
BIROn - Birkbeck Institutional Research Online

Uysal, Dilara and Naser, S. and Almahmoud, Zaid and Muhaidat, S. and Yoo,
Paul (2024) A visual analytics framework for explainable malware detection
in Edge computing networks. In: GLOBECOM 2023 - 2023 IEEE Global
Communications Conference, 4-8 Dec 2023, Kuala Lumpur, Malaysia.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/54445/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/54445/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Visual Analytics Framework for Explainable

Malware Detection in Edge Computing Networks

Dilara T. Uysal
Birkbeck College, University of

London, UK
duysal01@student.bbk.ac.uk

Sami Muhaidat

Khalifa University, Abu
Dhabi, UAE

sami.muhaidat@ku.ac.ae

Shimaa Naser
Khalifa University, Abu

Dhabi, UAE
shimaa.naser@ku.ac.ae

Paul D. Yoo*

Birkbeck College, University of
London, UK

 p.yoo@bbk.ac.uk

Zaid Almahmoud

Birkbeck College, University of
London, UK

z.almahmoud@bbk.ac.uk

Abstract—The emergence of new technologies for the
fifth/sixth generation (5G/6G) wireless networks has led to the
development of new services, resulting in an increase in malicious
activities and cyber-attacks targeting various network layers. Edge
computing, a crucial technology enabler for 6G, is expected to
facilitate traffic optimisation and support new ultra- low latency
services. By integrating computing power from supercomputing
servers into devices at the network edge in a distributed manner,
edge computing can provide consistent quality-of-service, even in
remote areas, which will drive the growth of associated
applications. However, the complex environment created by edge
computing also poses challenges for detecting malware. Therefore,
this paper proposes a novel approach to malware detection using
explainability via visualization and a multi-labelling technique. An
object detection algorithm is used to identify malware families
within the dataset which is created by emphasizing key regions.
Using features from different malware categories in an image, this
model displays a thorough malware recipe. Our experiments using
real malware data demonstrate that identifying malware by its
visible characteristics can significantly improve the interpretability
of the detection process, enhancing transparency and
trustworthiness.

Keywords—6G, edge computing, crowd sensing/sourcing,
cloud computing, machine learning, malware detection,
explainability.

I. INTRODUCTION
The increasing connectivity of the world has given rise to

a new interconnected world of people and digitalised things.
In this environment, sensors are deployed to collect real-time
data that is integrated into the physical environment and
monitored, analysed, and assessed. However, this new
environment will present brand-new challenges, including an
explosive growth of data volume and complexity from new
sources, as well as security concerns for connected fifth
generation (5G) physical things. These concerns have
motivated the initiation of recent exploratory studies of the
sixth generation (6G) networks. As the evolution of service-
based architectures into ‘service everywhere’ with 6G
dramatically increases the number of associated applications,
malware is also expected to become more sophisticated [1].
Attacks of various dimensions and network technologies
necessitate more sophisticated and trustworthy defence
mechanisms.

Recent advancements in analytical security and defence
solutions for 6G networks have enabled progress in
managing, operating, and optimising the underlying IoT

services. However, cloud/edge-based services that require a
third party to process 6G-enabled IoT data pose serious
security and privacy issues, as data may be released or altered
by malware when the cloud/edge is infected (i.e., data
poisoning) [2]. To address these challenges, a new
architecture for 6G is needed that could be developed through
digital twins (DTs). DTs make use of a virtual representation
of the 6G physical system, including the algorithms,
computing, communication, and security technologists. Then,
automated feedback loops are provided between physical
things and their digital equivalents such that the behaviour of
DT-enabled 6G could be affected, altering their specified
states [3]. The authors in [2] proposed an integrated
framework utilising blockchain and deep learning for
securing data integrity and authenticity. It was demonstrated
that the proposed blockchain-based data transmission system,
employing smart contracts, can improve detection
performance and make it easier to build a virtual environment
to simulate and duplicate security-critical IoT activities.
Additionally, in [4], the authors introduced a novel depth-
wise efficient attention module (DEAM) in combination with
Densenet for identifying malware samples and improving
detection performance.

The available mechanisms for defending against malware
operate in a narrow manner, identifying the attacking goals of
the malware developers, such as Adware, Spyware, or
Ransomware [5]-[7]. However, categorising malware is not
as straightforward as distinguishing between black and white
colours due to the varied paths and attacking chains employed
to achieve these goals. In this regard, exploring the
development of a multi-label solution using machine learning
to identify malware based on their unique characteristics or
"recipes" is an unexplored area. Each class of malware has

specific distinguishing features, and if these regions could be
segmented in a malware image, samples from the same class
should exhibit common patterns. By using a generalisation of
the class activation mapping technique to extract the
significant regions for each type of malware image, common
features can be identified and fed into a model that learns to
recognise the malware's “recipes” or DNA. This approach
provides a better degree of transparency in the decision-
making process. Thus, the aim of this work is to propose a
novel ‘explainability via visualization’ concept utilising a
multi-labelling approach. Our experimental results on real
malware data demonstrate that identifying malware by its
visible recipes can significantly improve the interpretability
of the malware decision process.

The rest of this paper is organised as follows. Section II
proposes a novel ‘explainability via visualization’ concept
utilising a multi-labelling approach that aims to address the
gap in the literature and discusses the construction of the
framework. Section III summarises the experimental results
obtained in the frame of research concerning the improvement
of transparency in the decision process. In Section IV, a brief
conclusion is provided with suggestions for future research
direction.

II. METHODOLOGY

The proposed framework incorporates various
components that are essential to explore the potential of the
explainability concept in the malware detection process. The
architectural design combines image generation from raw
malware data, object identification and generated dataset for
the extracted objects, and object detection and classification
into a single system. This integration enables direct translation
from the generated output images. Fig. 1 provides an overview
of the entire framework's architecture.

A. Malware Visualisation

In the context of malware detection, feature extraction
is commonly performed using static and dynamic analysis

techniques. While static analysis can extract features
without executing the malware, dynamic analysis is more
resistant to obfuscation techniques and can provide insights into
the goals of the malware. Table I shows the features that can
be extracted using both methods. For Static analysis, the
two extraction methods listed are assembly code-based
and PE structure-based. The extracted features for
assembly code- based analysis are opcodes, while for PE
structure-based analysis, the extracted features include
imports, exports, strings, DLLs, CFG, and API. For
dynamic analysis, the extraction methods include system
resource-based, machine activity-based, and function call-
based. The extracted features for system resource-based
analysis are CPU and memory usage. For machine
activity-based analysis, the extracted features include File,
registry, network, and process. Finally, for function call-
based analysis, the extracted features include system calls
and API calls.

Recently, image-based malware detection has gained
much popularity. Fig. 2 shows an image of the Dontovo.
A, which downloads and executes arbitrary files. It is
noted that the malware image exhibits distinctive features
in different sections of its binary fragments. Thus, in our
proposed framework, a malware analysis report file is
converted into a grayscale image in the range [0, 255],
with each string in the report mapped to an integer. By
converting API call features into images, the resulting
visual patterns provide a more effective way of managing
and analysing malware behaviour, as similar examples of
the same type have similar patterns that can be easily
identified.

Fig. 1 The architecture of our framework including feature identification, extraction, segmentation and detection.

TABLE I

FEATURE EXTRACTION METHODS
Analysis Type Extraction Methods Extracted Features
Static Assembly code-based Opcodes
 PE structure-based Imports, exports, strings,

DLLs, CFG, API
Dynamic System resource-based CPU, memory usage
 Machine activity based File, registry, network,

process
 Function call-based System calls, API calls

It is worth mentioning that our approach involves a complete
visualisation method where numerical inputs are transformed
into images in order to ensure transparency in both learning
and decision-making processes. As shown in Fig. 1.A, the
input phase of our framework generates a dataset that is based
on images, which is further illustrated in Fig. 3. The
availability of a sufficient quantity of up-to-date samples for
any category of malware is of utmost importance. The
utilisation of data-intensive machine learning techniques
enables the detection and identification of recently launched
malware attacks. MalwareBazaar and VirusTotal are regularly
updated databases that offer labelled samples of malicious
software. Initially, we execute malware executable files
extracted from reputable repositories like VirusTotal [8]
(which contains around 200 million binaries) and
MalwareBazaar [9] (with over 280,000 samples) on
CapeSandbox, which facilitates the extraction and analysis of
suspicious files, including network, registry, file system and
process features. The generated log file contains a record of
the malware analysis execution within the guest environment.
Subsequently, by utilising various VirusTotal labelling
engines such as Kaspersky, Avira, and ESET, we conduct
voting for malware labels. The malware samples are then
classified into six categories based on the type of malware
they contain, namely spyware, trojans, adware, ransomware,
worms, and viruses.

It is important to note that some API names are duplicated
intentionally to deceive analysts. To address this concern, API
names are grouped into 20 categories for each process and
recurring API names are removed by including them only
once in each group. Next, the features are converted into
integers scaled between 0-255 from their corresponding
strings. Each image is generated by combining individual
images created for each feature, maintaining the same order.
To accommodate varying file sizes, the image's width remains

constant while the height is adjusted accordingly, as suggested
by Nataraj et al. [10]. The merged image takes the form of 256
by 256, as depicted in Fig. 3. Any black areas within the image
denote empty spaces, which can occur if the total number of
pixels exceeds the overall size of the feature pixels.

B. Object Detection and Malware Labelling
When it comes to CNN training, attention modules are the

superstars that selectively concentrate on informative features,
leaving the irrelevant ones in the dust. But we didn't settle for
just any attention module. We chose the convolutional block
attention module (CBAM) [11], which is like a superhero with
both spatial and channel-wise attention mechanisms, making
it stand out from other similar modules. This makes it much
better than the boring old channel-wise attention mechanism.
It improves the model's ability to distinguish complex patterns
and features throughout the input data by highlighting both of
these features at the same time.

The focus of channel attention is on what is meaningful in
the context of an input image. A multi-scale feature is used as
the input, and average-pooled features and max-pooled
features are first generated in each channel. The output
features are then combined using element-wise summation
after being sent to shared fully connected layers with both
features. As a last step, the activation function is used to derive
the channel attention weight. The channel attention process
can be summarised as follows:

𝐌𝐜(𝐅) = 𝜎(MLP	(AvgPool	(𝐅)) +𝑀𝐿𝑃(MaxPool	(𝐅)))

= 𝜎 6𝐖𝟏 8𝐖𝟎9𝐅𝐚𝐯𝐠𝐜 :; +𝐖𝟏9𝐖𝟎(𝐅𝐦𝐚𝐱𝐜):< ,

In contrast to channel attention, spatial attention focuses
on where as an informative component that complements
channel attention. A convolution layer is applied to the
concatenated feature description to build a spatial attention
map. Two pooling processes are used to aggregate the channel
information of a feature map, producing two 2D maps (and).
Both represent the channel's max- pooled and average-pooled
features, respectively. A typical convolution layer
concatenates and connects them to create the 2D spatial
attention map. The following is an explanation of the spatial
attention process:

𝐌𝐬(𝐅) = 𝜎9𝑓*×*([AvgPool(𝐅) ;Max Pool(𝐅)]):

= 𝜎 < 8𝑓*×*9C𝐅𝐚𝐯𝐠𝐬 ; 𝐅𝐦𝐚𝐱𝐬 D:;

Fig. 2. Malware visualisation in grayscale

Fig. 3 Behavioral feature image generation.

𝜎 is sigmoid function and signifies a convolution
operation with a 7×7 filter size. The input feature map is
element-wise multiplied by the channel attention map and the
spatial attention map, and the resulting feature maps are then
concatenated to produce the output feature map.

The representations of the channel attention map and the
spatial attention map are, respectively, Mc ∈ RC×1×1
and Ms ∈ R1×H×W. Following is an explanation of the
entire attention process:

 F′ = Mc(F)⊗F,

 F′′ = Ms(F′)⊗F′,

where F stands for the intermediate feature map of size
RC×H×W.

We used the ResNet50-CBAM backbone on our dataset,
with each ResBlock containing CBAM integration. Our
choice of ResNet-50 was motivated by the need to learn
complex patterns and features from our dataset for pattern-
based categorization problem. In the ResNet50 architecture,
the CBAM module is inserted after each residual block.
Through the use of skip connections, the residual blocks in
ResNet50 enable the network to learn residual mappings,
which aid in resolving the vanishing gradient issue.

To improve the discriminative ability of our deeply
learned features, we turned to Wen et al. [12], who proposed
a joint loss function that uses both softmax loss and center loss
supervision. This loss function was our go-to error for the
learning process. The following is the formulation of the
softmax loss function:

ℒ, = −H 
-

./0

log
𝑒1!"

𝒙"34!"

∑  5
6/0 𝑒

1$
#𝒙"34$

𝑥𝑖∈ℝ𝑑	signifies the deep characteristic of the class
𝑦𝑖 and is the feature dimension. 𝑊𝑗∈ℝ𝑑	represents the

 column of weights 𝑊∈ℝ𝑑×𝑛 in the final fully connected
layer, while the bias term is denoted 𝑏∈ℝ𝑛. The size of the
mini batch is 𝑚 and the number of classes is 𝑛. The softmax
loss simply separates the underlying characteristics of distinct
classes.

It is essential for the centre loss to efficiently concentrate
all of the deep features of the same class into the centre. The
idea, intuitively, is to minimise intra-class variations while
maintaining the properties of various classes separately. The
centres are calculated after each iteration by averaging the
features of the relevant classes. Second, to avoid massive
perturbations produced by a few mislabelled data, the learning
rate of the centres is controlled by utilising a scalar factor 𝛼.
The following equation formulates the centre loss function,
which is defined as follows:

ℒ𝑐 =
1
2H  

-

./0
∥∥𝒙. − 𝒄7"∥∥8

8

Here,	𝒄7" 	is	the	centre	of	the		𝑦.-th	class,	and	𝒙. 	is	the	
deep	feature.	

With joint supervision, not only are inter-class feature
differences increased, but also intra-class feature variations
are reduced. The equation below provides the joint
supervision formula:

ℒ = ℒ, + 𝜆ℒ9

= −H 
-

./0

log
𝑒1!"

𝒙"34!"

∑  5
6/0 𝑒

1$
#𝒙"34$

+
𝜆
2H  

-

./0
∥∥𝒙. − 𝒄7"∥∥8

8

For balancing the two loss functions, a scalar 𝜆 is employed.

According to Fig. 1.A, the output of Grad-CAM [13] came
along and showed us the model prediction biases. With the
help of Grad-CAM, we were able to identify "where" and
"what" the learned model was focusing on. And guess what?
The models we learned using Grad-CAM have shown great
capabilities of highlighting critical areas, which we then used
as potential objects of classes.

Grad-CAM assigns relevance values to each neuron for a
specific decision of interest using the gradient information
streaming into the final convolutional layer of the CNN. The
gradient of the score for class 𝑐, (before the softmax), is first
computed with respect to the feature map activations 𝐴: of a
convolutional layer, represented as ∂𝑦9 /∂𝐴: 	in	 order	 to	
obtain	 the	 class-discriminative	 localisation	 map	 Grad-	
CAM	𝐿Grad-CAM

9 ∈ ℝ;×< 	for	 any	 class	𝑐 	with dimensions 𝑢
and 𝑣.

The neuron importance weight	𝛼:9 	are obtained by global-
average-pooling these gradients flowing back over the width
and height dimension as follow:	

𝛼:9 =
1
𝑍H  

=

H 
>

xyyzyy{
global average pooling

∂𝑦9

∂𝐴.6:|
gradients via backprop

	

The deep network downstream from	𝐴	has been partially
linearized by the weight	𝛼:9 	which evaluates the significance of
a feature map 𝑘 for a target class 𝑐. 𝐴 ReLU is attained by
performing the weighted combination of forward activation
maps given below.

𝐿Grad-CAM
9 = Re𝐿𝑈 �H 

:

𝛼:9𝐴:�
���������
linear combination

	

Fig. 4 provides a visual representation of our feature
extraction process, highlighting the critical feature regions
that the model utilises. We then employ sliding windows to
compare these extracted regions with those of other images of
the same malware type. By grouping similar items together,
we can identify the top four subclasses for each malware
category based on the highest number of elements. Using
these results, we have created our own object detection dataset

in COCO format [14] for malware detection, focusing solely
on essential features. It is worth noting that currently, no
malware dataset exists for object detection.

Object detection is the primary method used to locate
objects within an image, allowing us to search for specific
extracted features that are characteristic of various types of
malware. Our multi-labelling process employs Faster RCNN
[15] with DarkNet to identify regions within an image. By
analysing the scoring labels of these regions, we can discover
the recipe for a given malware type, as shown in Fig. 5.

Fig. 4 Malware feature identification and extraction

 III. RESULTS AND DISCUSSIONS
Malware detection has long relied on signature-based

analysis, which involves maintaining a database of known
malware signatures. While this approach has been effective,
recent research has introduced machine learning models for
image-based detection, which can lead to decisions that are
too complex for human comprehension. Unfortunately, this
lacks of transparency in machine learning-based methods can
impact the trustworthiness of the model and its decision-
making process. To address this issue, we propose a new
approach that focuses on exposing details of the decision
process to users. This approach reduces the psychological
distance between users and the model and highlights the main
features of a task, which can be used to improve performance.
We believe that our approach can significantly improve the
interpretability and trustworthiness of machine learning-
based malware detection systems.

Our approach to detecting malware families involves
leveraging an object detection model on our generated dataset.
This model is able to effectively and precisely detect relevant
feature regions present in malware images, allowing us to
discover the most informative and frequently occurring
features for each malware type. Fig. 5 illustrates the results of
this process, where the predicted version of an adware image
includes detections of worm, ransomware, and spyware
features, while the predicted version of a spyware image
includes detections of worm and adware features. By using the
proportion of detected features for each malware type, we are
able to classify the malware images and record the final
percentage of malware characteristics at the end of the
detection process. This methodology not only provides
accurate classification, but also provides a deeper
understanding of the features that are characteristic of each
malware type.

Consequently, the object detection model can uncover a
malware recipe that consists of features from multiple types of
malware in a given image. Through deductive reasoning, these
extracted feature regions can be linked to the corresponding
binary codes, offering insights into the structure and behaviour
of each malware type. By reconstructing the source code and

studying its functionality, this “explainability via
visualization” method can enhance future detection
techniques.

Furthermore, this approach has broader applications beyond
malware detection. Unlike current machine learning tools that
are highly specialised, our approach can facilitate the
development of artificial general intelligence by promoting
reasoning, building common sense knowledge, and planning.
It has the potential to unlock new pathways for solving
complex problems and advancing research in various
domains.

 IV. CONCLUDING REMARKS
Malware is expected to become more sophisticated and

harder to detect in the upcoming 6G wireless networks with
edge computing capabilities. To address this issue, a novel
approach of “explainability via visualization” has been
proposed in this paper, along with a comprehensive
framework comprising various data-analytic components to
achieve transparency in the malware detection process. This
approach not only overcomes the limitations of traditional
signature-based methods but also enhances the reliability of
recent machine-learning-based techniques by providing
transparency.

Furthermore, we have shown how the current monocular
approach to malware detection can be extended to achieve a
higher level of transparency through the effective
segmentation of specific features of individual malware types.
The class activation mapping technique, combined with an
object detection model and a region proposal network, has
proved to be effective in fine-tuning the model and identifying
the recipes in malware images. The deductive mapping of the
identified regions to the corresponding binaries has provided
valuable insights into how each malware is formed. It is
essential to note that this approach is not restricted to malware
detection tasks, and the concept can be applied to various
intelligent domains.

ACKNOWLEDGMENT
 The authors are grateful to Dr Hussam Al-Hammadi at
the Centre for Cyber-Physical Systems (C2PS) for his
invaluable discussions and feedback, and special thanks to the
EBTIC, British Telecom’s (BT) security team in London and
Abu Dhabi for their constructive criticism on this work.

Fig. 5 Malware detection by recipes and classification results.

Special thanks to Angelina McDonald who proof-read the
manuscript.

REFERENCES
[1] D. T. Uysal, P. D. Yoo and K. Taha, “Data-driven malware detection

for 6G networks: A survey from the perspective of continuous
learning and explainability via visualisation,” in IEEE Open Journal of
Vehicular Technology, 2022, doi: 10.1109/OJVT.2022.3219898.

[2] P. Kumar, R. Kumar, A. Kumar, A. A. Franklin, S. Garg and S. Singh,
“Blockchain and Deep Learning for Secure Communication in Digital
Twin Empowered Industrial IoT Network,” in IEEE Transactions on
Network Science and Engineering, 2022, doi:
10.1109/TNSE.2022.3191601.

[3] S. Suhail, Z. Sherali, J. Raja, H. Rasheed, M. Raimundas, and S. Davor,
“Security attacks and solutions for digital twins,” 2022, arXiv preprint
arXiv:2202.12501.

[4] C. Wang, Z. Zhao, F. Wang, and Q. Li, “A Novel Malware Detection
and Family Classification Scheme for IoT Based on DEAM and
DenseNet,” Security and Communication Networks, Jan, 2021.

[5] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” Proceedings of the sixth ACM conference on
data and application security and privacy, 2016.

[6] M. Kalash, et al. “Malware classification with deep convolutional
neural networks,” 2018 9th IFIP international conference on new
technologies, mobility and security (NTMS). IEEE, 2018.

[7] B. Yuan, J. Wang, D. Liu, W. Guo, P. Wu, and X. Bao, “Byte-level
malware classification based on markov images and deep learning,”
Computers & Security, vol. 92, p. 101740, May 2020, doi:
10.1016/j.cose.2020.101740.

[8] “VirusTotal” Virustotal.com, 2019.
https://www.virustotal.com/gui/home/upload

[9] “MalwareBazaar | Malware sample exchange,” bazaar.abuse.ch.
https://bazaar.abuse.ch/

[10] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: visualization and automatic classification,” in Proceedings of
the 8th international symposium on visualization for cyber security,
2011, pp. 1–7.

