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Abstract—The emergence of new technologies for the 
fifth/sixth generation (5G/6G) wireless networks has led to the 
development of new services, resulting in an increase in malicious 
activities and cyber-attacks targeting various network layers. Edge 
computing, a crucial technology enabler for 6G, is expected to 
facilitate traffic optimisation and support new ultra- low latency 
services. By integrating computing power from supercomputing 
servers into devices at the network edge in a distributed manner, 
edge computing can provide consistent quality-of-service, even in 
remote areas, which will drive the growth of associated 
applications. However, the complex environment created by edge 
computing also poses challenges for detecting malware. Therefore, 
this paper proposes a novel approach to malware detection using 
explainability via visualization and a multi-labelling technique.  An 
object detection algorithm is used to identify malware families 
within the dataset which is created by emphasizing key regions. 
Using features from different malware categories in an image, this 
model displays a thorough malware recipe. Our experiments using 
real malware data demonstrate that identifying malware by its 
visible characteristics can significantly improve the interpretability 
of the detection process, enhancing transparency and 
trustworthiness.  

Keywords—6G, edge computing, crowd sensing/sourcing, 
cloud computing, machine learning, malware detection, 
explainability. 

I. INTRODUCTION 
The increasing connectivity of the world has given rise to 

a new interconnected world of   people   and digitalised things. 
In this environment, sensors are deployed to collect real-time 
data that is integrated into the physical environment and 
monitored, analysed, and assessed. However, this new 
environment will present brand-new challenges, including an 
explosive growth of data volume and complexity from new 
sources, as well as security concerns for connected fifth 
generation (5G) physical things. These concerns have 
motivated the initiation of recent exploratory studies of the 
sixth generation (6G) networks. As the evolution of service-
based architectures into ‘service everywhere’ with 6G 
dramatically increases the number of associated applications, 
malware is also expected to become more sophisticated [1]. 
Attacks of various dimensions and network technologies 
necessitate more sophisticated and trustworthy defence 
mechanisms. 

Recent advancements in analytical security and defence 
solutions for 6G networks have enabled progress in 
managing, operating, and optimising the underlying IoT 

services. However, cloud/edge-based services that require a 
third party to process 6G-enabled IoT data pose serious 
security and privacy issues, as data may be released or altered 
by malware when the cloud/edge is infected (i.e., data 
poisoning) [2]. To address these challenges, a new 
architecture for 6G is needed that could be developed through 
digital twins (DTs). DTs make use of a virtual representation 
of the 6G physical system, including the algorithms, 
computing, communication, and security technologists. Then, 
automated feedback loops are provided between physical 
things and their digital equivalents such that the behaviour of 
DT-enabled 6G could be affected, altering their specified 
states [3]. The authors in [2] proposed an integrated 
framework utilising blockchain and deep learning for 
securing data integrity and authenticity. It was demonstrated 
that the proposed blockchain-based data transmission system, 
employing smart contracts, can improve detection 
performance and make it easier to build a virtual environment 
to simulate and duplicate security-critical IoT activities. 
Additionally, in [4], the authors introduced a novel depth- 
wise efficient attention module (DEAM) in combination with 
Densenet for identifying malware samples and improving 
detection performance. 

The available mechanisms for defending against malware 
operate in a narrow manner, identifying the attacking goals of 
the malware developers, such as Adware, Spyware, or 
Ransomware [5]-[7]. However, categorising malware is not 
as straightforward as distinguishing between black and white 
colours due to the varied paths and attacking chains employed 
to achieve these goals. In this regard, exploring the 
development of a multi-label solution using machine learning 
to identify malware based on their unique characteristics or 
"recipes" is an unexplored area. Each class of malware has 



specific distinguishing features, and if these regions could be 
segmented in a malware image, samples from the same class 
should exhibit common patterns. By using a generalisation of 
the class activation mapping technique to extract the 
significant regions for each type of malware image, common 
features can be identified and fed into a model that learns to 
recognise the malware's “recipes” or DNA. This approach 
provides a better degree of transparency in the decision- 
making process. Thus, the aim of this work is to propose a 
novel  ‘explainability via visualization’ concept utilising a 
multi-labelling approach. Our experimental results on real 
malware data demonstrate that identifying malware by its 
visible recipes can significantly improve the interpretability 
of the malware decision process. 

The rest of this paper is organised as follows. Section II 
proposes a novel ‘explainability via visualization’ concept 
utilising a multi-labelling approach that aims to address the 
gap in the literature and discusses the construction of the 
framework. Section III summarises the experimental results 
obtained in the frame of research concerning the improvement 
of transparency in the decision process. In Section IV, a brief 
conclusion is provided with suggestions for future research 
direction. 

 
II. METHODOLOGY 

The proposed framework incorporates various 
components that are essential to explore the potential of the 
explainability concept in the malware detection process. The 
architectural design combines image generation from raw 
malware data, object identification and generated dataset for 
the extracted objects, and object detection and classification 
into a single system. This integration enables direct translation 
from the generated output images. Fig. 1 provides  an overview 
of the entire framework's architecture. 

 
A. Malware Visualisation 

In the context of malware detection, feature extraction 
is commonly performed using static and dynamic analysis 

techniques. While static analysis can extract features 
without  executing the malware, dynamic analysis is more 
resistant to obfuscation techniques and can provide insights into 
the goals of the malware. Table I shows the features that can 
be extracted using both methods. For Static analysis, the 
two extraction methods listed are assembly code-based 
and PE structure-based. The extracted features for 
assembly code- based analysis are opcodes, while for PE 
structure-based analysis, the extracted features include 
imports, exports, strings, DLLs, CFG, and API. For 
dynamic analysis, the extraction methods include system 
resource-based, machine activity-based, and function call-
based. The extracted features for system resource-based 
analysis are CPU and memory usage. For machine 
activity-based analysis, the extracted features include File, 
registry, network, and process. Finally, for function call-
based analysis, the extracted features include system calls 
and API calls. 

Recently, image-based malware detection has gained 
much popularity. Fig. 2 shows an image of the Dontovo. 
A, which downloads and executes arbitrary files. It is 
noted that the malware image exhibits distinctive features 
in different sections of its binary fragments. Thus, in our 
proposed framework, a malware analysis report file is 
converted into a grayscale image in the range [0, 255], 
with each string in the report mapped to an integer. By 
converting API call features into images, the resulting 
visual patterns provide a more effective way of managing 
and analysing malware behaviour, as similar examples of 
the same type have similar patterns that can be easily 
identified.  

 

 

 

 

 

 

Fig. 1 The architecture of our framework including feature identification, extraction, segmentation and detection. 



TABLE I 

FEATURE EXTRACTION METHODS 
Analysis Type Extraction Methods Extracted Features 
Static  Assembly code-based Opcodes 
 PE structure-based Imports, exports, strings, 

DLLs, CFG, API 
Dynamic System resource-based CPU, memory usage 
 Machine activity based File, registry, network, 

process 
 Function call-based System calls, API calls 

 

It is worth mentioning that our approach involves a complete 
visualisation method where numerical inputs are transformed 
into images in order to ensure transparency in both learning 
and decision-making processes. As shown in Fig. 1.A, the 
input phase of our framework generates a dataset that is based 
on images, which is further illustrated in Fig. 3.  The 
availability of a sufficient quantity of up-to-date samples for 
any category of malware is of utmost importance. The 
utilisation of data-intensive machine learning techniques 
enables the detection and identification of recently launched 
malware attacks. MalwareBazaar and VirusTotal are regularly 
updated databases that offer labelled samples of malicious 
software. Initially, we execute malware executable files  
extracted from reputable repositories like VirusTotal [8] 
(which contains around 200 million binaries) and 
MalwareBazaar [9] (with over 280,000 samples) on 
CapeSandbox, which facilitates the extraction and analysis of 
suspicious files, including network, registry, file system and 
process features.  The generated log file contains a record of 
the malware analysis execution within the guest environment. 
Subsequently, by utilising various VirusTotal labelling 
engines such as Kaspersky, Avira, and ESET, we conduct 
voting for malware labels. The malware samples are then 
classified into six categories based on the type of malware 
they contain, namely spyware, trojans, adware, ransomware, 
worms, and viruses. 

 

It is important to note that some API names are duplicated 
intentionally to deceive analysts. To address this concern, API 
names are grouped into 20 categories for each process and 
recurring API names are removed by including them only 
once in each group. Next, the features are converted into 
integers scaled between 0-255 from their corresponding 
strings. Each image is generated by combining individual 
images created for each feature, maintaining the same order. 
To accommodate varying file sizes, the image's width remains 

constant while the height is adjusted accordingly, as suggested 
by Nataraj et al. [10]. The merged image takes the form of 256 
by 256, as depicted in Fig. 3. Any black areas within the image 
denote empty spaces, which can occur if the total number of 
pixels exceeds the overall size of the feature pixels. 

 

B. Object Detection and Malware Labelling 
When it comes to CNN training, attention modules are the 

superstars that selectively concentrate on informative features, 
leaving the irrelevant ones in the dust. But we didn't settle for 
just any attention module. We chose the convolutional block 
attention module (CBAM) [11], which is like a superhero with 
both spatial and channel-wise attention mechanisms, making 
it stand out from other similar modules.  This makes it much 
better than the boring old channel-wise attention mechanism. 
It improves the model's ability to distinguish complex patterns 
and features throughout the input data by highlighting both of 
these features at the same time. 

The focus of channel attention is on what is meaningful in 
the context of an input image. A multi-scale feature is used as 
the input, and average-pooled features and max-pooled 
features are first generated in each channel. The output 
features are then combined using element-wise summation 
after being sent to shared fully connected layers with both 
features. As a last step, the activation function is used to derive 
the channel attention weight. The channel attention process 
can be summarised as follows:  

𝐌𝐜(𝐅) = 𝜎(MLP	(AvgPool	(𝐅)) +𝑀𝐿𝑃(MaxPool	(𝐅)))

= 𝜎 6𝐖𝟏 8𝐖𝟎9𝐅𝐚𝐯𝐠𝐜 :; +𝐖𝟏9𝐖𝟎(𝐅𝐦𝐚𝐱𝐜 ):< ,  

In contrast to channel attention, spatial attention focuses 
on where as an informative component that complements 
channel attention. A convolution layer is applied to the 
concatenated feature description to build a spatial attention 
map. Two pooling processes are used to aggregate the channel 
information of a feature map, producing two 2D maps ( and ). 
Both represent the channel's max- pooled and average-pooled 
features, respectively. A typical convolution layer 
concatenates and connects them to create the 2D spatial 
attention map. The following is an explanation of the spatial 
attention process: 

𝐌𝐬(𝐅) = 𝜎9𝑓*×*([AvgPool(𝐅) ;Max Pool(𝐅)]):

= 𝜎 < 8𝑓*×*9C𝐅𝐚𝐯𝐠𝐬 ; 𝐅𝐦𝐚𝐱𝐬 D:;
 

Fig. 2. Malware visualisation in grayscale 

Fig. 3 Behavioral feature image generation. 



𝜎  is sigmoid function and signifies a convolution 
operation with a 7×7 filter size. The input feature map is 
element-wise multiplied by the channel attention map and the 
spatial attention map, and the resulting feature maps are then 
concatenated to produce the output feature map.  

The representations of the channel attention map and the 
spatial attention map are, respectively,  Mc ∈ RC×1×1  
and Ms ∈ R1×H×W. Following is an explanation of the 
entire attention process: 

 
  F′ = Mc(F)⊗F,  

  F′′ = Ms(F′)⊗F′, 

where F stands for the intermediate feature map of size 
RC×H×W. 

We used the ResNet50-CBAM backbone on our dataset, 
with each ResBlock containing CBAM integration. Our 
choice of ResNet-50 was motivated by the need to learn 
complex patterns and features from our dataset for pattern-
based categorization problem. In the ResNet50 architecture, 
the CBAM module is inserted after each residual block. 
Through the use of skip connections, the residual blocks in 
ResNet50 enable the network to learn residual mappings, 
which aid in resolving the vanishing gradient issue. 

To improve the discriminative ability of our deeply 
learned features, we turned to Wen et al. [12], who proposed 
a joint loss function that uses both softmax loss and center loss 
supervision. This loss function was our go-to error for the 
learning process. The following is the formulation of the 
softmax loss function: 
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𝑥𝑖∈ℝ𝑑	signifies the   deep characteristic of the class 
𝑦𝑖  and     is the feature dimension. 𝑊𝑗∈ℝ𝑑	represents the 

 column of weights 𝑊∈ℝ𝑑×𝑛 in the final fully connected 
layer, while the bias term is denoted 𝑏∈ℝ𝑛. The size of the 
mini batch is 𝑚 and the number of classes is 𝑛. The softmax 
loss simply separates the underlying characteristics of distinct 
classes. 

It is essential for the centre loss to efficiently concentrate 
all of the deep features of the same class into the centre. The 
idea, intuitively, is to minimise intra-class variations while 
maintaining the properties of various classes separately. The 
centres are calculated after each iteration by averaging the 
features of the relevant classes. Second, to avoid massive 
perturbations produced by a few mislabelled data, the learning 
rate of the centres is controlled by utilising a scalar factor 𝛼. 
The following equation formulates the centre loss function, 
which is defined as follows: 
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Here,	𝒄7" 	is	the	centre	of	the		𝑦.-th	class,	and	𝒙. 	is	the	
deep	feature.	

With joint supervision, not only are inter-class feature 
differences increased, but also intra-class feature variations 
are reduced. The equation below provides the joint 
supervision formula: 

ℒ = ℒ, + 𝜆ℒ9 
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For balancing the two loss functions, a scalar 𝜆 is employed. 

According to Fig. 1.A, the output of Grad-CAM [13] came 
along and showed us the model prediction biases. With the 
help of Grad-CAM, we were able to identify "where" and 
"what" the learned model was focusing on. And guess what? 
The models we learned using Grad-CAM have shown great 
capabilities of highlighting critical areas, which we then used   
as potential objects of classes. 

Grad-CAM assigns relevance values to each neuron for a 
specific decision of interest using the gradient information 
streaming into the final convolutional layer of the CNN. The 
gradient of the score for class 𝑐,  (before the softmax), is first 
computed with respect to the feature map activations 𝐴: of a 
convolutional layer, represented as ∂𝑦9 /∂𝐴: 	in	 order	 to	
obtain	 the	 class-discriminative	 localisation	 map	 Grad-	
CAM	𝐿Grad-CAM 

9 ∈ ℝ;×< 	for	 any	 class	𝑐 	with dimensions 𝑢 
and 𝑣. 

The neuron importance weight	𝛼:9 	are obtained by global- 
average-pooling these gradients flowing back over the width 
and height dimension as follow:	

𝛼:9 =
1
𝑍H  

=

H 
>

xyyzyy{
global average pooling 

∂𝑦9

∂𝐴.6:|
gradients via backprop 

	

The deep network downstream from	𝐴	has been partially 
linearized by the weight	𝛼:9 	which evaluates the significance of 
a feature map 𝑘 for a target class 𝑐. 𝐴 ReLU is attained by 
performing the weighted combination of forward activation 
maps given below. 

𝐿Grad-CAM 
9 = Re𝐿𝑈 �H 

:

𝛼:9𝐴:�
���������
linear combination 

	

Fig. 4 provides a visual representation of our feature 
extraction process, highlighting the critical feature regions 
that the model utilises. We then employ sliding windows to 
compare these extracted regions with those of other images of 
the same malware type. By grouping similar items together, 
we can identify the top four subclasses for each malware 
category based on the highest number of elements. Using 
these results, we have created our own object detection dataset 



in COCO format [14] for malware detection, focusing solely 
on essential features. It is worth noting that currently, no 
malware dataset exists for object detection. 

Object detection is the primary method used to locate 
objects within an image, allowing us to search for specific 
extracted features that are characteristic of various types of 
malware. Our multi-labelling process employs Faster RCNN 
[15] with DarkNet to identify regions within an image. By 
analysing the scoring labels of these regions, we can discover 
the recipe for a given malware type, as shown in Fig. 5. 
 

 
Fig. 4 Malware feature identification and extraction 

                     III. RESULTS AND DISCUSSIONS 
Malware detection has long relied on signature-based 

analysis, which involves maintaining a database of known 
malware signatures. While this approach has been effective, 
recent research has introduced machine learning models for 
image-based detection, which can lead to decisions that are 
too complex for human comprehension. Unfortunately, this 
lacks of transparency in machine learning-based methods can 
impact the trustworthiness of the model and its decision- 
making process. To address this issue, we propose a new 
approach that focuses on exposing details of the decision 
process to users. This approach reduces the psychological 
distance between users and the model and highlights the main 
features of a task, which can be used to improve performance. 
We believe that our approach can significantly improve the 
interpretability and trustworthiness of machine learning- 
based malware detection systems. 

Our approach to detecting malware families involves 
leveraging an object detection model on our generated dataset. 
This model is able to effectively and precisely detect relevant 
feature regions present in malware images, allowing us to 
discover the most informative and frequently occurring 
features for each malware type. Fig. 5 illustrates the results of 
this process, where the predicted version of an adware image 
includes detections of worm, ransomware, and spyware 
features, while the predicted version of a spyware image 
includes detections of worm and adware features. By using the 
proportion of detected features for each malware type, we are 
able to classify the malware images and record the final 
percentage of malware characteristics at the end of the 
detection process. This methodology not only provides 
accurate classification, but also provides a deeper 
understanding of the features that are characteristic of each 
malware type. 

Consequently, the object detection model can uncover a 
malware recipe that consists of features from multiple types of 
malware in a given image. Through deductive reasoning, these 
extracted feature regions can be linked to the corresponding 
binary codes, offering insights into the structure and behaviour 
of each malware type. By reconstructing the source code and 

studying its functionality, this “explainability via 
visualization” method can enhance future detection 
techniques.  

 
 

 

 

 

 

 

 

 

Furthermore, this approach has broader applications beyond 
malware detection. Unlike current machine learning tools that 
are highly specialised, our approach can facilitate the 
development of artificial general intelligence by promoting 
reasoning, building common sense knowledge, and planning. 
It has the potential to unlock new pathways for solving 
complex problems and advancing research in various 
domains. 
 

       IV. CONCLUDING REMARKS 
Malware is expected to become more sophisticated and 

harder to detect in the upcoming 6G wireless networks with 
edge computing capabilities. To address this issue, a novel 
approach of “explainability via visualization” has been 
proposed in this paper, along with a comprehensive 
framework comprising various data-analytic components to 
achieve transparency in the malware detection process. This 
approach not only overcomes the limitations of traditional 
signature-based methods but also enhances the reliability of 
recent machine-learning-based techniques by providing 
transparency. 

Furthermore, we have shown how the current monocular 
approach to malware detection can be extended to achieve a 
higher level of transparency through the effective 
segmentation of specific features of individual malware types. 
The class activation mapping technique, combined with an 
object detection model and a region proposal network, has 
proved to be effective in fine-tuning the model and identifying 
the recipes in malware images. The deductive mapping of the 
identified regions to the corresponding binaries has provided 
valuable insights into how each malware is formed. It is 
essential to note that this approach is not restricted to malware 
detection tasks, and the concept can be applied to various 
intelligent domains. 
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