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Abstract

The oil markets have been at the centre of attention of researchers over the past 50 years.
Remarkably, the last 10 years on which the three chapters are focused, brought a large
shares of events: starting with the shock collapse of prices in 2014 due to the massive
arrival of shale oil in the US output, followed by price recovery and another, steeper, crash
in 2020 due to the dramatic effect of COVID-19. In the former case supply was the major
explanation of the collapse; in the latter demand vanished away because the world had
come to a standstill. We firstly analysed the relationship between lagged WTT oil prices
and the credit default swaps of 11 oil producers and 7 oil servicing companies of different
sizes and examine how it varies through time. Our findings show a significant inverse
effect for over 60% of the dataset. Moreover, this relationship grows in magnitude during
periods of high volatility. Then, we applied a Variational Mode Decomposition-Neural
Network and -Generalised Additive Models ensemble to forecast 5-minute WTI and
BRENT prices in 2020 and in 2024. We highlighted the difficulties due to the structural
instability caused by the unprecedented drop of WTTI prices in 2020, which do not appear
when forecasting data observed in other time-periods. Lastly, we proposed a methodology
to account for the counter-intuitive features of sentiment analysis of oil-related news
articles over a two years period, encompassing the events of the Ukraine war and Gaza
conflict. We showed how adopting a scoring system of words co-occurrences and war-
related nouns leads to increased predictability power of next day WTI returns, historical
and conditional volatility. Topic modelling coupled with our sentiment measures was
applied to forecast WTI volatility and returns, displaying higher accuracy over measures

obtained via a standard sentiment analyser.
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Chapter 1

Introduction

In the last few decades, crude oil has emerged as the most important commodity traded.
There are over 200 grades of crude produced worldwide. The American Petroleum Insti-
tute (API) sets the density classification standards of the oil grades. “Light” crude, with an
API Gravity above 10 is usually preferred, because of the small amount of residues it con-
tains. Similarly, a lower the amount of sulphur makes the oil “sweeter” and preferred to
“sour” grades because of the reduced amount of SO2 emissions. Aside of the conventional
extractions methodology which allows the release of oil through pressure, new extractions
procedures were introduced in the past two decades. The technology that most impacted
the oil markets was the process of hydraulic fracturing, or fracking. This new technique,
which rose in popularity in the United States around 2015, allows the recovery of a greater
quantity of petroleum and natural gas by creating fractures in shale rock formations
through the injection of specialised fluids. Called “shale oil”, this grade of crude is light

and sweet, hence often seen by Saudi Arabia as a threat to its heavy and sour counterpart.

The Canadian oil sands are another type of crude which rose in production as of 2012.
Due to its composition, namely sand, clay, water and bitumen, it is considered a “heavy”
quality of crude oil which is typically harder to recover. The new technologies introduced
in the early 2010s allow for the extraction of bitumen directly from oil sands deposits found

deeper underground, increasing the recovery rate without disrupting the surface land.
The two main oil benchmarks, West Texas Intermediate (WTI) and Brent, are
reference prices in the USA and worldwide, respectively. The major players in the oil

markets are the United States, OPEC and Russia, among the producers, Europe and
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China, among the consumers. The Organisation of the Petroleum Exporting Countries
(OPEC) was founded in 1960 by the governments of Saudi Arabia, Iran, Venezuela, Iraq
and Kuwait in order to form a cartel regulating the member’s oil production and, as a
consequence, oil prices. Saudi Arabia holds the major reserves out of the OPEC countries,

followed by Iran and Venezuela.

WTI prices in USD

120 ~

100 A

80 A

60

40 -

20 A

T T T T T T T T
2010 2012 2014 2016 2018 2020 2022 2024

Figure 1.1: WTI price trajectory between January 2010 and June 2024.

A number of factors need to be considered when trying to explain crude oil prices
movements. Similarly to all other commodities, the basic principles of the supply and
demand also apply to crude oil. Everything else equal, prices are expected to grow
if demand increases. On the other hand, prices are expected to drop if supply grows.
However, the cost of a barrel of crude is also affected by geopolitical factors like trade
tensions between countries, wars and sanctions, among others. Below, we discussed some
of the most important geopolitical events that affected crude oil prices in the last decade.

With the Russian’s invasion of Crimea (Ukraine), sanctions against Iran and other
issues in the middle East contributed to the growth of crude prices to $100 during 2013

and the first half of 2014; the increase of US shale production coupled with a stagnant
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global economy and lower oil demand from China and Europe led to the price crash
observed in June 2014. By the end of 2014, Brent and WTI reached their lowest prices
since 2009. The many attempts of poorer OPEC countries to reduce the cartel’s crude
output were blocked by Saudi Arabia, who saw the US Congress cancellation of the oil
exports’ ban in 2015 as a threat to the Kingdom’s main source of income. Prices did
not recover until 2017, helped by OPEC’s production cuts, the introduction of Russia

to OPEC+ and the increase of US consumption.

In 2018 the United States became the number one worldwide oil producer, surpassing
Saudi Arabia and Russia for the first time in history. The high US production and lift of the
sanctions on Iran in 2019 meant that the market was once again oversupplied, ahead of the
beginning of the COVID-19 pandemic. In early 2020, the closure of factories around the
world and the halt of daily commutes and leisure travels plunged the global consumption
to unexpected lows. OPEC did not agree to cut production until April 2020, a decision that
was mirrored by the United States. However, despite the acquisition of some 75 million
barrels by the American Government, the US storage facilities were reaching their maxi-
mum capacity. On April 20th, WTTI contracts for delivery in May traded below zero, mean-
ing that for the first time in history traders were paying to sell their barrels of oil. Contracts
for later delivery were trading at higher prices as they included a premium for the increas-

ing storage costs, displaying a market feature which was labelled as “super-contango.”

2021 was the year of recovery of the crude markets thanks to the advancements in
COVID-19 vaccines and the progressive reduction of quarantine measures worldwide.
The oil embargo and price cap imposed on Russia’s crude as a consequence of its invasion
of Ukraine led prices to surpass the $100 mark once again in 2022. WTI prices remained
stable over $70 through 2023 and the first quarter of 2024 despite the Israel-Gaza conflict

which had no visible impact on oil prices.

Turning to methodology, we applied a combination of classical and modern ap-
proaches to argue our theories. Firstly, in Chapter 2 we investigated the links between
WTI prices and the risk of default of American crude oil producers and servicing
companies through an AutoRegressive Distributed Lag (ARDL) model estimated via

Generalised Autoregressive Conditional Heteroskedasticity (GARCH), which, to the best
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of our knowledge, has not been analysed in this manner before.

Secondly, in Chapter 3 we applied Variational Mode Decomposition to extract from
non-stationary time series of WTI and Brent prices a number of stationary functions, called
modes. The modes were then used to train a Neural Network and a Generalised Additive
Model to forecast oil prices in various time periods. To overcome limitations of previous
works that applied VMD, we presented an innovative way to compute the forecast of the
test dataset using exclusively past data, called Recursive Forecast Methodology.

Lastly, in Chapter 4 we analysed the ever-changing relation between crude oil-related
news articles and next day WTI prices, historical and conditional volatility. Our innovative
framework, which accounts for the counter-intuitive sentiment features found in crude
oil-related news articles, achieved higher predictability power measured via Granger

Causality and forecast accuracy when coupled with Topic Modelling techniques.



Chapter 2

Exploring the determinants
of CDS premia: the case of

oil producing and servicing companies



Abstract

This chapter aims to extend the literature on corporate credit spreads in order to i) benefit
from the liquidity of credit default swaps and analyse their premia; ii) focus on the sector
of oil producing and servicing companies and its large amount of outstanding debt; iii)
propose lagged WTI returns as a determinant of CDS premia in a novel way in the
credit literature. We found evidence in favour of our theory for eight out of eleven oil
producers and four out of seven oil servicing companies. We showed that an increase
in oil returns leads to a reduction of the following week’s CDS spreads. Furthermore, this
effect appeared to be stronger for companies with smaller market capitalisation. Lastly,
we observed a negative Pearson correlation between the CDS spreads of over 60% of
the companies in analysis and West Texas Intermediate (WTT) returns, with increasing
magnitude during periods of high volatility. In parallel, the sensitivity of CDS spreads
to oil returns was stronger during the same period for both producers and servicing
companies. Interestingly, we found that, for a number of firms, the correlation became

positive during periods of steadily growing prices, namely 2017 and 2018.
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2.1 Introduction

In the last few decades, crude oil has emerged as the most important commodity traded.
With over 200 grades of crude oil extracted all around the world, the prices of WTI and
Brent are the main benchmarks in the USA and worldwide, with daily trading volumes
reaching 74 million for the former and 267.7 million for the latter in 2023 ! Remarkably,
Brent has recently become the world reference index, with China competing with the
US as the first world economy and the geographical position of the UK halfway between

the East and the West making it a central market.

Many factors need to be considered when trying to explain crude prices movements.
A number of them are geopolitical with key players being the US, Russia, Saudi Arabia
and OPEC countries in general playing a central role in the output decisions, leading to
changes in supply; while the demand is driven by the world economy and exhibits less
abrupt changes (except for the COVID-19 period). The shale revolution that started in
early 2015 has contributed to a gigantic increase of oil and gas output from the United
States. After cancellation of the oil exports’ ban by the US Congress in 2015, the country
has become an exporter of natural gas and oil products. Moreover, as of 2018, the United
States became the first oil producing country, with an output over 2 million barrels per
day greater than Russia and Saudi Arabia >

Oil producers can be split in three different categories: upstream, midstream, down-
stream. The upstream industry explores and produces crude. Firms belonging to the
midstream category are responsible for storing crude and shipping it via vessels or
pipelines. The downstream sector involves the refinement of the raw commaodity, as well
as the marketing and distribution of products derived from crude oil.

US crude oil output, according to the Energy Information Administration (EIA) 2023
Annual Energy Outlook 3, should grow from the 12.9 million bbls per day produced in

!Source: Intercontinental Exchange (ICE). https://www.ice.com/report/7

2Source:  the US Energy Information Administration (EIA). https://www.eia.gov/
todayinenergy/detail .php?id=61545

3Source: the EIA Annual Energy Outlook 2023. https://www.eia.gov/outlooks/aeo/
data/browser/#/7id=1-AE02023&region=0-0&cases=ref2023&start=2021&end=2050&f=
A%linechart=ref2023-d020623a.3-1-AE02023&ctype=1linechart&sid=ref2023-d020623a.
3-1-AE02023&sourcekey=0


https://www.ice.com/report/7
https://www.eia.gov/todayinenergy/detail.php?id=61545
https://www.eia.gov/todayinenergy/detail.php?id=61545
https://www.eia.gov/outlooks/aeo/data/browser/#/?id=1-AEO2023&region=0-0&cases=ref2023&start=2021&end=2050&f=A&linechart=ref2023-d020623a.3-1-AEO2023&ctype=linechart&sid=ref2023-d020623a.3-1-AEO2023&sourcekey=0
https://www.eia.gov/outlooks/aeo/data/browser/#/?id=1-AEO2023&region=0-0&cases=ref2023&start=2021&end=2050&f=A&linechart=ref2023-d020623a.3-1-AEO2023&ctype=linechart&sid=ref2023-d020623a.3-1-AEO2023&sourcekey=0
https://www.eia.gov/outlooks/aeo/data/browser/#/?id=1-AEO2023&region=0-0&cases=ref2023&start=2021&end=2050&f=A&linechart=ref2023-d020623a.3-1-AEO2023&ctype=linechart&sid=ref2023-d020623a.3-1-AEO2023&sourcekey=0
https://www.eia.gov/outlooks/aeo/data/browser/#/?id=1-AEO2023&region=0-0&cases=ref2023&start=2021&end=2050&f=A&linechart=ref2023-d020623a.3-1-AEO2023&ctype=linechart&sid=ref2023-d020623a.3-1-AEO2023&sourcekey=0

2.1. Introduction 20

rﬂlion barrels per day . United
Saudi States
12 Russia Arabia
10
8
6
4
2
0

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Figure 2.1: Russia, Saudi Arabia and United States crude oil production in million barrels per day between
2013 and 2023. Source: the US Energy Information Administration.

2023 to 14 million bbls per day in 2030 and then plateau until 2050.

million barrels per day
14
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Figure 2.2: US crude oil observed production 2019-2023 and forecast for 2024-2025. Source: the US
Energy Information Administration

The number of drilled but uncompleted oil and gas wells in the US halved from the
peak reached in 2020, as depicted in Figure 2.3a and 2.3b, signalling a recovery of the
sector in the years post COVID-19.

In 2024, the Energy Information Administration adjusted their US crude production
forecast from 260.000 barrels per day (bpd) to 280.000 bpd for 2024 and from 460.000
bpd to 510.000 bpd for 2025. Under the new scenario, it is expected that the US oil output
will reach 13.21 mn bpd in 2024 and 13.72 mn bpd the following year. This adjustment
is due to expected higher prices in 2024 for both WTI and Brent.

On the consumption side, the EIA expects the US to consume 20.4 mn bpd in 2024,

up by 200.000 bpd from the previous year, whilst the global consumption is forecasted to
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Figure 2.3: a) Number of drilled but uncompleted oil and gas wells in the US from January 2014 to June
2022. Source: the US Energy Information Administration. b) Number of drilled but uncompleted oil
and gas wells by region in the US from April 2022 to April 2024. Source: www.statista.com

grow to almost 103 mn bpd. Moreover, the sanctions imposed on Russia at the beginning
of 2023 as a consequence of the invasion of Ukraine limited its exports of natural gas and
crude oil to Europe and the United States, meaning that the increase in global demand in
the mid-term is expected to be met by non-OPEC regions, namely Norther and Southern
America .

Reserves of a country, like the oil inventory held by an exchange, play a key role in
explaining the properties of a given regional market. The Theory of Storage introduced
by Kaldor (1939) analyses, among other properties, the relationship between inventory,
shape of the forward curve and commaodity price volatility - a subject further investigated
by Geman & Ohana (2009) in the case of the US oil and natural gas markets. For an oil
company, the debt granted by banks is defined by the size of its reserves, according to the
principle of “Reserves Based Lending” (RBL). It is clear that the reduction of revenues,
in the case of lower oil prices or reserves, threatens the ability of the company to meet
its financial obligations and increases the probability of default. Moreover, exploration
companies’ investments are financed through debt to a great extent: in the situation of a
steep growth of the firm’s leverage ratio, increasing financing costs and tighter borrowing
conditions might force firms to suspend investments in new projects and technologies
or even sell their assets to generate new liquidity.

Between the beginning of 2009 and 2015, US oil production grew by more than 70%,

with the bulk of the increase coming from shale oil. Obviously, the conjunction of the

4Source: the EIA International Energy Outlook 2023. https://www.eia.gov/outlooks/ieo/
pdf/IE02023_Narrative.pdf
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quantitative easing that followed the financial crisis of 2008 together with the vibrant
popularity of shale oil led to very large amounts of debt borrowed after 2008 by oil firms,
using oil reserves and revenues as collateral. The debt borne by the oil and gas sector was
multiplied by two and a half between 2006 and 2014, from roughly $1 trillion to around
$2.5 trillion as oil prices were sharply declining (see Figure 2.4). As a consequence
of the price drop in 2014, over 160 oil patches and 170 oilfield services companies
filed for bankruptcy between 2015 and August 2018 (Boone, 2020). The number of
cases decreased after 2016, whilst the value of E&P debt under Chapter 11 in the first
eight months of 2018 was higher than the whole of 2017. Out of the $150 billion total
outstanding secured and unsecured debt, over $60 billion debts were converted in equities
in 39 E&P filings. The major bankruptcies were worth $8 billion (Seadrill Limited), $5.3
billion (Odebrecht) and over $3 billion (Ocean Rig, CGG Holding and Pacific Drilling).
Furthermore, recovery rates were low, reaching an average of 20% of the notional amount,
compared to an average of 60% for all defaults before 2015. Moreover, the combined
total of bankruptcy debt surpassed $56 billion in 2020 alone, with an unprecedented
record high of $1.2 billion average debt per bankruptcy filed (Boone, 2021).

Portfolio managers and bondholders, who invest in oil mining businesses and want
to manage their credit risk, are likely to hedge their exposures by purchasing credit
derivatives. Credit Default Swaps (CDS) are the most popular credit derivatives because
of the simplicity of their design in providing insurance against the risk of default of the
reference entity. When a credit event occurs, the seller of the insurance has to purchase
the corporate bonds for their face value from the buyer of the CDS. In order to obtain
this protection, the buyer of the CDS makes periodic payments to the seller until the end
of the life of the CDS or until a credit event occurs. CDS premia are expressed in basis

points of the notional principal.

The increase in oil companies CDS premia that occurred in conjunction to the price
drop of crude oil that started in mid-2014 has been remarkable. Whilst the importance
of crude prices is known to market participants who trade oil miners’ shares, no previous
research, to the best of our knowledge, has exhibited the important correlation between

oil prices and the credit rating of its producers. Accordingly, the aim of our research is to
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investigate the role of crude oil prices as a determinant of credit default swaps. Another
contribution to the literature is the analysis of a number of state variables that have not

been included in previous research, like the Markit CDX Investment Grade index.

Results are in agreement with the theory, displaying a negative correlation between
crude oil prices and CDS premia, with an increasing intensity during times of high
volatility. There are, however, cases where the correlation became positive when prices
were stable around $50 from mid-2016 until Q3 2017. Additionally, default spreads
are found positively correlated to leverage ratio, one of the determinants of default risk
suggested by the founding paper of Merton (1974); however, we do not find evidence

supporting firm-specific equity volatility as a significant determinant for the firms’ CDS.

The chapter is organised as follows: Section 2.2 presents a review of the literature
as well as our proposed approach and novel state variables to explain the CDS premia.
Section 2.4 describes the data used, Section 2.5 presents the methodology applied whilst

Section 2.6 reports the result obtained. Section 2.7 concludes the chapter.

2.2 Literature Review

Up to the last decade, the literature on firms’ credit features had mainly focused on
corporate bond spreads; the interest in credit derivatives increased only after the early
2000’s. Previous approaches can be differentiated between “structural” and “‘reduced-
form” models. The reduced-form approach tries to explain credit derivatives’ price
dynamics by modelling stochastic default probabilities as exogenous and obtaining
parameters from market data. These models put default intensity at the centre of the pricing
process and have shown a certain degree of versatility in practical approaches as they
require a crucial assumption of the recovery rate in the case of default. On the other hand,
structural models are based on the founding papers of Black & Scholes (1973) and Merton
(1974). The valuation of credit-related instruments depends on the firm’s probability of
default, namely when the face value of its debt exceeds the value of its assets (the single
state variable) at maturity of the debt. The likelihood of a credit event is related to the three

main parameters: the firm’s leverage ratio, its share volatility and the risk-free interest rate.

In the literature, Longstaff & Schwartz (1995) exhibit a negative correlation between
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interest rates and credit spreads. Collin-Dufresne et al. (2001) show that theoretical
variables have little power to explain credit spread changes and point out that residuals
are highly correlated. Further, they point out that residuals are driven by a single common
factor and are highly cross-correlated. Campbell & Taksler (2002) exhibit the importance
of firm-specific equity volatility as a determinant for corporate bond yields. Moreover,
idiosyncratic firm volatility and credit ratings are found to explain the same level of
cross-sectional variation in bond yields. Ericsson et al. (2009) extend this result to CDS
premia across various sectors of the economy by analysing the relationship between theo-
retical determinants of default risk and CDS spreads. They show that 10-year US treasury
bonds, firm specific leverage ratios and equity volatility are statistically and economically
significant, whilst a principal component analysis confirms that the remaining variation
of data not explained by the model has to be attributed to one common factor. Domanski
et al. (2015) emphasise the build-up of oil-related debt in their period of analysis and
observe that the total debt of the oil and gas sector was standing at 2.5 trillion dollars
at the beginning of 2015, more than twice its size of one trillion dollars at the end of
2006. Figuerola Ferretti & Cervera (2018) examine the link between oil prices and credit
default swaps as a proxy for credit risk. More specifically, using the “multiple bubble”
methodology, they show the existence of two mildly explosive periods in CDS premia,

one before the financial crisis and one after the 2014 crude oil collapse.

Another stream of literature that we view as related to our research comprises of
the articles that analyse the impact of commodity prices on the share prices of the
corresponding extracting industries. Strong (1991) examines this sensitivity in case of
the the oil sector, Blose & C.P. Shieh (1995) studied the impact of gold prices on the
value of the gold mining companies’ stock. Tufano (1998) pursued and extended this
analysis by investigating the determinants of stock prices exposure in the gold mining
industry. Geman & Vergel Eleuterio (2013) investigated the sensitivities of fertilisers
mining companies to fertilisers indexes as well as agricultural commodity prices during

a period that contained the wheat and corn spikes of 2008.

We will show that in the case of oil companies, the sensitivity to oil prices depends

on the size of the firm and its position in the production chain: for instance, downstream
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refiners benefit from the lag between a movement in the input cost and the adjustment
of the refined product price while the crackspread remains fairly stable. Downstream
firms are also able to lock in their profits through the use of the so-called crackspreads.
In contrast, upstream miners are, on average, more susceptible to a drop in the price of a

barrel of crude as the production costs might exceed the market price of the final product.
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2.3 Candidate determinants of CDS spreads

We propose to use a structural model to explain credit default swaps movements. As
observed by Ericsson et al. (2009), the benefits of using CDS instead of corporate bond
spreads as a measure of credit risk are numerous. Firstly, by the virtue of being “spreads”,
Credit Default Swaps avoid the addition of a “noise” created by a wrong choice of risk-free
yield curve model or an incorrect procedure to remove the coupon effect in bond prices.
Blanco et al. (2005) argue that CDS prices better reflect firm-specific credit risk in the short
run, with bond credit spreads achieving a similar explanatory effect only in the long run.

In our approach, firm-specific CDS are explained by lagged oil prices, the Markit
CDX Investment Grade Index in addition to the firm’s leverage ratio and share price
volatility. The motivation for the inclusion of each explanatory variable is presented in

the following sections.

2.3.1 Crude oil returns
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Figure 2.4: WTI price trajectory between 2012 and July 2018.

Selling barrels of crude oil is the main source of revenues for an oil producing company,

whose other profits usually come from activities around oil transportation, refining and
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financial trading.

Accordingly, when the barrel of crude was traded at over $100 in 2007 and the first
half of 2014, oil producing firms were flourishing, generating enough cash flows to
pay their creditors, reward their investors and finance new exploration projects. On the
contrary, low crude prices meant tighter expenditure budgets and, if the driller’s break-
even point was not reached, struggle to face financial commitments and shareholders’
dividends. Furthermore, banks grant loans to the oil and gas sector according to the rule
of Reserved Based Lending, where reserves represent the debt collateral. The lender
assesses a loan request on the consideration of the borrower’s expected production and
ability to generate revenues from it. Hence, the discounted future cash flows depend
on the firm’s “proven”, or to a lesser extent “probable”, reserves as well as oil prices.
Considering that credit default swaps embed the company’s probability of default, it is

easy to understand the impact of oil prices on the spread paid by the CDS buyer.

To account for non-stationarity, we computed log returns of the WTI data, as ex-
plained in Section 2.5.1. We adopt one lag weekly WTI returns given the markets’ delay
in updating CDS premia of oil companies subsequent to changes in the cost of a barrel
of crude. We expect that an increase (reduction) in WTI returns will reflect in a reduction
(increase) of the firms’ CDS spreads. As displayed in Table 2.1, the Pearson correlation
between the two quantities over the whole time period is highly negative, with values
ranging between -0.29 to -0.79 (-0.61 average) for oil producers and between 0.04 and

-0.87 (-0.60 average) for oil servicing companies.

2.3.2 Leverage ratio

In all sectors of the economy, a highly leveraged firm is considered more likely to default
and this is reflected in the premium requested to protect against the event of bankruptcy.
Hence, we expect to uncover a positive relation between the two quantities. Our leverage

ratio will classically be defined as

B Debt
~ Debt+Equity
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Oil Producing Firms WTI - CDS correlation  Oil Servicing Firms ~ WTI - CDS correlation

Anadarko Petroleum Corp. -0.506 Enbridge Inc. -0.633
Apache Corp. -0.760 Ensco Plc. -0.891
Chesapeake Energy Corp. -0.574 Halliburton Company -0.531
ConocoPhillips -0.582 Nabors Inc. -0.868
Devon Energy Corp. -0.580 Transocean Inc. -0.839
Encana Corp. -0.513 Valero Energy Corp 0.039
Marathon Oil -0.608 Weatherford Int. -0.825
Murphy Oil Corp. -0.771
Noble Energy Inc. -0.740
Pioneer Natural Resources -0.286
Whiting Petroleum -0.788
Average -0.610 Average -0.600

Table 2.1: correlations between U.S. oil prices and the CDS premia of the firms in analysis.

It captures at all times the firm capacity to repay its debt. Market Value of Equity is
obtained by multiplying the number of outstanding shares by the corresponding weekly
share price. The strong volatility of the latter over our period of analysis caused leverage

ratios to vary significantly through time.

2.3.3 Equity volatility

As first exhibited in Merton (1974), the probability of default of a firm increases when the
share price becomes more volatile. Consequently, the protection buyer will have to pay
a higher premium to protect his exposure against a more risky entity. Our expectation in
this paper is to uncover a positive relation between firm-specific equity volatility and the
firm’s credit default swaps. In contrast to Collin-Dufresne et al. (2001), who use implied
volatility from VIX data, we choose to focus on firm-specific historical volatility derived
from share returns time series. Therefore, we adopt the classic annualised volatility

formula for weekly data

2.1)

2.3.4 Markit CDX Investment Grade Index

Lastly, in order to represent the market “appetite” for corporate debt and its reward, we

introduce the Markit CDX Investment Grade Index which covers North America and
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exhibits a high liquidity and transparency.

24 Data

The sample consists of eleven crude oil producers, nine of which are based in the US, and
seven oilfield servicing companies, two of which are located in the US, two in Europe,
one in Canada and one has headquarters in Bermuda but operates mainly in the US. We
expect that WTI will show a degree of statistical significance for non-US based firms
included in the dataset given their world-wide operation network and exposure to the US
market. The dataset comprises of weekly observations ranging over the period January
Ist, 2012 and July 6th, 2018; the low CDS daily variation justifies the choice of data
frequency. The study starts in 2012 to allow the inclusion, as an explanatory variable,
of the Markit CDX Investment Grade Index, which has no data available prior to the
end of 2011. Noble Energy Inc. and Whiting Petroleum have no data available prior to
July 2012 and September 2015, respectively. All the data are obtained from Bloomberg.
We use the WTI index, as opposed to other benchmarks like Brent, to represent crude
oil prices as 70% of the firms in our dataset are US based. Table 2.2 reports the summary
statistics of firm- and non-firm-specific variables averaged across sectors. Figures 2.6

and 2.7 in Section 2.8 show the plot of the firms CDS spreads over the period in analysis.

Table 2.3 reports the country of operation, market capitalisation and the most recent,
at time of writing, Moody’s short and long-term rating for each firm in both subsets.
The market capitalisation of the oil producers ranges from a value of 2.6 billion USD,
in the case of Whiting Petroleum, to a maximum of 76.2 billion USD, in the case of
ConocoPhillips, averaging at $17.23 billion. On the other hand, the lowest market cap
in the oil servicing firms dataset belongs to Weatherford Int. with 0.5 bln USD, whilst
the highest is held by Enbridge Inc. with 71.9 billion USD, and a similar average value
of $20 billion. The dataset does not include sector giants like BP, Total SA and Royal
Dutch Shell among others, as these firms are integrated majors which are engaged
on both upstream, midstream and downstream activities. Their size and weight in the
market allow these companies to have higher contractual power when entering forward

contracts and better sustain downward sloping oil prices. Moody’s ratings display another
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Oil Producing Firms

CDS Equity Volatility Leverage Ratio
Number of obervations 340 340 340
Mean 252.02 0.39 0.32
Median 196.39 0.36 0.31
Maximum 1447.89 0.88 0.54
Minimum 66.37 0.17 0.18
Standard deviation 212.38 0.16 0.087

Oil Servicing Firms

CDS Equity Volatility Leverage Ratio
Number of obervations 340 340 340
Mean 272.61 0.38 0.40
Median 227.25 0.39 041
Maximum 924.08 0.72 0.62
Minimum 66.04 0.17 0.24
Standard deviation 179.43 0.13 0.10

Non firm-specific variables
Markit CDX Index WTI

Number of obervations 340 340
Mean 75.19 70.95
Median 70.75 64.3
Maximum 126 110.53
Minimum 45.25 2942
Standard deviation 16.72 24.19

Table 2.2: Summary Statistics of the time series of explained and explanatory variables aggregated over
each group of firms, and non firm-specific determinants.

common feature of the energy sector outside of the majors, namely low credit ratings.
ConocoPhillips is the best rated firm, awarded an A3 long term rating. The remaining
firms are rated from Baal to B2 and B3, which are described as highly speculative
grade rating. Only three oil producing firms display a “positive” outlook, four servicing
companies exhibit a “negative” outlook whilst the remaining sample displays a “‘stable”

outlook. Two ratings were “under review” as of January 2019.
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Country of Market Capitalisation Moody’s Rating
Oil Producing Companies ~ Operation as of 01/2019 (billion USD) Short Term Long Term Outlook

Anadarko Petroleum Corp. UsS 23.59 SGL-2 Bal Stable
Apache Corp. UsS 11.88 P-3 Baa3 Stable
Chesapeake Energy Corp. UsS 342 SGL-3 B2 Stable
ConocoPhillips us 76.23 SGL-1 A3 Stable
Devon Energy Corp. CA 12.12 SGL-2 Bal Stable
Encana Corp. UsS 6.51 SGL-1 Bal Positive
Marathon Oil Corp. us 12.98 SGL-1 Ba3 Positive
Murphy Oil Corp. UsS 4.80 SGL-1 Ba2 Stable
Noble Energy Inc. CA 11.00 SGL-2 Ba3 Negative
Pioneer Natural Res. [SN 2441 SGL-3 Baa2 Stable
Whiting Petroleum [N 2.60 SGL-1 Bl Positive
Country of Market Capitalisation Moody’s Rating

Oil Servicing Companies ~ Operation  as of 01/2019 (billion USD) Short Term Long Term Outlook

Enbridge Inc. CA 71.98 - Baa3 Under Review
Ensco Plc. UK 1.92 SGL-1 B2 Under Review
Halliburton Company UsS 26.84 P-2 Baal Stable
Nabors Industries Ltd. BM 1.02 SGL-2 Ba3 Negative
Transocean Inc. CH 5.19 SGL-1 B3 Negative
Valero Energy Corp. [N 33.83 - Baa2 Stable
Weatherford Int. usS 0.52 SGL-3 B3 Negative

Table 2.3: Description of the two subsets. We report each firms’ country of operation, market capitalisation
and the most recent short and long-term Moody’s rating.

2.4.1 Unit root test

Given the time dimension of the data in analysis, we applied the Augmented Dickey-
Fuller (ADF) test to check the presence of unit roots in the data. According to the ADF
test, if the Null hypothesis (Hp) fails to be rejected, the time series is said to have a unit
root, highlighting its non-stationarity. On the other hand, if the Null hypothesis is rejected,
the data is deemed as stationary. Tables 2.7 and 2.8 in Section 2.8 report the results of the
ADF test. The results display that all firm’s levels data and W'TT prices have a unit root
(we fail to reject Hy given that p—value >0.05). On the other hand, we reject the Null
hypothesis at the 5% confidence level for all log changes variables and CDXIG, which

are considered stationary or integrated of order 1 (I(1)).
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2.5 Methodology

In this section we describe the Autoregressive Distributed Lag (ARDL) models, the
Generalised AutoRegressive Conditional Heteroskedasticity models (GARCH), the

Impulse Response Function (IRF) and the Redundant Variables (RV) test.

2.5.1 Autoregressive Distributed Lag

To account for non-stationarity of the data, we adopted an Autoregressive Distributed Lag
model. As discussed in Hendry et al. (1984) and Pesaran & Shin (1995), ARDLs allow
to model a time series variable as a function of its lagged values as well as the current and
lagged values of a number of exogenous variables. An ARDL model can be described

as follows

Vi =ap+ary;—1+box; +b1x.—1 +uy, (2.2)
Ve—Yi—1=aop+ (a1 —1)yr—1+box; + (boxi—1 —boxi—1) +b1x—1 +uy,
Ay = 0o+ 0t yr—1 +BoAx; + Brx—1 +us, (2.3)

where x is the vector of endogenous regressors (which in our case include lagged oil
returns, CDXIG Index, firm-specific leverage ratio and share price volatility), o is the
intercept, a; =a; — 1, by, by and By commensurate vectors of regression coefficients, f; =

bo-+b1, and u; represents the error term. For each firm, our model can then be written as:

ACDS; =0+ 0;CDS; 1+ BEEY ALEV, 4+ BFEV LEV, 1+
BYOrAVOL,+BY O VoL, +B) T AWTIL 4+

B WL+ BSPXISCDXIG +uy. (2.4)

In the case of WTI prices and credit default swaps WTI,_; = In(WTI_;) and
CDS; =In(CDS;), hence it follows that AWTI,_| and ACDS; are percentage changes.

On the other hand, ALEV; and AVOL; are first differences. From Equation (2.3) it
follows that y; ~1(1),x; ~I(1). Consequently if Ay, — Box; ~1(0) then Ay, and Ax; are

co-integrated and if o £ 0, B; # 0 there exist a long run relationship between the two
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variables and we can estimate the Impulse Response Function, presented in Section 2.5.3.

2.5.2 Generalized AutoRegressive Conditional Heteroskedasticity

Given the properties of financial time series, namely fat tails and heteroskedasticity, we
estimate Equation (2.4) using a GARCH(1,1) model with Student-t distributed error terms.

As explained in Hamilton (1994), given an autoregressive process of order p (AR(p))

Ve=ct+ Oy 1+ @y 2+ A Ppyipti, (2.5)

where E[u,] =0. If the condition

2

o- ifr=s

E[(“tMS)] =
0  otherwise,

does not hold, then the unconditional variance changes over time and can be described as

U2 =@y 1+ 0y 2t Oy p Wi, (2.6)

where w; is a white noise s.t. E[w;] =0 and

2

o- ift=s

E[(wiwy)] =
0  otherwise.

Then, u; is called an Autoregressive Conditional Heteroskedastic process of order m

(ARCH(m)). An alternative representation supposes that
Ur = (ht)Vt, 2.7)
where E[v;] =0 and E[v?] = 1. If we represent 4, by the values of 7, i.e.,

hy=c+oqu’ |+ 0pu 54+’ ., (2.8)
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then the conditional variance follows an ARCH(m) process and can be represented as
2 _ 2 2
E(uy |1, u—2..) =c+0qu;_ |+ 4ty (2.9)

In this case, the conditional variance depends on an infinite number of lags of utz_ jsuch
that
hy=c+¢(L)u?, (2.10)

where (L) is the lag operator and ¢ (L) =Y7_,9,L;. It follows that

o(L)

KRR D))

while it is assumed that (1 —3(L)) has roots outside the unit circle. If Equation (2.10)

is multiplied by (1—0(L)) and terms are rearranged we obtain the expression
e =kA-8thy 1+ Sy ol e O, 2.11)
which yields the generalised autoregressive conditional heteroskedasticity model

u; ~GARCH(r,m).

2.5.3 Impulse Response Function

The Impulse Response Function (IRF) is the effect of a one unit increase in a regressor
at time ¢ —s on the independent variable at time ¢ if all other innovations are kept constant

for all . Lagging Equation (2.2) by one period returns
Yi—1=ao+aryr—2+box;—1+b1x2+u 1, (2.12)
By substituting Equation (2.12) in Equation (2.2) we obtain

yi=ao(1+ar)+aty—a+box+ (b1 +arbo)x—1 +arbix o+ +aju_y.  (2.13)
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The Impulse Response Function is obtained by repeating this process recursively for any

given number of lags. For each time period, the IRF formulae are reported in Table 2.4.

t IRF

0 bo

1 by+a1by
2 a (bl +a1b0)
3 a%(bl +a1b0)

Table 2.4: Impulse Response Function formulas

The reasoning behind the application of IRF is twofold: i) to quantify how much a change
in one of the covariates affects the CDS of a firm, and ii) to analyse how this effect

propagates through time.

2.54 Redundant Variables test

The Redundant Variables test allows to check whether any number of covariates in a
regression model have jointly coefficient equal to zero. The test assumes the formula

2 2
F— (Rijr—Rg)/m 2.14)

(1=RR)/(df)’
where R2U g and R12e correspond to the coefficient of determination of the unrestricted and re-
stricted models, respectively, m is the number of redundant variables tested and d f are the
degrees of freedom. Under Hy: By = 1 =0 hence xo,x; are irrelevant. If evidence against

the Null hypothesis is found, then the coefficients are statistically different from zero.
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2.6 Results

As described in Section 2.3, our expectation is to discover a positive relation between the
firm’s credit default swaps and the corresponding leverage ratio, share price volatility and
CDXIG index. Conversely, we anticipate to uncover a negative link with crude oil returns.

In Sections 2.6.1 and 2.6.2 we present an analysis of the estimation results for the
oil producers and servicing companies subsets, respectively. Section 2.6.3 reports the IRF
results. To understand how the relationship between WTI returns and the firms’ CDS
changed during the period in analysis, in Section 2.6.4 we examine the two quantities’
Pearson correlation computed in a rolling fashion over a sliding window period of 1 year.
Contextually, we analyse the coefficients $"7%-1 obtained by regressing the model over
the same 1-year sliding window period. Lastly, we test the robustness of the model in
Section 2.6.5.

Tables 2.9 and 2.10 in Section 2.8 report the coefficients, standard errors and p-values
resulting from the model estimation. The estimated BF£Y, B9~ ﬁIW Th-2 parameters are

also reported but their values are not discussed given their function as control variables.

2.6.1 Oil Producing Firms

Firstly, as displayed in Table 2.5, we find evidence in favour of the choice to model the

data via GARCH(1,1) with Student-t distribution in six out of the eleven regressions.

Oil Producing Companies GARCH Coefficient St. Error p-value  Oil Servicing Companies GARCH Coefficient ~ St. Error  p-value

Anadarko Petroleum -0.007 0203  0.972 Enbridge 0.774 0.112  0.000
Apache -0.018 0.171 0917 Ensco 0.787 0.060  0.000
Chesapeake Energy 0.720 0.089  0.000 Halliburton -0.031 0.101  0.758
ConocoPhillips 0.757 0.085  0.000 Nabors Industries 0.982 0.011  0.000
Devon Energy 0.947 0.035  0.000 Transocean 0.881 0.073  0.000
Encana 0.796 0.101 0.000 Valero Energy 0.818 0.092  0.000
Marathon Oil -0.019 0.041  0.643 Weatherford 0.858 0.108  0.000
Murphy Oil 0.566 0.120  0.000
Noble Energy 0.896 0.059  0.000
Pioneer Nat. Res. 0.227 0.162  0.162
Whiting Petroleum 0.227 1342 0.865

Table 2.5: GARCH coefficients, standard errors and p-values resulting from the estimation of Equation (2.3)

Table 2.9 in Section 2.8 reports the coefficients, standard errors and p-values resulting

from the model estimation. The change in leverage ratio, represented by the coefficient

é‘EV, 1s found to have a positive impact on the firms’ CDS and is statistically significant
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in all instances. The magnitude of the coefficients range between 0.467 (Noble Energy
and Pioneer Natural Resources) and 1.786 (Chesapeake Energy) with an average of 0.872.
It is worth noting that, whilst there is an inverse relation between the firm’s market capital-
isation and the corresponding ﬁOLE Y estimate in the case of Chesapeake Energy, Pioneer
Natural Resources and Whiting Petroleum, the opposite can be observed for Anadarko
Petroleum, Devon Energy and Murphy Oil. We plot the estimated BOLEV coefficients
against the companies’ market capitalisation in Figure 2.5a. The regression line displays
that a higher market capitalisation leads to a lower BV, implying that larger oil producing

enterprises’ CDS spreads are less sensitive to changes in their Debt-Equity composition.

Moreover, changes in share price volatility, represented by the coefficient [33/ OL have
a positive effect on the CDS in seven out of eleven cases. Surprisingly, only one of these
coefficients is statistically significant. This implies that the market value of the shares
of an oil producer might not be a good indicator of its CDS performance. Further, the
CDXIG index coefficient ﬁOCDXI G is found to be significant at the 5% confidence level for
ten firms and at the 10% level for one firm. However, the magnitude of B$PX!C is very
low in all cases. This implies that, whilst the CDXIG Index is an important determinant
for CDS prices, as it encompasses the general market sentiment, the broader CDS market

fluctuations do not have meaningful impacts on the firm-specific credit default swaps.

Lastly, lagged WTI returns, represented by the coefficient Bgv Th , can be considered

a significant determinant for eight oil producing firms’ CDS spreads at the 5% confidence
level. The coefficient magnitude varies between a minimum of -0.45 to a maximum
of 0.078, with an average of -0.21. If we do not consider the non-significant estimated
X/ Th=1 coefficients belonging to Chesapeake, Noble Energy and Whiting Petroleum, the
average ﬁ(‘)v Th- grows to -0.29. Oil producers are affected by strong entry barriers and
high costs to operate new oilfields. Namely, the research and development of proprietary
technologies, and land and drilling rights are capital intensive. Moreover, the extraction
of oil runs at high fixed operating costs, which is one of the main reasons why producers
are reluctant to halt the extraction of crude, once started. The results corroborate these

features, reflecting the risk that the production costs might exceed the market price of

the final product and the break-even point is not reached.
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Nine out of the eleven producers’ CDS display an inverse sensitivity to oil returns
changes. Thus, an increase in oil returns, leads to the reduction of the following week’s
CDS spreads. Chesapeake and Noble Energy are the only two firms yielding opposite
results but are, however, not statistically significant. This is in line with the assumptions
presented in the Section 2.3, confirming how crucial crude prices are in order to evaluate
an oil producer’s ability to face its financial commitments, hence, its risk of default.
Interestingly, if we analyse how the coefficient [3(‘)4/ i1 yaries based on the size of the
firms, we can observe that ConocoPhillips, Anadarko Petroleum and Marathon Oil
display the highest sensitivity (in absolute value) to oil returns, despite being the first,
third and fourth largest firms in our subset of oil producers. Given that these firms are
large-caps, a deeper analysis of their business model, the magnitude of refining in their
operations, positioning on the market and in the production stream should be performed
to uncover the reason of such strong sensitivity. Additionally, the data does not reflect
if profits were made by the company’s production activities or made via carry trade
strategies because of the contango shape of the forward curve. The same applies to
understanding the low impact of crude returns to Whiting Petroleum’s CDS, given that
it is the smallest of the mid-caps in the subset but the least sensitive (in absolute value)
to changes of crude oil returns. Figure 2.5c, however, displays that changes in oil returns

are more impactful on the CDS’ of firms with higher market capitalisation.

2.6.2 Qil Servicing Companies

Differently from the oil producers subset, we find strong evidence in favour of the GARCH
model for oil servicing companies. As displayed in Table 2.5 in Section 2.6.1, the GARCH
model is statistically significant at the 5% confidence level in six out of seven regressions.

Table 2.10 in Section 2.8 reports the coefficients, standard errors and p-values result-
ing from the model estimation. The coefficients significance, sign and magnitude for oil
servicing firms agree with the results presented for oil producers in Section 2.6.1. Namely,
the estimations suggest that changes in leverage ratios, represented by the coefficient

OLE V' are an important determinant of CDS spreads for all firms except Nabors Industries.

If we exclude Nabors Industries’ estimated coefficient, all estimated 2V are positive

and range between 0.44 (Halliburton) and 1.783 (Transocean), with an average of 0.69.



2.6. Results 39

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Market Capitalization in bin USD Market Capitalization in bin USD

(a) Producers ﬁOLE V' vs Market Cap. (b) Servicing firms ﬁOLEV vs Market Cap.

0.1 0.00

0.0 -0.05

s
. .
o I
b S
.
.
.
.
.
T
!
&
G
.
.
.

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Market Capitalization in bin USD Market Capitalization in bin USD

(¢) Producers B(;V Th-1 ys Market Cap. (d) Servicing firms ﬁgv Th-1 ys Market Cap.

Figure 2.5: Plot of the estimated values of BLEY and B, "~ versus Market Capitalisation

Both sign and magnitude are similar to the oil producers’ regressions and in line with
our expectations. On one hand, the firm with highest market cap (Enbridge) presents
the second highest B{£Y. Ensco, the third smallest firm, displays one of the lowest
sensitivities. On the other hand, the relation between BOLEV and market capitalisation
is inverse for Valero Energy, Halliburton and Weatherford. Contrarily to oil producers,
the regression line depicted in Figure 2.5b shows that ﬁoLEV slightly increases when
the market capitalisation is greater. Our analysis leads us to believe that this difference
arises from the dissimilarities present in the balance sheets of the two types of companies
analysed. Namely, the capital structure of oilfield servicing companies, which generally

have a lower total value of assets, is significantly different from the capital structure of

producing companies, leading to a higher sensitivity to an increase in leverage ratio.

Furthermore, the estimation results display that share price volatility’s coefficient

/38/ OL s found statistically significant once at the 5% confidence level and once at the
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10% level. Estimated values for 3 °F

range between -0.051 and 0.146. Similarly to the
oil producers dataset, share prices volatility are not a significant determinant of credit
default swaps. Moreover, the CDXIG index is shown to be significant for six out of seven
firms and, in parallel to the results presented in Section 2.6.1, the estimates of f$PX/C
are close to zero.

Lastly, all the estimates of ﬁg/ Th=1 for oil servicing companies are negative, sug-
gesting that an increase in oil returns reflects in a reduction of the following week’s
CDS spread. The size of the coefficients ranges between -0.262 (Transocean) and
-0.012 (Halliburton), with an average of -0.13. If we do not consider the non-significant

estimated ﬁgv Th

ﬁ(‘)’VTltfl

~! coefficients belonging to Ensco, Nabors and Weatherford, the average
grows to -0.178. This shows that, on average, oil producers’ CDS are more
sensitive to crude returns changes than oil servicing companies. As previously mentioned,
downstream refiners benefit from the lag between a movement in the input cost and the
adjustment of the refined product price while being able to lock in their profits through the
use of the so-called crackspreads. We find evidence of the significance of WTI returns as
a determinant for CDS spreads in two cases at the 5% confidence level and in two cases
at the 10% level. Contrarily to the relationship between BV and market capitalisation,
the link between [3(‘)4/ Ti=1 and market capitalisation is more pronounced. As displayed in
Figure 2.5d, changes in oil returns are more impactful on the CDS’ of firms with higher
market capitalisation. This is fairly surprising: as previously discussed, a larger and more
integrated firm should be able to sustain a crude price drop when compared to a company

of smaller size; this is especially true given their refining activities and the profits made

in carry trade strategies because of the contango shape of the forward curve.

2.6.3 Long Run Relationship and Impulse Response function

As described in Section 2.5, when the coefficients of the ARDL model ¢ and f; in
Equation (2.4) are significantly different from zero, there exist a long run relationship
between the credit default swaps and their determinants allowing to estimate the Impulse
Response Function.

First, as presented in Section 2.5, we applied the Redundant Variable test to check

whether the estimates of o, 1W T and the estimates of a, ILEV are jointly different
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from zero. Following the results presented in Section 2.6.1 and 2.6.2, we analysed the
CDS-LEV and the CDS-WTI long run relationships. We excluded from this analysis the
coefficients of the variables that were not significant as displayed in Tables 2.9 and 2.10
in Section 2.8, namely WTI in the case of Chesapeake, Noble Energy, Whiting Petroleum,
Ensco, Nabors and Weatherford, and leverage ratio in the case of Nabors. Further, we
did not test for the existence of a CDS-VOL and CDS-CDXIG long run relationship as
[38/ OL was found to be significant only for two out of eighteen firms, whilst the CDXIG
Index short term effect was very close to zero for all firms. The Redundant Variables
test results, reported in Table 2.6, show that there is evidence against the null hypothesis
(Hp: the variables are not significant) for Apache, and Weatherford at the 10% level and
at the 5% confidence level for all the other firms.

Then, we computed the Impulse Response Function of the first 5 lags. Results are
reported in Table 2.11 in Section 2.8 and displayed in Figures 2.11, 2.12, 2.13 in Section
2.8. It can be noted that lagged changes in WTI returns have a meaningful impact on the
firms’ CDS spreads only at time #, dissipating in the following time periods. This means
that, provided that all other innovations are kept constant, an increase or decrease of WTI
returns will only affect the firms’ following week’s credit default swap value, since we
adopted as explanatory variable the first lag of WTI returns, as explained in Section 2.3.1.
This is valid for both producers and servicing companies.

The same applies to changes in Leverage Ratios, which have a significant impact on
the firm’s CDS exclusively at time ¢ for eight producers and three servicing companies.
The IRFs for Encana, Noble Energy, Whiting Petroleum, amongst the producers, and for
Enbridge, Ensco, Valero Energy and Weatherford, amongst the servicing companies, show
that an adjustment of the firms’ Leverage Ratio impacts the firms” CDS at time ¢ and prop-

agates up to the fifth lag, albeit displaying a very low magnitude from the first lag onwards.

2.6.4 1-Year Rolling Correlations and Rolling Regressions

Next, we studied how the relation between WTI returns and the firm-specific CDS varies
over time. We constructed a time series of 1-year rolling Pearson correlation between
AWTI,_1 and each firm’s ACDS;. Each data point reflects the correlation between the

two variables observed over the previous 52 weekly observations. In a similar manner,
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CDS—WTI CDS—LEVERAGE
Oil Producing Companies ~ F-Statistic P-value  F-Statistic P-value
Anadarko Petroleum 19.196 ***  0.000 19.049***  0.000
Apache 4.821*%  0.090 5.368*  0.068
Chesapeake Energy - - 30321 0.000
ConocoPhillips 14.155%*%* 0.001  19.57***  0.000
Devon Energy 11.028***  0.004 10.077*%**  0.007
Encana 25.886%*F*  0.000 34.483***  0.000
Marathon Oil 301.089***  0.000 20.756*%**  0.000
Murphy Oil 31.888***  (0.000 42.143*%+*  0.000
Noble Energy - - 30.761***  0.000
Pioneer Nat. Res. 22844+  0.000  28.42**%  0.000
Whiting Petroleum - - 7.316%*  0.026

CDS—WTI CDS—LEVERAGE
Oil Servicing Companies F-Statistic P-value F-Statistic P-value
Enbridge 13.688***  0.001 18.087***  0.000
Ensco - - 32.004***  0.000
Halliburton 8.929**  0.012 10.003***  0.007
Nabors Industries - - - -
Transocean 7.920**%  0.019  9.333*%  (0.009
Valero Energy 8447+%  0.015 17.115%**  0.000
Weatherford - - 6.643**  0.036

Table 2.6: Redundant Variables F-test results. *** significance at the 1% confidence level, ** significance
at the 5% confidence level, * significance at the 10% confidence level.

-1 obtained

we constructed a time series of estimates of the regression coefficient BX/ T
from fitting the model shown in Equation (2.4) in a rolling fashion with a sliding window
size of 1-year for each firm. We chose a window of 1 year to allow for enough data to
be included in each regression in order to achieve convergence.

From Figures 2.8, 2.9 and 2.10 in Section 2.8 we can observe a number of common
patterns: for the producers Anadarko, Apache, ConocoPhillips, Encana, Marathon,
Murphy and Pioneer Natural Resources, the 1-year rolling correlation is generally
negative and weak with values reverting around -0.25 until mid-2014. It then doubles

reaching levels close to -0.5 in most cases, maintaining this magnitude through 2015

and 2016. Interestingly, the correlation magnitude reduces in the period following
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August 2017, reaching positive levels for ConocoPhillips, Encana and Pioneer Natural
Resources. Servicing companies like Enbridge, Ensco, Halliburton and Valero are found
to perform similarly. Moreover, the CDS’s sensitivity to oil returns (measured via the
rolling coefficients ﬁgv TIH) increased in magnitude throughout the period 2014-2015
and reverted to lower levels from mid- to late 2016, when the cost of a barrel of o0il was
stable around $50, confirming the correlation results. This pattern shows that the 1-year
correlation and [3(?/ Th1 \yere higher in periods of high volatility between July 2014 and
January 2016, whilst CDS spreads were spiking in 2016. However, when crude prices
displayed a steady growth from mid-2017 onwards and, in parallel, CDS spreads were
slowly reverting to their 2013 levels, the correlation magnitude reduced. From mid-2017,
in the case of Chesapeake, Devon Energy, Encana, Noble Energy, Pioneer Natural Res.,
Enbridge, Ensco, Halliburton, Transocean and Valero the maximum estimated value
of the correlation coefficient is 0.25, indicating a weak positive correlation between oil
returns and the firms’ CDS. Surprisingly, ConocoPhillips, Pioneer, Ensco, Halliburton,

, . WTL | .. e .
Transocean, Valero s rolling 8, " "~ estimates becomes positive in the same period.

There are, however, some exceptions. Marathon Oil’s estimated rolling beta coeffi-
cient [3(‘)4/ Th-1 increased (in absolute value) from late 2016 until the end of 2017, almost
a year and half after the other firms in the dataset. Moreover, as shown in Figures 2.8
and 2.9 in Section 2.8, Murphy Oil displayed a second sensitivity increase during late
2017 and in 2018, whilst its peers’ were steadily reducing. Surprisingly, Pioneer Natural
WTL_

Resources, Noble Energy, Enbridge and Transocean’s estimates of the rolling f3,

coefficient was positive from mid-2017.

It is slightly harder to find a specific pattern for the remaining firms in the dataset.
Chesapeake displays a somewhat similar behaviour displaying, however, a positive
correlation between August 2013 and November 2014. Interestingly, its 1-year rolling

gv Th1 are mostly positive with dips during the years 2014, 2015, 2017 and 2018. It
1s worthwhile remembering that, as shown in Table 2.9, WTI was not a statistically
significant determinant to Chesapeake’s CDS. In the case of Devon Energy, the correlation

increased in absolute value from close to zero to around -0.25 during the first quarter

of 2013 and, contrarily to the other companies, it halved during the period between
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November 2014 and October 2015. Devon Energy estimated rolling sensitivity to oil
returns follows a similar pattern reaching its peak (in absolute value, i.e. lowest value)
after the oil price drop started in July 2014. Transocean shows no clear pattern as the
correlation oscillates around -0.3 from 2013 until 2017 before increasing to positive levels.
Transocean’s estimated rolling ﬁgv Th1 i5 also mostly negative with lowest points in the
end of 2013 and August 2014. Its sensitivity to oil returns sporadically becomes positive
in 2015 and 2016 before settling above zero in mid-2017.

In summary, the CDS spreads of 60% of the firms analysed show a higher sensitivity
and stronger correlation to oil returns after the steep price drop observed as of July 2014.
This relation lasted throughout 2015 and 2016, before the cost of a barrel of oil started to
steadily increase. During 2017 and the first half of 2018, the increasing costs of crude oil
translated to higher revenues for oil companies and was a signal for market participants,
including investors and creditors, that the sector was once again recovering its strength.
This translated to reduced magnitude of the CDSs sensitivity to crude returns across our

I

dataset and, in some cases, it translated to the positive ﬁgv Th1 i the last period in analysis.

2.6.5 Robustness Analysis

As presented in Section 2.6, the share price volatility coefficient ﬁg/ OL resulted non-

significant (p—value > 0.05) for all but one producing firm and one servicing company.
As arobustness check, we tested our approach with a different explanatory variables spec-

ification, namely we removed the share price volatility. The new model assumes the form

ACDS; =09+ 0;CDS; 1+ B§EY ALEV,+-BFEV LEV, 1+

By AW T 4B T WL o+ BSPNIOCDXIG A (215)

To facilitate commenting on the results, we named Equation (2.4) Model 1 and Equation
(2.15) Model 2.

To understand which model is preferred for each firm, we compared the two model’s
Akaike Information Criterion (AIC) and Schwartz Information Criterion (BIC). Let n
denote the number of parameters in the model, L(®) the value of the likelihood function

evaluated at the estimated parameters and 7' the number of observations, the AIC is
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classically defined as

AIC =—2In(L(®))+2n, (2.16)

whilst the BIC is computed as
BIC=—-2In(L(®))+nIn(T). (2.17)

The lower model with lower AIC (or BIC) is preferred. As showed in Table 2.12 in Section
2.8, the BIC results suggest that Model 2 is preferred for 17 firms. Similarly, Model 2
achieves the lowest AIC for six producers and five servicing companies. We report the
estimation results in Tables 2.13 and 2.14 in Section 2.8. Howeyver, it can be noted that
the two models estimated f3 coefficients are equal up to three decimal places. This is due
to the fact that the share price volatility was one of the framework’s control variables and
the size of the estimated 3y °F and )" coefficients was very close to zero. As such,

we can conclude that there is no statistical difference between Model 1 and Model 2.
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2.7 Conclusions

In this chapter we analysed the relationship between lagged WTI returns and the credit
default swaps of 11 oil producers and 7 oil servicing companies. We presented a structural
model where CDXIG Index, lagged WTI returns, firm-specific leverage ratio and share
price volatility are used to explain CDS spreads between 2012 and 2018. We find that there
exist a positive relationship between leverage ratio and CDS spreads for both producers
and oil servicing companies; however, whilst oil producers with larger market capitalisa-
tion are less sensitive to changes in leverage ratios compared to smaller firms, the opposite
is found for oil servicing firms. Further, whilst significant in all cases, an increase (or de-
crease) of the CDXIG Index has a very low effect on the firms CDS spreads. On the other
hand, share price volatility is not significant for both subsets. Lagged WTI returns are
found significant in over 60% of the firms in the dataset. Moreover, oil producers display,
on average, higher sensitivity to crude returns than servicing companies. Surprisingly, we
find that the CDS’ of producers and servicing companies with larger market capitalization
are more sensitive to changes in oil returns. We then showed the existence of a CDS-WTI
and CDS-leverage ratio long run relationship; however, the Impulse Response Function
reveals that the effect of a change in lagged WTI returns on the credit default swaps
dissipates after the first lag. The same applies for leverage ratio with the exception of three
producers and four servicing companies where the impact of a change in leverage ratio pro-
tracts up to the 5th lag, despite having very low intensity past the first lag. Lastly, we anal-
ysed how the relationship between credit default swaps and lagged WTI returns changes
over the period in analysis via rolling regressions and rolling Pearson correlation. We
found that, for over 60% of the dataset, there was a weak inverse correlation and negative
BWTl-1 coefficients in the period leading up to 2014. Both quantities grew in magnitude
during periods of high volatility, namely from mid-2014 until 2016. On the other hand,
when oil prices were steadily increasing in 2017 and 2018, the strength of this relationship

started to reduce and, in some cases, both correlation and ﬁWTIf—l became positive.
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Chapter 3

Machine Learning in presence of mixed

signs: the case of crude oll prices in 2020



Abstract

Oil markets experienced a truly unprecedented situation in 2020. Crude consumption
declined at the start of the year, following a stagnant worldwide economic situation in
the second half of 2019. At the same time, Saudi Arabia and Russia, the top producing
countries after the United States, did not commit to production cuts. Furthermore, the
lockdown introduced worldwide as a measure to stop the COVID-19 pandemic sent
gasoline and jet fuel consumption crashing. As a consequence, storage facilities in the US
soon reached their full capacity, causing the WTI first nearby Future to plunge to negative
levels on April 20th 2020 for the first and only time in history. In this chapter we first test
the viability of two price prediction frameworks over three different 3-months periods
enclosed in the first half of 2020. Employing Variational Mode Decomposition, S-minute
WTI and Brent prices are decomposed into modes, which are then used as inputs to
forecast the one-period-ahead price via Generalised Additive Model (GAM) and Feed-
Forward Neural Network (FFNN). We propose a Recursive Forecasting Methodology
(RFM) to compute the aforementioned forecasts by using modes generated exclusively
from past data. The results show that forecasting via FFNN is more accurate in five out of
six cases. With respect to WTI, highest accuracy is obtained when the frameworks were
trained using both positive and negative prices, while the test data was strictly positive.
Contrarily, the methodologies forecasting ability is highly affected by the presence of
negative prices in the test dataset of WTI in the period February-April 2020. The lower
accuracy resulting from predicting Brent prices during the same period suggests the
existence of a spillover effect (between the two benchmark indices) of the structural
instability caused by the unprecedented WTI price drop. The application of the two

frameworks to 5-minute WTI prices observed between May 2023 and April 2024, a
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longer time period where no structural instabilities were detected, leads to lower RMSE
and MAPE. The results obtained tend to approach the performance of the baseline
Exponential Smoothing for all datasets. However, the presence of negative prices in
the WTI February - April 2020 testing dataset deteriorates tenfold the accuracy of all
methodologies, including ES, displaying the limitations of the frameworks to capture the

structural instability generated by the unforeseen drop of WTI prices to negative levels.
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3.1 Introduction and literature review

During the first half of 2020, amid the Coronavirus pandemic, the global economy entered
a stage of deep distress with local authorities enforcing lockdown measures and banning
non-essential travel to avoid the spread of the virus. The disappearance of daily commutes,
leisure travel and the closure of factories around the world reduced the world consumption
of crude oil and its refined products by a third almost overnight. At the same time, crude fu-
ture prices began to drop as market participants expected storage facilities to rapidly fill up.
Alarms were further raised when the main delivery point for oil in the United States - Cush-
ing, Oklahoma - reached 80% of its capacity. In an attempt to create a floor for oil prices,
the US government authorised the acquisition of some 75 million barrels to fill up the
American national petroleum reserves and backed a landmark deal by OPEC+ to curb pro-
duction by as much as 10%. Despite these efforts, the West Texas Intermediate contracts
for delivery in May 2020 traded for as low as -$38 on April 20th, i.e., as soon as the max-
imum storage capacity in Cushing was reached. For the first time in history, traders were
paying money to sell their barrels of oil. Benchmarks around the world also came under
pressure with Brent plummeting to $19, the lowest since the late 90s. However, contracts
for later delivery were trading at higher prices as they included a premium for the increas-
ing storage costs, displaying a market feature which was labelled as “super-contango.”
Despite first-nearby contracts returning to positive levels within the following trading
day and lockdown measures slowly being lifted in many countries, the future of the oil
sector was very uncertain: the market was still oversupplied with a lot of oil that had no
demand to meet; producing countries like UAE, Saudi Arabia, Iraq, Qatar and Algeria,
whose budgets rely on petrodollars were expected to cut their government spending
being unable to meet their production break-even point. Furthermore, independent crude
producers around the globe were faced with an unprecedented crisis. In the US alone 32
oil patches and 25 oilfield services companies filed for Chapter 11 during the first three

quarters of 2020.!

The focus of this chapter is the prediction of WTI and Brent in those crucial days.

I'Source: the Haynes Boone Energy Bankruptcy Reports and Surveys. https: //www.haynesboone.
com/publications/energy-bankruptcy-monitors-and-surveys
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To wit, we examine oil five-minute prices over 3 different (but overlapping) time periods:
i) January 1st 2020 to March 31st 2020; ii) February 1st 2020 to April 30th 2020 iii)
April 1st 2020 to June 30th 2020. The time periods were carefully chosen in order to test
the methodologies in a period of “standard” positive prices (i), a period where negative
WTI prices appeared in the test dataset (if) and a period where negative WTI prices
are part of the training dataset (iii). Further, we extended the analysis to WTI prices
ranging between May 1st 2023 and April 30th 2024. The introduction of a larger dataset
allows us to have a further comparison with the forecasts of the 2020 datasets. Moreover,
whilst being more computationally expensive, training the models on a greater number of
observations should lead to a lower sensitivity to noise in the data, thus better capturing
the underlying distribution of the data (including outliers) and improve generalisation
by reducing overfitting. We applied Variational Mode Decomposition (VMD) to map the
non-stationary WTI and Brent prices time series to functions, called modes, which are
then used as covariates to train a Generalised Additive Model (GAM) and a Feed-Forward
Neural Network (FFNN) for forecasting purposes. We proposed a Recursive Forecasting
Methodology which allows to predict oil prices using modes generated exclusively from
past data. The accuracy of the forecasts is measured via RMSE and MAPE. Additionally,
we implemented Exponential Smoothing (ES) as a baseline to compare the performance
of the frameworks. The results obtained tend to approach the performance of the baseline
Exponential Smoothing for all datasets. However, the presence of negative prices in
the WTI February - April 2020 testing dataset deteriorates tenfold the accuracy of all
methodologies, including ES, displaying the limitations of the frameworks to capture the

structural instability generated by the unforeseen drop of WTI prices to negative levels.

Empirical Mode Decomposition (EMD; Huang et al., 1998), is an empirical multi-
resolution technique used to perform a joint space-spatial frequency decomposition of
a signal by successive removal of elemental intrinsic mode functions (IMF), which
represents the oscillatory modes of the original signal going from high to low frequency
ranges. EMD has been applied in many fields, including the prediction of financial time
series: for instance Premanode & Toumazou (2013) used it to forecast FX, whilst Zhang

et al. (2008), Zhang et al. (2009), An et al. (2013) and Lisi & Nan (2014) applied EMD
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to predict crude oil and electricity prices in various settings.

Conversely, Variational Mode Decomposition (VMD) is a more recent technique
introduced by Dragomiretskiy & Zosso (2014). It is used to decompose a signal into a
predetermined amount of modes, which oscillate around their respective central frequency.
Compared to EMD, VMD is preferable for its capability to separate tones of similar
frequencies achieving a better signal characterisation and effectiveness in de-noising the

underlying time series, (Dragomiretskiy & Zosso, 2014).

On one hand, Generalised Additive Models, (GAM; Hastie & Tibshirani, 1986), are
a popular regression approach that model the dependence of a response variable on a set
of covariates using a flexible specification of the additive predictor via smooth functions.
In our context, the independent variables correspond to the modes extracted via the VMD
framework. GAMs relax the parametric assumptions of linear and generalised linear
models by modelling the effects of continuous covariates using smooth functions. This
is appealing for non-stationary and non-linear time series forecasting. On the other hand,
Feed-Forward Neural Network (FFNN) learns from examples: sets of inputs are fed
into the network, the corresponding outputs are then calculated and compared to the
actual/real data. In a recurrent manner, the gradient of the loss function is computed and
the coefficients used to calculate the outputs are adjusted until a chosen stopping criterion
is met. Similarly to GAMs, once the structure of the FFNN is determined, there is no
need to pre-specify a functional form that describes the underlying relationship between

the dependent and independent variables.

In recent years, EMD and VMD hybrid models have been adopted in the prediction
of financial time series and compared extensively. Nava et al. (2018) used Support
Vector Regression to forecast financial time series decomposed via EMD. Hong (2011)
used EMD to forecast five-minute crude oil prices. Wang et al. (2018) analyse the
relationship between Internet Concern (a measure of investor attention based on internet
data) and oil price volatility. The Bivariate Empirical Mode Decomposition (BEMD)
method is used the time series, whilst Extreme Learning Machine (ELM) is applied
to forecast price volatility in various settings, thus showing how incorporating Internet

Concern in the model improves accuracy. Lahmiri (2015) compares the prediction of
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California electricity prices and Brent crude oil using Generalised Regression Neural
Networks (GRNN) fed with modes obtained via EMD and via VMD. Also, Lahmiri
(2016) shows the superior forecast accuracy of a VMD ensemble model for daily WTI
prices, Canadian/US exchange rate and Chicago Board Options Exchange NASDAQ 100
Volatility Index (VIX). In their work, the VMD-GRNN hybrid model is compared with
an EMD-GRNN ensemble, with an Auto-Regressing Moving Average (ARMA) model,
and with a Feed-Forward Neural Network (FFNN) trained with the past five observations.
Similarly, Gyamerah (2020) shows that training a GRNN model using modes obtained
via VMD produces more accurate forecasts compared to using IMFs extracted via EMD
in the case of one-minute interval Bitcoin prices. Lastly, Zhu et al. (2019) forecast daily
carbon prices from the Shenzhen and Hubei Province in China by applying VMD to
the original time series. An evolutionary clustering algorithm is adopted to create virtual
modes which are individually used to predict the carbon price and then combined via
the Induced Ordered Weighted Averaging operator to produce the final forecast.

The remainder of the chapter is organised as follows. In Section 3.2 we introduce
the adopted methodologies, the Recursive Forecasting Methodology and the related
performance measures. The data analysed and the respective results are presented in

Sections 3.3, 3.3.2 and 3.3.3. In Section 3.4 we summarise and conclude the chapter.
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3.2 Methodology

In this section we describe the methodologies applied in this paper, namely Empirical
Mode Decomposition, Variational Mode Decomposition, Generalised Additive Models,

Feed-Forward Neural Networks and the Recursive Forecasting Methodology proposed.

3.2.1 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) allows to decompose a complex signal (such
as non-linear non-stationary time series) into a finite and often small number of functions
called Intrinsic Mode Functions (IMF). Following Huang et al. (1998), each IMF has
the same number of zero crossing and extrema and is symmetric with respect to its local
mean. The recursive procedure, called sifting algorithm (Huang et al., 1998), performs

the following steps:

Find all the local maxima M; (i=1,2,...) and minima my, (k=1,2,...) in the signal

S(1);

* Interpolate the lower and upper envelopes via cubic spline: M(t) = fy;(M;,t) and

» Compute the envelope mean y, =M (t)—m(t);
» Compute the series Z(t) =S(t) — ty;

* Repeat the previous steps until: 1) u; approaches zero, ii) the numbers of local
extrema and zero-crossings differ by at most 1, or iii) the pre-defined maximum
number of iterations is reached. Then, if Z(¢) meets the IMF conditions of same
number of zero crossings and extrema and is symmetric around its local mean,

IMF,(t)=Z(t) with residual r(t) = S(t) —IMF;(t);
* If Z() does not meet the required criteria then S(¢) is replaced by Z(¢);

* Iterate the previous steps computing IMF} ,IMF,,... and ry,rs,... until IMF,-(t)’f_1

such that r;(¢)'f ~! does not have more than two local extrema.
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Lastly, the signal S(¢) can be expressed as

N
S(t)="Y IMF;(t)+rn(1). (3.1)
j=1
Lahmiri (2016) and Gyamerah (2020) train their prediction models using IMFs extracted
via EMD and modes extracted via VMD. They show that the VMD hybrid model leads
to more accurate forecasts. As a result, in this research we applied EMD exclusively in
the process of choosing the optimal number of modes k to be extracted via VMD. This

procedure is described in Section 3.2.2.

All the Empirical Mode Decomposition calculations are run via the EMD R package

(Kim & Oh, 2021).

3.2.2 Variational Mode Decomposition

VMD is a technique that aims to decompose a time series into a discrete number k of
modes where each has limited bandwidth in spectral domain. Each mode £ is required
to be mostly located around a center pulsation @y obtained during the decomposition
process (Dragomiretskiy & Zosso, 2014). Constraints like the recursive sifting procedure,
hard-band limits, and lack of mathematical theory in other decomposition methods can
be solved using VMD (Isham et al., 2018). Allowing to decompose a time series f in
a pre-determined number of modes k&, VMD has been adopted to deal with noise in the
signal of time series data (Dragomiretskiy & Zosso, 2014). A signal is decomposed via

the following recursive algorithm (Dragomiretskiy & Zosso, 2014):

1. a Hilbert transform is applied on each mode u;, to retrieve a unilateral frequency

spectrum;

2. each mode’s frequency spectrum is shifted to baseband by mixing it with an

exponential tuned to the respective estimated center frequency;

3. the bandwidth is estimated via Gaussian smoothness of the demodulated signal.
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As a result, the constrained problem that follows can be described as

o [(6([)—{_7%[) *uk(t)} e /O z} (32)

Y1, 63)
k

min
{uct {on}t {;

subject to

where f is the signal, 7 is the time script, k is the number of modes, u; is k-th the mode,
j*>=—1, § is the Dirac distribution,  is the frequency, * represents the convolution
and ||- ||% is the squared L.2 norm of the gradient. Higher order k denote lower frequency

modes (Dragomiretskiy & Zosso, 2014).

Further, the number of modes k extracted via VMD has to be specified by the user.
To determine the optimal k value, we followed the procedure described in Lahmiri (2016)
and Gyamerah (2020). Namely, we first decompose the data via EMD and obtain N
IMFs. Then, we run the VMD-FFNN and VMD-GAM frameworks for values of k in
the range k= [N —4,N +4] for each dataset. The optimal value of k is then chosen via
cross-validation of the performance metrics described in Section 3.2.6. Variational Mode

Decomposition is run via the VMDecomp R package (Mouselimis, 2022).

3.2.3 Generalised Additive Models

Generalised Additive Models (GAM; Hastie & Tibshirani, 1986) model the dependence
of a response variable on a set of covariates using a flexible specification of an additive

predictor as follows (Wood, 2017)

g(i) =X; 0+ f1(x1;) + fo(x2r) + ..+ fic (i), (3.4)

where g(-) is a link function that connects the expected value of the dependent variable
to the predictors, 1; =E(Y;) and the response variable Y; belongs to some exponential
family. X;* defines a vector of parametric predictors, whilst each f; represents a smooth

function of the continuous predictor x;, for j=1,....k.
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In our case the model assumes the form

g(1i) = Po+fi (M1 1)+ fo(Ma) + .4 f (M) (3.5)

where M;; represents the i-th observation of the j-th mode extracted via VMD, for

ji=1,..k

GAMs provide flexibility in the model specification, avoiding assumptions typical of
parametric linear models and allowing the relaxation of linearity constraints of generalised
linear models. Each smooth function can be written as a linear combination of regression

parameters and known basis function as

0;

fitxji)= ilbj,qj (Xi)Bgys  J=1,k, (3.6)

qj=

where b;,.(-) denotes the g;-th basis function evaluated at the i-th observations of the
J-th covariate in the model and 3;; represents the corresponding regression parameter
(Wood, 2017). The number of basis function is chosen to be large enough to capture the
relationship between the dependent variable and the covariates (Wood, 2017). Note that
the smooth function representation in Equation (3.6) allows to write the model in (3.4)
as a linear model. The degree of smoothness of the function is determined by adding a
“wiggliness” penalty to the least-squares estimation, which corresponds to the integrated
squared second order derivative of the smooth function. Thus, the model parameters are

estimated by minimising the following penalised least-squares criterion:
Iy=XBIP+X 2, [ 1f] xp) P, G)
J

where X contains the parametric predictors and the basis evaluated at the continuous
variables, B contains the intercept and all the regression coefficients associated to the
smooth functions. In Equation (3.7), A ;>0 determines the smoothness of the estimated
function. When A; — 0, f is close to a spline without penalty, resulting in higher

wiggliness. On the other hand, the estimated function approaches a straight line whenever
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A — oo, The penalty for each smooth function can be written as a quadratic form

A [ 1f] )P =BT 5B G8)

where

szxj/bjbjfdxj. 3.9)

and b; is a vector of the basis functions evaluated at the covariates. The minimisation

problem becomes

ly—XB|*+B"SB (3.10)

where S = diag(0,A,S1,...,A4S;) is the overall penalty matrix. Parameter estimation
proceeds in a two-stages iterative approach. In the first step, given a fixed value of Ay,
the regression coefficients are estimated using a (weighted) least-squares approach. In the
second step, given the updated values of 3, the smoothing parameters are estimated using
generalised cross-validation (Craven & Wahba, 1979; Golub et al., 1979). For details on

the estimation approach, we refer the reader to Wood (2017).

Thin plate regression splines are the basis used to approximate each f;. They are con-
sidered an ideal smoother as they are constructed by defining how much weight to give to
the conflicting goals of matching the data and making f; smooth, and finding the function
that best satisfies the resulting smoothing objective (Wood, 2017). The standard GAMs
implementation is the one from the R mgcv package by Simon Wood (Wood, 2020).

3.2.4 Feed-Forward Neural Networks

A Feed-Forward Neural Network (FFNN) can be thought of a parallel distributed pro-
cessor composed of elementary units called neurons. They allow the storage of prior
experiential knowledge in the form of synaptic weights acquired through the intermediate
steps of the learning process. The adaptability of the system enables the adjustment of
the synaptic weights and the system structure. The network architecture consists of one

input layer, one or more hidden layer(s), containing the neurons, and one output layer.

The outputs are calculated as:

Y =¢(WX+Db) (3.11)
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Figure 3.1: Example of the structure of a neural network

where X represent the input layer, W is a vector of weights, b is the bias and ¢ is a chosen

activation function.

The network learns by adjusting the values of the weights that connect each layer
to the following one. Its objective is the minimisation of the chosen loss function, in our

case given by the sum of squared differences between the output y; and the target value y;:

(S)i_yi)27i:17"'7N- (3.12)

D] =
.MZ

L(3iyi)=

~
—

The adjustment starts from the output layer and propagates backwards towards the input

layer, in a gradient descent fashion:
Wi =w? + AL ($;,y;) (3.13)

where w; are the weights of the corresponding i-th input, o represents the learning rate,
which determines the speed of change, and AL(¥,y) is the partial derivative of the error

function with respect to the i-th input weight w; for each layer.

Normalising the input data facilitates the convergence of the algorithm and overcomes
the possible weakness of the chosen loss function - namely being influenced by the

magnitude of the inputs.

In our context, the structure of our the neural network consists of the input layer, one
hidden layer and the output layer. The inputs layer size corresponds to ., the number

modes extracted via VMD. The number of nodes in the hidden layer is arbitrarily set
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to k—1, leaving the optimisation of this parameter via cross-validation for future works
on the subject. The output consists of one node, corresponding to the predicted price.
Results are compared by choosing the optimal value k via cross-validation based on the
performance criteria described in Section 3.2.6. All computations were done via the

neuralnet R package (Fritsch et al., 2019).

3.2.5 Recursive Forecast Methodology (RFM) for testing

As presented in Section 3.1, VMD-hybrid frameworks are used in the literature to forecast
a number of financial time series (Lahmiri, 2015, 2016; Gyamerah, 2020; Zhu et al.,
2019). The authors divide their data into training and testing sets, following the classical
80%-20% split. The models are trained by decomposing the training data via VMD into
a certain number k of modes, determined following the procedure described in Section
3.2.2. The test data is then decomposed via VMD in the same number of k£ modes. Finally,
for each time ¢, their value is fed into the trained model to obtain the one-period-ahead

price forecast and the performance metrics are computed. For instance, let

Y; (t=0,...,T): Price time series,

YTRAIN (1 —0,...,}): Training data,

YTEST (t=j41,....T): Testing data,

where the data is classically split 80% for training and 20% for testing. The model is

trained on the kK modes extracted via VMD of ¥, RAIN
MIFAN (1=0,....j; i=1,..k).
Then, Y,TEST is also decomposed in k modes
MIEST (t=j+1,..T; i=1,..k).

Feeding to the trained model

%TEST _ [ TEST TEST],

jrl =My Mig
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the values of the k modes at time j+ 1, the forecast for f’j+2 is obtained. Doing so for
t=j+1,..,T —1 returns the forecast time series ¥, (t=j+2,...,T). By decomposing
the entire testing dataset, the resulting modes will include, in some sense, future infor-
mation encompassed in the testing data trajectory. Thus, the forecast is computed using
modes generated from future data given that the values of are conditional to

YTEST (t=j+1,..,T). Thus,

TEST
M;;

MIFST (j+1<t<T),
depends on both

YTEST (1= j41,....7),

YTEST (s=141,..T).

Hence, the predicted price are not reliable as they include future information on the data

trajectory.

In the real world, only past data is available at time ¢+ when predicting the price at
t+1. Once trained, the framework requires the value of k modes at time ¢ as inputs to

return the forecast Yt+1. Thus, we split ; as

YTRAIN (1—0,...,J): Training data,

YOAP (t=j+1,....J): Gap data,

YTEST (t=J+1,...,T): Testing data.
Then, we extract kK modes via VMD of Y,TRAIN and YIGAP , hnamely

MZiRAIN (t=0,...,j; i=1,...,k): Training data modes,

Mg-AP (t=j+1,....J; i=1,...,k): Gap data modes.

The framework is trained on M FAIV; in this phase, the Gap data remains unseen by the

model. By feeding ///fAP , the vector containing the value of the modes at time J, to the
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trained model the first forecast ;. | is computed. Then, in a recursive manner, thus the

name Recursive Forecasting Methodology, we append one observation of ¥,/ £5T to ¥0AP

YOAP (1= j4+1,....0+1).
and decompose it into kK modes
MEP (t=j+1,..J+1; i=1,...k).

The forecast for ¥;_ is obtained by feeding ///JGflP to the trained model. The recursive
loop ends when

Y (t=J+1,...T)

is obtained. Lastly, we computed the evaluation metrics presented in Section 3.2.6. A
synthesis of the RFM is given in Algorithm 1. Following this procedure, the forecast ¥;
is computed using modes generated exclusively from past data.

Figure 3.2 shows a plot of the WTI February-April realised prices against the pre-
dicted values obtained via the VMD-FFNN hybrid model. On the left, the forecast was
generated using the testing methodology from the literature, and, on the right, it was
generated using the REM. Note that, for this dataset, ¥,/ *A/N ¢ R* and Y757 € R. Using
the standard methodology, the value of M/ 5T between 14/04/2020 and 19/04/2020 are
lower as they reflect the price drop observed on 20/04/2020. The resulting forecast suffer
from a clear downward bias as shown in Figure 3.2a. Furthermore, between 14/04/2020
and 19/04/2020 prices were always positive. The Root Mean Squared Error (see Equation
(3.14)) computed on this subset should be in line with the results obtained for a dataset
with strictly positive values in the testing data. Namely, as presented in Table 3.6 in Sec-
tion 3.5, the forecast of the WTI January-March dataset returns RMSE =0.816. However,
using the standard methodology, the RMSE between 14/04/2020 and 19/04/2020 1s 3.35.

As shown in Figure 3.2b, if prices are predicted recursively as proposed in this
section, the forecasts is far more accurate between 14/04/2020 and 19/04/2020 producing
RMSE =0.567. However, as it will be discussed later in Section 3.3, for both method-

ologies the accuracy is highly reduced when negative prices are predicted. In this context,
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we allocated 80% of the data to the training dataset, 1% as Gap data, and the remaining
19% for testing. The size of the Gap dataset was chosen arbitrarily. We reserved the

estimation of this parameter via cross-validation for further works on the subject.

WTI Price (USD)
WTI Price (USD)

0

-50 -30 -10 10

8 -

T T T T
14/04/20 20/04/20 24/04/20 30/04/20 14/04/20 20/04/20 24/04/20 30/04/20
Time Time

(a) Classical Methodology (b) Recursive Forecast Methodology

Figure 3.2: Example plot of the WTI February-April true data against the forecast obtained using the
VMD-FFNN hybrid model generated using the testing methodology from the literature, on the left, and
using the Recursive Forecasting Methodology, on the right. The solid line represents the true value whilst
the dashed line represents the predicted value. Values are in USD.

3.2.6 Performance evaluation

To evaluate the accuracy of the predictions, we compute the standard Root Mean Squared

Error (RMSE) and the Mean Absolute Percentage Error (MAPE). They are calculated as

(3.14)

n

MAPE=-Y"
izl

(3.15)

Yi—¥;
ol

Smaller values of MAPE and RMSE indicate a more accurate prediction model.

3.2.7 The Diebold-Mariano test

The Diebold-Mariano (DM; Diebold & Mariano, 1995) test assesses the existence of a
statistical difference between two forecasts. We define ¢; and r; as the residuals of the
forecasts f and g respectively, d as the average difference of the squared residuals, and

Y as the autocovariance at lag k, that is,

e =yi— It 't =Yt —8t,» (3.16)
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Algorithm : Recursive Forecast Methodology (RFM) for testing
Input: a time series of prices
QOutput: a time series of predicted prices and its RMSE and MAPE
1: Import the price trajectory ¥;
2. Split ¥; into YTRAIN (1 =0,....j), YOAP (t=j+1,..J),and YT EST (t=J+1,....T)
3: N+ Number of modes obtained from applying EMD to Y 7RAIN
4: Initialise Y,y 84"
5. for k in the range [N—4, N+4] do
6: MtTiRAIN < k modes resulting from applying VMD to ¥,/ RAIN
7: nn<— FENN training, Target Yt?fA’N , Covariates M£MIN
8:  gam< GAM training, Target ¥,/ RN, Covariates M/ AN
9: for 7 in the range [/+1:7 —1] do
10: MgAP < k modes resulting from applying VMD to ¥,¢4P
11: f’r”‘” < Forecast via nn, inputs Mff{: ;» the value at time 7—1
of the kK modes (see line 10)
12: f/fam <+ Forecast via gam, inputs MTGﬁ‘f ;» the value at time 7—1
of the £ modes (see line 10)
13: yrn ey
14: ysam . ysam
15: Append Y EST 1o Y,OAP,
16: end for
17: Compute RMSE™ (Y,TEST ¥") and MAPE™ (Y,TEST y)
18:  Compute RMSES™" (YTEST ysam) and MAPES®™ (YTEST ysam)
19: Compute the Diebold Mariano test between ¥ and Y54
20: end for
21: return performance metrics and optimal value of £
- 1&
di=(e)*>—(r,)%, d:?Zdt, (3.17)
=1
1 I
==Y, (di—d)(d_r—d) (3.18)
t=k+1
The Diebold-Mariano test can be defined as
DM = d . (3.19)
VI0+ 250 /T
Under the Null hypothesis Hy
Hy:E(d)=0, (3.20)
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that is, the expected accuracy of forecasts f and g are equal, the DM test statistics follows

a standard normal distribution DM ~ .47(0,1).

3.2.8 Exponential Smoothing
Employing Exponential Smoothing (Holt, 2004), a forecast is computed as the weighted
average of past observations, where the weights decrease exponentially over time. Thus,

the older the observations, the lower the associated weight. It is defined as
Jrr1= 0y +(1—0);. (3.21)

where 0 < o < 1 is the smoothing parameter. If we expand Equation (3.21) backwards

in time we obtain
Yrrr=ayta(l—o)y,—1+oa(l —a)zy,_2+...+(1 —0)"Pr—p—1. (3.22)

Hence, the influence of past observations on the one-period-ahead forecast decreases
exponentially with time. Given the length of our datasets and the exponential decaying
of the value attached to older observations, we set y;_,—1 =y;—,. Experimentally, we set
a =0.7. Given its structure, Exponential Smoothing allows to forecast non-stationary
time series without differencing the data, thus, making the resulting performance metrics

comparable with those produced by the proposed frameworks.
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3.3 Data and results

3.3.1 Forecasting the 2020 datasets

The data are composed of five-minute WTT and Brent future oil prices in 3 different time
periods: i) January 1st 2020 to March 31st 2020; ii) February 1st 2020 to April 30th 2020;
iif) April 1st 2020 to June 30th 2020. All data was obtained from Bloomberg. Table 3.1

summarises the descriptive statistics and number of observations of each dataset.

Dataset Number of Observations Min  25% Median Mean 75% Max
WTI January-March 17100 1945 3358 51.06 4646 5548 6548
WTI February-April 16943 -3896 2134 2886 33.15 50.01 54.50
WTI April-June 17441 -3896 21.88 29.57 2854 3727 41.57
Brent January-March 16658 21.75 3677 5567 5122 6218 70.89
Brent February-April 15802 16.01 2733 3401 39.15 5443 59.85
Brent April-June 16536 16.04 29.05 3383 3331 39.70 43.90

Table 3.1: Data summary statistics.

Figure 3.4 in Section 3.5 displays a plot of the six datasets. The data included between
the two dotted vertical lines is reserved to the Gap dataset, which separates the training
dataset on its left from the testing dataset on its right. As discussed in Section 3.2.5, 80%
of the data was included in the training dataset, the Gap dataset comprised 1% of the
observations and the testing dataset included the remaining 19% of the data. The number
of modes in which the datasets are decomposed was chosen following the procedure
described in Section 3.2.2, namely, we applied EMD to the training data. For each dataset
the we obtained N = 10 IMFs via EMD. We then varied &, the number of modes to be
extracted via VMD, in the range [N —4,N+4]. For each value of k, the modes obtained
were then used as inputs to train the FFNN and the GAM models, as explained in Section
3.2. Figures 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 in Section 3.5 display the training data decomposi-
tion performed by VMD for the best performing value of k. Higher order IMFs represent
the low frequency components of the decomposed signals, whilst the k-th order IMF
depicts the residual trend component. This displays the efficacy of the decomposition, as
described in Dragomiretskiy & Zosso (2014). We then followed the recursive methodol-

ogy presented in Section 3.2.5 to compute the forecasts via GAM and FENN for all values
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Dataset Statistic ~ p-value Dataset Statistic ~ p-value

WTI January-March ~ -8.466 0.000*** Brent January-March 8.650 0.000%**
WTI February-April ~ -3.922  0.000%** Brent February-April ~ -5.387  0.000%**
WTI April-June -19.589  0.000***  Brent April-June -16.936  0.000%**

Table 3.2: Diebold-Mariano test results. The forecast residuals of the two methodologies are compared
for each dataset. *** significance at the 1% confidence level, ** significance at the 5% confidence level,
* significance at the 10% confidence level.

of k for all datasets. The Diebold-Mariano test confirms the statistical difference of the
two forecasts for all datasets. A summary of the DM test results is presented in Table 3.2.

A collection of the performance metrics for each dataset and framework is presented
in Tables 3.6 and 3.7 in Section 3.5. Although the difference is very small (up to the
second decimal place), the VMD-FFNN approach outperforms the VMD-GAM hybrid
in all cases with the sole exception of the January-March Brent dataset. The results show
that it is possible to forecast Brent prices with an average error margin as little as $0.586
(VMD-GAM: MAPE = 0.012, RMSE = 0.586) and $0.560 (VMD-FFNN: MAPE =
0.012, RMSE =0.560) in the period April-June 2020. The forecast accuracy is slightly
lower in the periods January-March 2020 (VMD-GAM: MAPE =0.025, RMSE =0.866;
VMD-FFNN: MAPE =0.027, RMSE =0.923) and February-April 2020 (VMD-GAM:
MAPE =0.032, RMSE =1.025; VMD-FFNN: MAPE =0.031, RMSE =0.987), where
the average error margin is close to $1 . It must be noted that the Brent January-March and
the Brent February-April datasets include the steep price drop observed between March
6th and March 9th in the training data, which might have led to a lower forecast accuracy.

With regards to WTI, the average forecast error for the April-June period is
$0.823 (VMD-GAM: MAPE = 0.02, RMSE = 0.823) and $0.738 (VMD-FFNN:
MAPE = 0.017, RMSE = 0.738), whilst for the January-March dataset is $0.836
(VMD-GAM: MAPE = 0.03, RMSE = 0.836) and $0.816 (VMD-FFNN: MAPE =
0.03, RMSE = 0.816). These results are in line with the Brent datasets forecasts. Fur-
thermore, the information carried by the wider range of data values included in the
training set in the period April-June led to a slightly higher accuracy of the predictions.
However, the MAPE and RMSE increases substantially when the negative prices ap-
pear in the test dataset (VMD-GAM: MAPE =2.29, RMSE = 11.526; VMD-FFNN:



3.3. Data and results 84

MAPE =2.279, RMSE = 11.482). Both frameworks display an inability to capture
the structural instability given by prices dropping to negative levels. Interestingly, if we
compute the performance metrics over the period April 13th to April 19th, the average
prediction error is in line with the results produced for the Brent datasets (VMD-GAM:
MAPE = 0.027, RMSE = 0.585; VMD-FFENN: MAPE = 0.026, RMSE = 0.568).
However, the inaccuracy significantly increase over the period April 20th and 21st
2020 (VMD-GAM: MAPE = 13.029, RMSE = 20.602; VMD-FFNN: MAPE =
12.957, RMSE =20.502). Furthermore, given that the methodologies continue to predict
negative values throughout April 22nd, when WTI was already trading above $0, the
forecast accuracy in the subset April 22nd to April 30th 2020 is still low (VMD-GAM:
MAPE =0.784, RMSE =11.341; VMD-FFNN: MAPE =0.782, RMSE =11.308).

Thus, we can recognise three separate situations in the case of WTI: i) positive-
positive, when training and testing is done exclusively on positive prices resulting in a
similar accuracy to the forecast of Brent during the same period; ii) negative-positive,
when the methodologies are trained with prices of both sign and testing is done using
positive values and the accuracy is slightly higher compared to i; iii) positive-negative,
when the testing set includes values of both signs but training set comprises strictly posi-
tive prices and the approaches loose their viability. Conversely, Brent displays the highest
accuracy in the prediction of the April-June. As such, the results show that the choice
of dataset adopted in the training of the two methodologies affects the corresponding
forecast performance. As shown, the prediction of WTI is greatly affected by the presence
of negative prices observed in April 2020. However, the structural dissimilarities between
the American and the global crude oil markets also influence the results. Namely, whilst
‘WTI is mined and delivered on American soil, Brent is extracted in the North sea and
transported via underwater pipes and cargo ships leading to great storage flexibility. As
discussed, the OPEC+ production cut delay in late 2019 impacted both benchmarks;
however, the price drop was more marked for WTI due to the large quantities of shale

output by American miners without demand to match it (due to COVID-19 restrictions).

Our results outperform similar works present in the literature: Lahmiri (2015) and

Lahmiri (2016) achieve RMSE = 3.44 and RMSE = 2.10 when forecasting Brent
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and WTI daily prices, respectively, via a VMD-GRNN hybrid model, suggesting the
advantage of employing VMD on higher frequency data.
For the practitioner interested in applying the two approaches in the same time

periods, Table 3.3 reports the maximum differences between the forecast and the actual

observed price.
Dataset VMD-FFNN VMD-GAM Dataset VMD-FFNN VMD-GAM
WTI January-March 1.776 2.006 Brent January-March 1.673 3.191
WTI February-April 37910 41.738 Brent February-April 7217 7.047
WTI April-June 0.790 2.060 Brent April-June 1.589 1.615

Table 3.3: Highest possible prediction error for the two methodologies applied to each dataset. Values
are in USD.
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3.3.2 Forecasting 2023-2024 data

We extended the analysis to WTI prices ranging between May 1st 2023 and April 30th
2024, a time period where no structural instabilities were detected. The introduction
of a larger dataset allows to have a further comparison with the findings presented in
Section 3.3. Moreover, whilst being more computational expensive, training the models
using an greater number of observations should lead to a lower sensitivity to noise in
the data, better capture the underlying its distribution (including outliers) and improving
generalisation by reducing overfitting. The data was obtained via Thomson Reuters’
Eikon Python API and is displayed in Figure 3.3. The data included between the two
dotted vertical lines is reserved to the Gap dataset, which separates the training dataset
on its left from the testing dataset on its right. After pre-processing, the dataset consists

of 71726 observations. The summary statistics are reported in Table 3.4.
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Figure 3.3: WTI May 2023 - April 2024 five-minute prices (in USD). The data included between the
two dotted vertical lines is reserved to the Gap dataset, which separates the training dataset on its left from
the testing dataset on its right.

Dataset Number of Observations Min 25% Median Mean 75% Max

WTI May 2023 - April 2024 71726 65.53 72.88 71772 7824 8277 9490

Table 3.4: WTI May 2023 - April2024 Data summary statistics.

We follow the same methodology presented in Section 3.2. Employing EMD to the
dataset leads to the extraction of N = 10 IMFs. Thus, VMD is applied to the data to
extract k=[6,14] modes. The VMD-GAM and VMD-FFNN frameworks are trained for



3.3. Data and results 87

all values of k and the optimal model is chosen via cross-validation of the performance
metrics, which are reported in Table 3.8 in Section 3.5. Figure 3.11 in Section 3.5 display
the training data decomposition performed by VMD for the best performing value of
k. For all values of k, the lowest MAPE and RMSE are reported in bold. The DM test,
reported in Table 3.5, confirms the statistical difference of the two forecasts for all datasets.

The VMD-GAM framework performs slightly better than the VMD-FFNN model,
returning MAPE = 0.007 and RMSE = 0.659 for k = 9, and MAPE = 0.007 and
RMSE =0.683 for k=8, respectively.

In comparison with the results presented in Section 3.3.1, the May 2023 - April 2024
datasets forecasts are, on average, $0.07 more accurate than the best performing WTI
dataset (April - June 2020). The absence of structural instabilities observed in 2020, the
longer period analysed and the ‘completeness’ of the dataset make it preferable to apply

the frameworks to this dataset.

Diebold-Mariano test Highest prediction error
Dataset Statistic  P-value ~ VMD-FFNN VMD-GAM
WTI January-March 2024 17.475  0.000%%* 2.579 2.653

Table 3.5: Diebold-Mariano test results and highest possible prediction error of the WTI May 2023 -
April 2024 dataset. The forecast residuals of the two methodologies are compared for each dataset. ***
significance at the 1% confidence level, ** significance at the 5% confidence level, * significance at the
10% confidence level. Highest possible prediction error values are in USD.

3.3.3 Comparison with Exponential Smoothing
In Table 3.9 in Section 3.5 we present the RMSE and MAPE generated by the two hybrid

models, for the best performing value of k, and by ES. The results show that the proposed
methodologies tend to approach the performance of ES for all datasets. However, the
presence of negative prices in the WTI February - April 2020 dataset deteriorates tenfold
the accuracy of all methodologies, displaying the limitations of the frameworks to capture

the structural instability generated by the unforeseen drop of WTI prices to negative levels.



3.4. Conclusions 88

3.4 Conclusions

In this paper we applied Variational Mode Decomposition coupled with Generalised
Additive Models and Feed-Forward Neural Network to predict WTT and Brent 5-minute
crude oil prices in different time periods. The choices of datasets revolve around the
unprecedented event of WTI prices reaching negative levels in April 2020 during the
COVID-19 pandemic. We proposed a Recursive Forecasting Methodology to ensure that
the forecasts are computed using modes generated exclusively from past data. The results
showed that the two techniques are able to forecast WTI oil prices in the positive-positive
and negative-positive scenario. However, both approaches fail in the positive-negative
case, namely if the frameworks are trained on positive values and tested on prices of
mixed sign. Further, the prediction accuracy of Brent oil prices is the highest in the period
April - June 2020 and the lowest in the period February-April, displaying a spillover effect
caused by the structural instability observed for WTI prices during April 2020. Further,
training the models on a larger amount of data which does not comprise of the structural
instabilities observed in 2020 produces more accurate results in the period May 2023 -
April 2024. The two proposed hybrid frameworks tend to approach the performance of
ES for all datasets. However, the presence of negative prices in the WTI February - April
2020 testing dataset deteriorates tenfold the accuracy of all methodologies, including
Exponential Smoothing, displaying the limitations of the frameworks to capture the

structural instability generated by the unforeseen drop of WTI prices to negative levels.
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3.5 Figures and Tables
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Figure 3.4: WTI and Brent five-minute prices in USD. The data included between the two dotted vertical
lines is reserved to the Gap dataset, which separates the training dataset on its left from the testing dataset

on its right.
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Dataset WTI May 2023 - April 2024

Model VMD-GAM VMD-FFNN

k MAPE RMSE MAPE RMSE

6 0.007 0.694 0.007 0.696
7 0.007 0.669 0.007 0.693
8 0.007 0.673  0.007 0.683
9 0.007 0.659 0.007 0.729
10 0.007 0.662 0.007 0.730
11 0.008 0.683 0.007 0.721
12 0.008 0.712 0.008 0.812
13 0.008 0.750  0.008  0.770
14 0.008 0.739 0.008  0.756

Table 3.8: Performance metrics of the WTI May 2023 - April 2024 dataset. The lowest values are reported
in bold.



99

3.5. Figures and Tables

“AdVIN PUe FSIATY 1S9M0] a3 aIe proq uf “[epowt Suruioprad 1s9q oy}
PareIauas YoM ¥ sopou Jo Joquuinu oy} odax om ‘S[opout pgAY (TINA U 10 19serep yoea 10f ST pue NNAI-AINA TAVO-AIAA ela paonpoid GSIAY pue 4dVIA :6°€ 198l

9900 T000 €390 LO0O0 8 6S90 L0000 6 0TIV - €207 ABIN ILM
L600 TO00 9SO  TIOO IT 9850 CTIOO I 020g dunf - [udy juarg
0 €000 L860 1600 9 STOT TE00 9  0cOT [udy - Areniqoq juarg
6PT°0 €000 €260 LTOO ¥I 9980 STO0 ¥I  0TOT YOI - Arenuef judrg

LS00 T0000 8€L0 LI0OO L €80 0200 L 020 dunf - [udy [T
6V9°0 L7000 CSY'IT 6LCC 9 9TSII 06T 9  0¢0zIudy - Arenigoq [T
ST'0 000 9180 0£00 9 9€80 0£00 9  020C Yore - Arenuef [T M
dSINd ddVIN ASINY AdVIN ¥ ASINY  AdVIN - Y jesere(]

SH NNAA-ANA INVD-dINA




Chapter 4

A Sentiment Analysis Approach
to Oil Prices and Oil Price Volatility



Abstract

We designed and implemented a pipeline architecture that connects world news, their sen-
timent and the fluctuations of oil markets; allowing us to quantify the specific connection
between world news and those fluctuations. In this order, we studied how re-weighting
the sentiment scores of oil-related words co-occurring with war-related nouns can lead to
improved predictability of next-day returns, historical and conditional volatility of WTI
prices. Experiments are run over a two-years period that covers the Russian invasion
of Ukraine. An extensive experimental validation (via Mutual Information, Pearson
Correlation and Granger causality) exhibited a connection between sentiment from world
news and lagged WTT historical and conditional volatility. Further, we showed how the
implemented sentiment measures can outperform standard sentiment analysers when
forecasting next-day WTI volatility. Lastly, we analysed which stand-alone noun included

in our ad-hoc sentiment measure affects the forecast accuracy the most.
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4.1 Introduction

A growing body of literature has established a link between sentiment signals extracted
from automated Natural Language Processing (NLP) tools and asset returns (and their
volatility) in financial markets. Similarly, oil markets are just as frequently discussed in
online news articles, newspapers, media and social media. A recent research by Loughran
& McDonald (2020), among others, confirms the intuition that oil markets are reactive
to oil related news. On the other hand, specific aspects of oil supply and demand and
how they affect returns and volatility make it, perhaps, the most challenging market to
be analysed with NLP tools. This aspect is also brought out by the recent survey by
Bastos-Santos et al. (2023).

In this chapter we wish to verify whether calculating an ad-hoc sentiment scores of
crude oil-related news articles can effectively capture market sentiment, generating a
signal which can be used to predict WTI returns and volatility in a more accurate way than
an off-the-shelf NLP tool. Furthermore, we analysed which stand-alone noun, included
in our ad-hoc sentiment measure, affects the forecast accuracy the most. The results show
that the terms “peace”, “ceasefire” and “‘negotiation/s/negotiated”” have a higher impact
on the forecast accuracy. Contextually, omitting the nouns “war/s” leads to a stronger
Granger causality of next-day historical and conditional volatility. Thus, we identify that
war is now intrinsic in the current state of affairs and news regarding the ongoing conflicts
do not bring novelty anymore. Contrarily, news article focused on “peace®, “negotiations”
and “‘ceasefire” are unanticipated, leading to higher predictability of oil volatility.

The remainder of this chapter is organised as follows: in Section 4.2 we discussed
the existing literature on the topic, in Section 4.3 we introduced the main features of
the crude oil markets as of 2024, in Section 4.4 we described the data analysed and we
presented the framework architecture in Section 4.5. Results are reported in Section
4.6, in Section 4.6.3 we present the findings of the “leave-one-out” estimations , whilst
Section 4.7 concludes this chapter.

The present study is currently under consideration by Information Sciences.
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4.2 Literature Review

The connection between news and financial markets is intuitive: prices should reflect
expectations, and news should be a main driver in defining expectations. Several studies
have sought to explore, quantify and to some extent operationalise this intuitive connec-
tion. Recent articles found that current Machine Learning techniques are indeed able
to mine sentiment from news, headlines and media displaying a robust connection with
prices. For example, Wan et al. (2021) look at news related to individual large companies
and find a spillover effect between a firm specific sentiment and entities belonging to
the same financial network industry sector instead of a financial network constructed
from news co-occurrence. Loughran & McDonald (2020) provide an overview of the
existing approaches from a financial perspective, focusing on the construction and use
of lexicons in finance. They discuss readability as an attribute of a corpus, highlighting
the importance of defining what is really being measured through statistics.

The two main Natural Language Processing techniques deployed this type of analysis
are Sentiment Analysis and Topic Modelling. In a nutshell, the former aims at finding
a signal in texts that summarises expectations, while the latter is about finding sets
of words that describe the actual topic of a text. Both rely on several enabling NLP
technologies, namely tokenisation and word embedding, which parse a text and convert it
into an abstract representation via real-valued vectors which encode the meaning of words
ensuring that terms with similar meaning are close to each other in the vector space.

As reported by Bastos-Santos et al. (2023), there are three different approaches to
computing sentiment scores: lexicon-driven methodologies, Machine Learning algorithms
and hybrid techniques. Lexicon-based methodologies gather keywords and pre-assign
sentiment values in a dictionary, which is applied to obtain a sentiment score for the
text in analysis. The two most used finance-specific dictionaries are Henry (2008) and
the Loughran & McDonald (2011). Conversely, if a subset of the corpus is already
labelled, Machine Learning algorithms (such as CNN, LSTM and RNN) can be trained to
predict the sentiment contained in articles. Lastly, hybrid approaches use a lexicon-based
score as input of a Machine Learning approach and have been shown to improve the

prediction Accuracy. Sentiment analysis is now robust and available in off-the-shelf
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software modules, e.g., the SpaCy Python module', for inclusion in pipelines for the
online analysis of news and markets.

A recent work by Deveikyte et al. (2022) applied Sentiment Analysis to streams
of news and investigates the connection between the obtained signal and the next-day
stock market volatility. To model the reality of human traders being influenced by a
multiplicity of news outlets, the authors study articles written by experts and published
on Bloomberg as well as posts and headlines from social media (Twitter). They analyse
the sentiment of their corpus in terms of properly lagged stock returns and volatility
and find evidence of a correlation between news headlines sentiment and stock market
returns, displaying the forecasting superiority of the former over the latter. However, this
feature does not apply to stock volatility. Further, they show a strong negative correlation
between negative sentiment on Twitter and next-day volatility. Deveikyte et al. (2022)
account for a more straightforward lexicon adopted by Twitter members, allowing for
a more detectable optimisms/pessimism about markets compared to professional articles
published on Reuters or similar platforms. This implies a greater difficulty in extracting
a signal from a text written on purpose to avoid sentiment language.?

In their research, Atkins et al. (2018) extract topics via Latent Dirichlet Allocation and
adopt them as inputs for a simple Naive Bayes Classifier to forecast volatility directional
changes of US stocks and stock indices. The authors show how signals obtained by news
articles have higher predictability power when the target variable is the asset’s volatility
rather than the closing price of the asset itself, achieving an average Accuracy of 56%

for the former and a poorer 49% for the latter.

4.3 The Case of Oil Markets

It is important to highlight the special characteristics of oil markets, which today exhibit

three important features:

1. The impact of geopolitical turmoil at the time of writing with two major armed

conflicts shaking the world, one involving Russia, the second world oil producer

IPlease see https://spacy.io/.

2See for instance this recent op-ed on the relation between impartiality in conflict reporting and the usage
of ‘loaded’ terms such as invasion, unprovoked aggression and resistance. https://wuw.aljazeera.
com/opinions/2022/3/9/is-absolute-impartiality-always-a-necessity-in-journalism


https://spacy.io/
https://www.aljazeera.com/opinions/2022/3/9/is-absolute-impartiality-always-a-necessity-in-journalism
https://www.aljazeera.com/opinions/2022/3/9/is-absolute-impartiality-always-a-necessity-in-journalism
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and the subject of sanctions decided against it by a number of OECD countries;
and the war in the Middle East, home to many OPEC (Oil Producing Exporting

Countries) countries;

2. The increasing drive towards emissions reduction by oil companies, under the

pressure of shareholders in particular;

3. The large output of shale oil by the US which has become the first oil producer
and has started being a major exporter, making irrelevant the discussion of ‘peak
oil’ and other features of oil markets discussed in important papers of the years

2000s and 2010s.

We identified the conflicts in Ukraine and in the Middle East as the pivotal geopolitical
events that occurred during the period in analysis given the involvement of oil producing
countries and the disruption caused to the global demand-supply chain. Remarkably,
prices have not risen since the beginning of the Middle East war in October 2023 —
showing the limits of the economic analysis and the additional information provided by
approaches such as Machine Learning techniques to forecast oil prices.

In a recent piece of work Loughran et al. (2019) investigate the specific topic of
how crude oil-specific news influence its prices and trading strategies profitability. Their
findings shed an interesting light on how the oil markets, with their reliance on geographic,
geopolitical and logistic aspects, could be analysed with specific NLP channels. They
effectively illustrate the trade-off between focusing textual analysis on oil-related news
articles and the subsequent need for such specific methods. Their evaluation of the
sentiment embedded in crude oil-related news is based on the construction of a list of
specific keyword/modifier patterns and assigning each of them a score which would be
counter-intuitive to the general public but is, in reality, an accurate reflection of how such
news would impact oil returns and volatility. Each co-occurrence was searched within
a range of [-4,4] from the keyword position. They create a total of four dictionaries of
oil related keywords and sentiment modifiers, two for co-occurrences with negative tones

and two with positive tones. For instance, sentiment modifiers like “weak” related to

3At the time of this writing, WTI index (as well as Brent) values have been mean-reverting around
the $80 level, with essentially no change compared to the previous period.
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“demand” and, on the opposite end of the spectrum, “strong” associated to “supply” were
deemed as “negative tone.” As a matter of fact, if the market is producing excess capacity
of oil, a rise in supply unmatched by a growth in demand leads to a buildup of inventories
which must be safely stored in safe ground storage facilities or in cargoes for a fee paid
by the producers. In this scenario prices are expected to decrease in order to re-balance
supply and demand. If these properties are not taken into account, a standard sentiment
analyser would deem, for instance, an “increase in supply” as positive. An extreme case
was experienced in April 2020 when storage facilities were operating at full capacity and
the demand was at historical lows due to COVID-19 restrictions, triggering a collapse
of WTI front month Future prices to -$37 for the very first time in history. Conversely,
when “weak” relates to “supply” or “strong” relates to “demand,” a price increase
is expected. Another interesting example is “weather/cold,” which could sound like a
negative piece of news, but is in fact a forecast of a likely increase in consumption and,
hence demand. Further, Loughran et al. (2019) introduced a dictionary of stand-alone
nouns containing words with geopolitical meaning like “attack” and “bomb,” and terms
that refer to weather phenomena such as “storm” and “hurricane.”

Thanks to this pipeline, they find evidence of two types of connection between news
and oil prices, which they term overreactions. The first is short-term overreaction they
describe as “Dow Jones, oil- related”” news; the second is a kind of general industry’s

reaction to news about world events.
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44 Data

44.1 Market Data

WTI prices, the main crude oil benchmark for North America, were obtained via
Thomson-Reuters’ Eikon portal for the period ranging from February 2nd 2022 to

December 31st 2023. WTI returns are classically computed as

St—S8i—1
R, = 4.1
. 4.1)

where S; represents the spot price a given date z. We employed the Augmented Dickey-
Fuller (ADF) test to check the stationarity of the prices and returns time series. According
to the ADF test, if the null hypothesis (HO) fails to be rejected, the time series is said to
have a unit root, highlighting its non-stationarity. On the other hand, if the null hypothesis
is rejected, the data is deemed as stationary. Results of the ADF test are displayed in
Table 4.1. In the case of WTI prices, since the statistic is greater than the critical value,
we fail to reject the null hypothesis at the 5% confidence level. Conversely, we find
evidence against the null hypothesis in the case of log returns (p-value = 0.000), which

suggest the series is stationary.

Target Variable ADF Statistics P-value

S -1.404 0579
R -10.828  0.000

Table 4.1: Results for the Augmented Dickey-Fuller Test for presence of a unit root.

Further, we computed two daily volatility measures, the historical volatility and condi-
tional volatility of oil returns. Using a rolling window of 25 data points, the annualised
historical volatility was computed for each date t as

=252 4.2)

To compute the conditional volatility we employed a GARCH(1,1) model. GARCH,

introduced by Bollerslev (1986), is an extension of the Autoregressive Conditional Het-
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eroskedasticity (ARCH) model. GARCH is often used when dealing with financial data
like prices returns and interest rates since their variance changes through time and depends
on its own past values. The WTI daily returns, annualised historical and conditional
volatility are plotted in Figure 4.1 in Section 4.8. Table 4.2 reports the summary statistics

of the WTI Returns, annualised WTT historical and conditional volatility time series.

Variable No. of observations mean  std min 25% 50% 75%  max
WTI Returns 480 0.000 0.027 -0.121 -0.017 0.002 0.018 0.084
WTT Historical Volatility 480 0403 0.128 0.169 0.330 0385 0446 0.877
WTI Conditional Volatility 480 0411 0.095 0253 0354 0393 0440 0.783

Table 4.2: Summary statistics of the three target variables WTI daily returns, WTI historical and conditional
volatility.

4.4.2 Crude-oil-related news articles

Our corpus consisted of a total of 42172 news articles that included the “crude oil”
keyword in the period in analysis. Similarly to WTI prices, the articles were extracted
from Thomson-Reuters’ Eikon portal. The dataset appeared to be rather evenly distributed
over time with about 75 articles per day, with a lower amount released during weekends
and holidays. Raw news articles were pre-processed by removing unnecessary html
tags and stop words. We omitted the terms “up” and “down” from the NLTK* Python
package’s stop words list as these are often used in crude oil related news articles to
express an increase or decrease of specific quantities or asset values. Each article was

divided in sentences which were then tokenised.

“Please see https://www.nltk.org/.
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4.5 Methodology

In this section we discussed the methodologies applied, namely Sentiment Analysis,
Correlation, Mutual Information, Granger Causality, Latent Diritchlet allocation, Logistic

Regression, Feed-Forward Neural Networks and Scoring Measures.

4.5.1 The Sentiment Analyser

The VADER (Valence-Aware Dictionary for sEntiment Reasoning) sentiment analyser by
Hutto & Gilbert (2014), which is now part of the general-purpose NLTK package® was
the software of choice to obtain a baseline sentiment score. The VADER project starts
with a focus on capturing text sentiment, specifically intensity, in text from microblogs
available on the Web. Sentiment seeding is initiated by manual annotation and consensus
scoring of words/lexical features. Then, VADER deploys a combination of qualitative
and quantitative methods, with rules that capture grammatical- and syntax-conventions
to score input texts. While words are assigned a value between -3 (extremely negative)
and +3 (extremely positive), texts are assigned an overall score normalised between -1
and +1. In our work we have adopted VADER’s [-1,+1] interval-and the meaning of
the values—so as to keep the results comparable to those of the ‘plain” VADER analyser,

which provides a baseline sentiment scoring for our analysis.

4.5.2 Sentiment Scoring

We implemented Loughran et al. (2019)’s four co-occurrences dictionary methodology
and adopted their idea of a stand-alone nouns dictionary. However, for the latter we

created three different venues:

1. the original Loughran et al. (2019) version, called NOUNSI. It comprises of 75

stand-alone words;

2. an extension of the above, called NOUNS2, which includes the terms “war/s,”

» o«

“peace,” “ceasefire” and “negotiation/s/negotiated,” which we considered pertinent

for the geopolitical events that took place in 2022-2023;

SPlease see https://www.nltk.org/.
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3. asmaller dictionary, called NOUNSS3, consisting only of the the seven war-related

keywords presented above.

Example of co-occurrences and stand-alone nouns with expected negative effect on crude oil prices (weight = -1)

Keyword Sentiment Modifier Keyword Sentiment Modifier Stand-alone nouns
Buying Constraint Drilling Exceed Discoveries

Consumption Crash Inventory Grow Overproduction

Demand Poor Output High Oversupply

Economy Reduce Production Soar Surplus

Import Restraint Supply Strong Glut

Example of co-occurrences and stand-alone nouns with expected positive effect on crude oil prices (weight = 1)

Keyword Sentiment Modifier Keyword Sentiment Modifier Stand-alone nouns
Drilling Constraint Buying Exceed Attack

Inventory Crash Consumption Grow Dispute

Output Poor Demand High Outage

Production Reduce Economy Soar Storm

Supply Restraint Import Strong Tension

Table 4.3: Example of keyword/sentiment modifier co-occurrences and nouns with positive and negative
tones

An example of keywords, sentiment modifiers and stand alone nouns included in the
aforementioned dictionaries are reported in Table 4.3. The co-occurrences included in
the negative- and positive-tones dictionaries were assigned a weight of either -1 or +1,
respectively. These values were chosen to reflect market sentiment specific to the oil
markets, which we expected to be normally misinterpreted by a generic finance sentiment
analyser. In a similar manner, we allocated a -1/+1 weight to all dictionary terms based on
the anticipated effect of news article containing such words in relation to crude prices and
volatility. For instance, term “peace” was assigned a -1 while, symmetrically, expressions
like “war” were assigned to +1. All the possible co-occurrences of keywords and
sentiment modifiers were searched within each sentence of all articles. Upon inspection,
we found only one instance of a modifier at distance four from the keyword, hence
reduced the search range to the interval [-3,3]. Similarly, we extracted all the stand-alone
nouns for the three dictionary versions introduced above. Lastly, the compound VADER
scores were obtained using the NLTK Python module. This procedure led to the creation

of five different sentiment measures for each news article:
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1. the sum of all keyword/sentiment modifier co-occurrences weights, denoted as

MVy;

2. the sum of all keyword/sentiment modifier co-occurrences and nouns weights

based on NOUNSI, denoted as TV1;;

3. the sum of all keyword/sentiment modifier co-occurrences and nouns weights

extracted from NOUNS2, denoted as TV2;;

4. the sum of all keyword/sentiment modifier co-occurrences and nouns weights

extracted from NOUNS3, denoted as TV3;;
5. the compound sentiment score obtained using VADER, labelled VADER;.

Next, we follow Gabrovsek et al. (2016) and aggregate sentiment scores for every measure

at each date ¢ as follows

Npos, —Nneg,

Sent, =
e Npos, +Nneg, +Nneu, +3’

where Npos,, Nneg,, and Nneu; correspond to the number of positive, negative and
neutral sentiment news articles at date ¢, respectively. The denominator is adjusted
with the Laplace correction for a three-way classifier. As classical in the literature,
the sentiment scores obtained for articles released during weekends and holidays were
incorporated in the first following trading day. Finally, the four daily sentiment signals
were plotted against the delayed (next-day) WTI returns, historical volatility and GARCH
conditional volatility in Figures 4.2, 4.3 and 4.4 in Section 4.8.

4.5.3 Evaluation metrics

We assessed our results with three different methods, namely Pearson’s correlation,

Mutual Information and Granger Causality.

4.5.3.1 Correlation

Pearson’s correlation measures the strength of the linear correlation between two datasets.
It takes values between -1 and +1, where a value of +1 indicates perfect positive correla-

tion (when a linear equation with a positive coefficient describes the relationship between
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the two sets), whilst a value of -1 implies a perfect negative correlation. Lastly, values

close to zero indicate a lack of correlation between the two variables.

4.5.3.2 Mutual Information

The Mutual Information measure (MI, or simply I) captures the amount of information
about a variable gained by knowing the other variable’s behaviour. To compute it we
need to determine the distribution of each variable, let’s say Pr(A) and Pr(B) and their
joint distribution Pr(A,B). Then the MI between A and B is defined as
Pr(a,b)
I(A;B)= Pr(ab)log—————. 4.3)
c;Ab;B Pr(a)-Pr(b)

The normalised MI denoted NMIC, lies in [0,1] and is often used to assess the connection

between variables.

4.5.3.3 Granger Causality

The Granger’s causality test, introduced by Granger (1969), is used to determine the
existence of “casual links” between variables, i.e., whether a time series X is useful to

forecast another time series Y. Given a generic model

Yl:iajxlf—j+ibjyt—j+gt 4.4)
j=1 j=1

where X;_; and Y;_; represent the two state variables and & is a white noise series.
Causality between X; and Y; exists if a;#0. Under the null hypothesis (HO), a variable
X does not Granger-cause the target variable Y. If evidence against HO is found (p-value
< 0.05) then X is said to ‘Granger cause’ Y, meaning that knowing the past values of X
improve the ability to forecast Y. The p-value measures the degree of significance of this
link. In this research, we analyse whether the sentiment extracted from crude oil-related

news articles can be used to forecast next WTI returns, historical and conditional volatility.

®Normalisation was performed by the respective Scikit-Learn function. https://scikit-learn.
org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
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4.5.4 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is a generative process which, given a corpus, extracts
a set of latent topics by assuming how the documents were generated. This is done by
defining a joint probability distribution over the existing corpus and the unknown topics.
A posterior (conditional) distribution of the topics given the corpus is then computed using
this joint probability distribution. Topics are assumed to be established before the data was
created and are defined as a distribution across a pre-existing set of words. LDA operates
as follows: firstly, a distribution over topics is generated for each document in the corpus;
secondly, terms from the vocabulary are selected based on the chosen topic distribution. As
aresult, a document is depicted as a distribution over topics and each topic is described as a
distribution over words. The topics are allocated to all documents, however, their distribu-

tion differs, e.g., topic 1 may be found in document 1, not found in document 2 and so on.

In the literature, LDA has been applied to inference topics of financial news which
are then used as inputs for statistical and machine learning approaches to forecast the
change between days of a specific financial instrument. For instance, Atkins et al.
(2018) achieved a 56% Accuracy using topic distributions to forecast U.S stock volatility
directional changes via a Naive Bayes classifier. On the other hand, they showed that
their model performed worse than ’a random prediction” when the target variable was
the stock closing price. Similarly, Deveikyte et al. (2022) applied a comparable pipeline
extracting a sentiment signal financial news and tweet coupled with topics modelled
via LDA. Their machine learning architecture was used to forecast directional changes
in FTSE100 volatility with very good prediction Accuracy. We describe our prediction

architecture in the following sections.

4.5.5 Logistic Regression

Logistic regression is a model that allows the posterior probabilities to be modelled via
a linear combination of the covariates. Differently from a standard linear regression, it

maps the inputs to probabilities via a cost function that allows the outputs to be in the
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range [0,1]. This cost function is called Sigmoid (or Logistic) function and is defined as

1
C l4ez

o(z) 4.5)

By providing an easy to assess decision boundary, logistic regression is a methodology
often used for binary classification purposes. Classically, the results are matched to either

class if the posterior probability is below or above the threshold value 0.5.

4.5.6 Feed-Forward Neural Networks

On the other hand, in the Feed-Forward Neural Networks (FFNN) the inputs flow in a uni-
lateral fashion from the input layer to the output layer via one or more hidden layers. The
learning process comes from updating the weights at each node by a fraction (determined
by the learning rate) of the gradient of the loss function in order to minimise the difference
between the outputs and the real values; this procedure is called gradient descent. Similarly
to the logistic regression, when the output node activation function is the Sigmoid, Equa-
tion (4.5), the results are in the range [0,1], allowing for binary classification. The structure
of the network consisted of the input layer of size equal to the number of input features,
2 hidden layers and 1 output layer of size 1. We set a 0.3 dropout rate to avoid overfitting
and achieve robust results. The hyperparameters for the neural network were obtained by
cross-validation through the GridSearchCV() function included in Scikit-Learn package.

Finally, the weights and biases were optimised via the Adam optimiser from PyTorch.

4.5.7 Scoring Measures
To assess the forecasting ability of our prediction models, we computed Accuracy,
Precision, Recall, F'1 Score and F2 Score. Table 4.4 defines the variable names used for

the computation of such measures.

Variable Meaning Variable Meaning

TP True Positives  FP False Positives
TN True Negatives FN False Negatives

Table 4.4: Definition of the Variables used in Equations (4.6), (4.7), (4.8) and (4.9)

Accuracy represents the number of correctly predicted labels over the total number of
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predictions. It is computed as

Accuracy = IP+IN 4.6)
Y TP+TN+FPLFN '

Precision describes the ratio of correctly predicted positive labels over the total number

of predicted positives
TP

—_— 4.7
TP+FP

Precision=

Recall is the ratio between the correctly predicted positives over the total number of real
positives
TP

Recall= — n
T TPIEN) (4.8)

Lastly, the F'1 and F2 measures are the harmonic means of Precision and Recall. The F'1
score provides an equal balance between the two and is a more appropriate measure than
Accuracy if there is an unevenness between the amount of data points attributed to each
class. On the other hand, the F2 measure gives more importance to Recall over Precision.
They are derived from the generic Fj formula as

Fg= 21+—BZ 4.9)

1
Recall + Precision

by setting B =1 or B =2 accordingly. When comparing the forecast results, we focused
on a mix of Accuracy and F2 measure to highlight the amount of correctly predicted

labels and at the same time account for Precision and Recall.
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4.6 Results

In Section 4.6.1 we analysed the evaluation metrics applied to each of the computed
sentiment measures wrt. next-day WTI returns, historical and conditional volatility. In
Section 4.6.2 we discussed the application of LDA and presented the FFNN and Logistic
Regression forecast performance metrics results. Lastly, in Section 4.6.3 we studied which

noun included in the NOUNS3 dictionary affects the performance metrics the most.

4.6.1 Evaluation metrics analysis

Variable Meaning

St+1 WTI price at day #+1

R WTI returns at day 7+1

MV; Total Modifiers Value at day ¢

TV1, Total Value at day ¢ of the sum of the keyword/sentiment modifiers

co-occurrences and nouns weights following the NOUNSI dictionary
TV2, Total Value at day ¢ of the sum of the keyword/sentiment modifiers

co-occurrences and nouns weights following the NOUNS2 dictionary
TV3, Total Value at day ¢ of the sum of the keyword/sentiment modifiers

co-occurrences and nouns weights following the NOUNS3 dictionary
VADER,; VADER score aggregated at day ¢

Table 4.5: Definitions of the Variable Names used in Table 4.6.

We assessed the importance of adjusting the weights to specific terms and word
patterns when computing sentiment scores of crude oil-related news articles via the
Normalised Mutual Information (NMI) test, the Pearson correlation and the Granger
causality of the five sentiment scoring systems against lagged WTT oil returns Ry |,
historical and conditional volatility of returns, HistVol;,; and CondVol,, | respectively.
Results are summarised in Table 4.6 where, as detailed in Table 4.5 in Section 4.5.2, MV,
is the Modifiers Value aggregated at day ¢ calculated by searching for co-occurrences
based on four tone modifier dictionaries, TV1;, TV2; and TV3; represent the scores
obtained by adding to MV, the weights of the stand-alone nouns found in the news articles

based on the three variants of the Nouns dictionaries, namely NOUNS1, NOUNS2 and
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Sentiment Variable Corr Score p-value NMI Score  G.C. F-test p-value

MV, Riy1 0.050 0.272 0.954 1.022 0313
MV, HistVol, 1 -0.273  0.000 0.954 4.684  0.031
MV, CondVol,; -0.286  0.000 0.954 7.120  0.008
TV, R/ 0.012  0.800 0.967 0.020  0.887
TV, HistVol, 4 -0235  0.000 0.968 0.456  0.500
TVI1, CondVol, 1 -0.206  0.000 0.968 1.751  0.186
TV2, Ry 0.020 0.670 0.968 0.097  0.756
TV2, HistVol, 41 -0.214  0.000 0.968 0342 0559
TV2, CondVol, -0.185  0.000 0.968 0999 0318
TV3, Riyi 0.051  0.263 0.962 1.039  0.309
TV3, HistVol, 44 -0236  0.000 0.962 3.672  0.056
TV3; CondVol, 1 -0.240  0.000 0.962 4651  0.032
VADER; R4 0.023 0.614 0.977 0.160  0.689
VADER; HistVol;; -0.023  0.621 0.977 0.447 0504
VADER; CondVol, -0.065  0.155 0.977 7.042  0.008

Table 4.6: Evaluation metrics of the relationship between the five daily sentiment scores against next-day
WTI returns, WTT historical volatility and WTI conditional volatility for the period 02-Feb-2022 until
31-Dec-2023. In bold are the p-values that show significance at the 10% confidence level.

NOUNS3. Lastly, VADER; is the VADER score calculated on the whole corpus and

aggregated at each date 7.

The NMI scores are reasonably high for all methods. On one hand, the correlation
between the WTI returns and all five sentiment measures is not significant. On the other
hand, the results display evidence of negative correlation with historical and conditional
volatility, with values ranging between -0.286 and -0.185, in the case of the MV,, TV1,,
TV2; and TV3, sentiment measures. This implies that an increase in daily aggregate
sentiment score translates into a mild reduction in the next-day oil volatility. Based on the
way we computed our four sentiment measures, an increase in either of them will be due
to an increase (or decrease) of co-occurrences or nous with positive (negative) weight. For
instance, a higher frequency of the co-occurrence “supply/reduction,” which was assigned

a weight of 1, would lead to the increase of sentiment measures and is expected to reflect
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in higher oil prices. Consequently, based on the correlation results, a greater sentiment

score would translate into a mild decrease in the historical and conditional volatility.

Note that before the early 2000s, higher commodity prices were most often occurring
with high price volatility. This feature then disappeared, with large inventories (possibly
built by precautionary demand) reducing the relationship between high prices and high
volatility. Furthermore, in the case of crude oil, there is no real concern on supply as the
United States has consistently increased his production of shale oil since 2015 (and has be-
come the first world producer as of 2018). It can be argued that oil markets have shown dif-
ferent features since the early 2000s with no more “normal behaviour” being exhibited, and
the massive arrival of shale oil produced in the US changing the usual geopolitical picture.
Similarly, “peak oil”, defined as the moment in time when 50% of world-wide oil reserves
would have been depleted, was discussed extensively in the literature in the early 2000s
since practitioners and academics have tried to predict the reaching period of this threshold.
In the recent years, and especially after the 2015 Paris Agreement, the energy markets
changed their centre of attention to the reduction of emissions by scaling down their
consumption of fossil fuels, aiming to limit the temperature growth below 1.5°C above pre-
industrial levels. Thus, the focus shifted from “peak oil” to “peak demand”, or the point in
time when the crude oil demand will start reducing. Historically, crude oil displayed high
volatility levels for high spot price. This feature is sometimes called “Inverse-Leverage Ef-
fect” as the term “leverage effect” describes the property of high volatility when the stock
market collapses. Interestingly, the VADER; measure at all significance levels, suggests

a lack of connection between the sentiment it provides and WTI returns and volatility.

The Granger causality results display some interesting features. With p-values below
0.05, there is evidence of causality between MV, and both next-day historical and
conditional volatility; and between TV3; and VADER; and conditional volatility. Lastly,
TV3; is shown to Granger cause historical volatility at the 10% confidence level (p-value
=(.056). No sentiment measure displays any predictive power towards next-day WTI
returns, coupled with the fact that TV1; and TV2; do not show causality with respect
to either next-day historical or conditional volatility. As a reminder, TV1; is computed

incorporating the weights of keyword/sentiment modifier co-occurrences (aggregated
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into MV;) and the weights of stand-alone nouns introduced by Loughran et al. (2019).
We then extended the stand-alone nouns dictionary with the addition of war-related terms
and computed TV2,. Whilst the original stand-alone nouns dictionary is comprised of
words related to “attack,” “outage” and “discovery,” it can be argued that this outcome
originates from noise created by a subset of these terms. However, we found that MV,

and TV3; improve the forecasting power of the models.

4.6.2 Topic Modelling and Forecasting

We then focused on the discovery of hidden topics from our oil-related news articles
by implementing the Latent Dirichlet allocation (LDA). We evaluated whether topics
augmented with our sentiment measures extracted from crude oil-related news articles
can improve the ability to forecast WTI returns, WTT historical and conditional volatility

directional changes between date 7 and 7+ 1. We defined a directional change as

0 if X, —X;11<0
Vi1 = (4.10)

where X; is the value of the target variable at date . We applied LDA to our corpus
comprising 42172 news articles. Since the number of topics K is a hyperparameter
specified by the user, we opted to tune it by cross-validation comparing the forecasting
Accuracy results. Thus, we set K=1[4,5,6,8] and constructed four respective LDA models.
Each model provided us with a feature vector of length K; of topic distributions for all

news articles. For all unique dates, we aggregated the topic distributions as follows
1 n
VVi,t:ZZWi,j,t (4.11)
i=1

where W;; represents the aggregated distribution of the i-th topic at date 7, w; j, is the
distribution of the i-th topic on the j-th article at date ¢, lastly, n corresponds to the number
of news articles released on date z. Following the results presented in Section 4.5.3.3, we
concatenated every aggregated feature vector W;; with one of the sentiment measures

that displayed Granger causality towards the target variables, namely MV;, TV3; and
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VADER;. Thus, for each of the four LDA models, we constructed three vectors to be used
as inputs for the predictive models, namely Logistic Regression (LR) and Feed-Forward

Neural Network.

For each model we outline the number of topics, the forecasted target variable,
Accuracy, Precision, Recall, F'1 and F2 measures. The highest Accuracy scores are
outlined in bold. Tables 4.10, 4.11 and 4.12 in Section 4.8 report the forecast metrics
of the neural networks models. When predicting next-day WTI conditional volatility
directional changes, the MV; sentiment measure coupled with the 4 topics LDA model
is able to achieve an Accuracy of 65% with an F2 measure equal to 0, which displays
limitations of this specific model prediction. On the other hand the 5 topics LDA model
perform similarly with an Accuracy of 64% and an F2 measure of 0.365. Comparably,
for the TV3; measure, despite the 4 topics model producing a higher Accuracy, it is
preferable to pick the 5 topics LDA model which returns an Accuracy of 63% with an
F2 measure equal to 0.37. Lastly, the sentiment signal extracted via VADER has higher
predictability power when augmented with a 4 topics LDA model to forecast conditional

volatility, returning an Accuracy of 64% and an F'2 measure of 0.179.

Results for the logistic regressions are reported in Tables 4.13, 4.14 and 4.15 in
Section 4.8. The MV; measure is again able to forecast next-day WTI conditional
volatility directional changes with highest Accuracy (65%) if the 6 topics model is
used. However, the 4 topics model outputs an Accuracy of 59% with an F'2 measure of
0.479. Similarly, the TV3; measure prediction Accuracy is the highest when forecasting
conditional volatility with the 6 topics LDA model. However, given the very low F2
measure, it is preferable to pick the 4 topics model which returns a 59% Accuracy and
an F2 score of 0.455. Lastly, if VADER is deployed with the 8 topics model it is possible
to predict conditional volatility changes with an Accuracy of 57% and F2=0.13 whilst
historical volatility can be forecast with the same Accuracy and an F2=0.337. These
outcomes are in line with the Granger Causality results presented in 4.6, namely that
the three measures have higher ability to forecast the next-day directional changes of
WTI conditional volatility over the WTI returns’ and WTT historical volatility’s. The only

contradicting result is showed by logistic regression using VADER’s sentiment measure
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which displays a similar Accuracy when forecasting the two volatilities exhibiting,
however, a higher F2 measure in the case of historical volatility.

In summary, despite achieving a similar F'2 score, the neural network and the logistic
regression perform best if the MV, and our TV3; measures are used over the off-the-shelf
VADER sentiment signal. This feature is more visible in the logistic regression where
VADER’s Accuracy is similar to the other sentiment signals but the F2 is over 10 basis
point lower. The FFNN returns a higher Accuracy compared to the logistic regression
models but lower F2. This suggests there is a need of adjusting for crude oil-related co-
occurrences and, given the recent adverse geopolitical events, for war-related nouns when
computing sentiment analysis of news articles focused on crude oil. When compared to the

literature, our results are in line with both Deveikyte et al. (2022) and Atkins et al. (2018).

4.6.3 Leave-One-Out Estimation

As explained in Section 4.5.2, the TV3; measure was obtained as the sum of the weights
of all keywords/sentiment modifier co-occurrences and stand-alone nouns found in each
news articles, aggregated per day. As a reminder, the NOUNS3 dictionary included the
words “war/s,” “ceasefire,” “negotiation/s/negotiated,” and “peace.” In this section we
analyse which stand-alone nouns, included in NOUNS3 and used in the computations
of the TV3; measure, affect the forecast Accuracy and F2-measure the most. Namely,
we aim to understand whether news regarding war, ceasefire, negotiation or peace would
lead to lower-accuracy forecast.

To do so, we computed the sentiment measures TV3; in a “leave-one-out” experiment
(see Bishop (2006) for its applications in Machine Learning) excluding one stand-alone
noun (and its plural/past tense forms, if present) at a time. We named the new measures
TV3WAR = Ty3CEASEFIRE —y3NEGOTIATION =544 TV3PEACE,, where the superscript
indicates which noun was removed. The excluded noun that generates the highest
difference in Accuracy and F2-measure is considered to have the greatest importance.

Following the methodology presented in Section 4.5, we computed the Pearson
Correlation, NMI and Granger Causality between the four measures and next-day WTI

returns, historical and conditional volatility, respectively. Results, displayed in Table 4.7,

are broadly in line with the findings presented in Table 4.6 in Section 4.6. The correlation
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between next-day returns and the four “leave-one-out” measures is always close to zero,
thus, not significant. However, the correlation between the four sentiment measures and
the two volatility quantities is always negative with values ranging between -0.21 and
-0.23, and growing to -0.31 and -0.33 for TV3WAR, In other words, in a surprising finding,
excluding the noun “war” increases correlation with the two volatility measures. As
discussed in Section 4.6.1, an increase in daily aggregate sentiment score would translate
into a mild reduction in next-day oil volatility. Further, the NMI is high for all measures,
with differences only at the third decimal place. Lastly, none of the “leave-one-out” sen-
timent measures Granger-cause next-day returns, in line with previous findings. We find
evidence against the null hypothesis (1.e. no Granger causality) for conditional volatility at
the 5% confidence level in all cases. Furthermore, there is evidence of Granger causality
between next-day historical volatility and TV3WAR, TV3CEASEFIRE q5q TY3PEACE
Interestingly, the TV3WAR, measure, which was computed by excluding the nouns
“war/s”, returns the lowest p-values for both next-day historical and conditional volatility.
This finding suggests a stronger predictability power. We will discuss this interesting

result in detail later in this section.

Sentiment Variable Corr. Score p-value NMI Score G. C. F-test p-value
TV3VAR Riy1 0.059  0.197 0.962 1416 0235
TV3VAR HistVol, | 0314 0.000 0.962 6.847  0.009
TV3VAR CondVol, | -0.329  0.000 0.962 6.930  0.009
TV3CEASEFRE R 0.050  0.277 0.963 0964  0.327
TV3CEASEFIRE  Hisevol, | 0228 0.000 0.963 2913 0.088
TV3CEASEFIRE  CondVol, 4 0231 0.000 0.963 4.188  0.041
TV3NEGOTIATION R, | 0050 0271 0.961 0978 0323
TV3NEGOTIATION  HistVol, , | 0231 0.000 0.961 2557 0.110
TV3NEGOTIATION  CondVol, 4 4 0232 0.000 0.961 4162 0.042
TV3PEACE R 0.052 0253 0.959 1.077  0.300
TV3PEACE HistVol,; | 0210 0.000 0.959 2764 0.097
TV3PEACE CondVol, ; | 0212 0.000 0.959 3.870  0.050

Table 4.7: Evaluation metrics of the relationship between the four daily “leave-one-out” sentiment scores
against next-day WTI returns, historical volatility, and conditional volatility for the period 02-Feb-2022
until 31-Dec-2023. In bold are the p-values that show significance at the 5% confidence level. Results
in italics are significant within the 10% confidence level.
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Then, we trained the Neural Network four times, maintaining the structure presented in
Section 4.5.6. In each training phase, the topic models extracted via LDA, as presented in
Sections 4.5.4 and 4.6.2, were augmented with one of the four “leave-one-out” sentiment
measures and fed to the Neural Network to predict next-day WTI returns, historical and
conditional volatility, respectively. The Neural Network performance metrics results for
each of the four“leave-one-out” measure are displayed in Tables 4.16, 4.17, 4.18 and 4.19.

The importance of the excluded noun is revealed by a decrease in Accuracy and
F2-metrics; the higher the reduction, the greater the impact on the forecast accuracy.
Hence, we computed the difference between the performance metrics of the Neural
Network predictions (see Section 4.6.2) and the performance metrics of each of the four
newly-trained FFNN frameworks. For each topic model and for each target variable,
we report in Table 4.8 the sentiment measures that produced the greatest Accuracy and
F2-metric differences. The overall highest differences per target variable among the four

different topic models are in boldface.

Highest Accuracy Difference

Variable

4 Topics Model

5 Topics Model

6 Topics Model

8 Topics Model

Return
Historical Volatility

TV3'PEACE
TVSgVEGOTIATION

13.68%
6.32%

TV3/AR
TV3CEASEFIRE
1

8.43%
8.41%

TV3ICEASEFIRE 6.32%

TV3[(’EASEFIRE 1.05%

TVS{VEGOI'IATION 8.42%

TVS;VEGOTIATION 10.53%

Conditional Volatility TV3/¥AR -1.05% TV3)AR 421% TV3PEACE 842% TV3IR -4.20%
Highest F2 Difference
Variable 4 Topics Model 5 Topics Model 6 Topics Model 8 Topics Model
Return TV3PEACE 0.1 TV3/VAR 0.1 TV3CEASEFIRE (29 TV3VAR 0.05
Historical Volatility ~ TV3}/AR -0.05 TV3CEASEFIRE 0.33 TV3PFACE 0.22 TV3NEGOTIATION 0.15
Conditional Volatility TV3/FACE 0.26 TV3NECOTIATION 28 TV3PAR 0.15 TV3FEACE 023

Table 4.8: Highest Accuracy and F2-measure differences between the FFNN model trained on TV3,
and the same trained with a “leave-one-out” sentiment measures. For each target variable, we report the
sentiment measure name and the difference value. In bold are the overall highest differences per target
variable among the four different topic models.

The exclusion of the noun “peace” reflects in the greatest reduction of forecast accu-
racy of both next-day returns and conditional volatility by 13.7% and 8.42%, respectively.
Similarly, withholding the terms “negotiation/s/negotiated” leads to a 10.53% lower
Accuracy of historical volatility forecast. The omission of “‘ceasefire” translates in a
reduction of the F2-measure for the next-day returns and historical volatility forecasts

by 0.33 and 0.29, respectively. Lastly, “negotiation/s/negotiated” appears to affect the

F2-measures of the conditional volatility prediction by 0.28.
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In a perhaps surprising finding, omitting the terms “war/s” does not lead to the
greatest reduction of any target variable’s forecast performance metrics. To understand
this behaviour, we displayed in Table 4.9 the number of occurrences of each noun in
the corpus; “war/s” has, by far, the highest frequency, appearing in 3893 occasions, i.e.,
26 times more than “ceasefire”, 4 time more often than “negotiation/s/negotiated”” and

almost 9 times more than “peace.”

“War/s” “Ceasefire” “negotiation/s/negotiated” “Peace” Total

3893 147 905 445 5390

Table 4.9: Number of occurrences of selected stand-alone nouns in the news articles corpus.

These frequencies are understandable given that the period we examined starts on
February 2nd 2022, a mere 22 days before the Russian army crossed Ukrainian borders.
Moreover, our news articles corpus, which ends on December 31st 2023, includes the
first three months of the Gaza-Israel conflict, which began on October 7th 2023. Thus,
war has been raging during 97% of the time interval considered, making its presence
anew ‘standard’ geopolitical state of affairs. As a consequence, after an initial period,
news regarding the ongoing conflicts are not considered a novelty anymore. This should
explain why the omission of the terms “war/s” from the sentiment measure computation
does not affect the forecast accuracy as much as the omission of the other nouns present
in the dictionary. As shown earlier, we find evidence of a stronger Granger causality
between the TV3tWAR measure and both next-day historical and conditional volatility,
which corroborates our interpretation. Moreover, omitting the terms “war/s” leads to a
higher correlation between the sentiment measure and the two volatility time series.

Another observation is that the presence of “peace”, “negotiation/s/negotiated”” and
“ceasefire” in the news has a higher effect on the precision of the forecasts. Contrarily

to “war”’, news about peace treaties, negotiations and ceasefire are unanticipated, leading

to a stronger variation of oil prices and impacting the forecast accuracy of our framework.
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4.7 Conclusions

The technical core of our analysis has been the experimental exploration of four different
sentiment measures to forecast next-day directional changes for WTI returns, histori-
cal volatility and conditional volatility, against a baseline provided by the off-the-shelf
sentiment analyser. Each measure was given as a dictionary of crude-oil related keyword-
s/sentiment modifier co-occurrences and stand-alone nouns; to each pair and to each noun
we assigned a +1/-1 weight to model the expected effect (on next-day WTTI prices) of
news containing such words. This simple, human-centred methodology allowed us to ac-
count for properties of the crude oil market that, counter-intuitively for a general-purpose
sentiment analyser, reflect on prices changes. We found that our sentiment measures MV,
which is computed considering only the co-occurrences weights, and TV3,, which is
computed based on the co-occurrences and the war-related nouns dictionary (NOUNS3),
reliably ‘Granger-cause’ historical and conditional volatility. In the same period, the base-
line VADER sentiment analyser only found a Granger cause for conditional volatility. Fur-
thermore, the best-performing MV; model achieved an Accuracy =64% and F2=0.36;
the highest test results for the TV3; model are Accuracy =59% and F2=0.479, whilst
the VADER model produces Accuracy =57% and F'2=0.33 when forecasting the target
variables using either an ad-hoc neural network or logistic regression. Further, we show
that the forecast Accuracy and F2 measure are greatly affected by the omission of the
terms “‘peace”, “‘negotiation/s/negotiated” and “‘ceasefire”, since their presence in news
articles brings novel information that reflect in oil prices changes. Conversely, we find that
the omission of the nouns “war/s” increases correlation and produces stronger Granger
causality between the sentiment measure and next-day historical and conditional volatility.
This feature is a result of what can be considered the new “‘standard” geopolitical state

of affairs. The present results are currently under consideration by Information Sciences.
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4.8 Figures and Tables
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Figure 4.1: WTI daily returns in USD, annualised daily historical and conditional volatility of WTI returns
for the period from 02-Feb-2022 to 31-Dec-2023.
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Figure 4.2: WTI daily returns in USD (dashed) plotted against the five sentiment measures (solid)

for the period from 02-Feb-2022 to 31-Dec-2023. The sentiment measures are: (from top to bottom)

MV, TV1,TV2,TV3 and VADER.
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Figure 4.3: Annualised daily historical volatility of WTT returns (dashed) plotted against the five sentiment
measures (solid) for the period from 02-Feb-2022 to 31-Dec-2023. The sentiment measures are: (from

top to bottom) MV, TV1,TV2,TV3 and VADER.
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Figure 4.4: Annualised daily conditional volatility of WTI returns (dashed) plotted against the five
sentiment measures (solid) for the period from 02-Feb-2022 to 31-Dec-2023. The sentiment measures
are: (from top to bottom) MV, TV1,TV2,TV3 and VADER
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FENN - MV,
No. of topics Variable Accuracy Precision Recall F1 F2
Returns 43.15% 0378 0395 0432 0392
4 Historical Volatility 53.68% 0381 0471 0.537 0.449
Conditional Volatility ~ 65.26% 0.000 0.000 0.653 0.000
Returns 46.31% 0467 0438 0463 0.443
5 Historical Volatility 48.42% 0452 0422 0484 0428
Conditional Volatility ~ 64.21% 0.219 0438 0.642 0.365
Returns 49.47% 0400 0462 0495 0.448
6 Historical Volatility 48.42% 0476 0426 0484 0435
Conditional Volatility ~ 61.05% 0.156 0333 0.611 0272
Returns 47.36% 0511 0451 0474 0.462
8 Historical Volatility 43.15% 0.500 0.389 0432 0407

Conditional Volatility — 58.94% 0.125 0.267 0.589 0.217

Table 4.10: Performance metrics of the Feed Forward Neural Network forecast. In bold are the highest
Accuracy scores for each model based on the number of topics extracted via LDA and augmented with
the MV, sentiment measure.
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FFNN - TV3,
No. of topics Variable Accuracy Precision Recall Fl F2
Returns 46.31% 0.289 0406 0463 0376
4 Historical Volatility 51.57% 0.571 0462 0516 0480
Conditional Volatility — 66.31% 0.031 0500 0.663 0.125
Returns 50.52% 0.511 0479 0505 0.485
5 Historical Volatility 54.73% 0476 0488 0.547 0485
Conditional Volatility — 63.15% 0.250 0421 0.632 0370
Returns 44.21% 0444 0417 0442 0422
6 Historical Volatility 49.47% 0452 0432 0495 0436
Conditional Volatility — 57.89% 0.031 0.100 0579 0.069
Returns 54.73% 0.556 0521 0547 0527
8 Historical Volatility 43.15% 0381 0364 0432 0.367

Conditional Volatility = 57.89% 0.156 0.278 0.579 0.240

Table 4.11: Performance metrics of the Feed Forward Neural Network forecast. In bold are the highest
Accuracy scores for each model based on the number of topics extracted via LDA and augmented with
the TV3, sentiment measure.

FFENN - VADER;,
No. of topics Variable Accuracy Precision Recall Fl F2
Returns 47.36% 0.556 0455 0474 0472
4 Historical Volatility 49.47% 0476 0435 0495 0.442
Conditional Volatility =~ 64.21% 0.063 0333 0.642 0.179
Returns 45.26% 0489 0431 0453 0442
4 Historical Volatility 52.63% 0524 0468 0526 0478
Conditional Volatility ~ 53.68% 0.063 0.125 0.537 0.104
Returns 38.94% 0422 0373 0389 0.382
6 Historical Volatility 51.57% 0476 0455 0.516 0.459
Conditional Volatility ~ 52.63% 0219 0259 0.526 0.250
Returns 50.52% 0356 0471 0.505 0.442
8 Historical Volatility 43.15% 0333 0350 0432 0.347

Conditional Volatility ~ 58.94% 0250 0.348 0.589 0.323

Table 4.12: Performance metrics of the Feed Forward Neural Network forecast. In bold are the highest
Accuracy scores for each model based on the number of topics extracted via LDA and augmented with
the VADER sentiment measure.
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LOGISTIC REGRESSION - MV,

No. of topics Variable Accuracy Precision Recall F1 F2
Returns 50.53% 0474 0400 0434 0413
4 Historical Volatility 56.84% 0533 0.190 0.281 0.219
Conditional Volatility  58.95% 0410 0500 0451 0479
Returns 53.68% 0.510 0.556 0532 0.546
5 Historical Volatility 50.53% 0463 0.738 0.569 0.660
Conditional Volatility — 47.37% 0327 0531 0405 0472
Returns 53.68% 0.507 0.822 0.627 0.731
6 Historical Volatility 50.53% 0460 0.690 0.552 0.628
Conditional Volatility — 65.26% 0429 0.094 0.154 0.111
Returns 53.68% 0515 0378 0436 0.399
8 Historical Volatility 53.68% 0478 0524 0500 0514

Conditional Volatility — 48.42% 0.356  0.656 0.462 0.561

Table 4.13: Performance metrics of the Logistic regression forecast. In bold are the highest Accuracy
scores for each model based on the number of topics extracted via LDA and augmented with the MV,
sentiment measure.

LOGISTIC REGRESSION - TV3,

No. of topics Variable Accuracy Precision Recall Fl F2
Returns 51.58% 0.486 0400 0439 0415
4 Historical Volatility 56.84% 0545 0.143 0226 0.168
Conditional Volatility — 58.95% 0405 0469 0435 0455
Returns 52.63% 0500 0.511 0.505 0.509
5 Historical Volatility 53.68% 0485 0.762 0.593 0.684
Conditional Volatility — 49.47% 0346 0.563 0429 0.500
Returns 51.58% 0493 0.800 0.610 0.711
6 Historical Volatility 51.58% 0469 0.714 0566 0.647
Conditional Volatility — 64.21% 0.250 0.031 0.056 0.038
Returns 49.47% 0457 0356 0400 0372
8 Historical Volatility 55.79% 0.500 0.548 0523 0537

Conditional Volatility ~ 49.47% 0.367 0.688 0478 0.585

Table 4.14: Performance metrics of the Logistic regression forecast. In bold are the highest Accuracy
scores for each model based on the number of topics extracted via LDA and augmented with the TV3,
sentiment measure.
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LOGISTIC REGRESSION - VADER,

No. of topics Variable Accuracy Precision Recall Fl F2
Returns 49.47% 0478 0.711 0.571 0.648
4 Historical Volatility 54.74% 0429 0.071 0.122 0.086
Conditional Volatility — 42.11% 0338 0.750 0466 0.603
Returns 47.37% 0468 0.822 0.597 0.714
5 Historical Volatility 52.63% 0.467 0500 0483 0.493
Conditional Volatility ~ 40.00% 0.338 0.813 0477 0.634
Returns 47.37% 0474 1.000 0.643 0.818
6 Historical Volatility 51.58% 0450 0429 0439 0433
Conditional Volatility — 56.84% 0.235 0.125 0.163 0.138
Returns 47.37% 0462 0.667 0545 0.612
8 Historical Volatility 56.84% 0.520 0310 0388 0.337

Conditional Volatility ~ 40.00% 0338 0.813 0477 0.634

Table 4.15: Performance metrics of the Logistic regression forecast. In bold are the highest Accuracy
scores for each model based on the number of topics extracted via LDA and augmented with the VADER
sentiment measure.

FFNN - TV3/AR
No. of topics Variable Accuracy Precision Recall Fl F2
Returns 37.89% 0400 0360 0379 0367
4 Historical Volatility 60.00% 0452 0559 0.600 0.534
Conditional Volatility — 67.37% 0.031 1.000 0.674 0.139
Returns 42.11% 0.378 0386 0421 0385
5 Historical Volatility 51.58% 0524 0458 0.516 0470
Conditional Volatility ~ 58.95% 0.156 0294 0589 0.250
Returns 42.11% 0400 0391 0421 0393
6 Historical Volatility 54.74% 0524 0489 0.547 0495
Conditional Volatility ~ 55.79% 0.156 0250 0.558 0.223
Returns 51.58% 0444 0488 0516 0478
8 Historical Volatility 43.16% 0476 0385 0432 0.400

Conditional Volatility — 62.11% 0250 0400 0.621 0.357

Table 4.16: Performance metrics of the “leave one out” Neural Network forecast obtained using topics
extracted via LDA augmented with the TV3ZWAR sentiment measure. In bold are the highest Accuracy
scores for each model based on the number of topics extracted via LDA
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FFNN - Tv3tCEASEF1RE

No. of topics Variable Accuracy Precision Recall Fl F2
Returns 46.32% 0.511 0442 0463 0455
4 Historical Volatility 57.89% 0357 0536 0579 0.487
Conditional Volatility — 68.42% 0.094 0.750 0.684 0.313
Returns 49.47% 0467 0467 0495 0467
5 Historical Volatility 45.26% 0.310 0361 0453 0.349
Conditional Volatility ~ 63.16% 0.250 0421 0.632 0370
Returns 45.26% 0422 0422 0453 0422
6 Historical Volatility 50.53% 0429 0439 0505 0437
Conditional Volatility ~ 61.05% 0.188 0353 0.611 0.300
Returns 52.63% 0422 0500 0526 0482
8 Historical Volatility 45.26% 0452 0396 0453 0.406

Conditional Volatility ~ 65.26% 0344 0478 0.653 0444

Table 4.17: Performance metrics of the “leave one out”” Neural Network forecast obtained using topics
extracted via LDA augmented with the TV3CEASEFIRE sentiment measure. In bold are the highest
Accuracy scores for each model based on the number of topics extracted via LDA

NEGOTIATION
FFNN - TV3;

No. of topics Variable Accuracy Precision Recall Fl F2
Returns 43.16% 0489 0415 0432 0428
4 Historical Volatility 50.53% 0476 0444 0505 0450
Conditional Volatility — 68.42% 0.156 0.625 0.684 0.391
Returns 45.26% 0444 0426 0453 0429
5 Historical Volatility 49.47% 0500 0438 0495 0.449
Conditional Volatility ~ 58.95% 0.125 0.267 0589 0217
Returns 51.58% 0.578 0491 0516 0.506
6 Historical Volatility 54.74% 0595 0490 0.547 0.508
Conditional Volatility  61.05% 0219 0368 0611 0324
Returns 41.05% 0378 0378 0411 0378
8 Historical Volatility 45.26% 0405 0386 0453 0.390

Conditional Volatility — 65.26% 0.250 0471 0.653 0.400

Table 4.18: Performance metrics of the “leave one out” Neural Network forecast obtained using topics
extracted via LDA augmented with the TV3NECOTIATION sentiment measure. In bold are the highest
Accuracy scores for each model based on the number of topics extracted via LDA
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FFNN - TV3[£ACE

No. of topics Variable Accuracy Precision Recall F1 F2
Returns 37.89% 0289 0325 0379 0317
4 Historical Volatility 52.63% 0.548 0469 0.526 0.483
Conditional Volatility — 65.26 % 0.063 0400 0.653 0.192
Returns 49.47% 0511 0469 0495 0477
5 Historical Volatility 47.37% 0571 0429 0474 0451
Conditional Volatility ~ 61.05% 0.125 0308 0.611 0238
Returns 49.47% 0.533 0471 0495 0.482
6 Historical Volatility 50.53% 0405 0436 0.505 0429
Conditional Volatility  55.79% 0.156 0.250 0.558 0.223
Returns 48.42% 0467 0457 0484 0.459
8 Historical Volatility 47.37% 0.524 0423 0474 0.440

Conditional Volatility — 58.95% 0313 0370 0.589 0.357

Table 4.19: Performance metrics of the “leave one out” Neural Network forecast obtained using topics
extracted via LDA augmented with the TV3/ AECE sentiment measure. In bold are the highest Accuracy
scores for each model based on the number of topics extracted via LDA
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