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A B S T R A C T

This paper analyses decision making under uncertainty when payoffs are unknown, similar to a Lotto lottery.
In a Lotto lottery, the probability of winning a prize is known, but the size of the prize is unknown. This
paper proposes a theoretical framework to model preferences over Lotto lotteries as compound lotteries.
The first stage determines whether a prize is obtained, while the second stage determines the size of the
prize. Then the paper empirically analyses human behaviour when uncertainty can be described as a Lotto
lottery. There is considerable heterogeneity in the subjects’ aversion to lotteries with unknown payoffs. Further
analysis shows that choices of decision makers can be best explained by a combination of risk and ambiguity
preferences. These results suggest that subjects treat unknown payoffs similar to known payoffs with ambiguous
probabilities.

1. Introduction

Economists usually distinguish between two types of lotteries to
describe decision making under uncertainty: roulette lotteries and horse
lotteries. In roulette lotteries, the payoffs and the probabilities for each
of the payoffs are objectively known. In contrast, in horse lotteries, only
the payoffs are known — but not the probabilities. Decision making
under uncertainty which can be described by a roulette lottery is
modelled using Expected Utility Theory (von Neumann & Morgenstern,
1944), while decisions under uncertainty of horse lotteries are modelled
using Subjective Expected Utility Theory (Anscombe & Aumann, 1963;
Savage, 1954).

Yet, many situations in everyday life do not correspond to either
group: situations where the probability of some payoff is objectively
known, but the exact payoff is not specified. The standard state lottery
(Lotto), where participants are asked to guess 6 numbers out of 49, is
one of the most prominent examples: The probability of guessing all six
number right can be easily calculated, but the prize depends on how
many people participate in the lottery and how many of them guess the
right numbers.

Besides the state lottery, there are many real-life examples for such
lotteries. For example, when taking drugs, the probabilities of side
effects are fairly well-known in advance. Yet, the severities of the side
effects are rather unknown (Budescu & Templin, 2008). Or, in most
political elections, the relative proportion of votes for each party (or

E-mail address: d.schroeder@bbk.ac.uk.
1 These examples abstract from any possible random or strategic interaction between lottery players or voters. More examples are presented and discussed

in Du and Budescu (2005) and Budescu and Templin (2008).

candidate) is fairly well-known in advance. However, quite often, the
outcome of the election (i.e., the actual policy implemented) is rather
unknown.1

The objective of this paper is to gain a better understanding of
decision making under uncertainty when uncertain situations can be
represented by a Lotto lottery, i.e., where the probability of winning a
prize is known, but not the size of the prize.

The first main contribution of this study is to introduce a utility-
based framework to model decision making if uncertainty can be
described as a Lotto lottery. This model formalizes and extends some
earlier ideas first proposed by Camerer and Weber (1992) to model
decision making involving unknown payoffs. The model is inspired
by the Anscombe and Aumann (1963) model of subjective expected
utility theory. Preferences over Lotto lotteries are modelled as two-
stage compound lotteries. The first stage involves a roulette lottery over
different states of the world, determining whether a payoff is obtained.
The second stage consists of a horse lottery, assigning subjective prob-
abilities to a set of potential payoffs, given some state of the world is
realized. In this set-up, unknown payoffs are thus captured by a set of
as known payoffs with unknown probabilities, and can be modelled by
subjective expected utility.

However, since the seminal work of Ellsberg (1961) we know that
when confronted with lotteries with unknown probabilities, decision
makers often fail to attribute a unique subjective probability to each
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of the possible outcomes, but treating them as ambiguous. In one of
his thought experiments, a decision maker can draw a ball from an urn
that contains red, black and yellow balls. If a black ball is drawn there
is a payoff of 100, but nothing otherwise. The decision maker knows
the probability of drawing a red ball (a third), and the joint probability
of drawing a black or a yellow ball (two thirds). This set-up can be
reinterpreted as a two-stage Lotto lottery: the first stage determines
whether there might be a prize (an ambiguous lottery with a yellow
or black ball) or not (red ball). In this stage, the probabilities are given
(2/3 versus 1/3). If the ambiguous lottery is selected, the second stage
then determines whether there is a prize of 100 or zero. In this stage,
the probabilities are unknown.

These considerations mean that choices over Lotto lotteries should
to some extent be shaped by preferences over ambiguous probabil-
ities as well. Against this backdrop, the compound lottery model is
extended to allow for ambiguity (and attitudes towards ambiguity) in
the second-stage horse lotteries.

The second main contribution of the paper is to empirically analyse
decision making when confronted with unknown payoffs using this new
parametric utility-based framework. Different to previous work (Du &
Budescu, 2005), this study also allows for a finer measurement of the
subjects’ attitude towards unknown payoffs, and thus a better analysis
of the factors driving preferences over unknown payoffs.

Using an experimental set-up inspired by the Ellsberg (1961) three-
colour urn experiment, I examine a decision maker’s attitude towards
lotteries with unknown payoffs relative to lotteries with known payoffs.
There is considerable heterogeneity in the subjects’ aversion to lotteries
with unknown payoffs, i.e., the preference for lotteries with known
payoffs over lotteries with unknown payoffs.

Finally I examine the underlying reason for cross-sectional differ-
ences in the subjects’ aversion to unknown payoffs. The results show
that both risk and ambiguity preferences are important to explain the
subjects’ behaviour when facing Lotto lotteries. In direct comparison,
risk preferences are more related to aversion to unknown payoffs than
ambiguity preferences. Yet, this nevertheless means that subjects are
not fully confident in the subjective probabilities they assign to each of
the payoffs, but perceive them ambiguous, as conjectured.

In a last step, the paper considers the case where the unknown
payoff can lie within a continuous range rather than being limited to a
small countable set. This is conceptually closer to the general notion
of Lotto lotteries in everyday life. The results suggest that subjects
treat a continuous payoff space similar to a discrete set of payoffs. As
before, both risk and ambiguity preferences can explain the subjects’
choices when faced with Lotto lotteries. Hence, although the compound
lottery model expresses unknown payoffs as a countable set of known
payoffs with unknown probabilities, it seems to be capturing behaviour
when faced with completely unknown payoffs equally well. Essentially,
decision makers seem to apply the same decision heuristics as if the set
of potential payoffs was limited to a small set.

Despite their relevance, there is little theoretical and experimental
literature on preferences over Lotto lotteries. Schoemaker Paul (1989)
is the first to develop a framework similar to a Lotto lottery. Different
from this paper, Schoemaker Paul (1989) assumes that decision makers
have objective information about the probabilities for each of the
possible prizes. The compound lottery can therefore be reduced to a
simple lottery, and analysed using expected utility theory.

Camerer and Weber (1992) discuss the situation when payoffs
of lotteries are left unspecified, or ‘‘ambiguous’’.2 They argue that
decision makers will assign subjective probabilities to each of the
possible outcomes. They conclude that choices over Lotto lotteries
should be perfectly explained by subjective expected utility, and hence
risk preferences only.

2 This paper uses the term ‘‘unknown payoff’’ to avoid confusion with the
literature that uses the term ‘‘ambiguity’’ to denote unknown probabilities.

Lotto lotteries also share some similarities with models that build
on the concept of belief functions, developed by Dempster (1967)
and Shafer (1976). The relation to this literature is reviewed in Sec-
tion 2.4. While interesting from a theoretical point of view, these
models are difficult to take to the data. The compound lottery model
proposed in this paper offers such a framework. Essentially, it extends
the ideas outlined in Camerer and Weber (1992) by allowing subjective
probabilities for known payoffs to be ambiguous.

This paper builds on experimental studies in the psychology and
management science literature that look at similar cases, albeit using
different terms. Management science uses the term ‘‘imprecise out-
comes’’ (Du & Budescu, 2005), and psychologists talk about ‘‘vague
payoffs’’ (Gonzáles-Vallejo et al., 1996). This literature examines in-
dividual attitudes towards gambles with imprecise (or vague) payoffs,
and also compares the difference between unknown outcomes and
unknown probabilities on human decision making. While these studies
recognize that unknown payoffs can be reinterpreted as known payoffs
with unknown probabilities, they stress that is it important to differen-
tiate between unknown probability and unknown payoff to understand
how people react to different types of ‘‘vague’’ information.

These studies present mixed evidence on attitudes towards gam-
bles with unknown payoffs. In his review, Onay et al. (2013) shows
that these attitudes depend on the elicitation method, and whether
the unknown outcome involves gains or losses. While Budescu et al.
(2002), Du and Budescu (2005), Budescu and Templin (2008) and Onay
et al. (2013) find that the majority of subjects have a preference for
unknown payoffs in the gain domain, Gonzáles-Vallejo et al. (1996), Ho
et al. (2002) and Eliaz and Ortoleva (2016) show that subjects are
averse to unknown payoffs, on average.

Most of these studies also show that there is a positive relation
between a decision makers’ attitude towards imprecise outcomes and
attitude towards imprecise probabilities (i.e., ambiguity preferences).
Yet, as they point out, subjects tend to display a ‘‘higher concern for
precision of the outcomes than that of the probabilities’’ (Budescu et al.,
2002; Kuhn et al., 1999).3

While these empirical studies allow for a first understanding of
decision making under uncertainty if payoffs are unknown, they are
subject to a number of shortcomings. Most allow only for a binary
differentiation between preferences against or in favour of unknown
payoffs. Furthermore, these studies are mostly non-parametric, and not
benchmarked against any economic model of decision making under
uncertainty. Most of all, it is not clear whether the pattern of decision
making documented in these studies can be explained by the economic
preference parameters of risk aversion, as implied by Camerer and
Weber (1992), ambiguity aversion, or both. The Lotto tasks to measure
individual attitudes towards unknown payoffs in this study allow for a
much finer measurement of the subjects’ preferences.

The remainder of this paper is organized as follows. The next
section introduces the concept of Lotto lotteries using a simplified
example. Section 3 presents the experimental design. The results of the
experimental sessions are presented in Section 4. Sections 5 and 6 show
that preferences over Lotto lotteries can be explained by a combination
of risk and ambiguity preferences. Section 7 offers some concluding
remarks.

2. Theoretical considerations

2.1. Introductory example

Consider a simplified version of the standard state Lottery. Suppose
a decision maker has the choice between drawing a ball from one of
two urns, urn 𝐹 and urn 𝐺 (Table 1). Both urns contain two balls, one

3 Other important studies include Kuhn and Budescu (1996) and Ho et al.
(2001).
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Table 1
Lotto lotteries (urns F and G).

Type of ball Probability 𝑝𝑠 Colour Payoff 𝑥
(state of the world 𝑠)

coloured 0.5 red 1
yellow 3

white 0.5 white 0

white ball and one coloured ball. The coloured ball can be either red
or yellow. If a red ball is drawn, the decision maker obtains a payoff
of 1; if a yellow ball is drawn, the decision maker obtains a payoff of
3. There is no payoff if the ball drawn is white. Put differently, the
probability of receiving a prize is known (a probability of 50%), but
the actual prize is unknown. All that is known is that the payoff may
be 1 or 3.

Standard expected utility cannot model preferences over the two
gambles, since it requires an unambiguous mapping from outcomes of
the gambles into payoffs (either utils, or monetary payoffs together
with a utility function). For example, in expected utility theory, the
set of outcomes would be {0, 1, 3}, but the probability for each of the
outcomes is not known (only 𝑝(𝑥 = 0) = 0.5).

Nevertheless, if drawing a ball from urn 𝐹 is strictly preferred to
drawing a ball from urn 𝐺, it is natural to conclude that the decision
maker believes that the coloured ball in urn 𝐹 is yellow, and that the
coloured ball in urn 𝐺 is red.

2.2. Lotto lottery as compound lottery

Lotto lotteries can be modelled as compound lotteries. The first
stage determines whether a prize is drawn, using an objective probabil-
ity. The second stage determines the amount of the prize. Schoemaker
Paul (1989) assumes that the probability distribution over the outcomes
(i.e., the colour of the balls) is objectively known. Then it is possible
to derive a reduced lottery, and apply expected utility to the resulting
roulette lottery.

In the framework considered in this paper, there is no objectively
given probability distribution over prizes. If the probability distri-
bution over the prizes in the second stage is left unspecified, the
decision maker’s preferences over Lotto lotteries can be modelled using
some subjective probability distribution. This allows to derive again a
reduced lottery, and apply subjective expected utility.

2.2.1. Compound lottery model
Assume there is a finite set  of 𝑠 states of the world. The probability

for each state of the world is objectively given, such that
∑

𝑠∈
𝑝𝑠 = 1, 𝑝𝑠 ≥ 0 ∀𝑠

Put differently, there is a roulette lottery over all possible states.
States are observable ex-post. Furthermore, there is a set  of 𝑥 possible
payoffs. This is final payoff for the decision maker. Then define a set
 of 𝑐 possible scenarios. Mathematically, scenarios are functions from
states into payoffs,  ∶  →  . A scenario specifies for each state 𝑠 ∈ 
a payoff 𝑥 ∈  .4 Finally, a bet 𝐵 is a list of subjective probabilities for
each of the scenarios, such that
∑

𝑐∈
𝜇𝑐 (𝐵) = 1, 𝜇𝑐 (𝐵) ≥ 0 ∀𝑐

Then preferences ≻ over any two bets 𝐵 and 𝐵′ can then be
represented by a utility function:

𝐵 ≻ 𝐵′ ⇔ 𝑈 (𝐵) > 𝑈 (𝐵′) ⇔
∑

𝑠∈
𝑝𝑠

(

∑

𝑐∈
𝜇𝑐 (𝐵)𝑢(𝑥𝑐 ,𝑠)

)

4 Savage (1954) uses the term ‘‘acts’’.

>
∑

𝑠∈
𝑝𝑠

(

∑

𝑐∈
𝜇𝑐 (𝐵′)𝑢(𝑥𝑐 ,𝑠)

)

(1)

for some 𝜇𝑐 (𝐵) and 𝜇𝑐 (𝐵′). Note that 𝑥𝑐 ,𝑠 denotes the payoff of the bet
in state 𝑠 under scenario 𝑐. 𝑢(⋅) is a standard (Bernoulli) utility function
over sure payoffs.

The compound lottery model formalizes the ideas of Camerer and
Weber (1992). They argue that when payoffs of lotteries are unspec-
ified, decision makers will assign subjective probabilities to each of
the possible outcomes. They conclude that choices over Lotto lotteries
should be perfectly explained by subjective expected utility, and hence
risk preferences only.

2.2.2. Example as compound lottery
In the introductory example, the state of the world is the outcome

of the draw, i.e.,  = {𝑐 𝑜𝑙 𝑜𝑢𝑟𝑒𝑑 , 𝑤ℎ𝑖𝑡𝑒}. The probability for each state
to occur is known, 𝑝𝑐 = 𝑝𝑤 = 0.5. The set of payoffs is  = {0, 1, 3}.
There are 2 scenarios for each urn: either the coloured ball is red or
yellow. Hence, the set  of 𝑐 possible scenarios is given by

𝑐𝑦𝑒𝑙 𝑙 𝑜𝑤 = (3, 0) and
𝑐𝑟𝑒𝑑 = (1, 0),

where the first number gives the payoff if 𝑠 = 𝑐 𝑜𝑙 𝑜𝑢𝑟𝑒𝑑, and the second
number gives the payoff if 𝑠 = 𝑤ℎ𝑖𝑡𝑒. However, the decision maker
does not know which scenario corresponds to the true scenario. Finally,
there are two bets, 𝐹 and 𝐺 with subjective probabilities 𝜇𝐹 and 𝜇𝐺 for
the first scenario:

coloured ball in urn F =

{

𝑦𝑒𝑙 𝑙 𝑜𝑤(𝑥𝐹 = 3) with probability 𝜇𝐹

𝑟𝑒𝑑(𝑥𝐹 = 1) with probability 1 − 𝜇𝐹

coloured ball in urn G =

{

𝑦𝑒𝑙 𝑙 𝑜𝑤(𝑥𝐺 = 3) with probability 𝜇𝐺

𝑟𝑒𝑑(𝑥𝐺 = 1) with probability 1 − 𝜇𝐺

The preference of drawing a ball from 𝐹 or 𝐺 then depends on the
subjective probabilities 𝜇𝐹 and 𝜇𝐺. The expected utilities of gambles 𝐹
and 𝐺 are:

𝑈 (𝐹 ) = 0.5 (𝑢(3)𝜇𝐹 + 𝑢(1)(1 − 𝜇𝐹 )
)

+ 0.5 ⋅ 𝑢(0)
𝑈 (𝐺) = 0.5 (𝑢(3)𝜇𝐺 + 𝑢(1)(1 − 𝜇𝐺)

)

+ 0.5 ⋅ 𝑢(0)

From this it follows:

𝐹 ≻ 𝐺 ⇔

𝑈 (𝐹 ) > 𝑈 (𝐺) ⇔

(𝑢(3) − 𝑢(1))𝜇𝐹 > (𝑢(3) − 𝑢(1))𝜇𝐺

As long as 𝑢(3) > 𝑢(1), it follows 𝜇𝐹 > 𝜇𝐺. For any increasing utility
function over payoffs, the decision maker will select the urn where she
attributes a higher probability of drawing a yellow ball (a payoff of
𝑥 = 3).

A few aspects are worth discussing. First, the term ‘‘states of the
world’’ differs from other notions in the literature. In this model, a
‘‘state of the world’’ corresponds to the outcome of the first-stage
lottery. It is not the prize, or the colour of the ball drawn. In the
example, ‘‘red’’ is not a state of the world. In this case, the state of
the world would be ‘‘coloured’’.

Second, the example is perfectly symmetric, i.e., the possible scenar-
ios are identical for both urns. If they are not symmetric (such as a third
possible prize for one of the bets), there are two possible ways to extend
the model. One option is to impose some (subjective) null-probability
on scenarios that are not possible for a certain bet. Alternatively, it is
possible to specify a set of scenarios for each bet separately, i.e., 𝐹

and 𝐺.
Finally, the state of the world is always observable ex-post. The true

scenario is, however, not fully revealed — it is only revealed for the
realized state of the world.
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Table 2
Roulette lottery (urn H).

Type of ball Probability 𝑝𝑠 Colour Payoff 𝑥
(state of the world 𝑠)

white 0.5 white 0
coloured 0.5 blue 2

2.3. Lotto lottery as ambiguous lottery

Another possibility is to model Lotto lotteries as three-colour (Ellsberg,
1961) urns. In one of his thought experiments, a decision maker can
draw a ball from an urn that contains red, black and yellow balls. If a
black ball is drawn there is a payoff of 100, but nothing otherwise.
The decision maker knows the probability of drawing a red ball (a
third), and the joint probability of drawing a black or a yellow ball
(two thirds).

Lotto lotteries can be reinterpreted as three-colour (Ellsberg, 1961)
urns. The decision maker knows the probability of winning a prize
(black or yellow ball, probability of two thirds), and the probability of
not winning a prize (red ball, probability of a third). This corresponds to
the first stage of the compound lottery. Yet, the probabilities of winning
a high prize (black ball, payoff 100) or a low prize (yellow ball, payoff
0) are unknown. This is the second stage of the compound lottery.

The key insight of Ellsberg (1961) is that when confronted with
lotteries with unknown probabilities (i.e., there is ambiguity about
probabilities), decision makers often fail to attribute a unique subjec-
tive probability to each of the possible outcomes. Thus, their behaviour
cannot be explained using subjective expected utility theory. As a
result, a variety of models have been proposed that extend the expected
utility model to allow for ambiguity (Gilboa & Schmeidler, 1989;
Schmeidler, 1989). In these models, decision making with unknown
probabilities can be explained by ambiguity preferences.

2.3.1. Lotto lotteries versus roulette lotteries
These considerations mean that choices over Lotto lotteries should

to some extent be shaped by ambiguity preferences. To see this, con-
sider another thought experiment. Suppose a decision maker has the
choice between drawing a ball from one of two urns, urn 𝐹 and urn
𝐻 . Urn 𝐹 is a Lotto lottery, as before. This requires the decision maker
to attribute subjective probabilities for the coloured ball being either
red or yellow. In contrast, the coloured ball in urn 𝐻 is known to be
blue, and provides a payoff of 2. Thus, urn 𝐻 is a roulette lottery with
known probabilities for each payoff (Table 2).

An expected choice in this thought experiment is to prefer urn
𝐻 over urn 𝐹 , i.e., a preference for the roulette lottery over the
Lotto lottery. Such a choice can be rationalized by the subject’s risk
preferences, as suggested by Camerer and Weber (1992). Assuming that
the decision maker has symmetric subjective probabilities for high and
low prizes in the Lotto lottery, risk aversion implies a higher subjective
expected utility of the roulette lottery relative to the Lotto lottery.

However, in practice, decision makers might find it difficult to
attribute precise subjective probabilities to each of the scenarios in the
Lotto lottery. If a decision maker is not sure about the probabilities
of the high and low prize, he might consider a range of probabilities
possible, i.e., he perceives them ambiguous — similar to Ellsberg’s
three-colour urn experiment. If the decision maker is ambiguity averse,
he will prefer the roulette lottery over the Lotto lottery, even if he is
risk neutral.

To conclude, there are two possible explanations for the same
observed behaviour: risk and ambiguity preferences.

2.3.2. Compound lottery model with ambiguity
Following these insights, the compound lottery model (1) intro-

duced in Section 2.2 is extended to allow for ambiguity in the second-
stage horse lotteries. Following Ahn et al. (2014), this paper uses
the 𝛼-MEU utility model by Ghiradato et al. (2004) to incorporate
ambiguity preferences. Then the expected utility of a bet 𝐵 is given
as

𝑈 (𝐵) =
∑

𝑠∈
𝑝𝑠

(

𝛼min
𝛷

∑

𝑐∈
𝜇𝑐 (𝐵)𝑢(𝑥𝑐 ,𝑠) + (1 − 𝛼) max

𝛷

∑

𝑐∈
𝜇𝑐 (𝐵)𝑢(𝑥𝑐 ,𝑠)

)

(2)

where 𝛷 denotes the set of subjective probability distributions for the
scenarios (instead of a single measure), thereby allowing for ambiguity.
The parameter 𝛼 captures the decision maker’s attitude towards ambi-
guity. If 𝛼 = 1, only the worst case is considered; if 𝛼 = 0, only the best
possible case is considered.

Appendix A presents a simple numerical illustration how both risk
and ambiguity preferences can explain the preference of roulette lot-
teries over Lotto lotteries.

2.4. Related theoretical models

The compound lottery model is not the only possibility to formalize
the idea of Lotto lotteries. The literature has proposed a variety of
models to analyse decision making under uncertainty when there is not
a clear mapping between probabilities and payoffs.

For example, preferences over Lotto lotteries can be modelled using
belief and plausibility functions following Dempster (1967) and Shafer
(1976).5 Instead of assigning a probability to each of the possible
outcomes (as in expected utility theory), belief functions give the lower
bound on the probability for any given outcome, while plausibility
functions give their upper bound. Belief and plausibility functions
are thus non-additive probabilities (or capacities). In the introductory
example, the belief (𝐵 𝑒𝑙) and plausibility (𝑃 𝑙) functions for a payoff of 0
(white ball) are 𝐵 𝑒𝑙(0) = 𝑃 𝑙(0) = 0.5; they coincide since its probability
is objectively given. For a payoff of 1 (red ball) or 3 (yellow ball),
however, they differ: Their lower bound is given by a 0% probability,
𝐵 𝑒𝑙(1) = 𝐵 𝑒𝑙(3) = 0, while their upper bound is given by a 50%
probability, 𝑃 𝑙(1) = 𝑃 𝑙(3) = 0.5.

Preferences over Lotto lotteries can hence be conceived as prefer-
ences over belief or plausibility functions. Lotto lotteries can therefore
be evaluated using Choquet expected utility (Gilboa, 1987; Schmeidler,
1989), where the capacity is structured as a belief function. Thus, the
unknown outcomes of Lotto lotteries directly translate into probabilistic
ambiguity about the set of possible outcomes.

These ideas have been formalized, among others, by Jaffray (1989),
Mukerji (1997) and Ghiradato (2001). In Ghiradato (2001), for ex-
ample, the decision maker only sees choices as maps from states into
consequences. That is, each choice that a decision maker considers for
a given state, may lead to a set of consequences, or outcomes. In this
setting, decision makers have a subjective probability distribution over
states of the world, but the distribution over the final outcomes is no
longer additive (i.e., they are belief functions), thus allowing for ambi-
guity. The works of this literature also propose applying the Hurwicz
(1951) criterion to the belief (and plausibility) functions. That is,
similar to the empirical 𝛼-MEU model used in this paper, some weight is
attributed to the worst case for the decision maker, while some weight
is attributed to the best case.

Viero (2009) takes a different approach. She proposes an extension
of the Anscombe and Aumann (1963) framework by replacing the
second-stage roulette lottery of Anscombe–Aumann by a set of roulette
lotteries. In her representations, the decision maker first evaluates acts
by computing, for each state, the expected utility of the best and

5 For an excellent recent literature review of decision-theoretic models
using belief functions, see Denoeux (2019).
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the worst second-stage lotteries, and then weighs them according to
her optimism/pessimism. Finally, she computes her overall expected
utility using these weighted utilities together with unique subjective
probabilities over the states. Different from the model proposed in this
paper, first and second stage lotteries are reversed: the probabilities
for states are subjective, but the second-stage probabilities for roulette
lotteries are objective.

While these models provide valuable theoretical insights, it is not
straightforward to take them to the experimental data. The two-stage
compound lottery model presented in this paper offers a framework to
better understand decision making if payoffs are unknown. At the same
time, it provides a convenient set-up to empirically disentangle the
effects of risk and ambiguity preferences on decision makers’ aversion
to unknown payoffs.

3. Experimental design

3.1. Research design

The objective of the empirical part of this study is to obtain a better
understanding of decision making under uncertainty when payoffs are
unknown. Most important, the paper analyses the role of both risk and
ambiguity preferences for decisions involving Lotto lotteries.

In a first step, I measure the subjects’ aversion to lotteries with
unknown payoffs (Lotto lotteries) relative to comparable lotteries with
known payoffs (roulette lotteries). The conjecture is that subjects prefer
roulette lotteries over Lotto lotteries, i.e., a preference of known payoffs
over unknown payoffs. In the second step, I aim at explaining the sub-
jects’ observed choices. As discussed in Section 2.3.1, both individual
risk and ambiguity preferences might have an influence on decision
tasks with unknown payoffs.

It is well-known that preference measures obtained from incen-
tivized choice tasks are often subject to considerable measurement
errors (Parez et al., 2021). To reduce measurement errors when elic-
iting the subjects’ aversion to unknown payoffs, risk aversion, and
ambiguity aversion, this study follows Falk et al. (2023) and asks
subjects to participate in two choice tasks for a given preference.
The baseline preference measure is then obtained by averaging the
results of the two tasks, a technique aiming at reducing measurement
errors (Wang & Navarro-Martinez, 2023).

All tasks are reproduced in Appendix B; screenshots are presented
in the online appendix.

3.2. Aversion to unknown payoffs

The tasks to measure a subject’s aversion to lotteries with unknown
payoffs build on the thought experiment presented in Section 2.3.1.

Lotto task 1 measures aversion to unknown payoffs by eliciting a risk
equivalent to a Lotto lottery, i.e., a roulette lottery that makes decision
makers indifferent between the Lotto lottery and the roulette lottery.
The task presents subjects with a decision table of 11 choices between
a Lotto lottery and a roulette lottery. The Lotto lottery offers a prize
with a probability of 50%, but actual size of the prize is unknown;
it can be either 0 or 10 points. The Lotto lottery is identical in all
11 situations. The roulette lottery also offers prizes with a probability
of 50%. Different from the Lotto lottery, the prizes are known and
increasing from situation to situation. The first situation offers a prize
of 0 points, the second a prize of 1 point, and so on, up to a prize of
10 points.

In the first situation, subjects are expected to prefer the Lotto lottery
over the roulette lottery since, at worst, both lotteries are identical
(offering an expected payoff of 0 points). As the roulette lottery is
getting more attractive, subjects are expected to switch to the roulette
lottery at some point. The earlier they switch, the more they are averse
to unknown payoffs.

The lotteries are implemented using two boxes filled with balls of
different colours.6 Box I (the roulette lottery) contains 10 white balls
(no payoff) and 10 black balls (with increasing payoffs from 0 to 10
points). Box J (the Lotto lottery) contains 10 white balls (no payoff) and
10 coloured balls (which can be either all blue or all yellow), leading
to a payoff of either 0 or 10 points, depending on the colour.

Lotto task 2 is a simplified version of Lotto task 1, dropping the
white balls from both boxes. It thus elicits a certainty equivalent of an
unknown prize. This task offers subjects a sequence of choices between
two options. Option A offers a sure payoff, increasing from 0 points to
10 points. Option B is identical in each situation, offering a payoff that
can be either 0 points or 10 points. Similar to Lotto task 1, subjects
are expected to prefer option B (with unknown payoff) in the first
situation over option A (a sure payoff of 0 points). However, since
option A is getting more attractive from situation to situation, subjects
are expected to switch to option A at some point. The earlier they
switch, the more they are averse to unknown payoffs.

When measuring aversion to unknown payoffs, and – more impor-
tant – when trying to explain the subjects’ aversion to unknown payoffs
by risk and ambiguity preferences, it is important to rule out that
subjects form asymmetric subjective probabilities 𝜇𝑐 for the prizes of
the Lotto lotteries. To see this, consider a decision maker believing
that the probability of a low prize is very high. Then the (subjective)
expected value of the Lotto lottery is lower than the expected value
of the roulette lottery. In this case, even risk- and ambiguity-neutral
decision makers would rationally reject the Lotto lotteries.

Given the perfect symmetry of the Lotto lottery, it is a priori not
clear why a decision maker would have such beliefs. One reason might
be that the decision maker does not trust the experimenter (to save
on budget), thereby increasing the subjective probability for a low
prize (Charness et al., 2013; Chow & Sarin, 2002).

To avoid such non-symmetric beliefs, participants are asked to select
the colour of the ball that entitles them to a high prize in the unknown
option (box J and option B) before the draw. The drawback of this
mechanism is that it restricts the number of possible prizes in the
Lotto lotteries. To keep the Lotto tasks simple, they allow only for
two different prizes, one of which being zero.7 Section 6 introduces a
Lotto task where the unknown payoffs can lie in a continuous range,
i.e., there is an uncountable set of prizes.

3.3. Risk and ambiguity preferences

To measure risk and ambiguity preferences, this study uses estab-
lished choice lists taken from the literature.

Risk task 1 measures risk preferences by eliciting a risk equivalent
for a sequence of roulette lotteries. The task is a simplified version of
the Holt and Laury (2002) design, and is taken from decision sheet B
of Chakravarty and Roy (2009). In this task, subjects are presented a de-
cision table with 10 choices between a low-risk and a high-risk lottery.
As the task proceeds, the low-risk lottery remains identical while the
expected payoff of the high-risk lottery increases monotonically. The
point at which subjects switch from the low-risk lottery to the high-risk
lottery reveals information on the subjects’ risk preferences.

Risk task 2 determines risk preferences by eliciting a certainty equiv-
alent of a roulette lottery. The task is adapted from task 5 of Vieider
(2018). In this task, subjects are presented a decision table with 14
choices between a roulette lottery and a safe payment. As the task

6 To allow for a better understanding of the tasks, this paper fol-
lows Dimmock et al. (2016) and uses in the experiments the term ‘‘box’’ instead
of ‘‘urn’’ used in the economics literature.

7 The mechanism to ensure symmetric beliefs by asking participants to
match ball colours to prizes before the draw requires setting a different
colour for each prize. While it is possible to offer more than two prizes, the
mechanism becomes quickly impractical when increasing the number of prizes
beyond a small countable set.
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proceeds, the lottery remains identical while the safe payment increases
monotonically. The point at which subjects switch from the lottery to
the safe payment reveals the subjects’ risk preferences.

Ambiguity task 1 determines ambiguity preferences by eliciting a
matching probability of an ambiguous lottery. A matching probability
is a risk equivalent of an ambiguous lottery, i.e., the probability of a
risky lottery at which a subject is indifferent between a risky and the
ambiguous lottery.

The task is based on the two-colour thought experiment by Ellsberg
(1961), and is taken from Cavatorta and Schröder (2019). The task
involves 11 sequential decisions between a risky and an ambiguous
lottery. The composition and payoff structure of the ambiguous lottery
is identical in all 11 situations, offering a fixed prize with unknown
probability. In contrast, the risky lottery changes from one situation to
the next. More precisely, the probability of winning the (same) fixed
prize monotonically increases as the task proceeds, thereby increasing
the expected payoff of the risky lottery.

The point at which subjects switch from preferring the ambiguous
lottery to the risky lottery reveals their ambiguity preferences. The risky
lottery is equally attractive as the ambiguous lottery, but no longer
ambiguous. Hence, this task allows measuring the degree subjects are
averse to the absence of probabilities (i.e., ambiguity), independent of
the subject’s utility function, and thus risk preferences (Dimmock et al.,
2015).

Ambiguity task 2 is a variant of ambiguity task 1, also determin-
ing ambiguity preferences by eliciting a matching probability of an
ambiguous lottery. Different from ambiguity task 1, task 2 consists
of 14 situations, and thus has a finer grid to measure preferences.
Furthermore, the probability of winning a prize in the ambiguous
lottery is restricted to be either 0% or 100% (instead of allowing for
any probability).

In both ambiguity tasks, participants were asked to select the colour
of the winning ball in the ambiguous box, similar to the Lotto tasks.
This procedure ensures that participants have no reason to form asym-
metric beliefs about the composition of the ambiguous box.8

3.4. Procedure and participants

The experimental sessions took place in March 2019 at the Ex-
pressLab at Royal Holloway, University of London. The laboratory
sessions were implemented in z-tree (Fischbacher, 2007). 93 subjects
participated at the study, most of them students of Royal Holloway,
University of London. The subjects were recruited via electronic mail.
The sample contains 47 (51%) male and 46 (49%) female subjects, with
an average age of about 21 years.

The sessions started with the incentivized tasks measuring risk
preferences, followed by the tasks to measure ambiguity preferences,
and concluded with the tasks to measure aversion to unknown payoffs.
In a second round of experiments (see Section 6) the sequence of tasks
was reversed, but no order effects are observed.

The payment modality of the incentivized tasks was common knowl-
edge. Subjects were informed that one situation of each task would
be randomly selected by the computer at the end of the session. If
the subject’s choice implied a draw from a box, the computer would
randomly draw one ball. This procedure ensures that subjects state their
true preferences.9

8 Since there is no information on the composition of the ambiguous lottery,
the literature Butler et al. (2014), Dimmock et al. (2015), Lauriola and Levin
(2001) assumes that subjects consider the full range of probabilities possible.
In other words, because of the design of the task, we can rule out subjects to
form a unique subjective probability distribution for the composition of the
ambiguous lottery.

9 Bade (2015) discusses some problems with this random incentive mecha-
nism when subjects are ambiguity averse. Yet, to my knowledge, the random
incentive mechanism remains the best incentive scheme to measure economic
preferences and are commonplace in laboratory and field studies.

Earnings from the tasks were calculated in terms of points, and then
converted at a rate of 5:1 into GBP. Earnings were paid in private at
the end of the sessions. On average, subjects earned GBP 11, which
includes a fixed show-up fee of GBP 2. The lowest payment was GBP 4,
the highest payment GBP 16. Since the sessions lasted for about 60 min,
the payoffs are substantial.

4. Empirical results

4.1. Aversion to unknown payoffs

In binary choice lists, the standard pattern is a threshold strategy.
Since the relative attractiveness of the two options changes monoton-
ically as the list proceeds, subjects tend to prefer one option over the
other up to a switching point. In both Lotto tasks, the natural choice is
to first select the Lotto lottery with unknown payoffs, and then switch
to the roulette lottery (Lotto task 1) or the safe payment (Lotto task
2). Yet, some subjects switch more than once – a behaviour difficult
to reconcile with rational choice. There are 9 multiple switchers in
the Lotto task 1 (10% of the sample) and 7 multiple switchers in the
Lotto task 2 (8%).10 In case a subject has multiple switching points, I
follow Falk et al. (2023) and define a subject’s switching point as her
average switching point.11

Fig. 1 presents the distribution of switching points in the two Lotto
tasks. Most subjects switch close to the midpoint of possible switching
points. Yet, there a few subjects switch rather early (indicating a strong
aversion to unknown payoffs), while some others switch rather late
(indicating a preference for unknown payoffs).

The switching point indicates a subject’s indifference between the
two options. This allows constructing non-parametric measures of aver-
sion to unknown payoffs by linearly mapping the indifference points
into an interval between 0 and 1. A value of 0 corresponds to an
extreme liking of unknown payoffs, while a number of 1 means extreme
aversion to unknown payoffs. A value of 0.5 implies neutrality (for
more details, see Appendix C). To reduce the impact of potential mea-
surement errors, the final preference measure is obtained by averaging
the results of the two tasks, as discussed earlier.

Panel A of Table 3 shows that subjects are slightly averse to un-
known payoffs (> 0.5) in both tasks, on average. Using a 𝑡-test, these
averages are however not statistically different from 0.5. The finding
of no significant aversion to unknown payoffs is in line with the
inconclusive results in the experimental psychology literature, which
documents evidence for both aversion and liking of unknown payoffs
in the gain domain (see the introduction). Averaging the measures ob-
tained from the two tasks reduces the variance of aversion to unknown
payoffs significantly, suggesting that this measure allows to correct
for outliers caused by measurement errors, indeed. In the remainder
of the analysis, the paper thus predominantly relies on the combined
measure (baseline). Since Lotto task 2 has fewer multiple switchers
(which can be interpreted that the task is easier to understand) and a
lower variance, this measure might be more reliable and is hence used
as robustness specification.

Panel B reports the correlation statistics between the various mea-
sures. All measures are significantly related to each other, especially
when using the Spearman (1904) correlation coefficient as measure of
association. This suggests that subjects are consistent across the two
choice tasks.

10 Such a fraction is in line with other studies using binary choice lists,
e.g., Holt and Laury (2002).

11 For some descriptive statistics of multiple switching points, see
Appendix D.1. Despite being exposed to control questions before each choice
task, multiple switching points might indicate a lack of understanding of the
tasks, resulting in measurement errors. However, Appendix D.2. shows that
excluding subjects with multiple switching points from the sample does not
change the results.
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Fig. 1. Switching points in Lotto tasks. This graph presents the distribution of switching points in the two Lotto tasks.

Table 3
Descriptive statistics — aversion to unknown payoffs.

Panel A: Non-parametric measures of aversion to unknown payoffs

Observations Mean Standard deviation Lowest Highest

Lotto task 1 93 0.503 0.182 0.00 0.95
Lotto task 2 93 0.510 0.147 0.15 0.95
Combined measure 93 0.507 0.127 0.20 0.90

Panel B: Correlation statistics

Lotto Lotto Combined
task 1 task 2 measure

Lotto task 1 0.282∗∗∗ 0.792∗∗∗

Lotto task 2 0.182∗ 0.768∗∗∗

Combined measure 0.823∗∗∗ 0.708∗∗∗

The table summarizes the results of the two Lotto tasks. Panel A reports the non-parametric measures of aversion to unknown payoffs derived
from the switching points. Panel B reports the correlation statistics between the measures. The lower part of the panel presents the Pearson
correlation, the upper part the Spearman correlation. *, **, and *** denote statistical significance at the 10%, 5% and 1% level, respectively.
For a detailed description of the preference measures, see Section 3.2 and appendices B and C.

4.2. Risk and ambiguity aversion

Table 4 presents the results from the risk tasks. Similar to the Lotto
tasks, a large majority of subjects exhibits a threshold strategy. In risk
task 1, the standard choice is to first prefer the low-risk lottery, before
switching to the high-risk lottery at some point. In this task, 11 subjects
(12%) have multiple switching points. In risk task 2, the natural pattern
is to first select the risky lottery and then switching to the safe payment.
Again, there are few multiple switchers in task 2, accounting for 9
subjects (10%). As before, the switching point for these subjects is
defined as their average switching point.

The switching points allow deriving non-parametric measures of risk
aversion (see Appendix C), where a value of 1 corresponds to extreme
risk aversion, a value of 0 means extreme risk seeking preferences, and
a value of 0.5 implies risk neutrality. To reduce the impact of potential
measurement errors, the final risk aversion measure is obtained by
averaging the results of the two tasks.

Panel A shows that subjects are, on average, risk averse (> 0.5)
in both tasks. The difference to 0.5 is highly significant using a 𝑡-
test (𝑝-value < 0.01). Averaging the two tasks considerably reduces
the variance of the risk aversion measure, a clear evidence that the
combined measure allows for correcting of outliers. In the remainder of
the analysis, the paper thus uses the combined measure of risk aversion
(baseline). Since risk task 2 has fewer multiple switchers, it is used as
robustness specification.

The switching points also allow to infer the subjects’ coefficient of
relative risk aversion (CRRA). Since the switching points indicate a
decision maker’s indifference between the two options, the expected
utility of both options should be equal. Using the CRRA utility function

𝑢(𝑥) = 𝑥1−𝛾 , where 𝛾 is the CRRA parameter, it is possible to derive
the value of 𝛾 that is consistent with the subjects’ observed switching
points (Andersen et al., 2008). Mathematically, this means finding the
value of 𝛾 such that both options have the same expected utility. Panel
B of Table 4 presents the CRRAs, where a positive value corresponds
to risk aversion. While the average CRRA derived from task 1 is
significantly positive, the average CRRA of task 2 is not.

Finally, panels C and D report the correlation statistics between the
various risk preferences. The risk measures obtained from both tasks
are not significantly related to each other. Put differently, subjects do
not seem to behave consistently across the two tasks. While surprising,
this is a common finding in the literature, likely caused by differences
in the framing of the tasks (Friedman et al., 2022). To some extent, this
also might indicate some measurement error due to random switching
points (Vieider, 2018). This observation is another reason why the
baseline specification uses the combined measure of risk aversion,
thereby reducing the impact of measurement errors.

Table 5 presents the results of the ambiguity tasks. As before, most
subjects adopt a threshold strategy with a single switching point. 10
subjects (11%) have multiple switches in ambiguity task 1, while 13
subjects (14%) have multiple switches in ambiguity task 2.

Similar to the risk tasks, the switching point in the ambiguity
tasks indicate a decision maker’s indifference between the two options
available. Since the set of possible payoffs is identical in both options (0
or 10 points), choices do not depend on risk preferences, and ambiguity
preferences are fully captured by the probability that makes the risky
option equally attractive as the ambiguous option (Dimmock et al.,
2015). This matching probability 𝑚 is defined as the mid-point of the
probabilities to win a prize in the risky option around the switching
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Table 4
Descriptive statistics — risk aversion.

Panel A: Non-parametric risk aversion measures

Observations Mean Standard deviation Lowest Highest

Risk task 1 93 0.548∗∗∗ 0.129 0.20 0.95
Risk task 2 93 0.549∗∗∗ 0.146 0.05 0.95
Combined measure 93 0.549∗∗∗ 0.102 0.25 0.95

Panel B: Coefficients of relative risk aversion (𝛾)

Observations Mean Standard deviation Lowest Highest

Risk task 1 93 0.089∗∗ 0.364 −1.06 0.93
Risk task 2 93 −0.071 1.364 −12.51 0.77
Combined measure 93 0.009 0.719 −6.34 0.85

Panel C: Correlation statistics — non-parametric measures

Risk Risk Combined
task 1 task 2 measure

Risk task 1 0.032 0.689∗∗∗

Risk task 2 0.083 0.676∗∗∗

Combined measure 0.700∗∗∗ 0.773∗∗∗

Panel D: Correlation statistics — coefficients of relative risk aversion

Risk Risk Combined
task 1 task 2 measure

Risk task 1 0.032 0.741∗∗∗

Risk task 2 0.077 0.617∗∗∗

Combined measure 0.326∗∗∗ 0.968∗∗∗

The table summarizes the results of the two risk tasks. Panel A reports the non-parametric risk aversion measures derived from the switching
points. Significance of the difference to 0.5 is estimated using a 𝑡-test. Panel B reports the coefficients of relative risk aversion (𝛾) implied by
the switching points. Significance of the difference to 0 is estimated using a 𝑡-test. Panels C and D report the correlation statistics between
the risk aversion measures. The lower part of the panels presents the Pearson correlation, the upper part the Spearman correlation. *, **, and
*** denote statistical significance at the 10%, 5% and 1% level, respectively. For a detailed description of the risk aversion measures, see
Section 3.3 and appendices B and C.

Table 5
Descriptive statistics — ambiguity aversion.

Panel A: Ambiguity aversion parameters (𝛼)

Observations Mean Standard deviation Lowest Highest

Ambiguity task 1 93 0.532∗∗∗ 0.083 0.25 0.65
Ambiguity task 2 93 0.535∗∗∗ 0.091 0.33 0.85
Combined measure 93 0.534∗∗∗ 0.064 0.36 0.70

Panel B: Correlation statistics

Ambiguity Ambiguity Combined
task 1 task 2 measure

Ambiguity task 1 0.088 0.706∗∗∗

Ambiguity task 2 0.069 0.711∗∗∗

Combined measure 0.702∗∗∗ 0.759 ∗∗∗

The table summarizes the results of the two ambiguity tasks. Panel A reports the ambiguity aversion parameters (𝛼) derived from the switching
points. Significance of the difference to 0.5 is estimated using a 𝑡-test. Panel B reports the correlation statistics between the ambiguity aversion
parameters. The lower part of the panel presents the Pearson correlation, the upper part the Spearman correlation. *, **, and *** denote statistical
significance at the 10%, 5% and 1% level, respectively. For a detailed description of the ambiguity preference measures, see Section 3.3 and
appendices B and C.

point. I then define the ambiguity aversion parameter as 1 less the
matching probability.

A value of 1 corresponds to extreme ambiguity aversion, while a
value of 0 means extreme ambiguity seeking preferences. A parameter
value of 0.5 implies ambiguity neutrality (see Appendix C). In this
two-dimensional state space, the ambiguity preference measure corre-
sponds to the ambiguity preference parameter 𝛼 of the 𝛼-MEU model
by Ghiradato et al. (2004). As before, I compute a combined measure of
ambiguity aversion defined as the average ambiguity aversion obtained
from both tasks.

Panel A shows that subjects are, on average, significantly ambiguity
averse (> 0.5) in both tasks (𝑡-test: 𝑝-value < 0.01). Combining the
two tasks reduces the variance of the ambiguity aversion measure,
which I interpret as evidence that combining the two measures allows
for correcting for outliers. In the remainder of the analysis, the paper
thus uses predominantly the combined measure of ambiguity aversion
(baseline). Since ambiguity task 1 has fewer multiple switchers, this

measure of ambiguity aversion is used in the robustness specification.
Similar to the risk preferences, panel C shows that the ambiguity
preference measures obtained from the two tasks are not related to
each other, i.e., there seems to be a low within-subject consistency. This
finding stresses again the importance of using the combined ambiguity
aversion measure in the baseline specification to reduce the impact of
measurement errors.

5. Explaining aversion to unknown payoffs

This section explores the underlying reason for cross-sectional dif-
ferences in the subjects’ aversion to unknown payoffs. The evaluation of
Lotto lotteries can depend on both the utility function (risk preferences)
and the attitude towards a range of probability distributions for each
of the possible scenarios (i.e., ambiguity preferences).
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5.1. Analysis of non-parametric preference measures

This section analyses the subjects’ aversion to unknown payoffs
using the non-parametric preference measures. This analysis is carried
out for both the baseline specification using the combined preference
measures, as well as the robustness specification which uses the non-
parametric measures obtained from the tasks with the lowest number
of multiple switchers.

Panels A and B of Table 6 show that the subjects’ aversion to
unknown payoffs is significantly related to both risk and ambiguity
preferences. In direct comparison, the correlation with risk aversion is
higher than the correlation with ambiguity aversion. The correlation
between risk and ambiguity preferences is considerably lower, even
being not significant in the baseline specification.

Panels C and D report the coefficient estimates of OLS regressions
of the subjects’ aversion to unknown payoffs on risk and ambiguity
preferences,

𝑙 𝑜𝑡𝑡𝑜𝑖 = 𝛿 + 𝛽𝑟𝑟𝑖𝑠𝑘𝑖 + 𝛽𝑎𝑎𝑚𝑏𝑖 + 𝜀𝑖, (3)

where 𝑙 𝑜𝑡𝑡𝑜𝑖 denotes the non-parametric measure of aversion to un-
known payoffs, 𝑟𝑖𝑠𝑘𝑖 is the non-parametric measure of risk aversion,
𝑎𝑚𝑏𝑖 is the non-parametric measure of ambiguity aversion, and 𝜀𝑖 is
the error term.

Risk preferences can explain some of the observed behaviour in the
Lotto tasks. In both specifications, the risk aversion coefficients are
significantly different from zero, at high confidence levels (see the first
column of both panels). In addition, the explained variance of aversion
to unknown payoffs is substantial, reaching up to 39% in the robustness
specification. Hence, there is a strong support for the hypothesis that
subjects behave according to subjective expected utility.

However, the table shows that the ambiguity aversion coefficients
are also highly significant (second column). While in comparison to
the risk-based explanation the explained variance is lower, this result
nevertheless suggests that subjects are not fully confident about the
subjective probabilities they attribute to the payoffs, and hence con-
sider them partly ambiguous. The pure risk-model cannot capture such
behaviour.

This observation is confirmed when using both risk and ambiguity
preferences to predict the subjects’ aversion to unknown payoffs (third
column). The explained variance is highest, reaching 41% in the robust-
ness specification. Both risk and ambiguity preferences are significantly
different from 0, and are therefore important to explain the subjects’
choices.12

5.2. Predicting switching points

This section uses the compound lottery model with ambiguity, as
presented in Section 2.3.2, to predict the subjects’ switching points
in the Lotto tasks, and then compares them to their actual, observed
switching points. Ambiguity preferences are thus captured by the 𝛼-
MEU utility model (Ghiradato et al., 2004). As Bernoulli utility func-
tion, I use the constant relative risk aversion (power) utility.

For each subject, I use the risk (𝛾) and ambiguity (𝛼) utility parame-
ters obtained from the subjects’ switching points, see Section 4.2. Then
I calculate the expected utility of all options presented in the Lotto
tasks. In each situation, the option with the highest expected utility
is selected. This allows predicting a switching point between the two
options, based on the subject’s risk and ambiguity preferences.

The table presents the analysis of aversion to unknown payoffs
based on the non-parametric preference measures. Panels A and B

12 The non-parametric preference measures are restricted to in the interval
[0,1], such that using OLS regressions might be considered problematic. In
a robustness check, I implement a logit transformation of the aversion to
unknown payoffs before estimating the model. The results are qualitatively
similar to those reported in Table 6.

report the correlation statistics between the non-parametric preference
measures. The lower part of the panel presents the Pearson correlation,
the upper part the Spearman correlation. Panels C and D report the
coefficient estimates of OLS regressions of the non-parametric prefer-
ence measures of aversion to unknown payoffs on risk and ambiguity
preferences,

𝑙 𝑜𝑡𝑡𝑜𝑖 = 𝛿 + 𝛽𝑟𝑟𝑖𝑠𝑘𝑖 + 𝛽𝑎𝑎𝑚𝑏𝑖 + 𝜀𝑖, (3)

where 𝑙 𝑜𝑡𝑡𝑜𝑖 denotes the non-parametric measure of aversion to un-
known payoffs, 𝑟𝑖𝑠𝑘𝑖 is the non-parametric measure of risk aversion,
𝑎𝑚𝑏𝑖 is the non-parametric measure of ambiguity aversion, and 𝜀𝑖 is
the error term. 𝑝-values are given in parenthesis below the coefficient
estimates.

Panels A and C report the results using the combined preference
measures (the baseline specification). Panels B and D report the results
using the measures obtained from Lotto task 2, risk task 2, and ambigu-
ity task 1 (the robustness specification). *, **, and *** denote statistical
significance at the 10%, 5% and 1% level, respectively.

Starting with Lotto task 2, the utility of the safe option (the degen-
erate roulette lottery) with a payoff 𝑥 ∈ [0, 10] is given as13

𝑢(𝑥) = 𝑥(1−𝛾)

1 − 𝛾
. (4)

In case of risk-neutrality (𝛾 = 0), the utility function simplifies to
𝑢(𝑥) = 𝑥. The expected utility of the unknown payoff in the Lotto lottery
is

𝛼 −𝑀 𝐸 𝑈 (10) = 𝛼 𝑢(0) + (1 − 𝛼)𝑢(10) = (1 − 𝛼) 10
(1−𝛾)

1 − 𝛾
. (5)

In this two-dimensional state space, 𝛼 = 0.5 corresponds to ambigu-
ity neutrality. Ambiguity neutrality reflects the fact that subjects have
no prior information about the prize in the Lotto lottery and should
therefore attribute a 50% probability of winning 10 points (especially
since subjects had the possibility to choose the winning colour).14 Since
Lotto task 1 is identical to Lotto task 2 other than adding the possibility
of winning no prize with a probability of 50%, the predicted switching
point for Lotto tasks 2 (and the combined measure) can be calculated
using the same formulas.

Table 7 reports the results of an OLS regression of the observed
switching points (𝑠𝑤𝑖𝑡𝑐 ℎ𝑜𝑖 ) in the Lotto tasks on the predicted switching
points (𝑠𝑤𝑖𝑡𝑐 ℎ𝑝𝑖 ) implied by the utility model,

𝑠𝑤𝑖𝑡𝑐 ℎ𝑜𝑖 = 𝛿 + 𝛽𝑝𝑠𝑤𝑖𝑡𝑐 ℎ𝑝𝑖 + 𝜀𝑖, (6)

where 𝜀𝑖 is the error term. Similar to Section 5.1, the analysis is carried
out for two sets of measures. The baseline analysis uses the combined
preference measures, and the robustness analysis uses the measures
obtained from the tasks with the lowest number of multiple switchers.

This analysis largely confirms the results of the non-parametric
preference measures. There is a strong association between actual and
predicted switching points when explaining choices in the Lotto tasks
by risk preferences only. In the robustness specification (panel B), the
explained variance reaches up to 39%. As before, ambiguity aversion
can also explain aversion to unknown payoffs. In comparison to the
risk-based explanation, the explained variance is somewhat lower.
Finally, when using both risk and ambiguity preferences to predict the
subjects’ switching points, the association between actual and predicted
switching points is highest, regardless of the specification used. In the
robustness specification, the explained variance reaches 41%.

13 Since the highest value of 𝛾 in the data is below 1, the utility of a payoff
of 0 is well defined and given by 𝑢(0) = 0.

14 In the risk-only case the expected utility of the Lotto lottery is 0.5 ⋅ 𝑢(10).
In the ambiguity-only case the expected utility of the Lotto lottery is (1 −𝛼) 10.
In the risk and ambiguity case, the expected utility of the Lotto lottery is
(1 − 𝛼) 𝑢(10).
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Table 6
Analysis of aversion to unknown payoffs (non-parametric preference measures).

Panel A: Baseline specification — Correlation statistics

Aversion to Risk Ambiguity
unknown payoffs aversion aversion
Combined measure Combined measure Combined measure

Aversion to unknown payoffs 0.304∗∗∗ 0.281∗∗∗

Combined measure (0.003) (0.006)
Risk aversion 0.372∗∗∗ 0.103

Combined measure (0.000) (0.327)
Ambiguity aversion 0.290∗∗∗ 0.097

Combined measure (0.005) (0.356)

Panel B: Robustness specification — Correlation statistics

Aversion to Risk Ambiguity
unknown payoffs aversion aversion
Lotto task 2 Risk task 2 Ambiguity Task 1

Aversion to unknown payoffs 0.571∗∗∗ 0.290∗∗∗

Lotto task 2 (0.000) (0.005)
Risk aversion 0.622∗∗∗ 0.276∗∗∗

Risk task 2 (0.000) (0.008)
Ambiguity aversion 0.313∗∗∗ 0.253∗∗

Ambiguity task 1 (0.002) (0.014)

Panel C: Baseline specification — OLS regressions

Aversion to unknown payoffs
Combined measure

Risk aversion 𝛽𝑟 0.464∗∗∗ 0.433∗∗∗

Combined measure (0.000) (0.000)
Ambiguity aversion 𝛽𝑎 0.577∗∗∗ 0.511∗∗∗

Combined measure (0.005) (0.008)
Constant 𝛿 0.252∗∗∗ 0.199∗ −0.003

(0.000) (0.068) (0.977)

𝑅2 0.14 0.08 0.20
Observations 93 93 93

Panel D: Robustness specification — OLS regressions

Aversion to unknown payoffs
Lotto task 2

Risk aversion 𝛽𝑟 0.624∗∗∗ 0.582∗∗∗

Risk task 2 (0.000) (0.000)
Ambiguity aversion 𝛽𝑎 0.551∗∗∗ 0.293∗∗

Ambiguity task 1 (0.002) (0.049)
Constant 𝛿 0.167∗∗∗ 0.217∗∗ 0.035

(0.001) (0.024) (0.667)

𝑅2 0.39 0.10 0.41
Observations 93 93 93

Taken together, these results show that both risk and ambiguity
preferences are important to explain the subjects’ attitude towards un-
known payoffs. In direct comparison, the association with risk aversion
is higher than the association with ambiguity aversion. To some extent,
these results confirm that decision makers tend to behave as predicted
by subjective expected utility theory, as conjectured by, e.g., Camerer
and Weber (1992). Unknown payoffs of Lotto lotteries are attributed
some subjective probability, and subjects then evaluate the reduced
lottery using subjective expected utility. The more risk averse a decision
maker, the less she likes the uncertainty of the payoff of Lotto lotteries,
preferring the (relatively) less uncertain payoff of roulette lotteries.

Yet, when including ambiguity preferences, the predicted behaviour
of subjects is closer to their actual behaviour. This seems intuitive, as
decision makers have no information about the actual payoffs in the
Lotto lotteries, such it is natural to conceive that they do not form
precise subjective probabilities for each of the potential prizes, but
rather consider a range of probabilities possible. If decision makers are
ambiguity averse, this makes Lotto lotteries less attractive compared
to roulette lotteries with complete information. Risk and ambiguity
aversion thus work in the same direction.

The table also shows that the intercept of the regressions is al-
ways significantly positive, i.e., the predicted switching points are
consistently too low. This means that, given their risk and ambiguity
preferences, subjects are predicted to switch earlier than they actually

do – they are less averse to unknown payoffs than predicted. This
pattern is also present in the descriptive statistics of the non-parametric
preferences measures, see Section 4. While subjects are, on average,
significantly risk and ambiguity averse, they are, on average, not averse
to unknown payoffs.

6. Continuous range of payoffs

The tasks to measure aversion to unknown payoffs allow for only
two different prizes, one of which is zero. This procedure might have
two drawbacks. First, by offering only two possible values for the un-
known payoff, subjects might be induced to think about the probability
of each scenario, and thus have directly unknown probabilities in mind,
rather than unknown payoffs. Second, the Lotto lotteries are similar
to the ambiguous option in the ambiguity preference task 2. More
precisely, option B could be interpreted as a draw from an ambiguous
box – a prize of 10 points with unknown probability.15 Taken together,
this might explain the explanatory power of ambiguity aversion for
aversion to unknown payoffs.

15 Different from standard tasks to measure ambiguity preferences, however,
the alternative choice (option A) is a sure payment.
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Table 7
Predicting switching points.

Panel A: Baseline specification

Observed switching point
(combined measure)

Predicted switching point 𝛽𝑝
Risk aversion 0.330∗∗∗

(combined measure) (0.003)
Ambiguity aversion 0.399∗∗

(combined measure) (0.023)
Risk and ambiguity aversion 0.352∗∗∗

(combined measure) (0.000)
Constant 𝛿 4.071∗∗∗ 3.776∗∗∗ 4.109∗∗∗

(0.000) (0.000) (0.000)

𝑅2 0.09 0.06 0.14
Observations 93 93 93

Panel B: Robustness specification

Observed switching point
(Lotto task 2)

Predicted switching point 𝛽𝑝
Risk aversion 0.640∗∗∗

(risk task 2) (0.000)
Ambiguity aversion 0.551∗∗∗

(ambiguity task 2) (0.002)
Risk and ambiguity aversion 0.520∗∗∗

(risk task 2, ambiguity task 1) (0.000)
Constant 𝛿 2.874∗∗∗ 3.091∗∗∗ 3.415∗∗∗

(0.000) (0.000) (0.000)

𝑅2 0.39 0.10 0.41
Observations 93 93 93

The table presents the coefficient estimates of OLS regressions of the observed switching
points in the Lotto tasks (𝑠𝑤𝑖𝑡𝑐 ℎ𝑜

𝑖 ) on the predicted switching point (𝑠𝑤𝑖𝑡𝑐 ℎ𝑝
𝑖 ),

𝑠𝑤𝑖𝑡𝑐 ℎ𝑜
𝑖 = 𝛿 + 𝛽𝑝𝑠𝑤𝑖𝑡𝑐 ℎ𝑝

𝑖 + 𝜀𝑖 , (6)

where 𝜀𝑖 is the error term. The predicted switching points are calculated using the
risk (𝛾) and ambiguity (𝛼) preference parameters obtained from the risk and ambiguity
tasks, using the functional forms presented in Eqs. (4) and (5).
Panel A reports the results using the combined preference measures (the baseline
specification). Panel B reports the results using the measures obtained from Lotto task
2, risk task 2, and ambiguity task 1 (the robustness specification). 𝑝-values are given
in parenthesis below. *, **, and *** denote statistical significance at the 10%, 5% and
1% level, respectively.

While this behaviour is in line with the compound lottery model
which treats unknown payoffs as a set of as known payoffs with
unknown probabilities, the idea of Lotto lotteries goes beyond that;
subjects not having any information about possible payoffs. The ex-
perimental literature in psychology, for example, does not restrict the
payoffs to take on only a few possible values. Instead, these studies
only specify a possible range for the payoffs, allowing for all potential
payoffs within that range. When leaving the set of payoffs (almost
completely) unspecified, subjects cannot jump into probability con-
siderations for the unknown payoff. This section therefore introduces
another experimental task designed to measure aversion to unknown
payoffs when the prize of the Lotto lottery is continuous.

Yet, decision tasks allowing for a continuous range of payoffs come
with several drawbacks. First, receiving a payoff from a continuous
range cannot be transformed into draws of balls with different colours.
As a consequence, it is more difficult to implement a mechanism that
avoids subjects to form non-symmetric subjective probability distribu-
tions over the range of payoffs. Such a procedure would require subjects
to allocate a different colour to each payoff, which is not possible
for a continuous payoff. Without such a mechanism, decision makers
might believe that the payoffs are rather low, e.g., to save on the
experimenter’s budget (see the discussion in Section 3.2).

Second, allowing for continuous ranges of payoffs might reduce size
of the empirically observed aversion to unknown payoffs. To the extent
risk preferences can explain the observed behaviour, a continuous
payoff attributes by definition a higher probability mass around the

mid-point relative to a setting that allows only for the two endpoints of
a range. The binary setting is more extreme, and aversion to unknown
payoffs should be more pronounced.

Finally, continuous payoffs do not allow for an unambiguous map-
ping between risk aversion and aversion to unknown payoffs. With
two payoffs, a 50% probability for obtaining a high payoff is the only
possible symmetric probability distribution in the mind of subjects. If
payoffs are continuous, there are many possible symmetric probability
distributions, such as a truncated normal distribution or a uniform
distribution. These (subjective) probability distributions are however
unobservable.

Despite these challenges, I conducted another round of experimental
sessions to examine the impact of changing the assumption of two
possible payoffs into a continuous payoff range. In these session I
use a new task to measure the subjects’ aversion to unknown payoffs
(Lotto task 3), which is a variant of Lotto task 2. Instead of offering an
unknown payoff of either 0 or 10, subjects are offered an unknown
payoff in the range from 0 to 10 (see Appendix B). The degenerate
roulette lottery is identical to Lotto task 2. Similar to Lotto task 2,
subjects are expected to first prefer the Lotto lottery over the safe
payment. As the safe payment is increasing, subjects are expected to
switch to the safe payment at some point. The earlier they switch, the
more they are averse to unknown payoffs.

The second round of experiments also includes the tasks used in
the robustness specification of the main analysis, i.e., Lotto task 2,
risk task 2, and ambiguity task 1. The experiments were conducted in
December 2019, again at the ExpressLab of Royal Holloway (University
of London). 100 students participated in the study, with an average age
of about 20 years.

The table summarizes the results of the second set of experiments.
Panel A reports the non-parametric measures of aversion to unknown
payoffs (Lotto tasks 2 and 3), risk, and ambiguity aversion. Lotto
task 2 offers two possible payoffs (0 or 10 points) when selecting the
option with unknown payoff; Lotto task 3 offers the a range of payoffs
(from 0 to 10 points) when selecting the option with unknown payoff.
Significance of the difference to 0.5 is estimated using a 𝑡-test. Panel B
reports the correlation statistics between the two measures of aversion
to unknown payoffs derived from Lotto tasks 2 and 3. The lower part of
the panel presents the Pearson correlation, the upper part the Spearman
correlation.

Panel C presents the coefficient estimates of OLS regressions of the
non-parametric preference measure of aversion to unknown payoffs
obtained from Lotto task 3 on risk and ambiguity preferences,

𝑙 𝑜𝑡𝑡𝑜𝑖 = 𝛿 + 𝛽𝑟𝑟𝑖𝑠𝑘𝑖 + 𝛽𝑎𝑎𝑚𝑏𝑖 + 𝜀𝑖, (3)

where 𝑙 𝑜𝑡𝑡𝑜𝑖 denotes the non-parametric measure of aversion to un-
known payoffs, 𝑟𝑖𝑠𝑘𝑖 is the non-parametric measure of risk aversion,
𝑎𝑚𝑏𝑖 is the non-parametric measure of ambiguity aversion, and 𝜀𝑖 is
the error term.

Panel D presents the coefficient estimates of OLS regressions of the
observed switching points in the Lotto task 3 (𝑠𝑤𝑖𝑡𝑐 ℎ𝑜𝑖 ) on the predicted
switching point (𝑠𝑤𝑖𝑡𝑐 ℎ𝑝𝑖 ),
𝑠𝑤𝑖𝑡𝑐 ℎ𝑜𝑖 = 𝛿 + 𝛽𝑝𝑠𝑤𝑖𝑡𝑐 ℎ𝑝𝑖 + 𝜀𝑖, (6)

where 𝜀𝑖 is the error term. The predicted switching points are calculated
using the risk (𝛾) and ambiguity (𝛼) preference parameters obtained
from the risk and ambiguity tasks, using the functional forms presented
in Eqs. (4) and (5). 𝑝-values are given in parenthesis below the coeffi-
cient estimates. *, **, and *** denote statistical significance at the 10%,
5% and 1% level, respectively. For a detailed description of the various
measures see Appendices B and C.

Panel A of Table 8 shows that the replication of the three tasks used
in the main analysis yields similar results in this second sample. As
before, Lotto task 2 shows that subjects are slightly averse to unknown
payoffs on average, but the value of 0.527 is not statistically different
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Table 8
Continuous payoffs.

Panel A: Descriptive statistics of non-parametric preference measures

Observations Mean Standard deviation Lowest Highest

Aversion to unknown payoffs
Lotto task 2 100 0.527 0.164 0.05 0.95
Lotto task 3 100 0.522∗ 0.130 0.25 0.95

Risk aversion
Risk task 2 100 0.560∗∗∗ 0.151 0.25 0.95

Ambiguity aversion
Ambiguity task 1 100 0.541∗∗∗ 0.124 0.15 0.95

Panel B: Correlation statistics (Aversion to unknown payoffs)

Lotto Lotto
task 2 task 3

Lotto task 2 0.528∗∗∗

Lotto task 3 0.608∗∗∗

Panel C: Aversion to unknown payoffs

Aversion to unknown payoffs

(Lotto task 3)

Risk aversion 𝛽𝑟 0.500∗∗∗ 0.425∗∗∗

(risk task 2) (0.000) (0.000)
Ambiguity aversion 𝛽𝑎 0.457∗∗∗ 0.313∗∗∗

(ambiguity task 1) (0.000) (0.000)
Constant 𝛿 0.244∗∗∗ 0.275∗∗∗ 0.115∗∗

(0.000) (0.000) (0.032)

𝑅2 0.33 0.19 0.41
Observations 100 100 100

Panel D: Predicting switching points

Observed switching point (Lotto task 3)

Predicted switching point 𝛽𝑝
Risk aversion 1.099∗∗∗

(risk task 2) (0.000)
Ambiguity aversion 0.456∗∗∗

(ambiguity task 2) (0.000)
Risk and ambiguity aversion 0.383∗∗∗

(risk task 2, ambiguity task 1) (0.000)
Constant 0.500 3.413∗∗∗ 3.920∗∗∗

(0.634) (0.000) (0.000)

𝑅2 0.18 0.19 0.33
Observations 100 100 100

from 0.5. The risk and ambiguity measures indicate, as before, that
subjects are risk and ambiguity averse.

The new Lotto task 3 confirms that subjects are averse to unknown
payoffs. Different from Lotto task 2, the average is significantly larger
than 0.5 (although the point estimate is slightly lower than the average
of task 2). Panel B shows that the both measures are highly correlated,
reaching a linear correlation of 61%. A paired 𝑡-test confirms that both
measures are not statistically different from each other. These results
show that subjects treat a range of payoffs from 0 to 10 similar to the
binary case with a payoff that can be either 0 or 10. It seems that the
absence of a mechanism to induce symmetric beliefs about the prize
in the Lotto lottery does lead to an increasing aversion to unknown
payoffs.

Panel C repeats the analysis of non-parametric preference measures
when allowing the unknown payoff to lie in a range from 0 to 10. The
results are similar to those of the main analysis. Both risk and ambiguity
preferences are strongly related to the subjects’ aversion to unknown
payoffs, with both coefficients being highly significant.

Finally, panel D replicates the comparison between observed and
predicted switching points. This requires an assumption about the
subjective probability distribution of the risk-only case (as subjective
probability distributions are not observable). In this analysis, I assume
that subjects attribute a uniform distribution over the range of payoffs
from 0 to 10. Since a uniform distribution over all possible payoffs
reduces the variance of expected payoffs, the explained variance of
predicted switching points for actual switching points is lower in

the risk-only case compared to the binary case. Surprisingly, in the
ambiguity-only specification, the 𝑅2 between actual and predicted
switching points increases slightly. Since the best and the worst cases
are identical for a continuous range of payoffs and the two end-
points only, the 𝛼-MEU expected value of the Lotto lottery remains
unchanged. Finally, when considering both risk and ambiguity prefer-
ences to explain uncertainty preferences, the association between actual
and predicted switching points is most pronounced, albeit slightly
lower than in the main analysis.

Overall, this section shows that replacing the binary payoff space
of a Lotto lottery with a continuous payoff range does not change
the results. By and large, subjects deal with both types of unknown
payoff structures in a similar way. Even though the compound lottery
model expresses unknown payoffs as a countable set of known payoffs,
it seems to be capturing the behaviour of a continuous payoff space
as well. A possible explanation for this behaviour is that subjects
(unconsciously) reduce continuous payoffs to a binary payoff space, and
then decide in accordance with their risk and ambiguity preferences —
as before. This result mirrors earlier empirical evidence suggesting that
the 𝛼−MEU model by Ghiradato et al. (2004) is a suitable model for
choice tasks under ambiguity (Ahn et al., 2014).

An important implication of these findings is that the results are
valid for the general case of entirely unknown payoffs. This, in turn,
means that the findings can be compared to the results in the psychol-
ogy and management science literature which usually assume a range
of unknown payoffs in their experiments.
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7. Concluding remarks

Analysing decision making under uncertainty when payoffs are
inherently unknown, like the Lotto lotteries studied in this paper, has
not been at the centre of research in economics. Yet, Lotto lotteries
arise in many real-life situations. This paper contributes to a better
understanding of Lotto lotteries from both a theoretical and empirical
perspective.

This paper suggests thinking about unknown payoffs not as a black
box, but rather as a set of possible outcomes with subjective prob-
abilities attached to each of them. If these subjective probabilities
are unique, risk aversion can perfectly explain a subjects’ aversion
to unknown payoffs, as conjectured by Camerer and Weber (1992).
However, if these subjective probabilities are not singleton (but rather
consist of a set of probabilities), ambiguity aversion has also a role
in explaining aversion to unknown payoffs. The empirical finding that
both risk and ambiguity preferences matter provides evidence for the
latter. This means that unknown payoffs are ultimately closely linked
to ambiguity about probabilities.

These findings have some important implications. Given that many
decisions in our daily lives involve unknown payoffs, this paper high-
lights the importance of taking into account individual ambiguity pref-
erences when making such decisions. While risk preferences are in-
creasingly being measured in everyday business applications (e.g., in
private banking), a systematic measurement of ambiguity preferences
is missing so far.

The insight that both ambiguity and risk preferences matter when
payoffs are unknown is also reassuring from a theoretical perspective.
Most decision-theoretic models that capture features similar to the
Lotto lotteries analysed in this paper build on the concept of belief
functions introduced by Dempster (1967) and Shafer (1976). Given
the non-additive nature of belief functions, these models directly im-
ply a close relation between unknown payoffs and ambiguity about
probabilities. The results of this paper thus confirm these models
empirically.
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Appendix A. Numerical examples for preference of roulette lotter-
ies over Lotto lotteries

This appendix provides some numerical examples for the conjec-
tured preference of roulette lotteries (urn 𝐻) over Lotto lotteries (urn
𝐹 ), as discussed in Section 2.3.1, caused by (1) risk aversion and (2)
ambiguity aversion.

1. Risk aversion: Suppose a decision maker has a log utility func-
tion 𝑢(𝑥) = ln(𝑥), i.e., risk aversion, and symmetric subjective
probabilities for the coloured ball in urn 𝐹 to be either yellow
or red (𝜇(𝑟𝑒𝑑) = 𝜇(𝑦𝑒𝑙 𝑙 𝑜𝑤) = 0.5), i.e., no ambiguity. Then:

𝐸 𝑈 (𝐻) > 𝑆 𝐸 𝑈 (𝐹 )

0.5 ln(2) > 0.5 (0.5 ln(1) + 0.5 ln(3))
0.347 > 0.275

𝐻 ≻ 𝐹

2. Ambiguity aversion: Suppose a decision maker has a linear
utility function 𝑢(𝑥) = 𝑥 (i.e., risk neutrality), but a symmetric
set  of probabilities for the coloured ball in urn 𝐻 to be either
yellow or red, such that (𝑟𝑒𝑑) = [0, 1], i.e., there is ambiguity.
By additivity, we have (𝑦𝑒𝑙 𝑙 𝑜𝑤) = [0, 1]. Ambiguity preferences
are modelled using the 𝛼-MEU model by Ghiradato et al. (2004).
If the decision maker is ambiguity averse (𝛼 = 0.6), we have:

𝐸 𝑈 (𝐻) > 𝛼 −𝑀 𝐸 𝑈 (𝐹 )

0.5𝑢(2) > 0.5
(

0.6 inf
𝑝∈

(𝑟𝑒𝑑)𝐸 𝑈 [𝐹 ] + 0.4 sup
𝑝∈

(𝑟𝑒𝑑)𝐸 𝑈 [𝐹 ]
)

0.5 ⋅ 2 > 0.5 (0.6 ⋅ 1 + 0.4 ⋅ 3)
1 > 0.9

𝐻 ≻ 𝐹
Note that the MEU-model by Gilboa and Schmeidler (1989) is
a special case where 𝛼 = 1, and thus results in the same choice
pattern.

Aversion to Lotto lotteries relative to roulette lotteries can also be
rationalized by non-symmetric subjective probability distributions or
non-symmetric ranges of ambiguity. In this case the choice is indepen-
dent from risk or ambiguity preferences. The experimental set-up used
in this study thus ensures symmetric beliefs.

Appendix B. Incentivized decision tasks

This appendix presents the incentivized decision tasks to measure
risk and ambiguity preferences, as well as aversion to unknown payoffs.
Before each task, subjects were presented examples of the choice tasks
to familiarize themselves with the design. In addition, subjects were
asked several control questions to ensure that they understood the
tasks. Note that the actual wording of the tasks is slightly different
from the appendix since each task was presented on a sequence of
computer screens. Screenshots of the experimental tasks are presented
in the online appendix.

General instructions:

This part consists of 6 tasks. In completing these tasks you can earn
points; points will be converted into GBP at a rate of 1 to 5. This means
that you receive GBP 1 for every 5 points you earn. Your earnings from
the 6 tasks will be paid out to you at the end of the session together with
your show-up reward of GBP 2. Please read carefully the instructions
before each task since the points you can earn depend on your answers.
Although some of the tasks might appear similar, they are all different.
The points from each task will be determined at the end of the session.
Each task is independent from choices you made in previous tasks.
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Table B.1
Risk task 1.

Situation Box A: Box B: Your choices
If a white ball is drawn If a white ball is drawn
you earn 6 points you earn 10 points
If a black ball is drawn If a black ball is drawn
you earn 4 points you earn 0 points

1 5 white balls, 5 black balls 0 white balls, 10 black balls Box A ○ ○ Box B
2 5 white balls, 5 black balls 1 white ball, 9 black balls Box A ○ ○ Box B
3 5 white balls, 5 black balls 2 white balls, 8 black balls Box A ○ ○ Box B
4 5 white balls, 5 black balls 3 white balls, 7 black balls Box A ○ ○ Box B
5 5 white balls, 5 black balls 4 white balls, 6 black balls Box A ○ ○ Box B
6 5 white balls, 5 black balls 5 white balls, 5 black balls Box A ○ ○ Box B
7 5 white balls, 5 black balls 6 white balls, 4 black balls Box A ○ ○ Box B
8 5 white balls, 5 black balls 7 white balls, 3 black balls Box A ○ ○ Box B
9 5 white balls, 5 black balls 8 white balls, 2 black balls Box A ○ ○ Box B
10 5 white balls, 5 black balls 9 white balls, 1 black ball Box A ○ ○ Box B

In each of the 6 tasks you need to fill in a decision table. Each decision
table consists of various situations. Each situation offers you a choice
between two options. At the end of the session, the computer will – for
each task – randomly select one out of the situations. Then, depending
on your choice, you can earn some money. Note that even though you
will make many decisions when filling out a decision table, only one of
these will determine the points you earn. However, you do not know in
advance which situation will be selected (they are equally likely to be
selected).

Risk task 1: This tasks determines risk preferences by eliciting an
uncertainty equivalent for a sequence of lotteries. The task is taken
from decision sheet B of Chakravarty and Roy (2009). It is a simplified
version of the Holt and Laury (2002) design.

The decision table of task 1 consists of 10 situations. Each situation
offers you a choice between drawing a ball from two different boxes,
box A or box B. Both boxes contain 10 balls, either white or black.

• The composition of box A is identical in all 10 situations. There
are 5 white balls and 5 black balls.

• The composition of box B changes from one situation to the next.
The number of white balls increases incrementally from 0 white
balls in situation 1 to 9 white balls in situation 10, while the
number of black balls decreases accordingly.

At the end of the session, the computer will randomly select one out of
the 10 situations. Then, depending on whether you have chosen box A
or box B in that situation, the computer will randomly draw one ball
from that box. Depending on the colour of the ball, you earn the points
indicated in the table.

In each situation, from which box do you prefer to draw a ball, box A
or box B?

Risk task 2: This task determines risk preferences by eliciting a cer-
tainty equivalent for a lottery. The task is adapted from task 5 of Vieider
(2018).

The decision table of task 2 consists of 14 situations. Each situation
offers you a choice between two options:

• Option 1 offers you to draw a ball from a box which contains 5
green balls and 5 red balls. If a green ball is drawn, you earn 20
points. Option 1 is identical in each situation.

• Option 2 offers you a sure number of points. The number of points
increases from one situation to the next.

At the end of the session, the computer will randomly select one out of the
14 situations. If you have chosen option 1, the computer will randomly
draw one ball from a box that contains 5 green balls and 5 red balls.

If the colour of the ball drawn is green you earn 20 points, and nothing
otherwise. If you have chosen option 2, you receive the number of points
as indicated.

Which option do you prefer each situation? Drawing a ball from a box
with a 50% probability to earn 20 points (option 1) or a sure number
of points (option 2)?

Ambiguity task 1: This task determines ambiguity preferences by elic-
iting a matching probability for an ambiguous lottery. The task extents
the Ellsberg (1961) thought experiment to different situations, similar
to Lauriola and Levin (2001) and Butler et al. (2014).

The decision table of task 3 has 11 situations. Similar to task 1, each
situation offers you a choice between drawing a ball from two different
boxes, box 1 or box 2. Both boxes contain 10 balls, either white or black.

• The composition of box 1 changes from one situation to the next.
While the number of balls in one colour (e.g., white) increases
incrementally from 0 to 10, the number of balls of the other colour
(e.g., black) decreases accordingly.

• The composition of box 2 is identical in each situation. However,
you do not know how many balls are white and how many balls
are black. Any combination is possible. There might be from 0 to
10 white balls, with the remaining balls being black.

One ball will be drawn from the box you choose. The points you can
earn depend on the colour of the ball drawn. Only one colour yields some
points. You can choose whether the colour that yields points is white or
black. Please choose the colour of the ball that provides you points:

• white
• black

In each of the 11 situations, we would like you to indicate from which
box (box 1 or box 2) you prefer drawing a ball. As explained before,
both boxes contain 10 balls, either white or black.16

• The composition of box 1 changes from one situation to the next.
The number of white balls increases incrementally from 0 white
balls in situation 0 to 10 white balls in situation 10, while the
number of black balls decreases accordingly.

16 From this point onward, the actual text and decision table depend on the
colour chosen. In this example, it is assumed that the selected colour is white.
If the selected colour is black, the word ‘‘white’’ has to be replaced by ‘‘black’’,
and vice versa.
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Table B.2
Risk task 2.

Situation Option 1: Option 2: Your choices
If a green ball is drawn Sure number of points
you earn 20 points
If a red ball is drawn
you earn 0 points

1 Draw from a box with 5 green & 5 red balls 2 points for sure Option 1 ○ ○ Option 2
2 Draw from a box with 5 green & 5 red balls 4 points for sure Option 1 ○ ○ Option 2
3 Draw from a box with 5 green & 5 red balls 5 points for sure Option 1 ○ ○ Option 2
4 Draw from a box with 5 green & 5 red balls 6 points for sure Option 1 ○ ○ Option 2
5 Draw from a box with 5 green & 5 red balls 7 points for sure Option 1 ○ ○ Option 2
6 Draw from a box with 5 green & 5 red balls 8 points for sure Option 1 ○ ○ Option 2
7 Draw from a box with 5 green & 5 red balls 9 points for sure Option 1 ○ ○ Option 2
8 Draw from a box with 5 green & 5 red balls 10 points for sure Option 1 ○ ○ Option 2
9 Draw from a box with 5 green & 5 red balls 11 points for sure Option 1 ○ ○ Option 2
10 Draw from a box with 5 green & 5 red balls 12 points for sure Option 1 ○ ○ Option 2
11 Draw from a box with 5 green & 5 red balls 13 points for sure Option 1 ○ ○ Option 2
12 Draw from a box with 5 green & 5 red balls 14 points for sure Option 1 ○ ○ Option 2
13 Draw from a box with 5 green & 5 red balls 16 points for sure Option 1 ○ ○ Option 2
14 Draw from a box with 5 green & 5 red balls 18 points for sure Option 1 ○ ○ Option 2

Table B.3
Ambiguity task 1.

Situation Box 1: Box 2: Your choices
If a white ball is drawn If a white ball is drawn
you earn 10 points you earn 10 points
If a black ball is drawn If a black ball is drawn
you earn 0 points you earn 0 points

0 0 white balls, 10 black balls unknown composition Box 1 ○ ○ Box 2
1 1 white ball, 9 black balls unknown composition Box 1 ○ ○ Box 2
2 2 white balls, 8 black balls unknown composition Box 1 ○ ○ Box 2
3 3 white balls, 7 black balls unknown composition Box 1 ○ ○ Box 2
4 4 white balls, 6 black balls unknown composition Box 1 ○ ○ Box 2
5 5 white balls, 5 black balls unknown composition Box 1 ○ ○ Box 2
6 6 white balls, 4 black balls unknown composition Box 1 ○ ○ Box 2
7 7 white balls, 3 black balls unknown composition Box 1 ○ ○ Box 2
8 8 white balls, 2 black balls unknown composition Box 1 ○ ○ Box 2
9 9 white balls, 1 black ball unknown composition Box 1 ○ ○ Box 2
10 10 white balls, 0 black balls unknown composition Box 1 ○ ○ Box 2

• The composition of box 2 is identical in all situations. However,
the exact composition of box 2 is unknown. Any combination of
white and black balls is possible: there might be 10 white balls,
or 10 black balls, or any other possible combination of white and
black balls.

At the end of the session, the computer will randomly select one out of
the 11 situations. Then, depending on whether you have chosen box 1 or
box 2 in that situation, the computer will randomly draw one ball from
that box. If the colour of the ball is white you earn 10 points.17

In each situation, from which box do you prefer to draw a ball, box 1
or box 2?

Ambiguity task 2: This task determines ambiguity preferences by elic-
iting a matching probability for an ambiguous lottery, similar to ambi-
guity task 1.

In task number 4, we present you another decision table with 14
situations. Similar to the previous task, each situation offers you a choice
between drawing a ball from two different boxes, box X or box Y. Both
boxes contain 20 balls, either white or black.

• The composition of box X changes from one situation to the next.
While the number of balls in one colour (e.g., white) increases from
one situation to the next, the number of balls of the other colour
(e.g., black) decreases accordingly.

17 In practice, the ambiguous box (box 2) contained 7 balls of the winning
colour. This was unknown to participants.

• The composition of box Y is identical in each situation. However,
you do not know the colour of the balls in box Y: They can be all
white OR all black.

One ball will be drawn from the box you choose. The points you can
earn depend on the colour of the ball drawn. Similar to task 3, only one
colour yields some points. You can choose whether the colour that yields
points is white or black.

• white
• black

In each of the 14 situations of the decision table, we would like you to
indicate from which box (box X or box Y) you prefer drawing a ball. As
explained before, both boxes contain 20 balls, either white or black.18

• The composition of box X changes from one situation to the next.
While the number of black balls increases, the number of white
balls decreases accordingly.

• The composition of box Y is identical in each situation. However,
you do not know the colour of the balls in box Y: They can be all
white OR all black.

At the end of the session, the computer will randomly select one out of
the 14 situations. Then, depending on whether you have chosen box X

18 From this point onward, the actual text and decision table depend on the
colour chosen. In this example, it is assumed that the selected colour is white.
If the selected colour is black, the word ‘‘white’’ has to be replaced by ‘‘black’’,
and vice versa.
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Table B.4
Ambiguity task 2.

Situation Box X: Box Y: Your choices
If a white ball is drawn If a white ball is drawn
you earn 10 points you earn 10 points
If a black ball is drawn If a black ball is drawn
you earn 0 points you earn 0 points

1 18 white balls and 2 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
2 16 white balls and 4 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
3 14 white balls and 6 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
4 13 white balls and 7 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
5 12 white balls and 8 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
6 11 white balls and 9 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
7 10 white balls and 10 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
8 9 white balls and 11 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
9 8 white balls and 12 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
10 7 white balls and 13 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
11 6 white balls and 14 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
12 5 white balls and 15 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
13 4 white balls and 16 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y
14 2 white balls and 18 black balls 20 white balls OR 20 black balls Box X ○ ○ Box Y

or box Y in that situation, the computer will randomly draw one ball
from that box. If the colour of the ball is white you earn 10 points.19

In each situation, from which box do you prefer to draw a ball, box X
or box Y?

Lotto task 1: This task determines aversion to unknown payoffs by
eliciting an uncertainty equivalent of a Lotto lottery.

In task number 5, we present you another decision table with 11
situations. Similar to the previous tasks, each situation offers you a
choice between drawing a ball from two different boxes, box I or box
J.

• Box I contains 10 white balls and 10 black balls. If a black ball is
drawn, you earn some points. The points you can earn increases
from one situation to the next.

• Box J contains 10 white balls and 10 coloured balls, which can
either be all yellow OR all blue. Box J is identical in each situation.
Depending on the colour of the ball drawn, you can earn 10 points.
Similar to previous tasks, you can choose whether the colour that
yields points is yellow or blue. If a white ball is drawn, you do not
earn any points.

Please choose the colour of the ball that provides you points.

• yellow
• blue

In each of the 11 situations of the decision table, we would like you
to indicate from which box you prefer drawing a ball. As explained
before20:

• Box I contains 10 white balls and 10 black balls. If a black ball is
drawn, you earn some points. The points you can earn increases
from 0 points to 10 points.

• Box J contains 10 white balls and 10 coloured balls, which can
either be all yellow OR all blue. If a yellow ball is drawn, you earn
10 points. If a blue or a white ball is drawn, you earn no points.
Box J is identical in each situation.

19 In practice, the ambiguous box (box Y) contained 20 balls of the winning
colour. This was unknown to participants.

20 From this point onward, the actual text and decision table depend on the
colour chosen. In this example, it is assumed that the selected colour is yellow.
If the selected colour is blue, the word ‘‘yellow’’ has to be replaced by ‘‘blue’’,
and vice versa.

At the end of the session, the computer will randomly select one out of the
11 situations. If you have chosen box I the computer will randomly draw
one ball from the box. If the colour of that ball is black, you receive the
number of points as indicated. If you have chosen box J, the computer
will randomly draw one ball from the box. If the colour of that ball is
yellow you earn 10 points, and nothing otherwise.21

In each situation, from which box do you prefer to draw a ball, box I or
box J?

Lotto task 2: This task determines aversion to unknown payoffs by
eliciting a certainty equivalent of an ambiguous lottery.

In task number 6, we present you a final decision table with 11 situa-
tions. Each situation offers you a choice between two options:

• Option A offers you a sure number of points. The number of points
increases from one situation to the next.

• Option B offers you to draw a ball from a box which contains
10 balls, which can either be all yellow OR all blue. Option B is
identical in each situation. Depending on the colour of the ball
drawn, you can earn 10 points. Similar to the previous task, you
can choose whether the colour that yields points is yellow or blue.

Please choose the colour of the ball that provides you points.

• yellow
• blue

In each of the 11 situations of the decision table below, we would like
you to indicate which option you prefer. As explained before22:

• Option A offers you a sure number of points. The number of points
increases from one situation to the next.

• Option B offers you to draw a ball from a box which contains 10
balls, which can either be all yellow OR all blue. If a yellow ball
is drawn, you earn 10 points. If a blue ball is drawn, you earn no
points. Option B is identical in each situation.

21 In practice, the uncertain box (box J) contained 10 balls of the winning
colour. This was unknown to participants.

22 From this point onward, the actual text and decision table depend on the
colour chosen. In this example, it is assumed that the selected colour is yellow.
If the selected colour is blue, the word ‘‘yellow’’ has to be replaced by ‘‘blue’’,
and vice versa.
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Table B.5
Lotto task 1.

Situation Box I: Box J: Your choices
Composition: Composition:
10 white balls, 10 black balls 10 white balls, 10 coloured balls

(10 yellow OR 10 blue balls)
If a white ball is drawn If a white ball is drawn
you earn 0 points you earn 0 points

0 If a black ball is drawn you earn 0 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
1 If a black ball is drawn you earn 1 point If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
2 If a black ball is drawn you earn 2 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
3 If a black ball is drawn you earn 3 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
4 If a black ball is drawn you earn 4 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
5 If a black ball is drawn you earn 5 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
6 If a black ball is drawn you earn 6 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
7 If a black ball is drawn you earn 7 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
8 If a black ball is drawn you earn 8 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
9 If a black ball is drawn you earn 9 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J
10 If a black ball is drawn you earn 10 points If a yellow ball is drawn you earn 10 points Box I ○ ○ Box J

Table B.6
Lotto task 2.

Situation Option A: Option B: Your choices
Sure number of points If a yellow ball is drawn

you earn 10 points
If a blue ball is drawn
you earn 0 points

0 0 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
1 1 point for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
2 2 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
3 3 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
4 4 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
5 5 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
6 6 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
7 7 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
8 8 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
9 9 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B
10 10 points for sure 10 yellow balls OR 10 blue balls Option A ○ ○ Option B

At the end of the session, the computer will randomly select one out of
the 11 situations. If you have chosen option A, you receive the number
of points as indicated. If you have chosen option B, the computer will
randomly draw one ball from the box. If the colour of that ball is yellow
you earn 10 points, and nothing otherwise.23

In each situation, which option do you prefer? A sure number of points
(option A) or drawing a ball from a box with an unknown number of
points (option B)?

Lotto task 3: This task determines aversion to unknown payoffs by
eliciting a certainty equivalent of a continuous ambiguous lottery.24

In task number 7, we present you a final decision table with 11 situa-
tions. Each situation offers you a choice between two options:

• Option X offers you an unknown prize between 0 and 10 points.
Option X is identical in each situation.

• Option Y offers you a sure number of points. The number of points
increases from one situation to the next.

At the end of the session, the computer will randomly select one out of
the 11 situations. If you have selected Option X, you earn an unknown
prize between 0 and 10 points. If you have selected Option Y, you earn
the number of points as indicated.

23 In practice, the uncertain option (option B) contained 10 balls of the
losing colour. This was unknown to participants.

24 This task was only used in the second round of experiments, see Section 6.
These sessions consisted of risk task 2, ambiguity task 1, Lotto task 1, and Lotto
task 3 only.

In each situation, which option do you prefer? Drawing a ball from a
box with an unknown number of points (option X) or a sure number of
points (option Y)?

Appendix C. Non-parametric preference measures

This appendix describes how the switching points in the binary
choice tasks are transformed into the non-parametric measures of aver-
sion to unknown payoffs, risk aversion and ambiguity aversion as
presented in Section 4.

In all tasks, the switching point from one option to another indicates
a subject’s indifference between both options. This allows constructing
non-parametric preference measures by linearly mapping the indiffer-
ence point into an interval between 0 and 1. A value of 0 corresponds
to extreme liking of unknown payoffs (risk/ambiguity seeking prefer-
ences), while a number of 1 means extreme aversion to unknown payoff
(risk/ambiguity aversion). A value of 0.5 implies neutrality.

Lotto tasks: Under the assumption of risk and ambiguity neutrality,
a subject is indifferent in situation 5 (for all Lotto tasks) since the
expected value of both options are identical.

To see this, consider Lotto task 1, situation 5. The expected value
of the risky option (box I) is 0.5 ⋅ 5 + 0.5 ⋅ 0 = 2.5. In the Lotto lottery
(box J), the expected value is 0.5(10𝜇𝑌 + 0𝜇𝐵)5 + 0.5 ⋅0 = 5𝜇𝑌 , where 𝜇𝑌

denotes the subjective probability for the coloured ball to be yellow,
and 𝜇𝐵 the subjective probability for the coloured ball to be blue.
Since prior to Lotto task 1, subjects are asked to select the colour that
provides points, subjects do not have any incentive to attribute unequal
(asymmetric) beliefs about the two scenarios, which implies symmetric
beliefs 𝜇𝑌 = 𝜇𝐵 = 0.5. Hence, the expected value of the Lotto lottery is
equally 0.5. Indifference at situation 5 hence corresponds to a neutral
attitude with respect to lotteries with unknown payoffs.
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Table B.7
Lotto task 3.

Situation Option X: Option Y: Your choices
Unknown prize between Sure number of points
0 and 10 points

0 unknown prize 0 points for sure Option X ○ ○ Option Y
1 unknown prize 1 point for sure Option X ○ ○ Option Y
2 unknown prize 2 points for sure Option X ○ ○ Option Y
3 unknown prize 3 points for sure Option X ○ ○ Option Y
4 unknown prize 4 points for sure Option X ○ ○ Option Y
5 unknown prize 5 points for sure Option X ○ ○ Option Y
6 unknown prize 6 points for sure Option X ○ ○ Option Y
7 unknown prize 7 points for sure Option X ○ ○ Option Y
8 unknown prize 8 points for sure Option X ○ ○ Option Y
9 unknown prize 9 points for sure Option X ○ ○ Option Y
10 unknown prize 10 points for sure Option X ○ ○ Option Y

For Lotto tasks 2 and 3, if a subject prefers in situation 0 a certain
payoff of 0 points over an unknown payoff which can be at worst 0
points, this corresponds to extreme aversion to unknown payoffs and is
assigned a measure of 1. If a subject prefers in situation 10 an unknown
payoff which can be at best 10 points over a certain payoff of 10
points, this corresponds to extreme liking of unknown payoffs and is
assigned a measure of 0. Lotto task 1 follows the same logic. For all
other switching points the measure is obtained by linear interpolation,
using the mid-point around the switching point:

1 − mid-point of earnings of risky (or safe) option
10

For example, a switch between situations 5 and 6 implies a prefer-
ence measure of 0.45 (in all 3 Lotto tasks).

Risk tasks: Under the assumption of risk neutrality a decision maker
evaluates both options according to their expected value. In this case,
a subject is indifferent in situation 6 for risk task 1, and in situation 8
in risk task 2 since the expected values of both options are identical.

In risk task 1, a preference for box B in situation 1 corresponds to
extreme risk seeking preferences, while a preference for box A in situ-
ation 10 is interpreted as extreme risk averse preferences. Hence, the
risk aversion measure is calculated as the mid-point of the probability
of winning 10 points in box B around the switching point. For example,
a switch between situations 6 and 7 implies a risk aversion measure of
0.55.

In risk task 2, a preference for option 2 in situation 1 corresponds
to extreme risk averse preferences, while a preference for option 1 in
situation 14 corresponds to extreme risk seeking preferences. In this
task, the risk aversion measure is calculated as:

1 − mid-point of sure payment
20

For example, a switch between situations 2 and 3 implies a risk
aversion measure of 0.775.

Ambiguity tasks: Under the assumption of ambiguity neutrality, a sub-
ject is indifferent in situation 5 for ambiguity task 1, and in situation 7
for ambiguity task 2.

In ambiguity task 1, a preference for box 1 in situation 0 corre-
sponds to extreme ambiguity averse preferences, while a preference
for box 2 in situation 10 is corresponds to extreme ambiguity seeking
preferences. In ambiguity task 2, a preference for box Y in situation
0 corresponds to extreme ambiguity seeking preferences, while a pref-
erence for box X in situation 14 is corresponds to extreme ambiguity
averse preferences.

The ambiguity measures are derived from the matching probabili-
ties that are consistent with the subject’s switching points. For example,
in ambiguity task 1, a switch between situations 2 and 3 corresponds
to a matching probability 𝑚 of 0.25. Hence, the ambiguity aversion
measure is 1-𝑚 = 0.75.

Table D.1
Number of switching points per subject.

Number of switches Subjects Percent

6 63 67.74
8 11 11.83
10 4 4.30
12 8 8.60
14 0 0.00
16 2 2.15
18 3 3.23
20 1 1.08
22 1 1.08

Mean 7.85

The table presents the number of switches of subjects in all 6 binary
choice tasks combined (in the main experimental sessions).

Appendix D. Subjects with multiple switching points

This appendix presents additional analyses of subjects with multiple
switching points in the binary choice lists, and explores whether the
results of the study change if these subjects are removed from the
sample. Appendix D.1 presents the descriptive statistics of the number
of switching points for all subjects. Appendix D.2, as robustness check,
shows that the main results do not change when excluding subjects that
switch more than once.

D.1. Analysis of subjects with multiple switching points

The standard pattern in binary choice lists is to prefer one option
over the other up to a switching point, from which the other option is
the preferred choice (threshold strategy). Yet, it is common to observe
that some subjects exhibit multiple switching points (Holt & Laury,
2002), a behaviour that is difficult to reconcile with rational choice.
Despite being exposed to control questions before each choice task,
multiple switching points might indicate a lack of understanding of the
tasks, resulting in measurement errors.

Table D.1 presents the number of switches per subject in all 6
tasks combined (in the main experimental sessions). The table shows
that 63 subjects (68% of the sample) switch once per task, and can
thus be considered rational decision makers. Another 12% of subjects
switch back and forth in one task, and thus have 8 total switches. The
remaining 19 subjects switch more often.

D.2. Results for rational subjects

In the paper, subjects with multiple switching points are not ex-
cluded from the analysis. Instead, the study follows Falk et al. (2023)
and defines a subject’s switching point as the average switching point of
all switching points. An alternative is to exclude subjects with multiple
switching points from the sample, and carry out the analysis for the 63
rational subjects that have only one switching point per task.
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Table D.2
Rational subjects.

Panel A: Descriptive statistics of non-parametric preference measures

Observations Mean Standard deviation Lowest Highest

Aversion to unknown payoffs
Lotto task 1 63 0.540∗ 0.167 0.05 0.95
Lotto task 2 63 0.507 0.147 0.15 0.95
Combined measure 63 0.524 0.129 0.20 0.90

Risk aversion
Risk task 1 63 0.539∗∗ 0.135 0.25 0.95
Risk task 2 63 0.529 0.154 0.05 0.95
Combined measure 63 0.534∗∗ 0.103 0.25 0.95

Ambiguity aversion
Ambiguity task 1 63 0.534∗∗∗ 0.083 0.25 0.65
Ambiguity task 2 63 0.535∗∗∗ 0.075 0.33 0.78
Combined measure 63 0.534∗∗∗ 0.059 0.36 0.66

Panel B: Correlation statistics

Aversion to unknown payoffs Risk aversion Ambiguity aversion

Lotto Lotto Combined Risk Risk Combined Ambiguity Ambiguity Combined
task 1 task 2 measure task 1 task 2 measure task 1 task 2 measure

Aversion to unknown payoffs
Lotto task 1 0.459∗∗∗ 0.848∗∗∗ 0.022 0.356∗∗∗ 0.174 0.219∗ 0.077 0.195
Lotto task 2 0.345∗∗∗ 0.835∗∗∗ 0.077 0.588∗∗∗ 0.453∗∗∗ 0.294∗∗ 0.176 0.362∗∗∗

Combined measure 0.845∗∗∗ 0.793∗∗∗ 0.019 0.556∗∗∗ 0.330∗∗∗ 0.313∗∗ 0.146 0.333∗∗∗

Risk aversion
Risk task 1 0.067 0.123 0.113 −0.151 0.648∗∗∗ −0.111 0.021 −0.115
Risk task 2 0.283∗∗ 0.625∗∗∗ 0.539∗∗∗ 0.024 0.549∗∗∗ 0.301∗∗ 0.028 0.331∗∗∗

Combined measure 0.254∗∗ 0.545∗∗∗ 0.475∗∗∗ 0.669∗∗∗ 0.759∗∗∗ 0.147 −0.012 0.136
Ambiguity aversion

Ambiguity task 1 0.234∗ 0.302∗∗ 0.324∗∗∗ −0.031 0.262∗∗ 0.175 0.115 0.756∗∗∗

Ambiguity task 2 0.052 0.177 0.135 −0.061 0.039 −0.011 0.116 0.675∗∗∗

Combined measure 0.197 0.324∗∗∗ 0.313∗∗ −0.060 0.209 0.116 0.775∗∗∗ 0.718∗∗∗

Panel C: Analysis of aversion to unknown payoffs (non-parametric preference measures)

Aversion to unknown payoffs Aversion to unknown payoffs

Baseline specification Robustness specification

Risk aversion 𝛽𝑟 0.592∗∗∗ 0.555∗∗∗ 0.597∗∗∗ 0.560∗∗∗

(0.000) (0.000) (0.000) (0.000)
Ambiguity aversion 𝛽𝑎 0.683∗∗ 0.571∗∗ 0.536∗∗ 0.263

(0.013) (0.020) (0.016) (0.154)
Constant 𝛿 0.208∗∗∗ 0.159 −0.077 0.191∗∗∗ 0.221∗ 0.070

(0.000) (0.270) (0.583) (0.001) (0.064) (0.478)

𝑅2 0.23 0.10 0.29 0.39 0.09 0.41

Panel D: Predicting switching points

Observed switching point Observed switching point

Baseline specification Robustness specification

Predicted switching point 𝛽𝑝
Risk aversion 0.446∗∗∗ 0.597∗∗∗

(0.001) (0.000)
Ambiguity aversion 0.537∗∗ 0.536∗∗

(0.023) (0.016)
Risk and ambiguity aversion 0.408∗∗∗ 0.520∗∗∗

(0.000) (0.000)
Constant 𝛿 3.324∗∗∗ 3.020∗∗∗ 3.656∗∗∗ 2.964∗∗∗ 3.201∗∗∗ 3.332∗∗∗

(0.000) (0.003) (0.000) (0.000) (0.001) (0.000)

𝑅2 0.17 0.08 0.19 0.39 0.09 0.42

Table D.2 repeats the main analyses of this study for the subset of
rational subjects. The results are very similar to those obtained from
the entire sample of 93 subjects.

The table summarizes the results obtained from the sub-sample of
rational subjects, i.e., subjects with only one switching point in each
of the 6 tasks. Panel A reports the non-parametric preference measures
derived from the switching points. Significance of the difference from
0.5 is estimated using a 𝑡-test. Panel B reports the correlation statistics
between the non-parametric preference measures. The lower part of the
panel presents the Pearson correlation, the upper part the Spearman
correlation.

Panel C presents the coefficient estimates of OLS regressions of the
non-parametric preference measures of aversion to unknown payoffs on
risk and ambiguity preferences,

𝑙 𝑜𝑡𝑡𝑜𝑖 = 𝛿 + 𝛽𝑟𝑟𝑖𝑠𝑘𝑖 + 𝛽𝑎𝑎𝑚𝑏𝑖 + 𝜀𝑖, (3)

where 𝑙 𝑜𝑡𝑡𝑜𝑖 denotes the non-parametric measure of aversion to un-
known payoffs, 𝑟𝑖𝑠𝑘𝑖 is the non-parametric measure of risk aversion,
𝑎𝑚𝑏𝑖 is the non-parametric measure of ambiguity aversion, and 𝜀𝑖 is
the error term.
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Panel D presents the coefficient estimates of OLS regressions of the
observed switching points (𝑠𝑤𝑖𝑡𝑐 ℎ𝑜𝑖 ) on the predicted switching point
(𝑠𝑤𝑖𝑡𝑐 ℎ𝑝𝑖 ),
𝑠𝑤𝑖𝑡𝑐 ℎ𝑜𝑖 = 𝛿 + 𝛽𝑝𝑠𝑤𝑖𝑡𝑐 ℎ𝑝𝑖 + 𝜀𝑖, (6)

where 𝜀𝑖 is the error term. The predicted switching points are calculated
using the risk (𝛾) and ambiguity (𝛼) preference parameters obtained
from the risk and ambiguity tasks, using the functional forms presented
in Eqs. (4) and (5). 𝑝-values are given in parenthesis below the coeffi-
cient estimates. *, **, and *** denote statistical significance at the 10%,
5% and 1% level, respectively. For a detailed description of the various
measures see Appendices B and C.

Appendix E. Supplementary data

The screenshots of the experimental tasks can be found online at
https://doi.org/10.1016/j.socec.2024.102310.

Data availability

Data will be made available on request.
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