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ARTICLE INFO ABSTRACT

Keywords: From auditory perception to general cognition, the ability to play a musical instrument has been associated with

EXPerflse skills both related and unrelated to music. However, it is unclear if these effects are bound to the specific

];\eammg characteristics of musical instrument training, as little attention has been paid to other populations such as audio
ttention

engineers and designers whose auditory expertise may match or surpass that of musicians in specific auditory
tasks or more naturalistic acoustic scenarios. We explored this possibility by comparing students of audio en-
gineering (n = 20) to matched conservatory-trained instrumentalists (n = 24) and to naive controls (n = 20) on
measures of auditory discrimination, auditory scene analysis, and speech in noise perception. We found that
audio engineers and performing musicians had generally lower psychophysical thresholds than controls, with
pitch perception showing the largest effect size. Compared to controls, audio engineers could better memorise
and recall auditory scenes composed of non-musical sounds, whereas instrumental musicians performed best in a
sustained selective attention task with two competing streams of tones. Finally, in a diotic speech-in-babble task,
musicians showed lower signal-to-noise-ratio thresholds than both controls and engineers; however, a follow-up
online study did not replicate this musician advantage. We also observed differences in personality that might
account for group-based self-selection biases. Overall, we showed that investigating a wider range of forms of
auditory expertise can help us corroborate (or challenge) the specificity of the advantages previously associated
with musical instrument training.

Auditory scene analysis
Speech in noise
Musicians

grouping, auditory scene analysis), fine motor control, sensory-motor
coordination, sequence memorisation, musical interpretation and
expression, and development of learning strategies (Hallam, 2001,
2010; Norton et al., 2005). Over the past few decades, the perceptual
and cognitive advantages associated with musical training have been

1. Introduction
1.1. Musical expertise

1.1.1. Current literature

The training of a professional musician normally begins very early in
life and is estimated to entail over 10,000 h of training by early adult-
hood (Ericsson & Charness, 1994; Macnamara & Maitra, 2019). Playing
a musical instrument involves a multifaceted ensemble of skills,
including acoustic processing (e.g., pitch, duration, timbre), cognitive
processing of melodic and harmonic content (e.g., selective attention,
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studied extensively. Reported examples of such advantages include pitch
perception (Kishon-Rabin, Amir, Vexler, & Zaltz, 2001; Spiegel & Wat-
son, 1984), temporal information processing (Cicchini, Arrighi, Cec-
chetti, Giusti, & Burr, 2012; Giiclii, Sevinc, & Canbeyli, 2011;
Rammsayer & Altenmiiller, 2006), phonological processing (Chobert,
Francois, Velay, & Besson, 2014; Tierney, Krizman, Kraus, & Tallal,
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2015; Wong, Skoe, Russo, Dees, & Kraus, 2007), attention (Kaganovich
et al., 2013; Roman-Caballero, Martin-Arévalo, & Lupianez, 2020;
Strait, Kraus, Parbery-Clark, & Ashley, 2010; Strait, Slater, O’Connell, &
Kraus, 2015; Zendel & Alain, 2009), speech in noise perception (Parb-
ery-Clark, Skoe, Lam, & Kraus, 2009; Slater & Kraus, 2016; Tierney,
Rosen, & Dick, 2020; Yoo & Bidelman, 2019; for a review, see e.g.
Coffey, Mogilever, & Zatorre, 2017), statistical learning (Mandikal
Vasuki, Sharma, Demuth, & Arciuli, 2016; Schon & Francois, 2011),
working memory (Bugos, Perlstein, McCrae, Brophy, & Bedenbaugh,
2007; Talamini, Altoe, Carretti, & Grassi, 2017, p. 201), auditory-motor
synchronisation (Chen, Penhune, & Zatorre, 2008; Zatorre, Chen, &
Penhune, 2007), visuospatial cognition (Douglas & Bilkey, 2007; Hass-
ler, Birbaumer, & Feil, 1985; Lidji, Kolinsky, Lochy, & Morais, 2007),
reading (Flaugnacco et al., 2015; Tierney & Kraus, 2013), and meta-
cognition (Hallam, 2001). The educational and clinical implications of
these findings (Francois, Grau-Sanchez, Duarte, & Rodriguez-Fornells,
2015) and their relevance in the study of brain plasticity and learning
(Hyde et al., 2009; Zatorre, 2005) are some of the reasons that underlie
the widespread adoption of musicianship® as a model of how expertise in
one domain might develop and affect supposedly unrelated® and/or
more general domains of perception and cognition. This phenomenon is
known as transfer of expertise (either near or far based on the related-
ness of the skills’ contexts and cognitive demands; Barnett & Ceci, 2002;
Mestre, 2005), and commonly serves as the epistemological construct
underlying the literature on the effects of music training on both musical
and nonmusical abilities.

1.1.2. Limitations

However, the conclusions that can be drawn from the current liter-
ature on the topic are somewhat limited by conflicting evidence and
theoretical issues. An example is speech-in-noise perception. As noted
above, a number of studies have reported musician advantages in
perceiving speech in noisy or distracting environments, but equally,
several studies have failed to detect an association with musical training
across multiple experimental conditions (e.g. Boebinger et al., 2015;
MacCutcheon et al., 2020; Madsen, Marschall, Dau, & Oxenham, 2019;
Madsen, Whiteford, & Oxenham, 2017; Ruggles, Freyman, & Oxenham,
2014). It has been suggested that the advantage of musicians for speech-
in-noise perception might depend on the relevance of pitch discrimi-
nation for the given task (Fuller, Galvin, Maat, Free, & Baskent, 2014),
along with rhythmic skills (Slater et al., 2018) and the presence of
spatial cues (Bidelman & Yoo, 2020; Clayton et al., 2016; but see Madsen
et al., 2019), and may be partially negated by musicians’ high levels of
chronic noise exposure (Skoe, Camera, & Tufts, 2019). Importantly, the
musician advantage for speech-in-noise perception could also be medi-
ated by other and possibly preexisting cognitive abilities (e.g., working
memory, attention) rather than being a direct effect of musical experi-
ence (Escobar, Mussoi, & Silberer, 2020; Schellenberg, 2015, 2019; Yoo
& Bidelman, 2019). Thus, despite the interest in the topic and promising
clinical applications (e.g. the rehabilitation of sensorineural and age-
related hearing loss; Alain, Zendel, Hutka, & Bidelman, 2014; Lo,
Looi, Thompson, & McMahon, 2020; Parbery-Clark, Strait, Anderson,
Hittner, & Kraus, 2011), current evidence does not unequivocally sup-
port the hypothesis that musical training enhances speech-in-noise
perception.

Another example is the musicians’ advantage for auditory sequence
memorisation and reproduction (Krishnan, Carey, Dick, & Pearce, 2021;
Tierney, Bergeson-Dana, & Pisoni, 2008), which Carey et al. (2015) did

2 At least in the compartmentalised or quasi-Platonic western notions of
“music” and “being a musician.” (Cross, 2012; Wiggins, Miillensiefen, & Pearce,
2010)

3 These domains might in fact share perceptual and cognitive processing in
the brain, despite appearing superficially unrelated (e.g. the OPERA hypothesis
for music and speech processing; Patel, 2011; Patel, 2014).
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not replicate using the same general paradigm, despite testing a rela-
tively large number of highly trained violinists and pianists. More
generally, many studies have only observed expertise-related skill
transfer to contexts closely related to the original training context (for a
review, see Green & Bavelier, 2008), although a lack of granularity in
the definition of population characteristics and behavioural measure-
ments might make it difficult to reach conclusive and replicable results
(Green, Strobach, & Schubert, 2014).

For example, simple comparisons of musically trained and untrained
individuals cannot explain whether any of the observed advantages are
specifically associated with unique features of musical training or could
instead be observed (or even enhanced) with other types of training.
Evidence from single-task randomised controlled training studies on
non-musicians shows that several auditory perceptual thresholds (i.e.,
pitch, duration, intensity, interaural time and level difference) can
indeed be individually improved with training (Wright & Fitzgerald,
2005; Wright & Sabin, 2007), subsequently matching those of musicians
(Micheyl, Delhommeau, Perrot, & Oxenham, 2006).

Non-musical forms of auditory training have been investigated in the
enhancement of speech intelligibility in adults with hearing loss (e.g. Fu,
Nogaki, & Galvin, 2005; Henshaw & Ferguson, 2013; Whitton, Hancock,
Shannon, & Polley, 2017; but see Stacey & Summerfield, 2007), lan-
guage processing in children with learning difficulties (for a review, see
Loo, Bamiou, Campbell, & Luxon, 2010), as well as neurocognitive im-
provements of psychiatric patients (Adcock et al., 2009; Bettison, 1996;
Fisher, Holland, Merzenich, & Vinogradov, 2009). Training profile
variations within the musician population also appeared to be associated
with specific perceptual advantages. A number of studies have reported
perceptual differences between musicians who play different in-
struments and genres, such as lower (i.e. better) frequency discrimina-
tion thresholds for classical musicians compared to jazz musicians
(Kishon-Rabin et al., 2001; cf. Tervaniemi, Janhunen, Kruck, Putkinen,
& Huotilainen, 2016; Vuust, Brattico, Seppanen, Naatanen, & Terva-
niemi, 2012), a frequency discrimination advantage for players of a
variable pitch instrument (i.e. string and woodwind) compared to a
fixed-pitch instrument (Micheyl et al., 2006) or percussion instruments
(Zaltz, Globerson, & Amir, 2017), an instrument-specific preference for
a musical temperament (i.e. tuning system; Carey et al., 2015), and
better perception of speech harmonics for vocalists as opposed to speech
timing for percussionists (Slater, Azem, Nicol, Swedenborg, & Kraus,
2017).

Additionally, other types of musical performers such as professional
club disk jockeys have been shown to match trained percussionists in
rhythmic ability (Butler & Trainor, 2015). Neuroplastic and behavioural
correlates of other forms of auditory expertise unrelated to musical
training have also been studied. For instance, 60 min of birdsong iden-
tification training was shown to lead to a decrease in early (200-300 ms)
neural activity in left superior temporal gyrus and middle frontal gyrus
in response to trained stimuli, but also a later (500-550 ms) increase in
activity in the cingulate cortex bilaterally for untrained songbird stimuli
(De Meo, Bourquin, Knebel, Murray, & Clarke, 2015). Additionally,
scalp topography of P2 auditory-evoked potentials of songbird experts
revealed a more frontal positivity than naive participants in response to
not only birdsongs, but also voice and environmental stimuli, which
might reflect a generalised difference in processing strategy (Chartrand,
Filion-Bilodeau, & Belin, 2007). Another example is learning to decode
Morse code, which has been associated with an increase in neural ac-
tivity in the inferior and medial parietal cortex bilaterally and in grey
matter density in the fusiform gyrus (Schmidt-Wilcke, Rosengarth,
Luerding, Bogdahn, & Greenlee, 2010), while musicians have been
shown to reproduce Morse code at variable speeds more accurately than
non-musicians after training at a static speed (Slayton, Romero-Sosa,
Shore, Buonomano, & Viskontas, 2020). Nonetheless, very little atten-
tion has been paid to other populations whose profession depends on
high levels of auditory sophistication, such as audio engineers.
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1.2. Audio engineering

1.2.1. Population characteristics

Audio engineers attempt to create, capture, and modify sound in
order to resolve technical issues and meet multiple artists’ objectives (e.
g., a musician, a producer, or their own), ultimately curating the lis-
tener’s experience (Zwicker & Zwicker, 1991). This process can involve
the discrimination and manipulation of psychoacoustic attributes such
as pitch and timbre via equalisation and filtering, loudness and dynamic
range via compression and expansion, but also synchronicity, phase,
filtering, masking, and spatial features via custom configurations of
hardware and software tools (Corey & Benson, 2016). Other than pro-
fessional practice, this level of perceptual expertise is usually achieved
via technical ear training, which involves exercises designed to improve
the ability to focus on and identify discrete elements of auditory sen-
sations, and associate them with objective acoustical measurements
(Corey, 2013; Iwamiya, Nakajima, Ueda, Kawahara, & Takada, 2003;
Letowski, 1985), although this practice is not yet fully standardised
(Kaniwa et al., 2011; Kim, Kaniwa, Terasawa, Yamada, & Makino, 2013;
Marui & Kamekawa, 2013, 2019; McKinnon-Bassett & Martens, 2013).
Additionally, audio engineers must learn to deliberately direct their
attention to individual elements of sounds or auditory scenes, and to
maintain them in memory. For example, the practice of mixing in music
production can involve listening to a complex auditory scene (e.g. an
instrument group), scanning the scene to identify a source of potential
acoustic issues in the global sound (e.g. phase interference, tonal
imbalance, lack of definition or “muddy” sound, timing issues, etc.),
applying a fix at the level of individual instruments or elements, rein-
tegrating them into the scene, and reevaluating the updated auditory
scene (for a detailed description of what mixing entails, see e.g. Case,
2012; Izhaki, 2008). This process intuitively should require considerable
sustained selective attention (auditory scene segregation and integra-
tion) and auditory working memory (mental sound manipulation and
pre-post comparison); the relevant tasks are supported by visual cues
provided by screening devices like spectrum analysers.

1.2.2. A different model of auditory expertise

Musicians who play in ensembles must also be able to track the
auditory scene and, in large ensembles, interpret the conductor’s cues to
synchronise with the group and adapt their sound to the collective
performance. By comparison, audio engineers are responsible for several
sound sources at the same time, have a much larger toolbox for acoustic
manipulation that is not constrained by the physical construction of a
musical instrument and can work either synchronously (e.g., live per-
formance) or asynchronously (e.g., studio work). Furthermore, there can
be multiple ways of achieving similar acoustic outcomes depending on
the available gear, personal workflow, and creative process (De Man
et al., 2015). For instance, the adjustment of a sound’s intensity could
correspond to the turn of a knob or a push of slider on a mixing board,
the click of a mouse in a digital audio workstation, or the repositioning
of a microphone. Moreover, these gestures can affect sound in real time
or with any amount of delay. Conversely, the correspondence between
an instrumentalist’s gestures and acoustic outcomes is narrower in terms
of range of motion and temporal co-occurrence of action and sound,
which may promote auditory-motor coupling (Alluri et al., 2017; de
Manzano, Kuckelkorn, Strom, & Ullén, 2020; Li et al., 2018; Palomar-
Garcia, Zatorre, Ventura-Campos, Bueichekd, & Avila, 201 7; Zatorre
et al., 2007).

Audio engineers are also equipped with domain-specific knowledge
such as signal processing, electronics, audio theory, and psychoacoustics
(Howard & Angus, 2009), as well as technical language and professional
jargon (Porcello, 2004), which can provide context and assist the
interpretation of sensory perception. Taken together, the skills of these
professionals correspond to a model of auditory expertise that is very
different in nature from that of musical instrument training. In contrast
to performing musicians, audio engineers do not need high proficiency
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in playing a musical instrument to excel in their profession. These
unique characteristics of audio engineers can be exploited to test the
specificity of some of the auditory advantages associated with musical
training described in the literature, in particular fine auditory percep-
tion and auditory scene analysis.

1.3. Current study

The current study contrasts two different ecologically valid,
auditory-based forms of expertise: audio engineering and playing a
musical instrument. First, we tested the hypothesis that both audio en-
gineers and musicians would show superior auditory skills compared to
matched controls across a broad set of auditory-based measures that are
both associated with musical training and essential for the practice of
audio engineering. We included 6 psychophysical measurements (i.e.,
frequency, duration, intensity, sinusoidal amplitude modulation, inter-
aural level difference, and interaural time difference) and 4 measure-
ments of auditory scene analysis. The latter were: 1) a sustained auditory
selective attention task (Laffere, Dick, & Tierney, 2020) where partici-
pants discriminate between two concurrent streams of tonal sequences;
2) a working memory and sound segregation task that involves the
memorisation and matching of three concurrent sounds varying in fre-
quency and amplitude modulation with a target sound; 3) a task that
involves the detection of changes in the statistical properties of an
auditory scene; and 4) a diotic speech-in-babble-noise task.

Second, we ran a set of exploratory analyses to identify and describe
the unique attributes of our auditory expert cohorts. To complement the
observational nature of this study and detect cohort qualities that may
contribute to self-selection and performance, we also included self-
report measures of personality and musical sophistication. The latter is
particularly important as musicians and audio engineers can present
partially overlapping forms of auditory expertise, thus posing a chal-
lenge to the interpretation of observational data. It is possible, for
instance, for audio engineers to be excellent instrumentalists and, vice-
versa, for musicians to be knowledgeable in the field of audio engi-
neering, although we aimed to partially reduce the overlap between
these two populations by explicitly recruiting musicians with no
expertise in audio engineering, including recording, mixing, and
mastering. We then evaluated the associations between different levels
of audio engineering experience, musical experience, and auditory skill.

Third, we explored whether, and to what extent, low level perceptual
ability, auditory scene analysis, and speech-in-babble perception
correlate with each other and compared the manner in which these as-
sociations manifest between groups.

2. Experiment 1: Methods
2.1. Participants

Participants (n = 64) were undergraduate students of either audio
engineering, a musical instrument degree, or any other non-musical
degree. All participants were native English speakers between 19 and
26 years old and reported no history of hearing impairments. Audio-
metric thresholds were verified manually (see 2.2.1). Because audio
engineers have not previously been studied as an expert auditory group,
and therefore no well-motivated effect size could be estimated, N per
group was determined by reviewing the literature reviewed above with
musicians, which has shown quite consistent, musician-specific effects
on aspects of auditory perception (Bidelman and Yoo (2020), Boebinger
et al. (2015), Clayton et al. (2016), Escobar et al. (2020), Fuller et al.
(2014), Kaganovich et al. (2013), Kishon-Rabin et al. (2001), Mac-
Cutcheon et al. (2020), Madsen et al. (2019), Ruggles et al. (2014),
Slater et al. (2018)). The average group size (N(musicians) + N (non-
musicians)/2) across all these studies was N = 20 (range 14-30); we
recruited on this basis.
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2.1.1. Audio engineering students

Students of audio engineering (n = 20, 17 M; age range = 19-26,
mean (SD) = 21.3 (1.9)) were recruited first through email and flyer
advertising. At the time of testing, they were enrolled full time (year 1, n
= 2; year 2, n = 8; year 3, n = 10) in the Music Technology and Sonic
Arts (BSc) program at Queen’s University Belfast, where they were
tested in a sound-insulated recording studio. They reported having on
average 3.9 years of experience with audio recording, mixing or

Table 1
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mastering (SD = 1.7, range = 1-7; see Table 1).

2.1.2. Musical instrument students

Musicians (n = 24, 16 M; age range = 20-26, mean (SD) = 23.9
(1.69)) were students of a musical instrument degree (see Table 1 for
instruments) recruited in London through flyer advertising and UCL/
Birkbeck SONA systems. Recruitment criteria included the practice of
any musical instrument other than percussion for 4 or more years, with

Demographics, years of formal training (i.e. musical instrument lessons), years of regular practice of a musical instrument, and years of audio engineering experience.

GroupID Age Sex Course Formal Training Regular Practice Audio Engineering
El 20 Male Music Technology 3-5 2 6
E2 20 Male Music Technology 3-5 4-5 4
E3 19 Female Music Technology 10+ 10+ 1
E4 21 Male Music Technology 0 4-5 3
E5 26 Male Music Technology 0 3 7
E6 21 Male Music Technology 1 4-5 4
E7 22 Male Music Technology 0 4-5 1
E8 21 Male Music Technology 6-9 6-9 4
E9 19 Male Music Technology 10+ 10+ 6
E10 22 Male Music Technology 2 6-9 3
Ell 21 Female Music Technology 10+ 10+ 3
El12 22 Male Music Technology 0 6-9 5
E13 20 Male Music Technology 6-9 10+ 3
E14 20 Male Music Technology 0 4-5 3
E15 21 Male Music Technology 6-9 6-9 6
El6 20 Male Music Technology 0 6-9 3
E17 23 Male Music Technology 1 4-5 6
E18 21 Female Music Technology 10+ 10+ 3
E19 21 Male Music Technology 0 1 3
E20 26 Male Music Technology 3-5 6-9 3
Cl 20 Female Psychology 0 0 0
Cc2 24 Male Anthropology 0 0 0
Cc3 23 Female Pharmacy 0 1 0
Cc4 22 Female Medicine 0.5 0 0
Cc5 20 Male History 0 0 0
C6 22 Male Mathematics 0 0 0
Cc7 25 Male Management 0 0 0
c8 21 Male Computing 0.5 0 0
C9 24 Male Medicine 1 0 0
C10 22 Male Social Policy 0.5 0 0
Cl1 23 Male Medicine 0 0 0
C12 21 Male Computer Science 0 0 0
C13 24 Male Banking and Finance 0 0 0
C14 20 Male Mathematics 1 1 0
C15 19 Male Economics 0 0 0
Cl6 20 Male Engineering 0 0 0
C17 23 Male Jewellery Design 1 0 0
C18 21 Male Natural Sciences 0 0 0
C19 19 Male Neuroscience 0 0 0
C20 19 Male History and Politics 2 1 0
M1 25 Female Piano 6-9 10+ 0
M2 25 Female Piano 6-9 10+ 0
M3 22 Male Trumpet 6-9 6-9 0
M4 26 Female Voice 6-9 10+ 0
M5 25 Male Piano 10+ 10+ 0
M6 24 Male Oboe 6-9 6-9 0
M7 24 Male Guitar 3-5 4-5 0
M8 22 Male Piano 3-5 4-5 0
M9 26 Male Guitar 6-9 10 0
M10 24 Female Piano 6-9 6-9 0
M11 26 Female Piano 6-9 6-9 0
M12 22 Male Violin 3-5 6-9 0
M13 23 Female Violin 3-5 6-9 0
M14 24 Male Oboe 3-5 6-9 0
M15 26 Male Guitar 6-9 10+ 0
M16 25 Male Piano 3-5 4-5 0
M17 26 Male Violin 3-5 4-5 0
M18 23 Male Violin 3-5 6-9 0
M19 25 Male Piano 3-5 6-9 0
M20 23 Male Guitar 6-9 10+ 0
M21 20 Male Piano 6-9 10+ 0
M22 21 Female Piano 6-9 10+ 0
M23 24 Male Guitar 3-5 4-5 0
M24 23 Female Oboe 6-9 6-9 0
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an average daily practice of at least 2 h a day and no experience with
audio engineering, mixing, mastering, or recording. Despite efforts
being made to match all cohorts’ demographics, participants in the
musician group included 5 more female participants and were on
average 2.5 years older than engineers and controls. The effects of these
potential confounds on the auditory measurements were evaluated post-
hoc via nonparametric univariate testing (see 2.4.2) for gender and
Spearman correlations for age. No association was found for either de-
mographic variable.

2.1.3. Control group

Controls (n = 20, 17 M; age range = 19-25, mean (SD) = 21.6 (1.9))
were also recruited in London through the UCL and Birkbeck SONA
systems. They were undergraduate students of non-musical degrees (i.e.,
psychology, anthropology, pharmacy, history, management, mathe-
matics, social sciences, finance, jewellery design, computer science,
medicine), with no formal training or history of regular practice playing
a musical instrument or audio engineering, mixing, mastering, or
recording. Both music instrumentalists and controls were tested in a
quiet testing booth at Birkbeck, University of London.

2.2. Procedure

The test battery was composed of one audiometric screening, 10
behavioural tasks, and 2 questionnaires. Each testing session lasted up to
2 h, with average duration being about 1 h and 45 min. To minimise
differences across individuals due to task order, tasks and questionnaires
were run in the same order for all participants, which is the order in
which they are presented below. All auditory tasks were piloted by three
expert raters who determined the ideal headphone volume in terms of
task difficulty, clarity (i.e., task not loud enough), and comfort (i.e., task
too loud). Once set, volume was kept constant for all tasks and partici-
pants. The study was approved by the Birkbeck Department of Psycho-
logical Sciences ethics committee (approval number 111228) and all
participants gave their informed consent before the start of the
experiment.

2.2.1. Audiology

Two different tools were used to measure audiometric thresholds.
Students of audio engineering were tested with a Kamplex KC35 Audi-
ometer, while musicians and non-musicians were tested with an Otopod
system paired with Symphony software on a Windows XP laptop. In both
cases, a 10 dB-down, 5 dB-up adaptive staircase procedure (British So-
ciety of Audiology, 2018) was used, and thresholds were measured using
pure tones from a range of frequencies presented in this order: 1 kHz,
1.5 kHz, 2 kHz, 3 kHz, 4 kHz, 6 kHz, 8 kHz, 125 Hz, 250 Hz, 500 Hz, 750
Hz. After manually checking that they could hear a sample sound from
both ears, participants were asked to listen carefully and to press the
provided response button whenever they could hear a tone, starting at
10 dB HL. All frequencies were presented monaurally starting with the
left ear. For each frequency, a threshold was determined when the
participant performed 2 reversals at the same intensity.

2.2.2. Speech in babble noise (SIN)

Participants were instructed to listen carefully to a target sentence in
the presence of four-talker babble and repeat that sentence out loud to
the experimenter. Target sentences, spoken by a British male, were
sampled from the Bamford-Kowal-Bench Speech-in-Noise (BKB-SIN)
sentences (Bench, Kowal, & Bamford, 1979; Etymotic Research, 2005)
and included 3 keywords. All stimuli were presented diotically. Partic-
ipants were encouraged to repeat any word they heard, regardless of
whether that was a single word or an entire sentence. The experimenter
marked the number of correct words that were repeated. Unlike the
original BKB-SIN test, we estimated speech/babble SNR thresholds using
an in-house adaptive staircase procedure implemented in MATLAB
(2013b; The MathWorks Inc, 2013). The initial SNR value was set to

Cognition 244 (2024) 105696

+10 dB and changed adaptively up or down according to participants’
response (1-up 1-down). A response was considered correct if at least 2
keywords were identified. After recording the participant’s response, a
new sentence was presented. The first step size was set to 8 dB and
reduced to 6 dB, 4 dB, and 2 dB after each reversal. SNR changes were
obtained by increasing or decreasing the amplitude of the target sen-
tence, while the amplitude of the babble mask was kept constant. The
experiment terminated after 6 2-dB-step reversals or when the limit of
20 sentences was reached. A final SNR threshold was calculated as the
average SNR ratio of the stimuli presented after the first 3 reversals (i.e.,
the final set of stimuli presented with a 2 dB step size).

2.2.3. Sustained auditory selective attention (SASA)

This task was designed to quantify participants’ sustained selective
attention (Dick et al., 2017; Holt, Tierney, Guerra, Laffere, & Dick, 2018;
Laffere et al., 2020). Each block consisted of a stream of 30 short se-
quences, each made of six 125 ms cosine-ramped sine tones sampled
with replacement from two frequency bands in an alternating pattern
(Fig. 1). Each band was composed of three tones set two semitones apart:
185, 207.7, and 233.1 Hz (F#3, G#3, and A#3) for the lower band and
370, 415.3, and 466.2 Hz (F#4, G#4, and A#4) for the higher band (i.e.,
one octave above). Tones were presented at regular intervals at a rate of
8 Hz followed by a 250 ms pause and the first tone was always sampled
from the lower band. As higher-frequency stimuli tend to be perceived as
louder, a difference of 8 dB was set between the amplitudes of the tones
in the high and low bands. A total of 30 sequences was presented in each
block. For the first 10 blocks, participants were asked to respond by
pressing the space bar when they heard 2 consecutive identical se-
quences in the high band. After a short break, participants completed
another 10 trials, this time detecting repetitions in the low band while
ignoring tones in the high band. Each trial included between 3 and 6
repetitions. The experiment was preceded by 4 training blocks for each
condition, during which the amplitude of the confounding stream was
initially set to zero and linearly increased until it reached its final
amplitude. Answers were evaluated within a 1 s window starting at the
onset of the third tone of a sequence (i.e., between 0.5 s and 1.5 s after a
sequence’s onset). Participants received feedback on screen immedi-
ately after responding. Sensitivity to repetitions in the attended band
was calculated as d’.

2.2.4. Goldsmiths musical sophistication index (gold-MSI)

A digital version of the Goldsmiths Musical Sophistication Index
(Gold-MSI) (Miillensiefen, Gingras, Musil, & Stewart, 2014) was
administered. This extensively normed questionnaire quantifies indi-
vidual differences in musical sophistication according to five di-
mensions, Active Engagement, Perceptual Abilities, Musical Training,
Singing Abilities, Emotions, and one common factor, General Sophisti-
cation. Participants rated on a 7-point Likert scale how much they
agreed with a statement that described their experience with music.
Scores for each dimension were calculated as the sum of the ratings
given to each item belonging to that dimension after inverting negative-
score items.

2.2.5. Ten item personality inventory (TIPI)

A computerised version of the Ten Item Personality Inventory (TIPI;
Gosling, Rentfrow, & Swann, 2003) was administered. In this brief
questionnaire, each of the Big Five personality dimensions (i.e., extra-
version, agreeableness, conscientiousness, emotional stability, and
openness to experience) is represented by two pairs of adjectives, one
positive (e.g., “sympathetic, warm” for agreeableness) and one negative
(e.g., “reserved, quiet” for extraversion). Participants were asked to
indicate how much they identified with each pair of adjectives on a scale
from 1 (Strongly disagree) to 7 (Strongly agree). The final scores were
calculated by taking the average of the 2 items representing each
dimension after inverting the ratings of the negative items.
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Fig. 1. Schematic representation of auditory scene analysis stimuli. A. Sustained auditory selective attention. Three-tone repetition in the high band marked by black
rectangle. B. Auditory scene recall. Three tones with different frequencies and square-wave amplitude modulation rates followed by a target tone with a new
combination of frequency and modulation rate. C. Stochastic auditory scene. Example of a “full to middle” (F-M) transition. Vertical dotted line represents the change

in frequency sampling pool for the random tones.

2.2.6. Auditory scene recall (ASR)

This task was designed to measure participants’ ability to segregate
different sounds in an auditory scene analysis and maintain them in
memory for a short period of time (Pomper, Curetti, & Chait, 2023, in
press). Each trial was made of three phases. During the first phase
(“encoding phase™), participants listened to an auditory scene (2 s)
composed of three amplitude-modulated pure tones (“streams™) drawn
from a fixed pool of 20 log-spaced frequencies between 200 Hz and
3000 Hz, with square-wave amplitude modulation rates set at either 3
Hz, 7 Hz, or 19 Hz, applied with 5 m cosine ramps at the onset and offset
of each pulse. Tone frequencies and modulation frequencies were set so
that they would not be multiples of each other. The second phase con-
sisted of 1.5 s of silence. During the third phase (“test phase™), a single
stream (2 s) was presented: in half the trials, the stream was identical in
both frequency and amplitude modulation rate to one of the streams
presented in the encoding phase, whereas in the other half it had a new
unique combination of frequency (sampled from the three frequencies
presented in the encoding phase) and modulation rate (Fig. 1). For each
trial, participants were asked to memorise the three streams presented
simultaneously in the encoding phase and determine whether the single
stream heard in the retrieval phase was one of the three tones they
memorised. This is analogous to a reversed delay match-to-sample task,
in that the options are presented before the sample. Participants
responded by pressing the “F” key if they believed the target tone was
present in the encoding phase, and “D” key if it was not. Participants
were allowed to respond as soon as they heard the target stream and up
to 4 s after the stream offset. Before the task was administered, the
experimenter played several sample sounds to make sure participants
understood the task. 100 trials were generated for each participant using
MATLAB (2015b; The MathWorks Inc, 2015). Stimuli were generated at
a 44.1 kHz sampling rate, saved as WAV files, and subsequently pre-
sented to participants in the form of two blocks of 50 trials each, with a
break in between the two blocks. Visual feedback was provided for each
trial and a summary score of false alarms, correct, and invalid responses
was displayed at the end of each block. Target detection sensitivity was
calculated as d’ following a “1/2 N” correction for extreme proportions
of hit or false alarm rates (Macmillan & Kaplan, 1985; Stanislaw &
Todorov, 1999).

2.2.7. Psychophysics

Six psychophysical tasks were administered using the Maximum
Likelihood Procedure (MLP) for auditory threshold estimation imple-
mented in the Psychoacoustics toolbox (Soranzo & Grassi, 2014) in
MATLAB (2013b; The MathWorks Inc, 2013) running on a MacBook
computer. During the pitch discrimination (PD), duration discrimination
(DD), intensity discrimination (ID), and sinusoidal amplitude modula-
tion detection (SAMD) tasks, participants were asked to listen carefully
to three randomly ordered sounds in a sequence (3AFC): 2 standard
sounds set to a fixed parameter value, and 1 target sound whose
parameter changed adaptively across trials. They then identified the
sound that differed (‘odd one out’) from the standard sounds by pressing
1, 2 or 3 on the keyboard. For the interaural level difference (ILD) and
interaural time difference (ITD) tasks, only two sounds were presented
(2AFC), and participants were asked to identify whether the first of the
two sounds was perceived as coming from the left or from the right (with
the second sound having the same parameter magnitude but coming
from the opposite side). All six psychophysical tasks were administered
in two blocks of 20 trials each and no feedback was provided. Details of
all six psychophysical tasks are reported in Table 2.

The MLP aims to achieve a fast estimate of psychophysical thresholds
through a nonparametric adaptive procedure. After each trial, the pro-
cedure identifies the logistic function that best fits the expected psy-
chometric function of each participant based on their current responses
and other fixed variables such as the function slope, expected error rates
(e.g. due to attentional lapses), and chance level (e.g. 0.33 for a 3AFC).
The toolbox’s default function slopes and expected error rates were used
for all tasks. The procedure then calculates the next target stimulus as
the parameter corresponding to a certain probability of a correct answer
(i.e., 0.73 for 3AFC, 0.81 for 2AFC) in the previously estimated psy-
chometric function. Details of the psychometric function estimation and
stimulus selection are described in Grassi & Soranzo, 2009). This pro-
cedure is very sensitive to attentional lapses, particularly at the begin-
ning of each block, as early estimations of the participants’ psychometric
functions affect all remaining estimations within a given block. For this
reason, if participants failed to identify the target stimulus in the first
trial, which was always the easiest and therefore expected to elicit a
correct answer, the corresponding block was marked as invalid. Final
thresholds were calculated as the average of the two blocks after
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Table 2

Details of the six psychophysical tasks.

Task name Stimulus Parameter Parameter Target

range: stimulus
Min
(standard),
Max

Pitch 250 ms Frequency 330 Hz, Highest-
discrimination complex 390 Hz pitched
(PD) tones with tone

four
harmonics

Duration Complex Duration 250 ms, Longest
discrimination tones with 450 ms tone
(DD) four

harmonics
(fo = 330 Hz)

Intensity Complex Intensity —30 dB FS, Loudest
discrimination  tones with —20 dB FS tone
(ID) four

harmonics
(fo = 330 Hz)

Sinusoidal 500 ms Depth of m~ 0.14 Amplitude-
amplitude Gaussian modulation (—40 dB), modulated
modulation noise with 60 expressed as m =~ 0.78 tone
detection Hz sinusoidal 20log(m) (-5dB)

(SAMD) amplitude
modulation

Interaural level 5000 Hz, 250 Intensity +0.1 dB, First tone
difference ms pure tones  (opposite +5dB (either left
(ILD) signs for left or right)

and right ear)

Interaural time 330 Hz, 250 Phase +0.0001 First tone
difference ms pure tones  (opposite ms, +£0.3 (either left
(ITD) signs for left ms or right)

and right ear)

excluding blocks that were determined to be invalid.

Finally, we calculated the difference between participants’ thresh-
olds and the standard values of the Pitch Discrimination, Duration
Discrimination, and Intensity Discrimination tests. For instance, a
threshold of 335 Hz for the Pitch Discrimination task, which has a
standard value of 330 Hz, would correspond to a difference of —5 Hz.
This was done to facilitate data visualization across auditory tasks by
having greater values always correspond to a greater sensitivity.

2.2.8. Stochastic auditory scene (StAS)

This task aimed at measuring participants’ sensitivity to statistical
changes in auditory sequences. Participants were presented with
random sequences of concatenated 50 ms tone pips (gated on and off
with 5 ms raised cosine ramps), selected with replacement from a pool of
20 distinct log-spaced frequencies between 222 and 1912 Hz (12% steps
or 1/6 of an octave). All trials began with a series of randomly selected
tones drawn from the pool. In half the trials, after 40-50 tones (with the
number drawn randomly per trial), the sequence would then switch to a
halved pool of only 10 frequencies for 40 tones (i.e., 2 s). There were two
conditions: in the “full-to-middle” (F-M) condition, the halved pool
consisted of the 10 middle frequencies (391-1085 Hz) of the original
pool, whereas in the “full-to-edge” (F-E) condition it consisted of the five
highest (1215-1912 Hz) and five lowest (222-349 Hz) frequencies
(Fig. 1). Listeners were instructed to press the spacebar as soon as they
heard a change in the auditory scene. Although they were not given
information on what exactly would change, participants were provided
with several examples and one practice trial per condition, as well as
receiving visual accuracy feedback on the screen at the end of each
sequence. Overall detection sensitivity was obtained by calculating d’
for the two conditions, correcting for extreme proportions of hit and
false alarm rates (Macmillan & Kaplan, 1985; Stanislaw & Todorov,
1999), and averaging them.
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2.3. Data preprocessing

Scores for all behavioural tasks were screened for univariate outliers
and patterns of missing data using JMP 15.2.1.

2.3.1. Outliers

Extreme data points were evaluated manually based on overall data
distributions, previous benchmarks, and a combination of robust mea-
sures of centre and spread. More specifically, values over one interdecile
range from the first or ninth decile or over 4 robust spreads from the
centre (M-estimates; Huber, 1973; Huber, 2011) were initially flagged as
extreme. A total of 5 individual data-points were flagged as outliers:
pitch discrimination (29.52 Hz, or about 8.9% of the 330 Hz reference
stimulus) for participant M6; intensity discrimination (7.08 dB SPL) for
participant C20; sinusoidal amplitude modulation detection (—4.25 dB,
20log(m)) for participant M9; interaural level difference (4.54 dB) for
participant C15; and speech-in-babble (—24.5 dB SNR) for participant
M22. The first 4 observations correspond to exceptionally high (i.e.,
poor) psychoacoustic threshold estimates, by far higher than any other
participant or benchmark (e.g. Kidd, Watson, & Gygi, 2007). Further
inspection revealed that these were due to mistakes (e.g., attentional
lapse, wrong button pressed, random guessing) made by participants
within the first few trials of both blocks, to which the MLP staircase
procedure is particularly sensitive (Soranzo & Grassi, 2014). For this
reason, these measurements were judged as invalid and excluded from
further analyses. The speech-in-babble outlier, on the other hand, cor-
responds to an extremely low SNR threshold (i.e., exceptionally good)
which cannot be ruled out as a measurement error and so it was
retained. None of the other potential outliers identified by manual in-
spection of data distributions could be attributed to technical error and
so they were retained as valid measurements.

2.3.2. Missing data

A total of 15 out of 640 (2.3%) missing data points were identified
across the behavioural dataset, due to either outlier exclusion, technical
issues during testing, or time constraints. Missing data points were
distributed across nine participants who failed to complete one tasks
each, and one participant (E1) from the audio engineers group who
failed to complete six tasks (auditory scene recall and all psychophysical
tasks except interaural time difference). Gold-MSI data for 3 participants
from the musician group was also missing due to data corruption during
the online questionnaire saving process. When using statistical methods
that require complete data vectors for every participant (i.e. variable
importance, see 2.4.3), Participant E1 (audio engineers) was entirely
excluded; for the remaining participants, multivariate normal imputa-
tion based on a least squares prediction from the non-missing variables
with shrinkage (Schafer & Strimmer, 2005) was calculated for the rest of
the dataset using JMP (15.2.1) and employed as an alternative to list-
wise deletion in order to retain as much information as possible (Schafer,
1999). While imputation can generate redundancy in data and increase
the risk of Type 1 error, listwise deletion can increase Type 2 error and
reduce statistical power (Cheema, 2014; Mishra & Khare, 2014). Where
applicable, both methods were utilised and results compared to verify
whether missing data would cause critical differences in statistical an-
alyses. Since results obtained with both procedures were nearly iden-
tical, for simplicity, only the results obtained with imputation of missing
data are reported. Pairwise deletion was instead employed when
calculating correlations (see 2.4.5).

2.4. Statistical analyses

Statistical analyses are divided in two sections. First, we tested the a
priori global hypothesis that groups do not come from the same auditory
population, followed by the more specific hypothesis that auditory ex-
perts (i.e., musicians and audio engineers) will outperform controls
across each of the auditory tasks, with emphasis on inferential statistics
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and control of Type 1 error. Second, we ran a series of exploratory an-
alyses to uncover any meaningful patterns in the dataset, as well as to
test finer-grained hypotheses regarding the specific differences between
the musician and audio engineer populations, relationships between
auditory tasks, and the role of musical and audio engineering experi-
ence. Methods for data exploration included graphical methods,
descriptive statistics, point estimates of relevant sample statistics, and
data-driven models (Behrens, 1997; Szucs & loannidis, 2017). Any a
posteriori hypothesis formulated during data exploration was made
explicit in order for the associated confidence intervals and p-values to
be interpreted as per their descriptive content (Amrhein, Korner-
Nievergelt, & Roth, 2017; Lavine, 2014), rather than as confirmatory
evidence for inference at the population level (Cohen, 1994; Gaus,
2015). Robust metrics and/or nonparametric methods were preferred
across all statistical analyses to accommodate for differences in distri-
bution characteristics across tasks and groups, unbalanced classes, het-
eroscedasticity, and presence of outliers without recurring to arbitrary
data transformations or post-hoc analytic choices. Finally, the signs of
all psychophysical and speech-in-babble thresholds were reversed
before analyses so that a greater number always represented better
performance across all tasks to improve readability.

2.4.1. Multivariate differences (nonparametric MANOVA)

The global null hypothesis of no group differences in auditory skills
was tested with the nonpartest function in the npmv R package (version
2.4.0; Ellis, Burchett, Harrar, & Bathke, 2017), which employs a
multivariate ANOVA-type test statistic based on ranks (Brunner, Dette,
& Munk, 1997; Brunner & Munzel, 2000) and p-values calculated via an
asymptotic F-distribution approximation (Bathke & Harrar, 2008) or
resampling. This is a nonparametric equivalent of a MANOVA.

2.4.2. Univariate multiple comparisons and relative effects

In the case of a rejection of the multivariate null hypothesis, a set of
univariate tests was planned to test whether experts outperform controls
in each auditory task. This was done with a rank-based nonparametric
multiple contrast test procedure (MCTP) implemented in the mctp
function in the nparcomp R package (version 3.0; Konietschke, Placzek,
Schaarschmidt, & Hothorn, 2015; Noguchi, Abel, Marmolejo-Ramos, &
Konietschke, 2020). This procedure was selected for all univariate
comparisons as it does not make assumptions about distribution shape,
heteroscedasticity, or class imbalance. The MCTP tests hypotheses of
stochastic inequality, that is the probability of a random observation
from one sample to be larger (or smaller) than a random observation
from another sample. This operationalises the notion that one group will
tend to outperform another without reference to measures of central
tendency and spread (Cliff, 1993; Delaney & Vargha, 2002). This
probability is referred to as relative effect and was calculated for each
group against a reference unweighted mean distribution of all group
distributions, so that a random measurement from one group is always
evaluated in the context of the entire dataset. Relative effects were used
to formulate hypotheses about group inequalities. Specifically, for each
auditory task, we tested the one-tailed null hypothesis that control
participants will show equal or better performance compared to musi-
cians or audio engineers, that is an equal or higher relative effect. The
rejection of a null hypothesis for a given task would then support the
alternative hypothesis that one or both auditory expert cohorts scored
significantly higher than controls for that task. This was done by setting
type = “Dunnett” (i.e., many-to-one comparisons) and alternative =
“greater” in the mctp function. In addition to the simple difference be-
tween relative effects, a point estimate of a transformed log odds-type
effect size comparable in magnitude to Cohen’s d was also calculated
and reported to facilitate interpretation (Noguchi et al., 2020). The
MCTP is a single step procedure, in that overall and specific contrasts are
evaluated at the same time with no contradiction (i.e., a statistically
significant omnibus test always corresponds to a significant “post-hoc”
test and vice-versa) and under strong control of the family-wise error
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rate (FWER). Asymptotic estimates of adjusted p-values and simulta-
neous confidence intervals were calculated following a multivariate t-
based approximation with adjusted degrees of freedom (Noguchi et al.,
2020). The p-values of the overall effects, which always correspond to
the lowest p-value of any pairwise comparison, were further corrected
following the Benjamini-Hochberg false discovery rate (FDR) (Benja-
mini & Hochberg, 1995) adjustment implemented in the p.adjust func-
tion from the stats R package. An equivalent testing procedure for simple
pairwise comparisons (i.e., a studentised permutation test (Neubert &
Brunner, 2007) with the npar.t.test function from the same package) was
used to complement plots and descriptive statistics during exploratory
analyses between audio engineers and musicians. In these cases, p-
values were left uncorrected and explicitly reported as such to suggest an
appropriate interpretation.

2.4.3. Classification of musicians and audio engineers: Variable importance

To further explore the different characteristics of our expert cohorts
on a multivariate basis, we extracted variable importance from a
random forest classifier (Breiman, 2001) trained with personality scores,
Gold-MSI sub-dimensions, and auditory measures as predictors. Random
forests are non-parametric algorithms that aggregate predictions from
binary decision trees constructed on bootstrap samples or sub-samples of
the original dataset and random subsets of predictors (for an overview,
see e.g. Strobl, Malley, & Tutz, 2009). We selected a class of random
forests that utilises conditional inference trees as base classifiers (Tors-
ten, Kurt, & Achim, 2006). These perform permutation tests (Strasser &
Weber, 1999) at each node to identify the predictor most strongly
associated with the response variable along with the optimal split point
that maximises the discrepancy between the subnodes (Torsten et al.,
2006). This method, when applied with subsampling without replace-
ment, has been shown to be unbiased to the nature of a predictor (e.g.,
categorical, scale, ordinal). This differs from other types of binary de-
cision trees that rely on measures of impurity reduction such as classi-
fication and regression trees (Strobl, Boulesteix, Zeileis, & Hothorn,
2007). This feature is particularly important as our predictors include
both continuous variables and low-cardinality questionnaire data. We
grew our forest with cforest from the partykit R package (Hothorn &
Zeileis, 2015), with hyper parameters set to ntree = 10,000 (number of
trees in the forest), mtry = 4 (number of random predictors tested at each
node of a tree; default is \/ p where p is the number of predictors), and
perturb set to a subsampling fraction of 0.632 with no replacement in
order to achieve unbiasedness to predictor type (see above). Trees in the
forest were allowed to fully grow by setting minsplit = minbucket = 1
(minimum size of a node), only limited by a minimum significance of a
permutation test set with mincriterion = 0.95 (1-p-value). These were set
with the goal of achieving a compromise between variance (i.e., node
size of 1) and bias (i.e., high criterion of 0.95) (see guidelines in Probst,
Boulesteix, & Bischl, 2019). The importance of each predictor in the
model was calculated as conditional permutation importance (Strobl,
Boulesteix, Kneib, Augustin, & Zeileis, 2008). Permutation importance
corresponds to the mean decrease in prediction accuracy when the
values of a predictor are randomly permuted. Conditional permutation
importance also accounts for collinearity between variables by
measuring associations between predictors and permuting collinear
ones together. This was calculated using the varimp function in partykit
with parameters nperm = 5 (number of permutations), conditional =
TRUE, and threshold = 0.95. As per default, prediction accuracy and
importance were calculated on the “out-of-box” data (i.e., OOB =
TRUE), that is on the data excluded during subsampling. Random forests
were employed here as a fully nonparametric tool for data exploration
(Jones & Linder, 2015) which, given a high number of predictor vari-
ables and low number of observations, specifically serves the purpose of
identifying and ranking a subset of variables (i.e., feature selection) that
can best describe the differences between musicians and audio engineer.
As multiple imputations and listwise deletion lead to interchangeable
results, only results following listwise deletion are reported. This
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corresponds to a total of 40 participants, 19 audio engineers and 21
musicians. Variables with importance above 2.5%, corresponding to
mean decrease in accuracy equivalent to at least one participant (i.e.,
100%/40), were included in an alternative reduced model. For the
purpose of replicability, results were obtained using a random seed of
1112.

2.4.4. Musical and audio engineering experience

To draw a more direct comparison between musicians and audio
engineers with a similar musical background, we clustered participants
in two groups based their score in the Musical Training sub-dimension of
the Gold-MSI questionnaire. Specifically, apart from one musician who
scored 31, musicians scored between 37 and 49 (Fig. 2). Therefore, using
a cut-off of 37, we were able to match all but this one musician with 8
audio engineers with a similar musical background. The underlying
meaning of this cutoff was further examined using two items of the Gold-
MSI questionnaires that contribute the musical training score, namely “I
engaged in regular, daily practice of a musical instrument (including
voice) for__years” and “I have had__years of formal training on a
musical instrument (including voice) during my lifetime,” in order to
qualify possible differences in formal or informal training between co-
horts (Fig. 2). We then re-examined differences in behavioural measures
between musicians and engineers with a similar level of musical
training, as well as audio engineers with different levels of musical
training, using the same methods described in paragraph 2.4.2. Addi-
tionally, we explored associations between mixing and mastering
experience and behavioural measures with Spearman correlations.

2.4.5. Correlations between auditory tasks

Monotonic relationships between behavioural variables were esti-
mated using Spearman’s rank correlations coefficients (p) separately for
each group. Empirical confidence intervals for individual bivariate p
were calculated via bootstrapping (Haukoos & Lewis, 2005; Wright,
London, & Field, 2011). Relevant correlations, as well as their differ-
ences across groups, were assessed graphically with a series of correlo-
grams as well as bivariate scatterplots on both raw data and ranked data.
To facilitate comparisons between groups, data were ranked within
group and centred at the median rank before plotting.

3. Experiment 1: Results
3.1. Auditory expertise: Multivariate and univariate tests

The multivariate null hypothesis that participants come from the
same population was rejected (ANOVA-type test statistic = 4.254, dfl =
11.616, df2 = 301.082, p-value <0.0001), confirming that groups do
indeed exhibit overall different degrees of auditory ability. After FDR
correction, the null hypothesis of stochastic equality between experts
and controls was rejected at the 0.05 level on all tasks except duration
discrimination, intensity discrimination, and stochastic auditory scene
(full details of test statistics can be found in Table 3). On perceptual
tasks, both students of audio engineering and musical instrumentalists
had significantly lower thresholds for pitch discrimination and inter-
aural time difference tasks than controls. Musicians also showed
significantly lower thresholds than controls on sinusoidal amplitude
modulation discrimination and interaural level difference tasks (Fig. 3).
On auditory scene tasks, musicians were more accurate than controls on
the sustained auditory selective attention task, while audio engineers
were more accurate than controls on the auditory scene recall task.
Finally, musicians, but not engineers, showed significantly lower SNR
thresholds for the speech-in-babble-noise task (Fig. 4). Pitch discrimi-
nation had the largest expertise-related effect size across all auditory
tasks for both expert cohorts compared to the control group, with me-
dian thresholds for audio engineers (median = 3 Hz, or 0.9% difference
reference tone, MAD = 1.659 Hz (0.5%) and musicians (median = 3 Hz
(0.9%), MAD = 1.248 Hz (0.37%) being approximately half of those of
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control participants (median = 6.667 Hz (2%), MAD = 3.983 Hz (1.2%).
3.2. Differentiating auditory expert cohorts: Exploratory analyses

3.2.1. Random forests: Variable importance

To summarise the variables in our dataset that can best discriminate
between musicians and audio engineers and rank their relevance, we
calculated conditional permutation importance - i.e., mean decrease in
classification accuracy following a permutation of a given predictor - of
arandom forest classifier built on all variables in our dataset. The overall
accuracy of the full model including all 20 predictors was 80%. A
reduced model (Fig. 5) which only included variables with importance
above 2.5% had an accuracy of 82.5%. The predictor with the largest
influence on prediction accuracy was singing abilities (25.6%), followed
by speech-in-babble-noise thresholds and musical training (~15%), and
emotional stability (5.4%). Minor contributions between 2.5% and 5%
were obtained for active engagement and 2 psychophysical tasks,
interaural time difference and duration discrimination. Bivariate
Spearman correlations among the top three predictors revealed that
while singing abilities and musical training were strongly correlated for
both musicians (p = 0.53, 90% CI [0.14, 0.83]) and audio engineers (p =
0.62, 90% CI [0.20, 0.86]), speech-in-babble-noise thresholds had no
correlation with either predictor.

3.2.2. Auditory tasks

Data plots (i.e., Fig. 3, Fig. 4) and descriptive statistics were used to
integrate the results from the random forest importance classification
and interpret the directionality of its prediction. In terms of behavioural
variables, speech-in-babble-noise thresholds of musicians (median =
—9.87 dB SNR, MAD = 1.82 dB SNR) were significantly lower than both
controls (median = —8.61 dB SNR, MAD = 1.42 dB SNR) and engineers
(median = —8.15 dB SNR, MAD = 1.62 dB SNR; post-hoc Brunner-
Munzel, effect size = 0.674, test statistic = 3.347, p = 0.003), although
musicians were also the most inconsistent within group and displayed
the largest range (20.5 dB SNR) of responses on this task - a point we
return to below, and in Experiment 2. As for the other auditory scene
performance tasks which did not add a unique contribution to classifi-
cation accuracy according to the random forest model, median sustained
auditory selective attention d’ was marginally higher for the musician
group (0.777, MAD = 0.173) than audio engineers (0.709, MAD =
0.148), while the opposite was true for the auditory scene recall task
(audio engineers: median = 1.411, MAD = 0.307; musicians: median =
1.187, MAD = 0.519), although these differences were not statistically
significant.” As for psychophysical tasks, with the exception of sinusoi-
dal amplitude modulation discrimination, audio engineers’ median
thresholds were the lowest across all tasks, albeit by also a very small
margin. The most apparent difference between expert cohorts (Fig. 3)
was duration discrimination (audio engineers: median = 29.03 ms,
MAD = 5.98 ms; musicians: median = 32.55 ms, MAD = 9.47 ms),
although a post-hoc test showed this difference was also not statistically
significant at the 0.05 level (post-hoc Brunner-Munzel, effect size =
0.408 test statistic = 1.927, p = 0.063).

3.2.3. Musical expertise and personality

Musical sophistication (Fig. S1) and personality traits (Fig. S2) were
among the most important variables in the discrimination of musicians
and audio engineers. Unsurprisingly, musicians scored substantially
higher than audio engineers in the musical training (post-hoc Brunner-
Munzel, effect size = 0.693, test statistic = 3.311, p = 0.004) and
singing abilities dimensions (post-hoc Brunner-Munzel, effect size =
1.1486983, test statistic = 6.505, p < 0.001) of the Gold-MSI ques-
tionnaire, but also marginally higher in the perceptual abilities (post-

4 An experiment with much larger sample sizes would be needed to appro-
priately test the statistical significance of such small effect sizes.
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Fig. 2. Musical training background. Left plot represents Musical Training dimension scores from the Gold-MSI questionnaire. Data points above the dashed line
correspond to musicians and audio engineers with a matching degree of musical training, defined by a Gold-MSI score higher or equal to 37, which captures all but
one musician. Right plot shows the musical training background of the three cohorts, as well as musical training clusters, in terms of years of formal training and
regular practice of a musical instrument. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3

Results of many-to-one testing procedure between audio engineers (E) and musicians (M) compared to controls (C). Tasks: pitch discrimination (PD), duration
discrimination (DD), intensity discrimination (ID), sinusoidal amplitude modulation discrimination (SAMD), interaural level difference (ILD), interaural time dif-
ference (ITD), sustained auditory selective attention (SASA), auditory scene recall (ASR), stochastic auditory scene (StAS), speech in babble noise (SIN). H,: Alternative
hypotheses expressed as the probability that a random participant from the audio engineer group (E > C) or musician group (M > C) would have a higher score than a
random participant from the control group. Rel. Effect [95% CI]: relative effects with one-tailed 95% confidence interval. Effect size: log-odds type effect size
comparable in magnitude to Cohen’s d. Statistic: test statistic. p: test significance with strong control of the family-wise error rate within each task. pomp;: significance
of the omnibus test. prpr: significance of the omnibus test corrected for false discovery rate across all tasks (bolded if p < 0.05).

Task H, Rel. Effect [95% CI] Effect Size Statistic p Pomni PrDR
Pitch E>C 0.376 [0.236; 1.000] 0.938 5.316 <0.001
Discrimination M>C 0.313 [0.170; 1.000] 0.782 4.336 <0.001 <0.001 <0.001
Duration E>C 0.081 [—0.098; 1.000] 0.192 0.888 0.288 0.288 0.320
Discrimination M>C ~0.073 [~0.259; 1.000] —0.173 -0.770 0.885
Intensity E>C 0.150 [—0.031; 1.000] 0.355 1.631 0.094 0.094 0118
Discrimination M>C 0.130 [—0.048; 1.000] 0.309 1.438 0.131
Sin. Amplitude E>C 0.136 [0.046; 1.000] 0.324 1.466 0.125 0.016 0.030
Modulation Detection M>C 0.220 [0.046; 1.000] 0.525 2.479 0.016 : .
Interaural Level E>C 0.177 [-0.019; 1.000] 0.423 1.783 0.072 0.025 0.036
Difference Discrimination M>C 0.208 [0.029; 1.000] 0.497 2.296 0.025 : :
Interaural Time E>C 0.235 [0.079; 1.000] 0.564 2.984 0.005 0.005 0.016
Difference Discrimination M>C 0.172 [0.004; 1.000] 0.413 2.026 0.045 . )
Sustained Auditory E>C 0.132 [0.034; 1.000] 0.318 1.575 0.109
Selective Attention M>C 0.275 [0.123; 1.000] 0.663 3.606 <0.001 <0.001 0-004
Auditory Scene E>C 0.231 [0.049; 1.000] 0.554 2.491 0.016 0.016 0.030
Recall M>C 0.146 [—0.032; 1.000] 0.349 1.606 0.097 ) )
Stochastic E>C —0.084 [-0.278; 1.000] —0.199 —0.866 0.918 0,689 0.639
Auditory Scene M>C —0.004 [—0.169; 1.000] —0.009 —0.044 0.689 ) :
L E>C —0.063 [-0.220; 1.000] -0.151 -0.785 0.900
Speech in Noise M>C 0.207 [0.040; 1.000] 05 2.447 0.018 0.018 0-030
hoc Brunner-Munzel, effect size = 0.498, test statistic = 2.393, p = seeing themselves as less emotionally stable than audio engineers. Mu-
0.028) and emotions (post-hoc Brunner-Munzel, effect size = 0.448, test sicians and audio engineers also appeared to cluster around equally
statistic = 2.134, p = 0.041) dimensions. However, a comparable level higher scores compared to controls in the openness to experience
of active engagement with music was present in musicians compared to dimension, which included an item about creativity.

audio engineers. Results from the TIPI questionnaire revealed significant
differences in emotional stability (post-hoc Brunner-Munzel, effect size
= —0.523, test statistic = —2.569, p = 0.015), with musicians on average
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Fig. 3. Dot plots, same area violin plots, and box plots for all psychophysical measures by group. Just noticeable differences are reported on the y axes with opposite
signs in order for a positive effect size to consistently correspond to a better performance across tasks. Brackets above graphs display log-odds-type effect size and

one-tailed p values when p < 0.05.

3.3. Musical training and audio engineering experience

Clustering participants based on their musical training background
(see 2.4.5) did not affect previous results: musicians displayed lower
speech-in-babble thresholds than audio engineers with a matched de-
gree of musical training (post-hoc Brunner-Munzel, effect size = 0.733,
test statistic = 2.93, p = 0.019) and there were no significant differences
in auditory ability between audio engineers with different musical
backgrounds (nonparametric MANOVA, permutation test of ANOVA-
type statistic with 10,000 replications, p = 0.687). On the other hand,
audio engineering experience was moderately correlated with both
stochastic auditory scene (p = 0.43, 90% CI [0.08, 0.70]) and speech in
babble noise (p = 0.49, 90% CI [0.13, 0.78]) performance, although
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even the most trained participants’ scores fell within the range of control
participants.

3.4. Associations between fine perception, auditory scene analysis, and
speech in noise

Among the auditory scene tasks, sustained auditory selective atten-
tion d’ scores appeared to be the most consistently (i.e., across groups)
associated with psychophysical thresholds, in particular wit