and the
univariate model ARIMA outperformed the multivariate model VAR.
This discrepancy is attributed to pre-assumed feature relationships
that may not necessarily be optimal, underscoring the importance of
learning these interdependencies among multiple variables for accurate

Table 8
Comparative evaluation for MTGNN and 4 baseline models.

Model RSE RAE

LSTM (M) 1.42 1.38
Transformer Encoder-Decoder (M) 1.40 1.39
Transformer Encoder-Decoder (U) 1.40 1.36
LSTM (U) 1.40 1.34
VAR (M) 1.20 1.32
ARIMA (U) 1.00 0.87
MTGNN (M) 0.77 0.83

U stands for univariate model and M stands for multivariate model.

time series forecasting. MTGNN explicitly learns and quantifies these
relationships. Additionally, representing these features as nodes in a
graph provides the opportunity to capture hierarchical relationships.
Moreover, in cases where no such relationships exist between nodes,
the graph convolution layer can adapt and preserve the original node’s
self-information (Wu et al., 2020).

5.2.2. B-MTGNN
We additionally conducted a quantitative evaluation to justify the

inclusion of the Bayesian module. Here, we evaluated the performance
of the MTGNN model compared to five variations of the B-MTGNN
model, where each variation uses a different number of iterations in
the range 10–50 to approximate a Bayesian model. The number of
iterations is denoted as 𝑖𝑡, where 𝑖𝑡 > 1. Similar to our previous
experiment, we divided the dataset into 70% for training/validation
and 30% for testing. Additionally, we employed random search with
30 iterations to optimise the hyper-parameters of each model, and the
final performance was averaged over 5 experimental runs.

The evaluation results are illustrated in Table 9. The results indicate
that the inclusion of the Bayesian module significantly impacts the
model’s performance, particularly as the number of iterations increases.
Specifically, the B-MTGNN model with 30 iterations (𝑖𝑡 = 30) outper-
forms all other models including the MTGNN model, achieving the
lowest RSE of 0.67 and the lowest RAE of 0.78. This suggests that a
higher number of iterations in the Bayesian approximation improves
the model’s accuracy and generalisation capability. However, it is also
noteworthy that increasing the iterations beyond 30 does not yield
further improvements, as observed with the B-MTGNN models having
40 and 50 iterations, where the performance slightly declines. This phe-
nomenon highlights the presence of an optimal range for the number
of iterations, beyond which the model’s accuracy may not continue to
increase and may even decrease due to factors such as computational
inefficiencies or diminishing returns in model complexity. Therefore,
the B-MTGNN model with 30 iterations stands out as the most effec-
tive configuration for balancing performance and computational cost,
underscoring the value of Bayesian methods in enhancing predictive
accuracy in complex models like MTGNN.

The superior performance of the Bayesian model (B-MTGNN) com-
pared to its deterministic counterpart (MTGNN) can be attributed to its
ability to aggregate predictions from multiple iterations. By taking the
mean of the distribution as the prediction, the Bayesian model leverages
the collective knowledge encoded in these iterations, resulting in a
more comprehensive and stable forecast. This approach helps mitigate
the effects of overfitting and variability, leading to improved gener-
alisation ability and enhanced predictive accuracy. We note that the
benefits of the Bayesian model are not limited to improved accuracy;
it also provides a measure of uncertainty, offering confidence in its
predictions. Overall, the Bayesian model’s capacity to capture uncer-
tainty information and its robust averaging mechanism enable it to
outperform its deterministic counterpart in terms of both performance
and reliability.
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Table 9
Comparative evaluation for MTGNN and 5 variations of B-MTGNN.

Model RSE RAE

MTGNN 0.77 0.83
B-MTGNN (𝑖𝑡 = 10) 0.75 0.85
B-MTGNN (𝑖𝑡 = 20) 0.73 0.81
B-MTGNN (it = 30) 0.67 0.78
B-MTGNN (𝑖𝑡 = 40) 0.72 0.82
B-MTGNN (𝑖𝑡 = 50) 0.71 0.82

𝑖𝑡 stands for the number of iterations in the Bayesian model.

6. Discussion

6.1. Highlights and contributions

This work pioneers a proactive approach in cyber security using
ML for long-term prediction of cyber threats and the PATs. It repre-
sents a step forward in the field of cyber security, aligning with the
growing body of literature advocating for proactive defence strate-
gies (Anticipating, 2015; Husák et al., 2018; Okutan et al., 2019). By
proposing the long-term prediction of cyber threats and PATs, this
research addresses a critical gap identified in prior studies (Almahmoud
et al., 2023). The integration of advanced ML techniques, particularly
Bayesian graph learning, builds upon existing literature on predictive
modelling approaches from different domains such as traffic forecast-
ing (Wu et al., 2020; Guo et al., 2019). Furthermore, the improved
model’s performance when using the proposed features echoes findings
from prior research (Okutan et al., 2019; Munkhdorj and Yuji, 2017;
Goyal et al., 2018), highlighting the crucial role of feature engineering
in enhancing predictive models’ performance.

The implications of this work on research include advancing the
research on proactive cyber security. It sets a precedent for future re-
search to explore and refine predictive models, incorporating evolving
ML techniques to foresee cyber threats effectively as well as the relevant
technologies. The demonstrated improved performance when using the
Bayesian model indicates a potential shift towards employing advanced
techniques in graph analytics. Future research may focus on optimising
and customising graph-based algorithms for cyber threat prediction,
thereby enhancing the accuracy and efficiency of predictive models.
The proposed effective data features can be also utilised and extended
to further improve the performance. Furthermore, by highlighting the
use of extensive global data and coverage of 36 countries, this work
underlines the importance of comprehensive data analysis for a more
holistic understanding of the cyber threat landscape. Future research
could explore further enhancements in data collection, analysis, and
representation for an even broader international scope.

In practice, this work enhances cyber security preparedness and
planning. The proactive approach advocated in this work emphasises
the need for organisations to establish early-stage communication with
potential cyber threats and the PATs. This suggests that real-world
applications should invest in proactive planning, enabling them to
develop optimal defensive measures well in advance. This optimality
results from the reduced uncertainty which leads to the prioritisation
of the security measures by considering future threat gaps. Further-
more, this shift towards automated, data-driven methodologies aims
to minimise subjective biases. In practice, this implies a transition
towards quantitatively-driven decisions, reducing reliance on human
judgement. Organisations should consider integrating automated, data-
centric approaches to ensure consistency and impartiality in threat
analysis and decision-making processes. Finally, the noted improve-
ment in performance using Bayesian GNN and the proposed features
suggests that incorporating advanced ML techniques, especially those
suited for graph-based data, can significantly enhance predictive capa-
bilities. Organisations should explore and implement such techniques
to improve the accuracy and efficacy of their cyber threat prediction
systems.

6.2. Results analysis

The forecast analysis in Fig. 4 enabled us to identify technolo-
gies worthy of investment by visualising projected gaps between each
threat and its PATs. However, we recognise that incorporating gap
categorisation and tabulation (Tables 5 and 6) enhances this process
by introducing a systematic approach to prioritise investments more
effectively. This approach considers not only the magnitude of the
gap but also its category, leading to more informed decision-making.
It follows that categorising gaps into four distinct categories (SWG,
OWG, ONG, and SNG) enables policymakers to prioritise investments
in mitigation technologies more efficiently.

The ATC provides insights into the progression of PATs and their rel-
evance to emerging and rapidly increasing threats. This understanding
allows agencies to anticipate trends and prioritise resources accord-
ingly. For example, during the growth phase, where PATs are often
related to emerging threats, agencies can focus on early adoption and
experimentation. As PATs mature and reach stability, agencies can
assess their effectiveness and make informed decisions about long-
term integration. Furthermore, the identification of trough phases in
the ATC highlights potential challenges and areas for improvement
in PAT deployment. Agencies can use this information to proactively
address issues such as declining enthusiasm or performance gaps. By
recognising these patterns, agencies can better navigate the complex-
ities of cyber security technology adoption and ensure continuous
improvement in their defence strategies.

Furthermore, the ATC presents policymakers with a comprehen-
sive framework to strategically allocate resources and align defence
mechanisms with the evolving landscape of cyber threats. For instance,
we showed in our previous work that malware is currently peak-
ing (Almahmoud et al., 2023), while in Fig. 5, the PAT File Integrity
Monitoring (FIM) is situated in the lower trough. In response, poli-
cymakers should prioritise advancing File Integrity Monitoring to the
plateau swiftly. This action would help bridge the gap between this
technology and the evolving trend of malware, potentially facilitating
a decline in malware incidents. Similarly, ransomware exhibits rapid
growth, while Application Whitelisting (AW) is in the process of recov-
ering from a trough phase. To address this gap, policymakers should
focus on elevating the trend of Application Whitelisting to the plateau,
thereby aligning its efficacy with the escalating trend of ransomware.

We advocate for policymakers to prioritise advancing the PATs to-
wards the upper plateau rather than the lower plateau. PATs positioned
on the upper plateau offer greater visibility and are better aligned with
relevant threats, reducing the likelihood of significant gaps. Achieving
this entails closely monitoring the trend of PATs and enhancing their
usability as they enter the trough phase. By encouraging investment in
these technologies during this phase, increased effort and experimen-
tation can raise awareness and illustrate how the technology benefits
organisations, facilitating a quicker recovery from the trough. This
concerted effort ultimately propels the PATs towards the upper plateau,
where they are better positioned to effectively address emerging cyber
threats.

6.3. Findings in light of protection motivation theory

Our findings are well aligned with key constructs and principles of
PMT, specifically threat appraisal and coping appraisal (Rogers, 1975).
The long-term prediction of cyber threats and PATs directly relates to
the threat and coping appraisal components of PMT, where individuals
and organisations assess the severity and vulnerability associated with
specific cyber threats and evaluate the effectiveness of cyber security
measures. By utilising ML for predictive modelling, our research pro-
vides a data-driven version of PMT to evaluate the evolving landscape
of cyber threats, thereby enhancing the accuracy of threat appraisal
and enabling more informed decision-making. The coping appraisal
aspect of PMT is addressed through forecasting the trend of alleviation
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technologies and identifying their future disparity with cyber threats.
By identifying and validating the efficacy of these coping strategies,
our research underscores the importance of perceived response efficacy
and response costs in shaping individuals’ and organisations’ protective
behaviours.

Moreover, self-efficacy, a critical component of PMT, is reflected
in our emphasis on automated, data-driven methodologies to reduce
subjective biases and enhance predictive capabilities. By demonstrating
the effectiveness of these advanced techniques, our research strength-
ens the confidence of organisations in their ability to implement and
benefit from such approaches. This, in turn, can lead to increased
motivation to adopt proactive measures and engage in continuous
improvement of cyber defence strategies. Also, understanding the pre-
dicted disparity highlighted in this work will empower and motivate
staff to take the initiative in developing and refining these technologies,
presenting findings to the team, suggesting improvements, and men-
toring junior team members. This increased confidence and proactive
engagement are crucial for the successful implementation of relevant
security measures.

In terms of advancing PMT knowledge, introducing a proactive
dimension to PMT enriches the theoretical framework, providing a
more comprehensive understanding of how protection motivation can
be sustained and strengthened over time. This new dimension bridges
the gap between immediate threat responses and long-term prepared-
ness strategies. With a proactive PMT, interventions can be designed
to not only address current risks but also prepare for future ones,
ensuring that protective measures remain relevant and effective as new
threats emerge. Policymakers can use insights from a proactive PMT
to develop regulations and standards that encourage forward-looking
security practices, enhancing overall societal resilience to cyber threats.

A proactive PMT encourages strategic investment in research and
development of new technologies to address predicted future gaps. This
not only ensures preparedness but also helps in lowering perceived
response costs by planning and budgeting for necessary resources in
advance. By assessing and addressing both current and future threats
and coping strategies, individuals and organisations are better prepared
and more confident in their ability to protect themselves. This enhanced
confidence leads to a stronger and more sustained protection moti-
vation, fostering long-term behavioural changes rather than reactive
responses to immediate threats. This shift in mindset can lead to more
robust and enduring protective behaviours.

Our results also suggest potential refinements to the PMT frame-
work in the context of cyber security. For instance, the categorisation
of threat gaps and the systematic prioritisation of investments based
on these categories introduce a more structured approach to coping
appraisal. This suggests that incorporating additional layers of analysis
and decision-making criteria could enhance the applicability of PMT
to complex and dynamic domains like cyber security. Moreover, the
integration of extensive global data highlights the need for a broader
perspective in threat appraisal, suggesting that PMT could benefit
from incorporating more comprehensive data sources to enhance the
accuracy and relevance of threat assessments. This aligns with the
evolving nature of cyber threats, where global trends and patterns play
a significant role in shaping local security landscapes.

Overall, our findings not only support the core constructs and
principles of PMT but also offer insights into potential extensions and
refinements of the framework. By linking our results to PMT, we
provide an understanding of how psychological motivations can inform
and enhance predictive models and algorithms for anticipating and
mitigating cyber threats. This holistic approach is crucial for developing
robust cyber security strategies that address both current and future
risks based on a comprehensive understanding of threat perception and
response mechanisms.

6.4. Limitations

One limitation of our approach is the absence of a real-time feed-
back mechanism in the proposed framework. Integrating this mecha-
nism would enhance the framework based on PMT, as it provides con-
tinuous threat evaluation and assessment of the alleviation technolo-
gies. By incorporating real-time feedback from various data sources,
such as news and social media, the system can dynamically adjust
its threat perception and evaluation of the security measures. This
continuous feedback assists organisations in updating their threat and
PAT forecasting models and response strategies, thereby increasing
perceived vulnerability and demonstrating the effectiveness of adaptive
defence mechanisms. Staying informed of the latest and predicted
threat trends and adjusting defence technologies accordingly ensures
that organisations maintain motivation and confidence in the allevia-
tion technologies to achieve robust security posture against evolving
cyber threats.

With regards to the data, the current dataset provides valuable
insights into high-level attack types and PATs, offering a foundational
understanding of cyber security threats and mitigation strategies. The
applicable scope of the dataset primarily includes strategic and tac-
tical analysis for cyber security professionals, serving as a basis for
developing broad-based defence mechanisms against a spectrum of
cyber threats. It is particularly valuable for organisations seeking to
establish a foundational cyber security posture by understanding preva-
lent threats and corresponding preventive technologies. However, as
the cyber security landscape continues to evolve rapidly, there is a
growing need to explore the possibility of extending the dataset to
encompass more fine-grained attack types. This expansion presents an
opportunity to delve deeper into specific attack vectors and enhance
the effectiveness of cyber security defences.

For example, consider the category of ‘‘Malware’’ within the current
dataset. While it provides a broad overview of malicious software
threats, including viruses, worms, and ransomware, a more granular ap-
proach could distinguish between different variants and functionalities
of malware. By categorising malware based on behaviour, propaga-
tion methods, and targeted platforms, organisations could tailor their
defence mechanisms more precisely to combat specific threats. For in-
stance, distinguishing between fileless malware (Sudhakar and Kumar,
2020), which operates solely in memory, and traditional file-based
malware could inform strategies for endpoint detection and response.

Similarly, the category of ‘‘Adversarial Attack’’ highlights the di-
verse range of techniques employed by threat actors to subvert ML
models and AI systems. However, a finer-grained classification could
differentiate between adversarial attacks targeting image recognition
systems, natural language processing models, and reinforcement learn-
ing algorithms. Indeed, the profoundly different nature of the train-
ing algorithms applicable to these categories of AI systems suggests
differentiation among their adversarial attacks. Finer-grained attack
classification would enable researchers and practitioners to develop
specialised countermeasures, such as robustness enhancements (Tong
et al., 2021), data augmentation techniques (Zeng et al., 2020), and
adversarial training strategies (Zhang and Wang, 2019), tailored to
each specific threat context.

Incorporating more fine-grained attack types into the dataset also
opens avenues for exploring emerging threats and vulnerabilities. For
instance, the rise of deepfake technology poses novel challenges in
detecting and mitigating manipulated media content. By analysing
different types of deepfake attacks, such as facial manipulation (Shao
et al., 2022), voice synthesis (Bilika et al., 2023), and video imperson-
ation (Gerstner and Farid, 2022), cyber security professionals can de-
velop innovative detection algorithms and authentication mechanisms
to combat the spread of disinformation and fraudulent content.

Moreover, extending the dataset to include fine-grained attack types
facilitates cross-domain analysis and correlation studies. For example,
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correlating specific malware families with targeted industries or geo-
graphical regions could reveal patterns of cybercriminal activity and
inform proactive defence strategies (Mezzour et al., 2015). Similarly,
identifying commonalities between adversarial attacks in different do-
mains, such as image recognition and natural language processing,
could lead to the development of holistic defence frameworks that
address underlying vulnerabilities across diverse application areas.

Other limitations of this work include its reliance on a limited
dataset that encompasses data since 2011 only. This is due to the
challenges encountered in accessing confidential and sensitive informa-
tion. Extending the prediction period necessitates the model to forecast
further ahead into the future, requiring increased data samples and
informative features. Also, a notable limitation stems from the lack
of a systematic approach for the evaluation of the E-GPT algorithm,
which is instrumental in extracting the PATs and constructing the
graph. Moreover, such evaluation often depends on subjective and
potentially biased human judgement. As a result, ensuring an optimal
graph structure becomes challenging, particularly in the absence of a
mechanism to quantify the assumed relationships between nodes in the
graph. The subjectivity issue is also observed in the placement of PATs
on the cycle, where a fully automated approach would lead to a more
efficient process and more reliable results.

7. Conclusion and the road ahead

In this work, we introduced a proactive approach based on machine
learning for long-term prediction of cyber threats and PATs. The goal
is to establish an effective communication with the future disparity
between the potential attacks and relevant security measures at an
early stage, enabling proactive planning for the future. By adopting this
approach, there is an increased chance to prevent incidents by allowing
more time for the development of optimal defensive actions and tools,
thereby bridging the gap between cyber threats and PATs. Moreover,
our automated approach shows promise in addressing the widely recog-
nised challenges associated with human-based analysis. By eliminating
the reliance on human judgement and adopting a purely quantitative
methodology driven by data, our approach aims to minimise subjective
biases and promote consistency within the subject matter. With access
to extensive data sources encompassing a vast volume of information
and global geographic coverage, our study contributes to the construc-
tion of a comprehensive dataset encompassing different cyber security
trends, which can be utilised for various purposes. We used this dataset
to construct a novel Bayesian GNN model which was utilised to provide
3 years forecast for the future gaps between several cyber threats and
PATs. Based on the future forecast, we categorised the gap trends,
and recommended future investment decisions accordingly. Following
a large-scale analysis for past and future trends, we proposed the
alleviation technologies cycle (ATC) identifying the life cycle phases in
the trend of 98 alleviation technologies. This cycle serves as a robust
foundation for raising awareness when investing in security measures
aimed at preventing cyber-attacks. It presents policymakers with a
comprehensive framework to strategically allocate resources and align
defence mechanisms with the evolving landscape of cyber threats. Fur-
thermore, we have demonstrated the efficacy of our Bayesian model,
outperforming several baseline models while also providing a mea-
sure of confidence through the articulation of epistemic uncertainty.
Additionally, our incorporation of external features has demonstrated
tangible improvements in model performance, further enhancing the re-
liability and utility of our predictive framework. Overall, our work not
only advances the theoretical understanding of cyber threat prediction
but also furnishes practical insights for managerial decision-making. By
offering a proactive, data-driven approach to cyber security planning,
we aspire to equip policymakers with the foresight and tools necessary
to navigate an increasingly complex threat landscape with confidence
and efficacy.

In future research, it is recommended to integrate real-time feed-
back mechanisms into the developed framework to enhance its effec-
tiveness in terms of PMT. Additionally, while the ATC model provides
a new dimension to PMT by highlighting the stages of technology
adoption, future research could explore how this cycle influences both
individual and organisational motivations to adopt new security mea-
sures. Specifically, methods such as surveys, longitudinal studies, and
case analyses can investigate how each stage of the cycle affects the
willingness to invest in and implement new PATs. This understanding
can guide the development of strategies that enhance protection moti-
vation and ensure a proactive approach to cyber security. Moreover, it
is recommended to expand the dataset by including more fine-grained
attack types, which enables more specific predictions and allows the
development of tailored security measures. The dataset can be further
expanded by incorporating more samples and informative features.
This augmentation will lead to improved performance of the model
and enable more accurate long-term trend forecasting. We additionally
suggest the establishment of a systematic approach for the evaluation of
the E-GPT algorithm, used for the extraction of the PATs (i.e, the graph
construction). This can be done by interviewing and consulting security
experts, in order to validate the algorithm’s outputs, and possibly to
contribute to the adjustment of the graph connectivity (semi-automated
approach). This may require careful design of expert panels to tune
inter-rater variance of evaluations. Alternatively, and perhaps more
promisingly, a fully automated approach is feasible through the util-
isation of the graph learning layer. This layer adaptively learns and
quantifies the relationships between the threats and PATs. The obtained
relationship values can then be leveraged, in conjunction with the pre-
dicted gaps, to prioritise the PATs effectively. Finally, the positioning
of the PATs on the ATC can also be automated by computationally
measuring the slope of the PAT curves and placing each PAT on the
cycle accordingly. Overall, the automation of these phases maximises
the machine’s involvement in the process, thereby reducing the reliance
on human bias and subjectivity.
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