
BIROn - Birkbeck Institutional Research Online

Enabling Open Access to Birkbeck’s Research Degree output

Scaling data capacity and throughput in encrypted
deduplication with segment chunks and index local-
ity

https://eprints.bbk.ac.uk/id/eprint/54728/

Version: Full Version

Citation: Ammons, Jaybe Mark (2024) Scaling data capacity and
throughput in encrypted deduplication with segment chunks and index
locality. [Thesis] (Unpublished)

© 2020 The Author(s)

All material available through BIROn is protected by intellectual property law, including copy-
right law.
Any use made of the contents should comply with the relevant law.

Deposit Guide
Contact: email

https://eprints.bbk.ac.uk/id/eprint/54728/
https://eprints.bbk.ac.uk/theses.html
mailto:lib-eprints@bbk.ac.uk

SCALING DATA CAPACITY AND THROUGHPUT IN ENCRYPTED

DEDUPLICATION WITH SEGMENT CHUNKS AND INDEX

LOCALITY

Jaybe Ammons

2024

A thesis submitted to the University of London

for the degree of Doctor of Philosophy

Birkbeck, University of London

School of Computing and Mathematical Sciences

Declaration

This thesis is the result of my work, except where explicitly acknowledged in the text.

Abstract
Encrypted deduplication backup systems play a critical role in modern data man-

agement by enhancing storage efficiency while ensuring data security. However, they

face challenges such as excessive metadata storage in long-term backups and dedupli-

cation indexes that exceed available server memory. Heavy backup workloads often

experience reduced throughput due to resource contention when concurrently dedu-

plicating multiple client backup streams.

This study introduces the SCAIL suite of algorithms – SCAIL, R-SCAIL, and their

multiprocessor adaptations, P-SCAIL and PR-SCAIL – which address these issues.

These algorithms significantly reduce metadata storage and memory usage while mit-

igating resource contention. These optimisations enable a substantial scale-up of both

data volume and concurrent client capacities, extending well beyond the limitations

of conventional encrypted deduplication methods. Moreover, the SCAIL algorithms

uniquely combine the data throughput advantages of coarse-grained segment-based

deduplication with the high data compression of fine-grained chunk-based deduplica-

tion.

The SCAIL suite adapts Metadedup’s approach to metadata deduplication for client-

side deduplication by employing a memory-based index. This index utilises finger-

prints generated from the metadata of data segments to identify duplicate content effi-

ciently. This strategy enables the rapid elimination of duplicate segments, significantly

streamlining the deduplication process while reducing metadata uploads and the over-

all storage footprint. With this coarse level of deduplication, SCAIL may sometimes re-

upload previously saved chunks. To mitigate this, R-SCAIL introduces resemblance-

based, chunk-level client-side deduplication, effectively reducing redundant uploads.

This refinement trades some of SCAIL’s speed for reduced upload volume, resulting

in R-SCAIL operating at a slower throughput.

For server-side deduplication, the SCAIL family adapts Sorted Deduplication’s in-

dex locality technique to perform exact, cross-client chunk-level deduplication in a

very efficient single sequential pass through the disk-based index.

By harnessing multiprocessor server architectures, P-SCAIL and PR-SCAIL intro-

duce data and task parallelism, significantly boosting throughput for deduplication

processes both on client-side and server-side deduplication.

Our evaluation with two widely used public backup datasets shows that the SCAIL

suite significantly reduces memory and storage requirements, thereby enhancing server

capacity to manage larger data volumes and support more concurrent clients. P-SCAIL

reached hundreds of GiB/second in client-side deduplication, and PR-SCAIL reached

a range of tens of GiB/second. Both systems are compatible with the throughput trans-

fer rates of modern hard-disk drives during server-side deduplication. The resulting

high throughput, low memory, and storage requirements of the SCAIL family signifi-

cantly advance the field of encrypted deduplication.

Acknowledgements

The academic team at Birkbeck, University of London have provided input through-

out this work.

I would like to extend my profound gratitude to my supervisors, Trevor Fenner and

David Weston. Trevor, after guiding me through my Master’s thesis on secure dedu-

plication, not only encouraged me to delve deeper with a PhD but also introduced me

to David, an exemplary co-supervisor. Together, Trevor and David have been instru-

mental in shaping my academic journey, offering invaluable insights on my conference

and journal paper submissions and providing unwavering support throughout my re-

search for this thesis.

Engaging in discussions with fellow students improved my work. I’d like to extend

special gratitude to Bernard Fromson for our weekly discussions during the extended

days of the COVID lockdowns. These conversations allowed me to articulate and re-

fine my ideas, and I’m grateful for his generosity in sharing tools and techniques with

me.

My wife, Shelly, has been supportive throughout and provided encouragement and

comfort.

Contents

Contents 7

List of Figures 14

List of Tables 21

Acronyms 23

1 Introduction 25

1.1 Problem settings . 25

1.2 Objectives . 29

1.3 Contributions . 30

1.4 Publications . 34

1.5 Thesis Structure and Methodology . 34

2 Related Work 36

2.1 Data Deduplication . 36

2.1.1 Chunking and Fingerprinting . 37

2.1.2 Deduplication Location . 38

2.2 Encrypted Deduplication . 39

2.2.1 Challenges in Encrypted Deduplication 40

2.3 Current Challenges and Limitations . 41

7

2.3.1 The Disk Bottleneck . 41

2.3.2 Resource Contention . 42

2.3.3 Metadata Storage . 42

2.4 Representative Designs in Encrypted Deduplication 43

2.4.1 Reducing Index Size with Segments 43

2.4.2 Fingerdiff . 43

2.4.3 Bimodal . 44

2.4.4 Algorithm Terminology and Notations 47

2.5 Metadedup . 49

2.5.1 System Model . 49

2.5.2 Building Encrypted Chunks . 51

2.5.3 Building Encrypted Metachunks 52

2.5.4 File Recipes and Key Recipes . 52

2.5.5 Backup and Metadata Deduplication 52

2.5.6 Restore Operations . 53

2.5.7 Security Analysis . 55

2.5.8 Limitations . 58

2.5.9 Evaluation . 59

2.5.10 Metadedup Datasets . 59

2.5.11 Metadedup Summary . 60

2.6 Sorted Deduplication . 61

2.6.1 Background . 62

2.6.2 Design . 63

2.6.3 Limitations . 65

2.6.4 Evaluation Results . 66

2.7 Resemblance Mergence Deduplication (RMD) 68

2.7.1 Security Analysis . 68

2.7.2 Limitations . 69

8

2.8 Research Gap and Motivation . 70

2.9 Summary . 72

3 SCAIL: Segment Chunks And Index Locality 73

3.1 Introduction . 73

3.2 System Design . 74

3.3 SCAIL Algorithm . 75

3.3.1 Stage 1. Client: Chunk Processing and Query Construction. . . . 75

3.3.2 Stage 2. Server: Metachunk Fingerprint Lookup. 77

3.3.3 Stage 3. Client: Chunk and Metadata Assembly and Upload. . . 78

3.3.4 Stage 4. Server: Chunk Deduplication and Index Updates. 80

3.3.5 SCAIL Restore . 84

3.4 The Roles of Metachunks and Metachunk Fingerprints 86

3.5 Server-side Chunk Deduplication . 87

3.6 Implementing Ownership . 89

3.7 Containers . 89

3.8 Redundant Data Uploads . 90

3.9 Threat Model . 93

3.9.1 Internal Attackers . 94

3.9.2 External Attackers . 94

3.10 Security Analysis . 94

3.10.1 Data Confidentiality . 94

3.10.2 Internal Attack Scenarios . 95

3.10.3 External Attack Scenarios . 99

3.10.4 Summary . 102

3.11 Limitations . 103

3.11.1 Scalability Constraints with Very Large Datasets 103

3.11.2 Performance Compared to RAM Index-Based Systems 103

9

3.11.3 Impact of Limited Client Numbers on Resource Contention . . . 103

3.11.4 Challenges with Low-change Datasets 104

3.11.5 Read and Write Amplification Issues 104

3.11.6 Limitations Due to Client-Side Deduplication Restrictions 105

3.11.7 Computational Overhead from Encryption 105

3.11.8 Dependence on Batch Uploads . 105

3.11.9 Single Batch Server-side Deduplication Limitation 105

3.12 Evaluation . 106

3.12.1 Trace-driven Simulation . 106

3.13 Evaluation Results . 107

3.14 Summary . 111

4 P-SCAIL: Parallel SCAIL 112

4.1 Introduction . 112

4.2 Parallel Client-side Deduplication . 113

4.3 Batched, Parallel Server-side Deduplication 113

4.4 Improved Caching . 115

4.5 Security Analysis . 118

4.6 Limitations . 118

4.6.1 Processor Count Dependencies . 118

4.6.2 Additional Storage For Cache-Backing Files 118

4.7 Evaluation . 119

4.7.1 Deduplication Throughput . 119

4.7.2 Memory Use and Upload Volume 125

4.7.3 Upload Overhead . 126

4.8 Summary . 128

5 PR-SCAIL: Parallel Resemblance SCAIL 130

5.1 Introduction . 130

10

5.2 P-SCAIL Overview . 131

5.3 Redundant Segment Data Generation . 131

5.4 Reducing Redundant Segment Data . 133

5.5 Design of PR-SCAIL . 134

5.6 Modifying P-SCAIL for PR-SCAIL . 134

5.6.1 Stage 1: Building the Lookup Query 134

5.6.2 Stage 2: Lookup for Deduplication 136

5.6.3 Stage 3: Assemble Missing Metachunks and Chunks 140

5.6.4 Stage 4: Cross-User Deduplication 141

5.7 Comparison of PR-SCAIL with the RMD design 144

5.8 Security Analysis . 145

5.9 Limitations . 145

5.10 Evaluation . 146

5.10.1 Illustrating The Efficiency of Segment-based Resemblance Dedu-

plication . 146

5.10.2 Reducing RSD Volume for various segment sizes 148

5.10.3 Total Upload Volume . 149

5.10.4 Memory Requirements . 153

5.10.5 PR-SCAIL Throughput Analysis 154

5.11 Summary . 157

6 Detailed Comparison 158

6.1 Introduction . 158

6.2 Algorithm and Dataset Recap . 158

6.3 Memory Requirements . 160

6.3.1 FSL Dataset Memory Requirements 162

6.3.2 MS Dataset Memory Requirements 163

6.3.3 Summary of Memory Requirements Findings 164

11

6.4 Server Storage Requirements . 165

6.4.1 FSL Server Storage Requirements 166

6.4.2 MS Server Storage Requirements 168

6.4.3 Summary of Storage Findings . 169

6.5 Upload Volume . 169

6.5.1 FSL Upload Volume . 170

6.5.2 MS Upload Volume . 176

6.5.3 Insights from Upload Volume Analysis 180

6.6 Single-processor Throughput . 182

6.6.1 FSL Single-processor Throughput 183

6.6.2 MS Single-processor Throughput 185

6.6.3 Summary of Single Processor Throughput Analysis 188

6.7 Multiprocessor Throughput . 188

6.7.1 FSL Multiprocessor Throughput 189

6.7.2 MS Multiprocessor Throughput 192

6.7.3 Summary of Multiprocessor Analysis 194

6.8 Comparative Analysis of Server Component Costs 195

6.8.1 FSL Component Costs . 195

6.8.2 MS Component Costs . 196

6.8.3 Summary of Cost Findings . 197

6.9 Comparative Findings . 198

6.9.1 Efficiency and Performance Trade-offs 200

6.9.2 Suitability for Different Workloads 202

6.9.3 Final Recommendations . 203

7 Conclusion 204

7.1 Revisiting Our Objectives . 205

7.2 Implications and Significance . 210

12

7.3 Limitations . 211

7.4 Future Work: Adaptive Client-side Deduplication 213

7.5 Future Work: Adaptive Server-side Deduplicaton 215

7.6 Conclusion . 216

Bibliography 217

13

List of Figures

1.1 Data deduplication significantly reduces server storage requirements.

The left area chart illustrates the growth of logical (pre-deduplication)

data, while the right chart shows the growth of physical (deduplicated)

data for the FSL dataset. Note that the two charts use different scales.

The dashed line on the left projects physical data onto the logical scale

for comparison. 26

1.2 The line chart shows metadata storage (dashed line) growing to nearly

match the size of data storage (solid line) for the FSL Dataset (see Sub-

section 3.12.1 for dataset details). 27

1.3 Sorted Deduplication’s [36] Sorted Chunk Indexing (SCI) Example: Mul-

tiple clients’ sorted-CFP lists are merged with CFPs of previously saved

chunks in SCI bins. Any repeated CFPs found in the merge are either in

multiple client uploads (cross-client duplicates 7D and D8) or are previ-

ously saved duplicates (6A and BC). 29

2.1 Client-side Deduplication in 3 stages. Chunk Fingerprint (CFP)s are sent

to the server, which returns the list of chunks not yet stored. The client

uploads these chunks and the server stores them. 39

2.2 Legend for Notation and Functions Used in Algorithms 48

14

2.3 Illustration of Metadedup’s metachunk construction process. Metadata

from segment chunks are aggregated into a Metadata Chunk, termed

a metachunk, which is encrypted, generating the hash key, encrypted

metachunk, and metachunk fingerprint. File Recipes comprise lists of

metachunk fingerprints, while the Key Recipes contain the correspond-

ing encryption keys. Chart reproduced from Figure 3 in [44]. 51

2.4 Sorted Deduplication’s Client-Server Communication. Clients send sorted

fingerprints to the server, which returns the container ids for previously

saved chunks, and nil for new chunks. The client builds restore recipes

and sends these and the new chunk data to the server. This figure is

reproduced from Figure 2 in [36]. 64

2.5 Comparison of I/O patterns for 18th backup of the MS dataset, with

Data Domain File System (left), Sparse Indexing (middle) and Sorted

Chunk Indexing (right). Sorted Chunk Indexing requires only a small

number of sequential disk I/Os. This figure is reproduced from Figure

10 in [36]. 67

3.1 SCAIL system data flow in four stages, alternating between Client and

Server. Client-side deduplication is performed in stages 1-3. 75

3.2 Example of Container Allocation in Stage 4. Starting on the left, CFPs, in

recipe order are looked up in the cross-client and previously-saved hash

tables. New chunks are allocated to the data container cache. The CFP

and current container ID are then stored in the New Chunk Location

Cache. 83

3.3 Disk I/O the chunk-level deduplication in SCAIL Stage 4. The top charts

show the number of I/O for each backup generation of the FSL and MS

Datasets. The bottom charts show the I/Os for a single, selected backup

generation. 88

15

3.4 Breakdown of the cumulative upload volume by component type for

the FSL (top) and MS Dataset (bottom), comparing the Base and SCAIL

techniques. SCAIL substantially reduces metadata upload volume, but

introduces RSD upload volume. 91

3.5 Stacked bar chart of total costs after all backups, showing the break-

down of deduplicated data, metadata and memory costs for the FSL

(top) and MS (bottom) datasets. 110

4.1 Client-side and server-side deduplication throughput for the FSL and

MS datasets, comparing single processor SCAIL (first x-bar) and multi-

processor P-SCAIL (with 2, 4, 8 and 16 processors). 122

4.2 Client-side and Server-side Deduplication Throughput with 16 processes

on the MS dataset. The number of client streams is repeatedly doubled

from 16 to 128. As larger client counts are reached, processor load starts

to become balanced, resulting in less idle time and greater throughput. . 124

4.3 Deduplication processing and storage costs using the prices from Ta-

ble 4.2 for the FSL and MS datasets. Base’s metadata storage costs are

reduced by metadata deduplication of File/Key Recipes, and memory

requirements are further reduced by P-SCAIL. 127

5.1 Breakdown of upload volume by component type for the FSL (left) and

MS Dataset (right), using the P-SCAIL technique. P-SCAIL substantially

reduces metadata upload volume, but introduces RSD upload volume. . 131

5.2 Heatmaps reflecting the count of previously stored chunks in uploads

before and after segment-based resemblance deduplication. 146

5.3 Breakdown of upload cumulative volume by component type for the

FSL (top) and MS (bottom) datasets for the Base, P-SCAIL and PR-SCAIL

techniques. 149

16

5.4 Throughput measurements in GiB/second for Client-side (5.4a, 5.4b)

and Server-side (5.4c, 5.4d) deduplication on the FSL and MS datasets. . 155

5.5 Client-side and Server-side Median Deduplication Throughput with 16

processes on the MS dataset, as well as the slowest and fastest run rep-

resented as Range values. 156

6.1 FSL Dataset: Stacked areas charts showing memory requirements by

component in GiB for the Base and PR-SCAIL schemes over 115 back-

ups. The horizontal dashed line on the Base chart is the total memory

requirements for PR-SCAIL. Scales differ between charts. 161

6.2 MS Dataset: Stacked area charts of memory requirements (GiB) by com-

ponent across eight backups for the Base and PR-SCAIL schemes. The

dashed line in the Base chart shows the total memory requirement for

PR-SCAIL. Scales differ between charts. 163

6.3 FSL Dataset: Stacked areas charts showing cumulative data and meta-

data storage volume on the server for Base and PR-SCAIL with 8 KiB

chunks and 2 MiB metachunks. 166

6.4 FSL Dataset: Stacked area chart showing accumulated metadata stor-

age volume by component. Scales vary across charts. The dashed line

in the Base chart shows P-SCAIL/PR-SCAIL’s accumulated volume for

comparison. Lookup Index storage is omitted due to its small size. . . . 167

6.5 MS Dataset: Stacked areas chart showing sccumulated server storage

volume by component for the Base, P-SCAIL and PR-SCAIL schemes. . 168

6.6 MS Dataset: Stacked areas chart showing accumulated metadata server

storage volume by component. The dashed line in the Base graph indi-

cates the volume of metadata storage required for the SCAIL schemes.

Not all graphs use the same scale. 168

17

6.7 FSL Dataset: Stacked area chart showing accumulated upload volume

by component for the Base, P-SCAIL and PR-SCAIL schemes. 171

6.8 FSL Dataset: Stacked area chart showing accumulated upload volume

by component, after removing cross-user and chunk data upload from

Figure 6.7. 172

6.9 FSL Dataset: Total upload volume by component. The Base scheme is

the first bar, subsequent bars labeled PS-x indicate a P-SCAIL scheme

with segment size x in MiB. 174

6.10 FSL Dataset: Percentage of Redundant Segment Data (RSD) of the total

upload volume, as a function of segment size, showing observed (dots)

and predicted (line) percentage of RSD across a range of segment sizes. . 175

6.11 MS Dataset: Stacked area chart showing accumulated upload volume

by component for Base, P-SCAIL and PR-SCAIL. 177

6.12 MS Dataset: Stacked areas charts for the non-data Upload Volume Chart

for 2 MiB Segments. 178

6.13 MS Dataset: Stacked bar chart showing the total upload component vol-

umes after the Eight Backups of the MS Dataset. 179

6.14 MS Dataset: Percentage of Redundant Segment Data (RSD) of the total

upload volume, as a function of segment size, showing observed (dots)

and predicted (line) percentage of RSD across a range of segment sizes. . 180

6.15 FSL Dataset: Single-Processor Throughput for Client-Side Deduplica-

tion. SCAIL and R-SCAIL significantly outperform Base. While R-SCAIL

is much slower than SCAIL, it is faster than Base. 183

6.16 FSL Dataset: Single-Processor Cumulative Average Throughput for Server-

Side Deduplication. Base substantially outperforms SCAIL and R-SCAIL. 185

18

6.17 MS Dataset: Throughput for Client-Side Deduplication. All schemes use

8 KiB chunks, SCAIL and R-SCAIL use 2 MiB segments. The chart de-

picts the throughput of Base, SCAIL, and R-SCAIL, highlighting SCAIL’s

substantial lead and R-SCAIL’s notable performance over Base. 186

6.18 MS Dataset: Throughput for Server-Side Deduplication. Base outper-

forms SCAIL, and R-SCAIL, but all schemes show throughput above

HDD transfer rates. 187

6.19 FSL Dataset: Multiprocessor Throughput Performance of P-SCAIL with

Different Segment Sizes. Larger segment sizes result in higher through-

put. A dropoff in throughput after 95 backups is caused by reduced

logical data submitted for backup, which can be observed in Figure 6.20. 189

6.20 FSL Dataset: Logical Size of Backup Volume for each Backup Genera-

tion. After the 95th backup, the volume of backup data falls off. This

corresponds to the reduced throughput observed in Figure 6.19. 190

6.21 FSL Dataset: Throughput in GiB/second as a function of segment size,

showing observed (dots) and predicted (line) percentage of RSD across

a range of segment sizes. 191

6.22 MS Dataset: Multiprocessor Throughput Performance of P-SCAIL with

Different Segment Sizes. Larger segments produce higher throughput.

Throughput also falls gradually for all segment sizes as the volume of

data to be backed up falls, as shown in Figure 6.23. 192

6.23 MS Dataset: Logical Size of Backup Volume for each Backup Generation.

The chart shows that the logical data presented to the server for backup

falls from 7.7 TiB on the first backup to 3.4 TiB on the last. 193

6.24 FSL Dataset: Client-side deduplication throughput in GiB/second as a

function of segment size, showing observed (dots) and predicted (line)

percentage of RSD across a range of segment sizes. 194

19

6.25 FSL Dataset: Cumulative backup costs broken down by data, metadata

and memory components, for the Base, P-SCAIL and PR-SCAIL schemes. 196

6.26 MS Dataset: Stacked area chart showing component costs. All schemes

use 8 KiB chunks, and P-SCAIL and PR-SCAIL use 2 MiB segments. . . . 197

6.27 FSL Dataset: These two charts allow you to compare, for a given seg-

ment size, the expected RSD% (top chart) and Throughput (bottom chart).199

6.28 MS Dataset: These two charts allow you to compare, for a given segment

size, the expected RSD% (top chart) and Throughput (bottom chart). . . 201

20

List of Tables

2.1 Variables Used in Deduplication Algorithms 48

2.2 Research gap showing feature support across schemes. Client-side dedu-

plication throughput figures in the bottom row are for the FSL dataset

described in Subsection 3.12.1. 70

3.1 Segment Size Effect on Memory and Upload Size in SCAIL 108

4.1 Segment Size Effect on Memory and Upload Size in P-SCAIL 125

4.2 Memory and storage prices in US dollars from www.amazon.com gath-

ered June 2023. 127

5.1 Segment Size Effect on Redundant Segment Data Volume 148

5.2 Total upload volume and the difference in upload volume between Base

and PR-SCAIL . 151

5.3 Effect of Segment Size on Memory Usage for Metachunk Fingerprint

(MFP) and Representative Fingerprint (RFP) Indexes. Index sizes in MiB

of RAM, with the number of index elements in parenthesis. 153

6.1 FSL Dataset: Client-side Deduplication Throughput with 16 Processors

by Segment Size for P-SCAIL and PR-SCAIL 190

6.2 MS Dataset: Client-side Deduplication Throughput with 16 Processors

by Segment Size for P-SCAIL and PR-SCAIL 193

21

6.3 Recommended Schemes and Segment Sizes for Different Upload Con-

straint Scenarios. 203

22

Acronyms

P-SCAIL Parallel SCAIL. 3, 4, 16, 17, 20, 32, 33, 35, 112, 113, 115, 118, 120–123, 125–

128, 130–134, 136, 139, 140, 145, 146, 148–151, 153, 154, 156–159, 161–164, 166–182,

188–192, 194–198, 202, 205, 209, 210, 212–214, 216

PR-SCAIL Parallel Resemblance SCAIL. 3, 4, 16, 17, 20, 21, 33–35, 130, 134, 136, 139–

141, 144–146, 148–155, 157–159, 161–164, 166–174, 176, 177, 180–182, 186, 188, 189,

191, 193, 195–198, 205, 208–214, 216

R-SCAIL Resemblance SCAIL. 3, 18, 19, 33, 183–188

CDC Content-Defined Chunking. 26, 37, 77, 86, 107, 131, 132

CFP Chunk Fingerprint. 14, 15, 26, 30, 36, 38, 39, 42, 43, 49, 52, 53, 58, 63–66, 68, 77, 78,

80, 83, 87, 94–96, 98, 102, 108, 113–115, 118, 120, 121, 125, 126, 134, 136, 138, 139,

144, 147, 148, 150, 159, 161–164, 166, 167, 171, 184, 185, 195, 209, 214, 215

CID Container ID. 64, 65, 83, 87, 90, 114, 115, 118, 121, 136, 138, 144, 161, 162

DBA Dynamic Bloom filter Array. 68

DER Duplicate Elimination Ratio. 49

LSM tree Log-Structured Merge-Tree. 87

23

MFP Metachunk Fingerprint. 21, 30, 52, 53, 58, 60, 74, 77, 78, 80, 83, 86, 94, 96–98, 109,

113, 120, 121, 125, 126, 131, 134, 136, 138, 140, 144, 147, 150, 153, 161–164, 166, 167,

184, 206–208, 210, 211, 214

MLE Message-Locked Encryption. 31, 40, 42, 43, 77, 94, 95, 97, 99, 102, 118, 174, 207,

213

RFP Representative Fingerprint. 21, 134, 136, 138, 141, 153, 162, 166, 211, 214

RSD Redundant Segment Data. 16, 33, 34, 91–93, 109, 126, 130–134, 146, 148, 151, 152,

154, 157–159, 170–173, 175–181, 184, 191, 199, 201–203, 212, 213

SCAIL Segment Chunks And Index Locality. 3, 4, 15–19, 31–35, 43, 44, 47, 58, 71, 73–

75, 80, 86–95, 98–106, 108–113, 115, 118–123, 125, 126, 128, 130, 131, 141, 144, 145,

157, 158, 162–169, 173, 174, 178, 180, 182–188, 190, 195, 197, 198, 200, 202–206,

209–213, 216

SCI Sorted Chunk Indexing. 29, 31, 32, 61, 63, 66, 67, 73, 80, 87, 93, 94, 96, 103, 104,

107–109, 112–115, 118, 119, 124–126, 128, 156, 159, 161, 162, 207–209, 212, 213, 215

24

Chapter 1

Introduction

1.1 Problem settings

Encrypted data deduplication techniques significantly reduce server storage require-

ments for archival and backup workloads while preserving data privacy [8]. These

techniques distinguish between logical data — the original client data before dedupli-

cation — and physical data, which consists of deduplicated data chunks stored on the

server. Figure 1.1 shows the growth comparison between these two types of data.

The chart on the left shows the growth of logical volume over 115 backups of the FSL

Dataset to 56.24 TiB. The chart on the right uses a different scale, and shows how phys-

ical (unique, deduplicated) data grows to 431.91 GiB through the same 115 backups.

The dashed line at the bottom of the left-hand chart is the volume of physical data pro-

jected onto the chart of the logical data volume. For a detailed description of the FSL

Dataset, see Subsection 3.12.1.

The significant disparity between logical and physical data size underscores the ef-

fectiveness of deduplication techniques, quantified by the Duplicate Elimination Ratio

(DER). The DER, calculated as the ratio of logical data to physical data size, in this

case, is 133.33, which means that for every unit of physical storage used, 133.33 units

of logical data are represented. This high DER value emphasises the potential storage

savings, particularly in environments with high data redundancy. Understanding and

maximising DER is crucial for optimising deduplication systems, as it directly impacts

25

1.1 Problem settings 26

Figure 1.1: Data deduplication significantly reduces server storage requirements. The left area chart
illustrates the growth of logical (pre-deduplication) data, while the right chart shows the growth of
physical (deduplicated) data for the FSL dataset. Note that the two charts use different scales. The
dashed line on the left projects physical data onto the logical scale for comparison.

the storage cost and efficiency.

To facilitate a backup, clients convert file data into variable-sized chunks using

one of many Content-Defined Chunking (CDC) techniques (see Subsection 2.1.1), encrypt

each chunk, and generate a cryptographic hash of the encrypted chunk to create a

chunk fingerprint (CFP), serving as a compact identifier for the chunk. Lists of CFPs

and encrypted keys (further encrypted with a user-specific key), known as File and Key

Recipes for files, are compiled by the client and stored on the server for retrieval.

Two primary strategies are employed in the data deduplication domain: client-side

and server-side deduplication. Both strategies involve the lookup of Chunk Finger-

prints (CFPs) on the server to detect duplicate data. Despite its name, client-side dedu-

plication is effected on the server through coordination with the client. The client starts

the process by transmitting CFPs from a file recipe to the server. The server, in turn,

identifies chunks that have been previously stored and returns a list of fingerprints cor-

responding to “Missing” chunks—those not already stored. Consequently, only these

missing chunks are uploaded by the client, significantly reducing upload volumes.

1.1 Problem settings 27

Conversely, server-side deduplication requires transmitting all chunk data from the

client to the server. Upon receiving this data, the server performs duplicate detection

by looking up the fingerprints of the incoming chunks in an index of existing chunks,

adding the fingerprints of previously unseen chunks to the index. Through this pro-

cess, the server ensures that only one copy of each unique chunk is retained, effectively

eliminating duplicates post-upload.

For restoration operations under both deduplication strategies, clients request the

encrypted chunks from the server using fingerprints derived from the file recipes. The

clients then decrypt these chunks using the keys provided in the key recipes, facilitat-

ing the reconstruction of the original files.

Figure 1.2: The line chart shows metadata storage (dashed line) growing to nearly match the size
of data storage (solid line) for the FSL Dataset (see Subsection 3.12.1 for dataset details).

Long-duration backup workloads lead to a considerable accumulation of File and

Key Recipe storage. As illustrated in Figure 1.2, the storage required for metadata, pre-

dominantly consisting of File and Key Recipes, starts out modestly at approximately

4 GiB but scales with the logical data. In contrast, the physical data starts at 243.32

GiB and demonstrates gradual growth. This difference highlights a critical aspect of

1.1 Problem settings 28

deduplication systems. Even if the growth in storage required is slow, the associated

metadata continues to grow rapidly, underscoring the need for efficient metadata man-

agement alongside data deduplication strategies.

Metadedup, introduced by Li et al. [44] addressed this issue by gathering sequences

of encrypted chunks into segments. The metadata from the segment chunks are com-

bined to produce a chunk of metadata, which we term a metachunk. Taking the hash

of the encrypted metachunk produces a metachunk fingerprint (MFP) that is used to

identify it and is added to the chunk fingerprint index. The encrypted metachunk is

included in the backup data and thus is deduplicated in the same way as the chunk

data. Metadedup used a two-phase deduplication process that performed cross-user

deduplication only for server-side deduplication, not client-side deduplication.

A further challenge arises as the accumulated volume of deduplicated data stored

on the server increases. Eventually, it will become infeasible to hold the fingerprint

index in DRAM (which we refer to as memory throughout this document). Resorting

to a disk-based index would generate random disk seeks, increasing response time to

clients in answer to their duplicate lookup queries. Kaiser et al., in their paper on Sorted

Deduplication [36] noted that algorithm designers have used at least two approaches to

address this issue (the following quotation is italicised, the citations have been changed

to those in our bibliography):

• They reduce the index size so that it fits in main memory and trade this for a

reduced duplicate detection rate.

• They exploit chunk locality, i.e. the tendency for chunks in backup data

streams to reoccur together [49] and prefetch chunk fingerprints block-wise

from an internal data structure that catches this locality. For a single backup

stream, prefetching can generate a near-sequential disk access [37].

They noted that each stream has its distinct locality, generating contention for disk

access and cache space and that as more client streams are processed concurrently, the

1.2 Objectives 29

Figure 1.3: Sorted Deduplication’s [36] Sorted Chunk Indexing (SCI) Example: Multiple clients’
sorted-CFP lists are merged with CFPs of previously saved chunks in SCI bins. Any repeated CFPs
found in the merge are either in multiple client uploads (cross-client duplicates 7D and D8) or are
previously saved duplicates (6A and BC).

performance of the chunk locality schemes will degrade. They introduced the Sorted

Chunk Indexing (SCI) design shown in Figure 1.3, which can process all client backup

streams in a single pass with minimal disk I/O and low memory requirements. The

authors note, however, that the system was designed for performance rather than se-

curity, so it would be susceptible to various data privacy attacks in an unsecured envi-

ronment.

1.2 Objectives

We aspire to establish the feasibility of a single-server, exact, encrypted deduplication

system with the capacity and throughput to handle petabyte-scale datasets, capable of

supporting hundreds of concurrent client backups while reducing both upload volume

and storage requirements.

Specifically, our objectives are to:

1. Reduce Server Storage: Reduce server storage requirements by deduplicating

metadata as well as performing exact, chunk-level deduplication at scale.

2. Reduce Memory Requirements: Reduce server memory requirements associ-

ated with processing client-side and server-side deduplication, aiming to miti-

1.3 Contributions 30

gate disk bottlenecks and support petabyte scalability on a single server.

3. Fast Client-side Deduplication: Enable high-speed throughput for client-side

deduplication, demonstrating the feasibility of processing client backups in the

petabyte-scale of unique (deduplicated) data.

4. Ensure Data Privacy: Provide strong data privacy guarantees against brute force

and other attacks, and ensure resistance to side-channel attacks.

5. Reduce Resource Contention: Reduce, and if possible, eliminate resource con-

tention during client-side and server-side deduplication.

6. Increase Throughput with Parallelism: Increase deduplication throughput by

leveraging parallelism on multiprocessor systems.

7. Reduce Upload Volume: Achieve reduced upload volumes by incorporating

metadata deduplication and resemblance techniques.

1.3 Contributions

To achieve these objectives, we made the following contributions:

1. Metachunk Fingerprint (MFP) Index: We introduce the novel concept of a client-

side deduplication index that uses only the hash digest (the Metachunk Finger-

print (MFP)) of segments (groups of chunks) rather than individual chunk fin-

gerprints. To the best of our knowledge, no other deduplication scheme em-

ploys this approach (the Metadedup index contains both CFPs and MFPs.) This

reduces the memory required for client-side deduplication by up to 250 times,

helping achieve Objective 2.

This substantially reduced index size allows us to process large datasets within

memory, achieving single-processor, single-server client-side deduplication through-

1.3 Contributions 31

put of up to 100 GiB/second. This manifests as rapid response times for client

deduplication lookup queries, assisting us in achieving Objective 3.

The elimination of duplicate metachunks before storing them on the server re-

duces their storage volume by up to 97%, which helps reduce overall storage on

the server by up to 44%, achieving Objective 1.

Since the SCAIL family encrypts metachunks with MLE, this contributes to achiev-

ing Objective 4.

2. Secure Sorted Deduplication: We adapt Sorted Deduplication’s multi-client,

batch-oriented Sorted Chunk Indexing (SCI) concept into our chunk-level, server-

side deduplication to provide very low memory and disk I/O requirements for

chunk-level deduplication at scale, fulfilling Objectives 3 and 5. We ensure that

our design allocates chunks to data containers in recipe order to reduce fragmen-

tation, which assists in lowering file restore times.

Sorted Deduplication was designed with throughput performance as a primary

objective without considering data security, so we eliminated the attack-vulnerable

technique of client and server-shared construction of file recipes in our design,

assisting in achieving Objective 4.

3. Hybrid Two-Phase Deduplication: Our hybrid approach combines different

deduplication techniques within the two-phase structure to enhance flexibility

and performance. It avoids cross-user deduplication in client-side deduplication,

which supports Objective 4 by reducing side-channel attack risks.

In addition, since SCAIL aligns segment boundaries on chunk boundaries, it

enables us to combine the capacity and throughput advantages of client-side

segment-level deduplication with the storage reduction of server-side chunk-

level deduplication. As an example, our two-phase deduplication framework

can use 2 MiB segments for initial coarse-grained client-side deduplication, fol-

1.3 Contributions 32

lowed by cross-client server-side deduplication using fine-grained 8 KiB chunks.

Our approach significantly reduces server metadata storage, memory usage, pro-

cessing time and, typically, the volume of client uploads, contributing to Objec-

tives 1, 2, and 7.

4. SCAIL Prototype Implementation and Measurements: We implement proto-

types of competitive schemes and our design improvements, and gather mea-

surements on two trace-based, publicly available, real-world backup datasets. We

empirically compared the efficiency and performance metrics of existing designs

against our own, specifically regarding memory usage, server storage volume,

upload volume, and disk I/Os.

Our results demonstrate the feasibility of eliminating all disk I/O for dedupli-

cation index access at petabyte scales for client-side deduplication. We achieve

reduced upload volumes for server-side deduplication and a very low number

of disk I/Os, (at most 350 disk I/Os per backup generation in our evaluations),

enabling high-speed chunk-level deduplication and decreased storage volumes

from deduplicating metadata.

To ensure that servers have sufficient throughput to take advantage of the increased

capacities enabled by SCAIL, we made the following contributions in P-SCAIL:

5. Improved Cache Management: We designed an optimised cache management

strategy, which reduced SCI cache size used for server-side deduplication pro-

cessing on the MS dataset from 1.875 GiB to 128 MiB–a 93% reduction–compared

to SCAIL, helping achieve Objective 2.

6. Data and Task Parallelism: We utilised data and task parallelism to take ad-

vantage of multiprocessor servers, achieving speedups of up to 434 GiB/second

with 16 processors in client-side and 91 GiB/second in server-side deduplication

throughput, achieving Objective 6.

1.3 Contributions 33

7. P-SCAIL Prototype Implementation and Measurements: We implement a mul-

tiprocessor capable prototype system for P-SCAIL, and conduct extensive eval-

uations on our two real-world datasets, focusing on the effect of the number of

available processors and varying the segment size on throughput for both client-

side deduplication and server-side deduplication. Our results found the paral-

lelisation of the algorithm significantly increases throughput. We observed up

to a 60% increase in throughput for each doubling of available processors from

1 up to 16. We also found that increasing segment size can significantly increase

client-side deduplication throughput (95 GiB/second at 512 KiB segments to 434

GiB/second at 16 MiB segments).

To address the redundant uploads generated by the SCAIL and P-SCAIL algorithms,

we introduce the Resemblance SCAIL (R-SCAIL) and Parallel Resemblance SCAIL

(PR-SCAIL) techniques to minimise these excess uploads.

8. Reduce Redundant Segment Data Upload: R-SCAIL introduces a novel com-

bination of exact segment and near-exact chunk client-side deduplication to ad-

dress the Redundant Segment Data (RSD) upload volume inherent in the SCAIL

design. By applying resemblance detection techniques at the segment level, R-SCAIL

efficiently identifies similar segments and performs client-side chunk-level dedu-

plication with a low-memory footprint. Our results demonstrate significant re-

ductions in upload volume, eliminating up to 97% of RSD. This achieves Objec-

tive 7.

9. Segment Resemblance Task Parallelism: We introduce parallelism to the re-

semblance detection process to increase the throughput of client-side R-SCAIL

deduplication in PR-SCAIL. This throughput increase from 11 GiB/second to 68

GiB/second helps us achieve Objective 6.

10. PR-SCAIL Prototype Implementation and Measurements: We implement a pro-

totype system that can make use of segment resemblance in PR-SCAIL, vary seg-

1.4 Publications 34

ment sizes and measure single and multiple processor throughput, memory use

and index size, and the volume of RSD, on our two real-world datasets. We

found that, while the number of available processors has a big impact on client-

side PR-SCAIL deduplication, segment size increase produced almost no effect.

1.4 Publications

The following publication by the author related to this thesis is:

• J. Ammons, T. Fenner, and D. Weston, “SCAIL: Encrypted Deduplication With

Segment Chunks and Index Locality,” in 2022 IEEE International Conference on

Networking, Architecture and Storage (NAS), IEEE, 2022, pp. 1–9.

1.5 Thesis Structure and Methodology

This thesis is organised into seven main chapters, each focusing on a different aspect

of Encrypted Deduplication. The structure is designed to provide a logical progression

from the introduction of the problem to the detailed analysis of the proposed solutions

and their evaluation.

In this chapter we introduced the motivation for this research, the challenges faced

in encrypted deduplication, and the contributions made by this thesis.

Chapter 2 lays the foundational concepts necessary for understanding the topics

discussed in this thesis, including data deduplication techniques, encryption in dedu-

plication, and the associated challenges. It then examines related works, providing

context for the research and highlighting the gaps that this thesis aims to fill.

Chapter 3 presents SCAIL, the new algorithm proposed in this thesis, and describes

it in detail.

Chapter 4 parallelises SCAIL, specifically targeting enhancements both in system

throughput and response times. This includes the adoption of an optimised caching

1.5 Thesis Structure and Methodology 35

strategy and the implementation of task and data parallelism within the SCAIL frame-

work, aimed at streamlining processing efficiency.

Chapter 5 introduces PR-SCAIL, an enhancement to P-SCAIL’s client-side dedu-

plication that utilises resemblance techniques to reduce upload volume.

Chapter 6 offers a detailed comparative analysis of the proposed solutions against

existing methods using extensive datasets and workloads. This chapter also synthe-

sises the insights gained from the analysis and offers recommendations for various

scenarios.

Chapter 7 concludes the thesis by summarising the innovations and advancements

introduced, acknowledging the limitations of the current work, and suggesting direc-

tions for future research.

The methodology adopted in this thesis is primarily experimental. We begin by

reviewing the literature and existing technologies to understand the limitations of cur-

rent deduplication systems and identify opportunities for enhancements or synergistic

combinations of approaches. Subsequently, we utilise trace-driven simulations, em-

ploying real-world operational data traces to mimic authentic system usage and assess

the performance of our algorithms. This approach ensures our findings are relevant

and directly applicable to real-world scenarios. The research is iterative, with each

experimentation stage informing subsequent refinements to our algorithms and their

evaluation.

Chapter 2

Related Work

Data deduplication is a critical technology in storage systems, particularly in the con-

text of backups and archival storage. By eliminating redundant data, deduplication

techniques significantly reduce storage requirements and improve efficiency. How-

ever, the integration of encryption for data privacy introduces new challenges, as tra-

ditional deduplication methods are rendered ineffective when data is encrypted. This

chapter provides a comprehensive overview of data deduplication, discusses the chal-

lenges posed by encrypted data, and examines representative designs and current ap-

proaches that have shaped the field. The discussion culminates in identifying limita-

tions in existing methods, setting the stage for the solutions proposed in this thesis.

2.1 Data Deduplication

Historically, backups transitioned from tape drives to hard disk drives (HDDs), en-

abling random access and the identification of duplicate data segments [58, 72, 81].

Deduplication can be extended beyond just comparing files, it can also be used to iden-

tify identical portions within files. To detect sub-file duplicates, files are divided into

chunks, which are compared using cryptographic hashes known as Chunk Fingerprint

(CFP)s. These CFPs serve both as identifiers for duplicate detection and as references

for reconstructing the original data during restoration.

36

2.1 Data Deduplication 37

2.1.1 Chunking and Fingerprinting

Early deduplication systems, such as Venti [68] and Farsite [23], utilised fixed-size

blocks for chunking. However, fixed-size chunking was highly susceptible to data

shifts caused by insertions or deletions, which resulted in reduced deduplication ef-

fectiveness. To address this limitation, Content-Defined Chunking CDC was introduced,

defining chunk boundaries based on the intrinsic properties of the data, thereby pro-

viding shift-resistance [69, 55, 15].

Most Content-Defined Chunking (CDC) techniques are based on Rabin fingerprint-

ing [69], a method that represents data as a polynomial modulo an irreducible polyno-

mial. This technique is chosen for its computational efficiency and its ability to work

well in sliding window mechanisms, where the fingerprint of data can be quickly up-

dated as the window moves. In practice, Rabin fingerprinting scans data byte-by-byte

using a fixed-size, overlapping window. A “fingerprint,” or numerical value, is calcu-

lated for each window, which serves as a unique identifier for that section of data.

The Basic Sliding Window technique, popularised by Muthitacharoen et al. [61],

computes Rabin fingerprints as a small sliding window (e.g., 64 bytes) moves through

the file. Chunk boundaries, or “anchors,” are set when the fingerprint matches a spe-

cific pattern, such as when a certain number of its lowest bits are zero. For instance, to

create chunks with an average size of 8KiB, an anchor is designated when the lowest

13 bits of the fingerprint are zero, since 213 bytes equal 8KiB. This technique allows

for chunk boundaries to be detected based on the data itself, making it resistant to

shifts caused by insertions or deletions. As a result, even when data positions change,

identical portions of data are still detected and deduplicated, effectively reducing data

redundancy.

Many different improvements to the Basic Sliding Window technique have been

proposed. Some approaches limit the variability of chunk sizes while preserving shift

resistance (e.g. [25, 43, 72, 80, 3, 11]). Others use variable chunk sizes in regions of

2.1 Data Deduplication 38

change, then combine them [12, 43]. Another approach is to re-chunk changed (i.e.

non-duplicate) chunks (e.g. [43, 71, 53, 108]). Other approaches focus on improving

chunking speed (e.g. [105, 95, 2, 100]). Some parallelised approaches have also sped

up chunking but have sacrificed some deduplication efficiency, as in P-Dedupe [91],

SS-CDC [64], and QuickCDC [96].

Once the chunk has been identified, a hash can be taken to identify it. This hash

should have a high resistance to collision. 48-bit MD5 hashes were initially used, but

today SHA-1 hashes [61] are typical. Many approaches have explored techniques to

speed up hash computation. Some have taken advantage of multiprocessor systems,

creating pipelines (e.g. [51, 94, 31, 93]). Others have integrated the deduplication

process into GPGPU methods and accelerated fingerprint generation (e.g. [41, 30, 10,

39]).

2.1.2 Deduplication Location

Deduplication can significantly reduce the volume of data transmitted from clients to

backup servers [61, 74, 56]. There are two primary approaches to deduplication: client-

side and server-side.

In client-side deduplication, as illustrated in Figure 2.1, clients generate chunk fin-

gerprints (CFPs) and send them to the server. The server identifies which chunks are

already stored and returns a list of missing chunks. Consequently, clients need only

upload new or modified data, thereby conserving bandwidth and reducing network

load. This approach is desired in environments where network bandwidth is limited

or costly. However, it needs additional processing on the client side to compute finger-

prints and manage chunk metadata.

Alternatively, in server-side deduplication, clients send all data to the server with-

out any prior deduplication processing. The server then performs the deduplication

process, identifying and eliminating redundant data blocks. This method simplifies

2.2 Encrypted Deduplication 39

Figure 2.1: Client-side Deduplication in 3 stages. Chunk Fingerprint (CFP)s are sent to the server,
which returns the list of chunks not yet stored. The client uploads these chunks and the server stores
them.

the client design by offloading the computational overhead of deduplication to the

server. Server-side deduplication is beneficial in scenarios where client resources are

constrained or when network bandwidth is ample and inexpensive. It centralises

the deduplication effort, allowing for more sophisticated and resource-intensive al-

gorithms to be employed on the server. However, this approach can lead to increased

network traffic, as all data—including duplicates—must be transmitted to the server.

2.2 Encrypted Deduplication

Encrypting data before transmission and storage is essential for preserving privacy, es-

pecially over untrusted networks. However, encryption complicates deduplication be-

cause identical plaintexts encrypted with different keys produce different ciphertexts,

effectively eliminating the possibility of duplicate detection. Convergent Encryption

[23] was developed to enable different clients to encrypt the same chunks with the

same key without requiring a key server. It has been studied in many encrypted dedu-

plication designs (e.g., [1, 4, 19, 23, 67, 75, 83, 76]).

The encryption key is derived directly from the chunk itself, typically through a

hashing process. Utilising identical keys for encryption yields identical ciphertexts,

2.2 Encrypted Deduplication 40

thereby enabling the server to identify and eliminate duplicates of encrypted chunks.

File and Key Recipes, essential for restoration purposes, incorporate the chunk finger-

print and encryption key, respectively, corresponding to each encrypted chunk. These

File and Key Recipes are stored on the server. Given the sensitive nature of the en-

cryption keys contained within the File and Key Recipes, they must be secured. This

is commonly achieved by encrypting the keys using a client-specific key.

2.2.1 Challenges in Encrypted Deduplication

While Convergent Encryption facilitates deduplication, it introduces vulnerabilities:

Brute-Force Attacks

An attacker can guess the content of a chunk, derive its encryption key, and check

for its presence in the storage system. Message-Locked Encryption (MLE)[8] formalises

the security and vulnerabilities of Convergent Encryption. DupLESS[38], or Server-

aided MLE enhances security by involving a key server in the key derivation process,

preventing attackers from deriving keys solely from chunk content.

Side-Channel Attacks

Data privacy can be compromised if deduplication responses reveal the presence of

specific data [34]. Attackers can infer whether a file has been stored by observing

the answers to deduplication queries. To mitigate this, methods such as the Random

Threshold Scheme[34], Gateway Proxy[35], and Two-Phase Deduplication [46, 44] have been

proposed. These approaches eliminate cross-user deduplication on the client side or

obscure deduplication status to protect against information leakage.

2.3 Current Challenges and Limitations 41

Frequency Analysis Attacks

Deterministic encryption schemes can expose the frequency distribution of plaintext

chunks, making them vulnerable to frequency analysis. Techniques like MinHash En-

cryption[45] and Tunable Encrypted Deduplication (TED)[98] have been introduced to ob-

fuscate frequency distributions, balancing storage efficiency with data confidentiality.

2.3 Current Challenges and Limitations

As cloud backup services expanded, several challenges emerged:

2.3.1 The Disk Bottleneck

As the adoption of cloud backup increased, backup workloads expanded significantly

in volume. This growth resulted from the rising amount of data to be backed up

by clients, longer backup timeframes, and the expectation for servers to concurrently

manage the backup streams of many clients.

As these workloads grew, they approached the practical limit of unique data iden-

tification for a given chunk size using memory-based indexes. One approach to re-

ducing the size of the fingerprint index is to use a larger chunk size [82]. However,

these larger chunk sizes generate a reduced deduplication ratio, increasing server data

storage requirements.

Early systems had to resort to keeping the hash-based chunk index on disk, but

quickly it was realised the random seek access pattern slowed down throughput sig-

nificantly. From here, we see many papers devoted to increasing throughput in en-

crypted deduplication systems, as surveyed in Shin et al. [73] and Xia et al. [88]. Most

of the designs take advantage of the similarity between successive backups, termed

“locality”. The locality of backup workloads enabled the construction of lists used to

pre-load targeted sets of fingerprints built from previous backups [109, 92, 57]. Or it

2.3 Current Challenges and Limitations 42

enabled segmenting the index so that targeted portions can be loaded as in Min et al.

[59]. Other approaches use resemblance techniques [90, 104, 5, 89], which usually do

not produce exact deduplication. We first examine some influential exact techniques,

followed by important near-exact techniques.

2.3.2 Resource Contention

Resource contention is a critical issue for systems with high volume and/or many con-

current clients. An early approach by Douglis et al. [24] grouped clients with common

backup requirements together on specific backup disks to maximise the amount of du-

plicate data that can be eliminated. A common approach is where chunks are grouped

into a “superchunk”, and this superchunk is used to route groups of chunks to specific

servers for processing (e.g. [29, 107, 77, 28, 22, 54]).

Another approach focuses on reducing resource contention on a single server. Us-

ing non-blocking hashing and queues can help reduce resource contention in dedu-

plication, as investigated in Feldman et al. [26]. Sorted Deduplication by Kaiser et al.

[36] presented a significant reduction in resource contention for servers deduplicating

1000’s of clients concurrently. They deduplicate many clients in a single pass through

a sorted CFP index. We discuss Sorted Deduplication further in Section 2.6.

2.3.3 Metadata Storage

Over time, saved File and Key Recipes stored on the server can accumulate a con-

siderable volume and, in long backups, may rival the volume of the stored client

data. Metadedup [44] introduced an innovative method of securely deduplicating

these recipes, significantly reducing storage requirements for long-running backup

workloads. We discuss Metadedup further in Section 2.5 below.

An encrypted deduplication technique that doesn’t use MLE and so does not suf-

fer from the large accumulation of encryption keys was introduced by Yang et al.

2.4 Representative Designs in Encrypted Deduplication 43

2022 [97]. They call MLE based encryption “deduplication-after-encryption” (DaE),

and they contrast their method as “deduplication-before-encryption” (DbE) on the

server. This new technique requires Intel-SGX hardware, and data must pass through

a “space-constrained SGX enclave” before being encrypted and saved to disk. This

technique does not have to manage a key per chunk metadata but currently doesn’t

scale to large datasets. In this thesis, we focus on DaE techniques.

2.4 Representative Designs in Encrypted Deduplication

This section examines key designs that have significantly influenced the field, dis-

cussing their innovations and limitations.

2.4.1 Reducing Index Size with Segments

To address the trade-off between smaller chunk sizes (which improve deduplication

effectiveness) and increased metadata overhead, some approaches group chunks into

segments.

2.4.2 Fingerdiff

“Improving duplicate elimination in storage systems” by Bobbarjung et al. [12] intro-

duces Fingerdiff. By default, it generates large chunks as sequences of smaller “sub-

chunks”, gathering up to max scs subchunks into a single, large chunk. Fingerdiff’s

large chunks are similar to SCAIL’s segments, which also comprise sequences of chunks

up to a given segment size. In “regions of change”, smaller chunks will be generated.

Fingerdiff identifies these regions on the client using a locally maintained index of pre-

viously stored subchunks. The client first concatenates subchunks into chunks, which

are then uploaded to the server to be stored.

On the first backup, Fingerdiff creates very large chunks made up of many sub-

chunks and builds a local index of the CFPs of the subchunks. On subsequent backups,

2.4 Representative Designs in Encrypted Deduplication 44

it uses the index to detect regions of contiguous regions of new data. These are concate-

nated to make new chunks to be uploaded. References are created for the surrounding

regions of unchanged subchunks stored on the server. Each of these references consists

of the length of the region and its offset into a previously saved chunk.

Fingerdiff focussed on decreasing the average subchunk size to maximise dupli-

cate elimination, exploring average subchunk sizes of 2 KB and below and very large

chunks with up to 32,000 subchunks. SCAIL on the other hand, makes use of medium-

sized chunks (8 KiB), maintains the exact duplicate elimination enabled by this chunk

size, and focuses on reducing memory requirements to increase total server storage

capacity.

Note that to operate efficiently, Fingerdiff requires a client to maintain the state of

subchunks that have been saved previously to query this information on a per-chunk

basis while building its “smaller chunks” in regions of change. In contrast, SCAIL’s

client is much less compute-intensive because it is stateless and doesn’t need to deter-

mine the previously-saved status of chunks. Also, Fingerdiff assumed a high level of

trust between the client and the server and did not protect against side-channel attacks

or provide data privacy, as SCAIL does. Chunk size may also vary across backups.

Changed chunk sizes make the chunk lookup index less efficient since the index will

contain multiple descriptions of the same data region, each with a different chunk size.

2.4.3 Bimodal

“Bimodal content defined chunking for backup streams”, by Kruus et al. [43] focuses

on content-defined chunking algorithms for data deduplication. It’s called a ”bimodal

chunking algorithm” because it decides whether to emit a small or large chunk at any

given point in the input stream, unlike the baseline content-defined chunking (CDC)

methods. There are two main approaches to building chunks for deduplication:

• Breaking-Apart Algorithm: This approach starts by chunking data into large

2.4 Representative Designs in Encrypted Deduplication 45

chunks. It identifies regions of new content (changes) and then re-chunks data

near the boundaries of these change regions at a finer level. This method is flexi-

ble but may result in small changes rendering large chunks non-duplicate.

• Chunk Amalgamation Algorithm: In this approach, a smaller chunking size is

initially used to generate the chunks, which may subsequently combined into

larger ones. These larger chunks can be created by combining a fixed number of

small chunks or using a CDC approach to create variable-sized chunks, depend-

ing on which algorithm is used. The goal is to identify and emit duplicate data

efficiently.

Both approaches aim to achieve cross-user duplicate elimination and assume effi-

cient querying of an index of previously saved chunks. They rely on different strategies

to determine chunk boundaries by breaking apart large chunks or amalgamating small

ones. The choice of approach and algorithm parameters can impact the average chunk

size and deduplication efficiency, especially when dealing with regions that have tran-

sitions between duplicate and non-duplicate data.

It is worth noting that the bimodal chunking algorithms do not require storing

information about finer-grained ”subchunks” and can work with any index capable of

answering whether a chunk with a given fingerprint has already been stored.

The decision-making process in ”Bimodal” for whether to append another amalga-

mated chunk or start a new one can be complex. It primarily depends on the specific

algorithm variant, such as the ”k-fixed” or ”k-var” approaches, as described below.

1. Current Chunk Evaluation: As the algorithm processes the input data stream, it

evaluates the content of the current chunk it’s working with. This chunk could be

a small chunk generated by the initial chunking algorithm or a part of a potential

larger chunk.

2. Duplicate Check: The algorithm checks whether the content of the current chunk

2.4 Representative Designs in Encrypted Deduplication 46

matches any previously encountered chunks, especially large ones. If a match is

found, it indicates a duplicate chunk.

3. Decision Criteria (k-Fixed Algorithm): In the ”k-fixed” algorithm variant, the

decision is based on whether the current chunk can be appended to an existing

amalgamated chunk or if it should start a new amalgamated chunk. Here are the

criteria:

• If the current chunk is a duplicate (already seen before), it’s typically ap-

pended to the existing amalgamated chunk.

• If the current chunk is not a duplicate and follows a region of duplicate data

(indicating a transition), it may start a new amalgamated chunk. This is

done to minimise inefficiencies around change regions.

4. Decision Criteria (k-Variable Algorithm): The ”k-var” variant introduces more

flexibility by allowing variable-sized big chunks to be queried at every possible

small chunk position during the decision-making process. The criteria are as

follows:

• Like ”k-fixed,” if the current chunk is a duplicate, it’s often appended to an

existing amalgamated chunk.

• If the current chunk is not a duplicate and follows a region of duplicate data,

it might still be appended to an existing chunk, but the algorithm can query

for a bigger chunk at multiple positions before making the decision.

5. Amalgamation Process: If the decision is to append to an existing amalgamated

chunk, the algorithm combines the current chunk with the previous one, effec-

tively increasing the size of the chunk. If the decision is to start a new amalga-

mated chunk, the algorithm creates a new one and adds the current chunk.

2.4 Representative Designs in Encrypted Deduplication 47

6. Output: The final decision impacts the chunks emitted as part of the dedupli-

cation process. Appending to an existing chunk results in larger chunks being

emitted, whereas starting a new chunk leads to smaller ones.

7. Iteration: The algorithm continues to iterate through the data stream, similarly

evaluating each chunk, making decisions based on whether the content is a du-

plicate, follows a region of duplicate data, or is a fresh data segment.

The choice of the algorithm variant (k-fixed or k-var) and the specific parameters

used can influence the behaviour of ”Bimodal” regarding chunk size and deduplica-

tion efficiency. These algorithms are designed to strike a balance between minimizing

storage overhead and maximizing deduplication effectiveness in the context of chang-

ing data streams.

SCAIL Comparison. In the Amalgamation k-var approach (which is closest to SCAIL’s

segment technique), Bimodal requires not only the knowledge of whether each chunk

has been saved previously (i.e. is a duplicate), but also whether the amalgamation of

chunks so far has been saved previously. SCAIL does not perform lookups at this level,

only at the segment level, and assumes that all chunks of previously saved segments

have been saved previously (they are duplicates).

2.4.4 Algorithm Terminology and Notations

Understanding the terminology and notations used in deduplication algorithms is es-

sential. Table 2.2 and Table 2.1 provide a legend for notations and a list of variables

used in algorithms.

2.4 Representative Designs in Encrypted Deduplication 48

Notation/Function Description
(x, y, . . .) Ordered list of elements
index[key] Access value stored at key in index
list[index] Access the element at index offset in list
min(list) Returns smallest value in list
a mod b Returns the remainder after division of a by b
|a| Returns the length of a in bytes
Hash(c) A cryptographic hash function applied to c
Encrypt(a, key) Symmetric encryption of a with key key
Decrypt(a, key) Symmetric decryption of a with key key

Figure 2.2: Legend for Notation and Functions Used in Algorithms

Name Description
Csize Approximate, average Chunk size of each chunk in a backup.
Ssize Approximate, average size of the sum of the chunks in a Segment.

FI File Index storing file recipes and metachunk data by file name.
C Chunks (c1, c2, . . . , cn) generated by Context-Driven Chunking (CDC).

CK Chunk encryption Keys (ck1, ck2, . . . , ckn), hashes of chunks C.
EC Encrypted Chunks (ec1, ec2, . . . , ecn), after encryption with CK.

CFP Chunk FingerPrints (cfp1, cfp2, . . . , cfpn), hashes of EC.
MD MetaData for chunks (md1, md2, . . . , mdn), each having (cfp, length, key).
MC MetaChunks (mc1, mc2, . . . , mcm), grouped chunk metadata.
PR Plaintext metachunk Recipes (pr1, pr2, . . . , prm), extracted from metachunks.
MK Metachunk encryption Keys (mk1, mk2, . . . , mkm), hashes of metachunks MC.
MFP Metachunk FingerPrints (mfp1, mfp2, . . . , mfpm), hashes of EMC.
EMC Encrypted MetaChunks (emc1, emc2, . . . , emcm), after encryption with MK.
PEMC Partially Encrypted MetaChunks (pemc1, pemc2, . . . , pemcm), each (prj, emcj).
EMK Encrypted metachunk Key recipe, client encryption of MK.
MM Missing Metachunks (mm1, mm2, . . . , mmm), a list of MFPs.
RFP Resemblance FingerPrints (r f p1, r f p2, . . . , r f pm), smallest CFP in each PR.
RR Resemblance Recipes (rr1, rr2, . . . , rrm), groups (MFPs, PRs, and RFPs).
MR Missing Resemblance, missing metachunks/chunks after resemblance.
MI Metachunk Index mapping metachunk fingerprints to storage container IDs.
RI Resemblance Index (rfp, CIDList), storage locations for similar segments.

SCI Sorted Chunk Index, sorted, on-disk (cfp, cid) chunk storage locations.
DI Duplicate Index with storage locations for previously uploaded chunks.
CI Cross-user Index of chunks uploaded by multiple users in one batch.

Table 2.1: Variables Used in Deduplication Algorithms

2.5 Metadedup 49

2.5 Metadedup

“Metadedup: Deduplicating Metadata in Encrypted Deduplication via Indirection”,

by Li et al. [44], introduced a system that deduplicates metadata to reduce its storage

impact, especially in encrypted deduplication.

They examined the additional overhead introduced by key management in Message-

Locked Encryption (MLE)-based deduplication compared to plain deduplication. For

their analysis, they assumed 30 bytes (B) of metadata per chunk (Chunk Fingerprint

(CFP), length, and other information), along with a 32B AES-256 encryption key. With

these parameters, for a logical data size of 50TB and a Duplication Elimination Ratio

(DER) of 50, the storage overhead due to metadata in plain deduplication was calcu-

lated to be 18.7%, which increases to 38.2% in the case of encrypted deduplication.

The high metadata overhead in encrypted deduplication was also experimentally

verified after backup operations on the datasets in their evaluation (see dataset descrip-

tions below in Subsection 2.5.10). File and Key Recipes in the FSL dataset accumulate

to 369.7GB, which is 86% of the physical (deduplicated) data size of 431.9GB. The meta-

data in the VM dataset accumulated to 615.2GB, over 3.6 times the 168.2GB of physical

data.

The authors of Metadedup note that backup workloads have data redundancy and

observed that File Recipes and Key Recipes should also exhibit corresponding redun-

dancy.

2.5.1 System Model

Metadedup follows a client-server model designed to reduce metadata storage over-

head in encrypted deduplication systems as shown in Metadedup Write Operation on

page 50. A table of notations used in the algorithm figures for this thesis is on page 48,

and a list of variables used is on page 48. The client processes files by breaking them

into chunks, encrypting each chunk using MLE, and then aggregating the metadata

2.5 Metadedup 50

Metadedup Write Operation

1: Client input: target file name, client’s master key key,
segment size Ssize, chunk size Csize

2: Split file into chunks of average approximate size is Csize: C = (c1, c2, . . . , cn)
3: Perform Message Locked Encryption (MLE) on chunks C, generating

CK = (ck1, ck2, . . . , ckn), the chunk encryption keys,
EC = (ec1, ec2, . . . , ecn), the encrypted chunks, and
CFP = (cfp1, cfp2, . . . , cfpn) are the chunk fingerprints,

where, for i in [1, n]:
cki = Hash(ci), is the chunk key,
eci = Encrypt(ci, cki), is the encrypted chunk, and
cfpi = Hash(eci) is the fingerprint of the encrypted chunk.

4: Gather chunk metadata MD = (md1, md2, . . . , mdn), where, for i in [1, n]:
mdi = (cfpi, leni, ki) is the chunk metadata,
cfpi is the fingerprint (hash) of the encrypted chunk eci, and
leni is |ci|, the length of chunk ci.

5: Calculate segment divisor: D = Ssize
Csize

6: Group MD into metachunks MC = (mc1, mc2, . . . , mcm), where, for j in [1, m]:
mcj is a consecutive subsequence of MD entries, and
the sum of chunk lengths in mcj is between ½ and twice Ssize, and
only the final CFP in mcj satisfies (cfp mod D) = 0.

7: Perform Message Locked Encryption (MLE) on metachunks MC, generating
MK = (mk1, mk2, . . . , mkm), the metachunk encryption keys,
EMC = (emc1, emc2, . . . , emcm), the encrypted metachunks, and
MFP = (mfp1, mfp2, . . . , mfpm) are the metachunk fingerprints,

where, for i in [1, m]
mk j = Hash(mci) is the metachunk key,
emcj = Encrypt(mcj, mk j), is the encrypted metachunk, and
mfpj = Hash(emcj) is the metachunk fingerprint.

8: Encrypt metachunk key recipe: EMK = Encrypt(MK, key)
9: Send: file name, metachunk file recipe MFP, encrypted key recipe EMK,

10: encrypted chunks EC, and encrypted metachunks EMC to the server

11: Server input: fingerprint index FPI, file index FI
12: Receive: file name, metachunk file recipe MFP, encrypted key recipe EMK,
13: encrypted chunks EC, and encrypted metachunks EMC
14: Store unique EC and EMC using FPI, noting storage locations
15: Store MFP, EMK in FI by file name

2.5 Metadedup 51

Figure 2.3: Illustration of Metadedup’s metachunk construction process. Metadata from segment
chunks are aggregated into a Metadata Chunk, termed a metachunk, which is encrypted, generating
the hash key, encrypted metachunk, and metachunk fingerprint. File Recipes comprise lists of
metachunk fingerprints, while the Key Recipes contain the corresponding encryption keys. Chart
reproduced from Figure 3 in [44].

of these chunks into larger units which we call metadata chunks. The metachunks are

themselves encrypted and deduplicated.

To protect against side-channel attacks, where malicious clients might exploit dedu-

plication responses to infer the presence of specific data stored by other clients [34, 33],

Metadedup employs a two-phase deduplication process. In the first phase, client-side

deduplication is performed only within the scope of a single client’s data; no cross-

client deduplication is conducted at the client side. In the second phase, the server

performs deduplication across all clients but does not reveal deduplication status to

individual clients. This design choice prevents adversaries from leveraging dedupli-

cation responses to gain unauthorised information about data stored by other clients.

2.5.2 Building Encrypted Chunks

The client uses a Content-Defined Chunking (CDC) algorithm to segment files into

chunks of a target average size. Each chunk is then encrypted using MLE, where the

encryption key is derived from the content of the chunk itself. The encryption of a

chunk c generates:

1. The encryption key (ck = Hash(c)).

2. The length of the chunk (len = |c|).

2.5 Metadedup 52

3. The encrypted chunk data (ec = Encrypt(c, ck)).

4. The CFP, which is the hash of the encrypted chunk (cfp = Hash(ec)).

2.5.3 Building Encrypted Metachunks

The client groups the metadata of encrypted chunks into metadata chunks, which we re-

fer to as metachunks. A CDC algorithm is applied to the sequence of CFPs to determine

segment boundaries, aiming for a target average segment size (e.g., 2 MiB). The aggre-

gated metadata of the chunks within a segment forms a metachunk. Each metachunk

includes the CFP, length, and encryption key of its constituent chunks.

The metachunk is then encrypted using MLE, where the encryption of a metachunk

mc generates:

1. The metachunk encryption key (mk = Hash(mc)).

2. The length of the metachunk (len).

3. The encrypted metachunk data (emc = Encrypt(mc, mk)).

4. The Metachunk Fingerprint (MFP), the hash of emc (mfp = Hash(emc)).

2.5.4 File Recipes and Key Recipes

For each file, the client constructs a File Recipe comprising the sequence of MFPs corre-

sponding to the metachunks of the file. The client also creates a Key Recipe containing

the metachunk encryption keys, which is encrypted using a client-specific master key

to protect the keys.

2.5.5 Backup and Metadata Deduplication

The client performs intra-user (within-client) deduplication by comparing the MFPs of

the current backup with those from previous backups of the same client. Metachunks

identified as new (not previously stored by the client) are scheduled for upload.

2.5 Metadedup 53

To avoid side-channel attacks, the client does not perform cross-client deduplica-

tion. Instead, cross-client deduplication is performed on the server, but without re-

vealing deduplication status to clients. When metachunks and chunks are uploaded,

the server identifies duplicates across all clients and stores only unique data, updating

ownership information accordingly.

2.5.6 Restore Operations

To restore a file, as shown in Metadedup Restore Operation on page 54, the client

sends the file name to the server (Lines 1-2). The server retrieves the File Recipe and

Key Recipe from the File Index and retrieves the file’s encrypted metachunks based

on the MFPs in the File Recipe (Lines 3-6). The server sends the File Recipe, Key

Recipe and the encrypted metachunks for the file back to the client (Line 7). The

client first decrypts the encrypted metachunks, which gives it the CFPs for the chunks

of the metachunk (Lines 8-12). The client requests, and the server returns these en-

crypted chunks (Lines 13-17). The client uses the keys for the chunks extracted from

the metachunks to decrypt the chunks and assemble them into the restored target file

(Lines 18-22).

The client then decrypts each metachunk to retrieve the metadata of the constituent

chunks, including their CFPs and chunk encryption keys. With this information, the

client requests the necessary encrypted chunks from the server based on the CFPs.

Finally, the client decrypts the chunks using their encryption keys and reconstructs the

original file.

2.5 Metadedup 54

Metadedup Restore Operation

1: Client Input: target file name, client’s master key key
2: Request file metadata from the server using the target file name

3: Server input: fingerprint index FPI, file index FI
4: Receive: target file name from the client
5: Retrieve file recipe MFP, EMK from FI based on the file name
6: Retrieve encrypted metachunks EMC based on MFP using FPI
7: Send: MFP, EMK and EMC to the client

8: Client input: client’s master key key
9: Receive: MFP, EMK and EMC

10: Decrypt key recipe: MK = Decrypt(EMK, key)
11: Decrypt metachunks EMC with keys MK, generating

MC = (mc1, mc2, . . . , mcm), the decrypted metachunks
where, for j in [1, m]

mcj = Decrypt(emcj, mk j).
12: Extract all chunk fingerprints CFP = (cfp1, cfp2, . . . , cfpn) from all MC
13: Request encrypted chunks EC from the server using chunk fingerprints CFP

14: Server input: fingerprint index FPI
15: Receive: chunk fingerprints CFP from the client
16: Retrieve encrypted chunks EC based on CFP using FPI
17: Send: EC to the client

18: Client input: metachunks MC
19: Receive: encrypted chunks EC
20: Extract chunk keys CK = (ck1, ck2, . . . , ckn) from MC
21: Decrypt chunks EC with keys CK, generating

C = (c1, c2, . . . , cn), the decrypted chunks
where, for i in [1, n]:

ci = Decrypt(eci, cki).
22: Assemble chunks (ci) in order to reconstruct the original file

2.5 Metadedup 55

2.5.7 Security Analysis

Metadedup ensures data confidentiality and integrity and assumes a threat model with

an honest-but-curious server who follows the protocol correctly but attempts to gain

unauthorised access to data and metadata. An adversary may have the following ca-

pabilities:

1. Server Compromise: The adversary may gain access to all encrypted data and

metadata stored on the server, including the fingerprint index, file recipes, key

recipes, encrypted chunks, and encrypted metachunks.

2. Client Compromise: The adversary may compromise certain clients, obtaining

their original data, metadata, and master keys. The goal is to infer data or meta-

data belonging to other clients, which the compromised clients are not authorised

to access.

Confidentiality of Data Chunks

Each data chunk is encrypted using MLE, with the encryption key derived from the

chunk’s content. To protect against brute-force attacks on predictable content (e.g.,

widely known, easily guessed or structured with a predictable value or pattern), Metad-

edup can adopt the DupLESS approach [38], where clients obtain per-chunk encryp-

tion keys from a key server via an Oblivious Pseudo-Random Function protocol. This

method prevents attackers from deriving encryption keys solely from chunk content,

enhancing security even for predictable data.

Metachunk Confidentiality

Under traditional MLE without server assistance, an adversary could derive meta-

data (e.g., keys) directly from data chunks and may attempt to construct metadata

chunks arbitrarily. Since Metadedup protects metadata chunks using MLE, the adver-

2.5 Metadedup 56

sary could, in theory, launch an offline brute-force attack to infer the original contents

of target metadata chunks.

However, the authors of Metadedup argue that such an attack is computationally

infeasible due to the enormous computational cost. Each metadata chunk in Metad-

edup consists of the metadata of multiple encrypted data chunks. To perform an offline

brute-force attack, the adversary would need to consider all possible ordered sequences

of encrypted data chunks to construct potential metadata chunks, because the order

of chunks affects the encryption of the metadata. The number of such sequences is

prohibitively large.

The following bullet points summarise Metadedup’s analysis from Section IV-D.

Let:

• n be the total number of distinct data chunks.

• c be the average number of data chunks in a segment.

• Thash be the time to perform a hash operation.

• Tenc be the time to perform an encryption operation.

• N = n!
(n−c)! be total number of possible permutations (ordered sequences).

• Tattack = N × (3Thash + 2Tenc) be a single attack time.

• Thash = 37 µs, Tenc = 48 µs be typical hash and encryption times.

• Tattack ≥ (3Thash + 2Tenc)× c! ≈ 7.94× 10211 be the total attack time in seconds.

• 10204 be the total attack time in years.

Thus the Metadedup authors conclude that the attack is infeasible.

However, we note that this analysis assumes that the adversary cannot reuse com-

putations from previous chunk encryptions. In reality, an attacker could cache the

encrypted chunks and their metadata, reducing the number of calculations required

for individual chunk encryptions. Since the maximum number of distinct data chunks

is n, the adversary needs to perform at most n encryption operations to obtain all pos-

sible encrypted chunks.

Even with this optimisation, the adversary still faces an impractically large number

2.5 Metadedup 57

of permutations when constructing metadata chunks. The total number of possible

metadata chunks remains combinatorially large due to the need to consider all possible

permutations of c encrypted chunks:

N = n!
(n−c)! .

This calculation of N from Metadedup’s security analysis assumes that all chunks

within a metachunk are distinct, which does not have to be the case; repeated chunks

in a metachunk are valid. However, this assumption simplifies the analysis, and it

represents a conservative estimate of the number of permutations. While a more accu-

rate analysis would consider an even larger number of permutations, the result would

remain computationally infeasible for any practical attack scenario.

Handling Small Files Small files require careful handling because a metachunk with

only a few constituent chunks significantly reduces the number of permutations N,

making brute-force attacks feasible. For example, if a metachunk consists of only a few

chunks, the adversary can more easily enumerate all possible permutations.

To mitigate this vulnerability, it would be possible for Metadedup to treat incom-

ing file data as a continuous stream, rather than creating a single metachunk for files

smaller than the segment size. By integrating small files into larger metachunks that

include data from multiple files, or by padding metachunks to a minimum size, the

system maintains a high combinatorial complexity, keeping N large enough to pre-

vent feasible brute-force attacks. Therefore, the system remains secure when files are

streamed, and small files do not compromise the overall security of metadata confi-

dentiality.

Protection Against Side-Channel Attacks

Metadedup mitigates side-channel attacks that exploit deduplication responses to infer

the existence of specific data [34]. Since client-side deduplication is performed only

within a single client’s data, and cross-client deduplication occurs solely on the server

2.5 Metadedup 58

without revealing deduplication status to clients, adversaries cannot use deduplication

responses to learn about data stored by other clients.

Resilience to Compromised Clients

If the adversary compromises certain clients and obtains their data, metadata, and

master keys, they cannot decrypt data or metadata belonging to other clients. Each

client’s metachunk decryption keys are protected by encryption keys specific to that

client. Being unable to decrypt the metachunks means the client cannot access the

chunk encryption keys, preventing unauthorised access to chunk data.

Integrity and Availability

The authors state that Metadedup can be integrated with existing integrity verification

schemes, such as data auditing protocols [6, 21]. These mechanisms protect against

malicious modifications or deletions by the server, ensuring data integrity.

Availability and resilience can be supported through the mechanism of deduplication-

aware secret sharing with CDStore [46]. In fact, the Metadedup evaluation prototype

is built from CDStore.

2.5.8 Limitations

Metadedup achieves significant storage savings for long-running or high-volume backup

datasets, but its design is limited by the use of a memory-based index that holds both

CFPs and MFPs. While MFPs only add about 1.9% to the total index size, the majority

of the memory requirements come from the far more numerous CFPs. This fundamen-

tally limits the scalability of Metadedup to cases where the entire index can reside in

the main memory.

The reliance on a memory-based index means that the volume of backup data

Metadedup can handle is ultimately capped by available RAM. Unlike SCAIL, which

2.5 Metadedup 59

maintains only metachunk fingerprints in memory, allowing for a much smaller index

size, Metadedup must store individual chunk fingerprints. As the dataset grows, the

memory consumption grows proportionally, eventually becoming infeasible to man-

age entirely in RAM.

Using a disk-based index for Metadedup would incur a significant slowdown, as

duplicate-lookup queries require high-speed access to fingerprints. Disk I/O latency

would severely impact system throughput, making the deduplication process imprac-

tically slow. This trade-off between memory and scalability represents a limitation of

the Metadedup approach.

At the petabyte scale of deduplication, Metadedup does not have low memory

requirements and would be required to use a disk-based index, so it is not capable of

fast, petabyte-scale deduplication.

2.5.9 Evaluation

Metadedup’s microbenchmark tests showed that performance slowed as backed-up

synthetic data increased from 1 to 20GB, with save and restore speeds dropping from

63.3MB/s and 87.9MB/s to 45.5MB/s and 70.7MB/s, respectively. Metadedup also

adds a performance overhead compared to CDStore[46], with save operations show-

ing an increased processing time of 6.19% and restore operations an increase of 23.23%.

Despite this, the benefits of metadata deduplication were evident in trace-driven sim-

ulations using the FSL and VM datasets, described next.

2.5.10 Metadedup Datasets

1. FSL: A total of 115 selected backup days from the home directories of students

in the File systems and Storage Lab. Our work uses this identical dataset in its

evaluations; for further details, see Subsection 3.12.1.

2. VM: A private dataset consisting of 156 Virtual Machine snapshots collected by

2.5 Metadedup 60

the Metadedup authors over 26 backup days.

Both datasets were evaluated with segment sizes of 512KB, 1MB, 2MB, and 4MB,

all resulting in significant reductions in metadata storage. The FSL dataset showed

metadata storage reductions exceeding 97% for each segment size. Metadedup ’s index

size overhead (from added MFPs) for the FSL dataset reduced as the segment size

increased, from 1.9% for 512KiB segments to 0.33% for 4MiB segments. Similarly, the

VM dataset showed substantial metadata storage reductions (between 93% and 95%)

for each of the segment sizes, with a maximum index size overhead of 1.9% at 512KiB

down to 0.39% with 4MiB. Evaluation results showed that additional compression of

metachunks did not yield any significant improvements in storage efficiency; hence,

Metadedup did not employ metachunk compression.

2.5.11 Metadedup Summary

Metadedup reduces server storage requirements more effectively than any other method

in the literature that we are aware of. In our experiments, it reduces overall storage by

up to 44% (see Subsection 6.4.1). This significant reduction is achieved by duplicat-

ing the metadata stored with each backup. Metadedup aggregates chunk metadata

into metachunks and performs deduplication at both the chunk and metachunk levels.

This approach significantly reduces storage volume requirements in backup scenarios,

making Metadedup state-of-the-art for minimizing storage needs. To the best of our

knowledge, no other system provides this level of additional savings beyond conven-

tional chunk deduplication.

By employing techniques such as Message-Locked Encryption (MLE) and the Du-

pLESS approach for encryption, and restricting client-side deduplication to within-

client data, Metadedup ensures strong confidentiality and integrity guarantees. It mit-

igates potential attacks, including offline brute-force and side-channel attacks, render-

ing them computationally infeasible or ineffective.

2.6 Sorted Deduplication 61

However, special attention must be paid to the handling of small files that may fit

into a single metachunk, as this could reduce the complexity of brute-force attacks.

By processing data as a continuous stream of all files to be backed up, the system can

maintain high levels of data security, even for small files.

While Metadedup achieves unmatched efficiency for storage reduction, its scala-

bility is limited by its reliance on the chunk fingerprint-based deduplication index. If

we assume 256 GB of memory for the deduplication server, and each entry in the index

requires 30 B (20 B SHA-1 hash, 6 B container ID, other metadata), representing an 8

KB chunk, this would enable deduplication of up to 69 TB of data. Therefore, a dataset

with 100 TB of unique data is a realistic upper limit for its capacity.

2.6 Sorted Deduplication

“Sorted deduplication: How to process thousands of backup streams” by Kaiser et al.

[36] introduces a ”new exact deduplication approach designed for processing thou-

sands of backup streams at the same time on the same fingerprint index”. No other

system that we know about purports to support even a fraction of this many streams.

Traditional deduplication systems were designed to process a limited number of

backup streams. When traditional systems were tasked with processing ever-increasing

numbers of clients, it led to non-contiguous disk accesses and performance bottlenecks

due to resource competition among streams. In [36], the authors introduced a novel,

exact deduplication approach capable of handling thousands of backup streams simul-

taneously without causing memory contention or heavy disk I/O.

The new method, Sorted Deduplication, enhances performance by sorting finger-

prints, ensuring sequential disk access patterns and reducing I/O operations signif-

icantly. The proposed implementation of the method called Sorted Chunk Indexing

(SCI) processes backup streams in sorted order, leading to high index locality and effi-

cient disk I/O use. The paper shows that their method outperforms existing systems

2.6 Sorted Deduplication 62

like the Data Domain File System [109] (DDFS) and Sparse Indexing [49] (SI) by a con-

siderable margin in terms of I/O reduction and memory usage.

2.6.1 Background

Most deduplication systems rely on a chunk index to identify redundancies within

the data, where a unique fingerprint represents each data chunk. Traditionally, the

primary performance bottleneck has been the chunk index lookups. This index is of-

ten too extensive to fit entirely in memory, leading to reliance on disk storage, which

markedly reduces throughput. This is due to two main reasons: the process slows to

disk access speeds, which are orders of magnitude slower than memory access speeds,

and the nature of hash-based indexes that necessitate random seeks.

Random seeks are less efficient than sequential reads due to the mechanical move-

ments required in hard disk drives (HDDs) to position the read/write head at the ap-

propriate location on the disk platter. Even with solid-state drives (SSDs), which have

no mechanical parts, random access is slower than sequential access due to how data

is organised and accessed in the storage architecture.

To mitigate against these issues, previous designs have attempted to reduce the

size of the chunk index to fit into the main memory, but this reduction in performance

comes at the expense of exact deduplication efficiency. That is, smaller indexes lead to

a higher chance of missing duplicate chunks, thus storing redundant data.

Another approach to alleviating the performance hit from disk-based index lookups

is to exploit chunk locality, which is where sets of chunks tend to appear together be-

tween subsequent backups. This method can generate near-sequential disk access pat-

terns for a single backup stream, enhancing performance significantly. However, this

advantage diminishes when multiple streams are processed in parallel. Despite each

stream having strong locality, the overall access pattern can degrade to a random one

because different streams exhibit different localities. Furthermore, these streams com-

2.6 Sorted Deduplication 63

pete for limited memory space, making it challenging to maintain a single effective

locality cache for all streams.

In corporate environments, for instance, peak demand for backups can number in

the thousands, exacerbating these challenges. Streams processed concurrently during

such peak times further complicate the deduplication process, making it imperative to

devise a method that can efficiently handle the increased load without substantially

compromising performance or deduplication accuracy.

2.6.2 Design

The Sorted Chunk Indexing (SCI) design is centred around creating a uniform locality

across all backup streams by processing the streams’ Chunk Fingerprint (CFP)s in a

single sorted sequence. This is achieved against a single disk-based index that is also

held in sorted order, culminating in an optimal sequential disk access pattern.

Server Design The server component of SCI is tasked with identifying and storing

new chunks. It is designed to handle multiple streams concurrently, allowing for si-

multaneous start times across streams, but also accommodating staggered start times.

The server uses an LSM tree (a log-structured merge-tree) [65] as the chunk finger-

print index. The leaves of the tree hold chunk fingerprints sequentially and in sorted

order. The height of the tree is limited to 2 levels. This LSM tree structure is crucial

as it permits the server to process all CFPs within each leaf’s range before proceeding

to the next, ensuring an efficient and orderly data processing flow. Since the leaves

are read-only during this operation, the server can manage parallel stream processing

effectively. Moreover, consolidating many CFPs into leaf pages significantly reduces

I/O, with the total reads during a deduplication pass being at most equal to the num-

ber of leaves.

2.6 Sorted Deduplication 64

Figure 2.4: Sorted Deduplication’s Client-Server Communication. Clients send sorted fingerprints to
the server, which returns the container ids for previously saved chunks, and nil for new chunks. The
client builds restore recipes and sends these and the new chunk data to the server. This figure is
reproduced from Figure 2 in [36].

Client Design On the client side, the primary functions include chunking the backup

data and generating CFPs. All clients employ the same chunking and hashing methods

to enable cross-client deduplication. After chunk generation, the CFPs are sorted, and

any duplicate chunks found locally in the client’s data are eliminated. These sorted

CFPs are then transmitted to the server, as shown in Figure 2.4, which responds with

a correlated list of CIDs indicating the storage location for each chunk or an indica-

tor flagging a new chunk. Returning the CID location to the client is pivotal for the

Sorted Deduplication process, as it allows both the client and the server to collabora-

tively construct restore recipes that can be processed during restore operations without

requiring a full pass through the disk-based chunk index.

Operational Efficiency and Overhead Sorting the CFPs incurs an overhead on the

client side, with the sorting operation bearing a computational complexity of O(n log n)

(n is the client chunk count). Nevertheless, this overhead is justified by the significant

reduction in I/O operations on the server side, leading to a more streamlined and effi-

cient deduplication process.

2.6 Sorted Deduplication 65

Multi-server Support and Scalability To accommodate scalability demands, SCI also

supports a multi-server architecture, either by distributing clients across servers or by

dividing the CFP space among the servers. The former approach does not accommo-

date cross-client chunk deduplication across servers, and so does not perform exact

deduplication. The latter approach, which partitions the CFP space, enforces exact

deduplication across the system. If new servers are added to the system, the CFP sub-

ranges will be modified to evenly distribute the load. These subranges can be further

adjusted to conform to the LSM leaf page boundaries. This allows for a straightforward

redistribution of the chunk index, thereby simplifying the system’s scalability.

2.6.3 Limitations

Despite its efficient design, the authors of Sorted Deduplication acknowledge a limi-

tation in its operational paradigm: even when the number of CFPs to be checked for

client-side deduplication is relatively small, a comprehensive pass through the disk-

based chunk index is still required. This can be substantially slower than looking up

each CFP in a disk-based hash index. Also, Sorted Deduplication is optimised for effi-

ciency rather than privacy and requires a high level of trust between client and server,

especially in the area of recipe management. The server must trust that the recipes

returned faithfully reflect the CIDs returned in the client-side deduplication query.

Therefore, Sorted Deduplication does not offer data privacy or side-channel pro-

tection guarantees. Since it does not deduplicate metadata, it does not offer reduced

metadata storage or reduced upload volume. Sorted Deduplication did not publish

throughput figures for their evaluation datasets; they only compared the number of

I/Os saved vs competing schemes. Therefore cannot estimate their throughput num-

bers. See the feature comparison in Table 2.2.

2.6 Sorted Deduplication 66

2.6.4 Evaluation Results

Sorted Deduplication was compared with Data Domain File System (DDFS) [109] and

Sparse Indexing (SI) [49] using two distinct datasets. The first dataset originates from

the Johannes Gutenberg University HPC cluster, consisting of 597 streams, including

a full backup and 60 days of incremental backups (not all streams participated in all

days). This dataset encompasses a logical data volume of 8 TB, which deduplication

processes reduced to a physical size of 3.7 TB with 8 KB chunks. The second dataset

is derived from Microsoft (MS) traces [58], featuring the incremental backups of 140

randomly selected streams over 33 days, cumulatively amounting to 48.7 TB of logical

data, deduplicated using 8 KB chunks to 7.8 TB of physical data.

The deduplication systems in the experiments were configured to manage up to 16

TiB of physical data and allocated 8 GiB of memory. For DDFS, a Bloom filter with

a 1% false-positive rate, taking 2.4 GB of memory, was established. The remaining

memory was dedicated to a container cache. Containers were set to 4 MB, and allowing

for 50% compression of data could hold around 1024 chunks. The SI scheme utilised

in-memory sampling of CFPs at a rate of 1
16 , dedicating the remaining memory to a

manifest cache capable of storing more than 27,000 manifests. Within SCI, 1 GB is

allocated to the Log-Structured Merge Tree (LSM tree), plus 128 MB for one leaf node.

The principal performance metric utilised was the number of Input/Output oper-

ations (I/Os) required per 1K (1,000) chunks processed during deduplication, particu-

larly focusing on the systems’ performance in a ”steady state,” therefore excluding the

initial backup from the analysis.

Performance Analysis The initial experiment explored duplicate chunk lookup through-

put, and involved generating synthetic chunk data and varying sizes of prefabricated

client data and chunk indexes. The findings indicated that SCI’s throughput increases

with the number of clients, the amount of data backed up per client, or a combi-

2.6 Sorted Deduplication 67

Figure 2.5: Comparison of I/O patterns for 18th backup of the MS dataset, with Data Domain File
System (left), Sparse Indexing (middle) and Sorted Chunk Indexing (right). Sorted Chunk Indexing
requires only a small number of sequential disk I/Os. This figure is reproduced from Figure 10 in
[36].

nation of both. In the specific scenario with 1,024 clients (the largest number eval-

uated), where each client backed up 1 GB of data, the throughput reached about 5

GB/second. When each client backed up 16 GB of data, the throughput increased to

40 GB/second, and with each client backing up 32 GB of data, the throughput peaked

at 70 GB/second.

Although DDFS and SI exhibited less I/O than SCI for the smallest evaluated

dataset with 20 client streams, their efficacy dropped considerably with more than

20 clients. In the context of the largest backup datasets, SCI demonstrated superior

performance, requiring up to 12 times less I/Os than SI and up to 113 times less I/Os

compared to DDFS.

I/O Patterns Figure 2.5 shows the I/O access patterns of the evaluated deduplication

strategies during the 18th daily backup generation of the MS dataset. This graphi-

cal representation reveals SCI’s linear access pattern, in stark contrast to the random

fetch patterns exhibited by DDFS and SI, underscoring the limitations of their caching

mechanisms in reducing frequent data fetches.

Memory Variation Experiment An experiment to evaluate the impact of available

memory, varied from 128 MB to 64 GB, revealed that SCI consistently maintained a

low rate (lower is better) of around 0.3 I/Os per 1K chunks across all available memory

sizes. SI ranged from 0.36 to 0.64 I/Os per 1K chunk, but missed 25% of duplicates at

2.7 Resemblance Mergence Deduplication (RMD) 68

128 MB available memory, improving to missing less than 1% with 64 GB. DDFS started

at a high 3.5 I/Os per 1K chunks at 8 GB and decreased to 1.4 I/Os per 1K chunks at

64 GB of memory. The experiment showed that Sorted Deduplication requires much

less memory than the competing schemes and requires fewer disk I/Os.

2.7 Resemblance Mergence Deduplication (RMD)

“RMD: A Resemblance and Mergence Based Approach for High Performance Dedupli-

cation” by Zhang et al. [104] is a near-exact deduplication scheme that uses fixed-size

segments in a resemblance technique that reduces memory requirements, enabling rel-

atively fast response times to fingerprint lookup queries for deduplication. It stores

the CFPs of all similar segments (segments with the same representative fingerprint)

in an FpBin file and keeps a count of how many times a CFP has been added. When

the number of CFPs in an FpBin file exceeds its capacity, truncation occurs, preferen-

tially removing CFPs that have been added the least frequently. Additionally, CFPs

are culled based on age, with older fingerprints being discarded first. To locate the ap-

propriate FpBin file for a segment, or to ascertain if the segment is new, a Bin Address

Table (BATable) along with the Dynamic Bloom filter Array (DBA) (facilitating parallel

queries of bloom filters) is employed. For new segments, a corresponding FpBin is

created and placed into the FpBinBuffer, an LRU (Least Recently Used) memory cache.

The RAM-Hit-Table monitors the presence of FpBins within the FpBinBuffer. If a seg-

ment is not new but its FpBin is absent from the FpBinBuffer, the FpBin is retrieved and

positioned at the forefront of the buffer. When the FpBinBuffer reaches its capacity, the

least recently used FpBin is offloaded to disk.

2.7.1 Security Analysis

RMD effectively is a server-side deduplication system. No mention is made of privacy

guarantees, security analysis, threat models, or attack mitigation techniques. In fact,

2.7 Resemblance Mergence Deduplication (RMD) 69

if the techniques described were used without modification in a client-server cloud-

based backup, they would easily be susceptible to side-channel attacks. Attackers

could find the minimum-valued fingerprints with a predictable set of chunks (see Sec-

tion 2.5) and create fixed-sized segments including each of the minimum fingerprints

to check for the presence of specific fingerprints in any of the FpBins stored on the

server.

2.7.2 Limitations

RMD offers near-exact deduplication but has limitations due to its segment construc-

tion method. It generates segments with a fixed number of chunks, which offer no

resistance to data shifts. Small, localised changes between backups can cause chunk

fingerprints to move from one segment to another. Consequently, the identifying rep-

resentative fingerprint may change. This phenomenon can adversely affect the effec-

tiveness of deduplication.

RMD employs its RAM-Hit-Table to oversee the FpBinBuffer, aiming to minimise

disk I/O when deduplicating chunk fingerprints of a segment. However, under certain

circumstances — like starting with an empty buffer, backing up large data volumes, or

processing segments not recently in the buffer (as seen when backing up a new user’s

data) — the system may necessitate a disk I/O for every segment. Additionally, RMD

lacks a quick method to efficiently identify and ignore the most common segment type,

namely duplicate segments between backups.

RMD also uses an update mechanism in the FpBinBuffer cache. When a new seg-

ment is merged into the FpBin of a similar segment in the FpBinBuffer, an update bit

is turned on. When updated FpBins are ejected from the FpBinBuffer, they are written

to disk.

While RMD is able to perform deduplication at scale with low-memory require-

ments, it will perform a significant amount of I/O, which would preclude it from per-

2.8 Research Gap and Motivation 70

forming fast petabyte scale deduplication. It also does not incorporate mechanisms to

provide data privacy, or protection against side-channel attacks. It does not dedupli-

cate metadata, and does not perform exact chunk-level deduplication, so it does not

offer reduced metadata storage or reduced upload volumes.

2.8 Research Gap and Motivation

The limitations in existing designs, particularly in handling metadata overhead, scala-

bility, and data privacy, motivate the need for new approaches. Combining the meta-

data deduplication of Metadedup with the scalability and resource efficiency of Sorted

Deduplication presents an opportunity to address these challenges.

Feature
Sorted

Dedupli-
cation

Base Metadedup RMD SCAIL R-SCAIL

Exact
Chunk-level

Deduplication
✓ ✓ ✓ ✓ ✓

Low Memory
Requirements

✓ ✓ ✓ ✓

Fast Petabyte
Deduplication

✓ ✓ ✓

Data Privacy ✓ ✓ ✓ ✓
Side-channel

Protection
✓ ✓ ✓ ✓

Reduced
Metadata
Storage

✓ ✓ ✓

Reduced
Upload
Volume

✓ ± ✓

Client-side
GiB/s

Deduplication
- 0.9 0.9 Est.˜5.2 100.9 5.9

Table 2.2: Research gap showing feature support across schemes. Client-side deduplication through-
put figures in the bottom row are for the FSL dataset described in Subsection 3.12.1.

Table 2.2 summarises the features of existing schemes and highlights the gaps that

2.8 Research Gap and Motivation 71

the proposed solutions aim to fill. Achieving low memory requirements, maintain-

ing data privacy, and reducing metadata storage while ensuring high deduplication

throughput are key areas of focus.

In our comparison, we include the scheme Base as a baseline traditional deduplica-

tion design. The Base scheme is described in Section 3.12 and uses a chunk fingerprint

index on the server for chunk deduplication, so it does not have low memory require-

ments, requiring a disk-based index above 100 TB of deduplicated data, so it cannot

perform fast deduplication at petabyte scale. The Base scheme also does not perform

segmenting or metadata deduplication, so it does not offer reduced metadata storage

or reduced upload volume.

We observe that the SCAIL design creates redundant segment data uploads be-

cause client-side deduplication operates at the segment level rather than the chunk

level. Therefore, it does not offer the reductions in upload volume from metadata

deduplication that Metadedup and R-SCAIL offer. This limitation is offset by signifi-

cantly faster client-side deduplication throughput.

Regarding the throughput figures in the last line of Table 2.2, these are derived from

our evaluation results on the FSL dataset (see Section 6.1). The authors of Sorted Dedu-

plication state that their design is not conducive to high-speed client-side deduplica-

tion; thus, we don’t include figures for it. We estimate RMD throughput at 5.2 GiB/s

from Figure 6 from their paper [104] where they show a throughput of 1.2 million fin-

gerprints/second, and an average chunk size is 4.67KB, giving approximately 5.2 GiB.

Although this experiment was against the FSL dataset, the days and set of users differ

from that used by Metadedup and SCAIL.

SCAIL provides all of the features except for a partial score on reduced upload

volume, since it uploads redundant segment data. This is often offset by reducing

upload volume from deduplicated metadata, so we show ± in Table 2.2. R-SCAIL

consistently has reduced upload volumes since it deduplicates metadata, and performs

80% to 97% of perfect client-side deduplication.

2.9 Summary 72

2.9 Summary

This chapter has provided a detailed examination of various deduplication approaches,

highlighting the ongoing challenge of balancing efficient duplicate elimination with

the constraints of chunk size and metadata memory overhead. Through the explo-

ration of historical and contemporary methodologies, including Fingerdiff, Bimodal,

Metadedup, Sorted Deduplication, and RMD, we have identified common threads and

gaps in the field.

Each method presents unique solutions and compromises, and the discussion un-

derscores a critical area of research in deduplication: finding effective strategies that

minimise metadata overhead, ensure scalability, and maintain data privacy. Despite

advancements, current solutions still face limitations in addressing these challenges

comprehensively.

The next chapter introduces SCAIL (Segmented Chunks and Index Locality), a

deduplication framework developed to address the gaps identified in previous ap-

proaches. SCAIL is designed to optimise deduplication efficiency, reduce metadata

storage, and enhance data security by integrating and improving upon the concepts

discussed in this chapter.

Chapter 3

SCAIL: Segment Chunks And Index

Locality

3.1 Introduction

The contents of this chapter are adapted from our paper: J. Ammons, T. Fenner, and

D. Weston, “SCAIL: Encrypted Deduplication With Segment Chunks and Index Local-

ity,” in 2022 IEEE International Conference on Networking, Architecture and Storage

(NAS), IEEE, 2022, pp. 1–9

This chapter introduces the SCAIL (Segment Chunks And Index Locality) encrypted

deduplication system, designed for high-performance fine-grained deduplication for

long or large backup workloads in systems required to support many concurrent clients.

Specifically, we:

• Scale-up Metadedup’s memory-based client-side duplicate detection capacity by

requiring only metachunk fingerprints, deferring to server-side processing for

chunk level-deduplication. For large datasets, the metachunk fingerprints will

easily fit into memory enabling a fast response to client duplicate lookup queries.

• Redesign Sorted Deduplication’s Sorted Chunk Indexing (SCI) to support en-

crypted deduplication under our threat model, allowing fine-grained full-chunk

index server-side deduplication that processes many client streams concurrently

73

3.2 System Design 74

while requiring a small number of disk accesses.

• Combine these two systems into a hybrid, two-phase deduplication process which

reduces both metadata storage requirements and memory requirements.

• Implement a prototype of a SCAIL system and gather metrics on two trace-based,

public, real-world backup datasets.

3.2 System Design

SCAIL employs the client-server model, and we assume communication channels be-

tween the client and server are protected and secure. A client runs on the user’s ma-

chine, which processes backup files and uploads the encrypted file data, and its cor-

responding deduplication metadata. The server maintains two fingerprint indexes: a

memory-based index at the segment level for client-side deduplication, and a disk-

based bin structure, adapted from Sorted Deduplication’s [36] Sorted Chunk Indexing

(SCI) design, at the chunk level for server-side deduplication.

Metadedup [44] performs lookup queries for client-side deduplication and han-

dles restore requests at both the metachunk and chunk fingerprint levels, whereas the

SCAIL server interacts with clients exclusively at the metachunk fingerprint level, re-

turning a list of “Missing” MFPs. It is worth noting that by not disclosing the upload

status of chunks, SCAIL enhances its resistance to side-channel leakage attacks com-

pared to Metadedup. On the other hand, changing a single chunk of a segment in a

subsequent backup in SCAIL will cause the entire segment to be uploaded; however,

in this case, all but one of the chunks are then discarded since they have already been

stored as elements of the previously saved segment.

In addition, answering lookup queries only at the metachunk fingerprint level

means SCAIL does not need to store ownership information for chunk fingerprints,

only for the far fewer metachunk fingerprints. Ownership of a metachunk implies

3.3 SCAIL Algorithm 75

Figure 3.1: SCAIL system data flow in four stages, alternating between Client and Server. Client-side
deduplication is performed in stages 1-3.

ownership of its constituent chunks.

For the server-side, chunk-level deduplication, SCAIL uses client-specific data con-

tainers to reduce the I/O required to save and load chunks of data. In addition, sepa-

rate client-specific containers are used to store metachunks.

3.3 SCAIL Algorithm

Figure 3.1 shows an example of SCAIL’s encrypted deduplication data flow in four

stages, alternating between the client and the server. Client-side deduplication is per-

formed in Stages 1-3, and server-side deduplication in Stage 4.

In Stage 1, the client submits metachunk fingerprints F1, 12, A6 and 73 to the server.

In Stage 2, the server eliminates metachunk fingerprints already saved, so it returns

12 and 73. In Stage 3, the data chunks and metadata associated with the “Missing”

metachunks fingerprints are assembled and uploaded. In Stage 4, server-side dedupli-

cation saves any previously unsaved chunks.

3.3.1 Stage 1. Client: Chunk Processing and Query Construction.

The client performs several operations to construct the lookup query for the server, as

shown in SCAIL Algorithm, Stage 1 (see page 76).

3.3 SCAIL Algorithm 76

SCAIL Algorithm, Stage 1: Build Chunks, Metachunks and Deduplication Query

/* Identical to Metadedup Write Algorithm (p. 50), except for highlighted area. */
1: Client input: target file name, client’s master key key,

segment size Ssize, chunk size Csize
2: Split file into chunks of average approximate size is Csize: C = (c1, c2, . . . , cn)
3: Perform Message Locked Encryption (MLE) on chunks C, generating

CK = (ck1, ck2, . . . , ckn), the chunk encryption keys,
EC = (ec1, ec2, . . . , ecn), the encrypted chunks, and
CFP = (cfp1, cfp2, . . . , cfpn) are the chunk fingerprints,

where, for i in [1, n]:
cki = Hash(ci), is the chunk key,
eci = Encrypt(ci, cki), is the encrypted chunk, and
cfpi = Hash(eci) is the fingerprint of the encrypted chunk.

4: Gather chunk metadata MD = (md1, md2, . . . , mdn), where, for i in [1, n]:
mdi = (cfpi, leni, ki) is the chunk metadata,
cfpi is the fingerprint (hash) of the encrypted chunk eci, and
leni is |ci|, the length of chunk ci.

5: Calculate segment divisor: D = Ssize
Csize

6: Group MD into metachunks MC = (mc1, mc2, . . . , mcm), where, for j in [1, m]:
mcj is a consecutive subsequence of MD entries, and
the sum of chunk lengths in mcj is between ½ and twice Ssize, and
only the final CFP in mcj satisfies (cfp mod D) = 0.

7: Extract plaintext chunk recipes from MC, generating
PR = (pr1, pr2, . . . , prm), the plaintext metachunk recipes,

where for j in [1, m]:
prj = cfp from mcj.

8: Perform Hybrid MLE on metachunks MC, along with PR, generating
MK = (mk1, mk2, . . . , mkm), the metachunk encryption keys,
PEMC = (pemc1, pemc2, . . . , pemcm), and
MFP = (mfp1, mfp2, . . . , mfpm) are the metachunk fingerprints,

where, for j in [1, m]:
mk j = Hash(mcj) is the metachunk key,
emcj = Encrypt(mcj, mk j)
pemcj = (prj, emcj), plaintext recipe and encrypted metachunk, and
mfpj = Hash(emcj) is the metachunk fingerprint.

9: Store metachunk file recipe MFP, metachunk key recipe MK,
encrypted chunks EC, partially encrypted metachunks PEMC,
and the CFP recipes for those metachunks CFPmc

10: Send metachunk file recipe MFP to the server

3.3 SCAIL Algorithm 77

First, the file data is divided into chunks using a CDC algorithm. Each chunk un-

dergoes MLE (or DupLESS), which includes generating a Chunk Fingerprint (CFP) by

hashing the encrypted chunk.

The resulting stream of CFPs serves as input to another CDC algorithm. This algo-

rithm determines segment boundaries based on the CFP values, as described in Metad-

edup (see Subsection 2.5.3 in the Related Works Chapter).

The encrypted metadata—including the fingerprint, encryption key, and chunk

length—are collected to form a metachunk. After applying MLE to the metachunk,

another cryptographic hash of the encryption produces the Metachunk Fingerprint

(MFP).

Finally, the client creates File Recipes and Key Recipes using the list of MFPs and

their corresponding encryption keys. The client then transmits lists of MFPs to the

server to detect and eliminate previously saved metachunks and their constituent chunks.

3.3.2 Stage 2. Server: Metachunk Fingerprint Lookup.

The server executes a lookup operation to eliminate previously saved metachunks as

shown in SCAIL Algorithm, Stage 2 (see page 77). The MFP index is examined, and

a list of “Missing” metachunk fingerprints representing segments this client has not

stored previously is returned.

SCAIL Algorithm, Stage 2: Find Missing Metachunks

1: Server input: metachunk index MI
2: Receive: metachunk file recipe MFP = (mfp1, mfp2, . . . , mfpm)
3: Find missing metachunks MM = (mm1, mm2, . . . , mmm), for j in [1, m]:

If mfpj /∈ MI, add mfpj to MM.
4: Send: missing metachunks MM to the client

3.3 SCAIL Algorithm 78

3.3.3 Stage 3. Client: Chunk and Metadata Assembly and Upload.

The client assembles and uploads chunks and metadata as shown in SCAIL Algo-

rithm, Stage 3 (see page 79).

First, a “Missing” chunks recipe is constructed, which contains the CFPs associated

with each MFP present in the list of “Missing” metachunks. The encrypted data for

each chunk referenced in the “Missing” chunks recipe is then gathered for uploading.

To avoid redundancy, if a CFP appears multiple times, it is included only once in

the upload. Additionally, the client generates a sorted list of CFPs for all the chunks in

the upload.

Finally, the upload includes the encrypted metachunk data, the “Missing” chunks

recipe, and the sorted list of CFPs.

3.3 SCAIL Algorithm 79

SCAIL Algorithm, Stage 3: Assemble and Upload Missing Metachunks and Chunks

1: Client input: target file name, client key key
From Stage 1: MFP, MC, PEMC, MK, EC

2: Receive: Missing metachunk fingerprints MM = (mm1, mm2, . . . , mmk)
3: Initialise list of mfps and their cfps in recipe order: UploadFP = ()
4: Initialise upload metachunk/chunk data in UploadFP order: UploadData = ()
5: for each missing metachunk fingerprint mfp in MM do
6: if mfp /∈ UploadFP then
7: Find index j such that MFP[j] = mfp
8: Retrieve partially encrypted metachunk pemc = PEMC[j]
9: Append (mfp, pemc) to UploadData

10: Add mfp to UploadFP
11: Retrieve metachunk mc = MC[j]
12: Extract list of chunk metadata MD from mc
13: for each chunk metadata md = (cfp, len, ck) in MD do
14: if cfp /∈ UploadFP then
15: Find index i such that CFP[i] = cfp
16: Retrieve encrypted chunk ec = EC[i]
17: Append (cfp, ec) to UploadData
18: Add cfp to UploadFP
19: end if
20: end for
21: end if
22: end for
23: Extract and sort CFPs from UploadFP into SortedCFP
24: Encrypt metachunk key recipe: EMK = Encrypt(MK, key)
25: Upload to server: target file name, MFP, EMK, UploadFP, UploadData, SortedCFP

3.3 SCAIL Algorithm 80

3.3.4 Stage 4. Server: Chunk Deduplication and Index Updates.

In Stage 4, the uploads of the multiple clients processed in Stage 1-3 are processed in

a single batch. Their sorted CFP files are merged with all CFPs in the SCI bins (which

contain all previously saved CFPs). In the client merged client stream, any repeated

CFPs indicate cross-client duplicate chunks, as shown in Figure 1.3 and are added to

the cross-client index. The merging between all client sorted CFPs and the previously

saved CFPs from the SCI are performed simultaneously in a sequential pass through

all the files. This process can be efficiently performed by holding the smallest CFP

amongst all the clients and the SCI stream using a heapsort [84] data structure. This

single pass through the files generates two indexes: the previously-saved and cross-client

indexes.

In the SCI approach, unique vs. duplicate chunks are identified based on the sorted

CFP order. However, chunks were allocated to containers while they were checked

for being a duplicate, — in ascending chunk fingerprint order — this would result

in the chunks of each file being fragmented across multiple containers, leading to in-

efficient restore operations. To address this issue, the SCAIL server performs chunk

deduplication and updates the indexes in 2 parts. First, it creates an index of duplicate

chunks using the SCI technique as shown in SCAIL Algorithm, Stage 4, Part 1 (see

page 81). The index is then used to identify and discard duplicates while allocating

chunks to containers in recipe order in the following SCAIL Algorithm, Stage 4, Part

2 (see page 82). It is important to note that most duplicates have previously been fil-

tered out during the MFP-based client-side deduplication, requiring only a relatively

small, memory-based duplicate index for each backup.

3.3 SCAIL Algorithm 81

SCAIL Algorithm, Stage 4, Part 1: Find Duplicate and Cross-User Chunks

1: Server input: Sorted chunk index SCI with (f p, cid) mappings for stored chunks
2: Receive: multiple client SortedCFPC1, SortedCFPC2, . . . , SortedCFPCn, from Stage 3
3: Sort-merge SortedCFPC1, SortedCFPC2, . . . , SortedCFPCn into SortedCFPC
4: Initialise duplicates index DI, cross-user index CI
5: Initialise iterators: i← 0 (for SortedCFPC), j← 0 (for SCI)
6: while i < |SortedCFPC| and j < |SCI| do
7: Find the fingerprint in the client stream: cfpc ← SortedCFPC[i]
8: Find the stored fingerprint: (cfps, cid)← SCI[j]
9: if cfpc = cfps then

10: Duplicate found. Update duplicates index: DI[cfpc]← cid
11: Increment both i and j
12: else if cfpc < cfps then
13: Check if cfpc occurs successively in SortedCFPC
14: if cfpc appears multiple times in the client stream then
15: Cross-user chunk found. Update cross-user index: CI[cfpc]← nil
16: end if
17: Increment i (move to the next client fingerprint)
18: else
19: Increment j (move to the next stored fingerprint)
20: end if
21: end while
22: Store duplicate index DI, cross-user index CI

3.3 SCAIL Algorithm 82

SCAIL Algorithm, Stage 4, Part 2: Allocate to Containers in Recipe Order

1: Server input:
Duplicate Index DI, Cross-user Index CI (from SCAIL Stage 4, Part 1, page 81)
On-disk sorted chunk index SCI = ((f p, cid))
Metachunk index MI, File Index FI
Memory cache persisting between calls Cache = ((f p, cid))
Metadata Containers, Data Containers

2: Receive: from Stage 3:
Target file name, MFP, EMK, UploadFP, UploadData

3: while fp in UploadFP is a mfp do
4: Retrieve (mfp, pemc) from UploadData
5: Initialise empty list of data container ids CIDSForSegment = ()
6: while next fp in UploadFP is a cfp do
7: Retrieve pair (cfp, ec) from UploadData
8: if cfp ∈ DI then
9: Skip this chunk (duplicate)

10: else if cfp ∈ CI then
11: Retrieve cid from CI[cfp]
12: if cid ̸= nil then
13: Add cid to CIDSForSegment
14: else
15: Allocate ec to data container
16: Add (cfp, cid) to Cache
17: Add cid to CIDSForSegment
18: end if
19: else
20: Allocate ec to data container
21: Add (cfp, cid) to Cache
22: Add cid to CIDSForSegment
23: end if
24: end while
25: Store (pemc, CIDSForSegment) into metadata container cidmc
26: Update metachunk index MI[mfp] = cidmc
27: if Cache is full then
28: Sort Cache by fingerprint
29: Flush sorted Cache to SCI
30: Clear Cache
31: end if
32: end while
33: Save MFP, EMK under target file name in file index FI

3.3 SCAIL Algorithm 83

Figure 3.2: Example of Container Allocation in Stage 4. Starting on the left, CFPs, in recipe order
are looked up in the cross-client and previously-saved hash tables. New chunks are allocated to the
data container cache. The CFP and current container ID are then stored in the New Chunk Location
Cache.

To allocate chunks to containers, CFPs in a client’s recipe are looked up, in recipe

order, in the cross-client and previously-saved hash tables (generated in Figure 1.3). If

the chunk has been saved previously by any client (e.g., chunk 6A) or is a cross-client

chunk allocated by some other client (e.g., chunk D8 by client 7), it is discarded. Oth-

erwise, new cross-client chunks (e.g., chunk 7D), followed by new single-client chunks

(e.g., chunk 96), are allocated to client 33’s data container cache, which is flushed to

disk when full. The CFP and container IDs are then saved in the New Chunk Location

Cache. Not shown in the figure is the update of the cross-client hash table, replacing

7D’s value of [null] with [33#97] once the container is flushed to disk.

The CIDs of any previously saved CFPs (extracted from the previously-saved in-

dex), along with the CIDs of any new chunks, are added to a list of CIDs for the seg-

ment. This list is saved in the manifest of the metadata container, associated with the

segment MFP, and is used to find relevant data containers when fulfilling restore re-

quests.

Finally, after allocating all data chunks to containers, the server updates the metachunk

fingerprint index with the newly processed metachunks, indicating that the uploading

client is now an owner. This last step enables subsequent lookups to detect that a

specific client has stored a given metachunk and its data chunks.

3.3 SCAIL Algorithm 84

3.3.5 SCAIL Restore

Performing a file restore in SCAIL requires a single query to the server. In SCAIL

Restore Operation (see page 85), the client sends the file name to be restored to the

server in line 2, and the server receives it on line 4 and obtains the associated list of

metachunk fingerprints and their keys, which have been encrypted with the client’s

key.

3.3 SCAIL Algorithm 85

SCAIL Restore Operation

1: Client Input: Target file name
2: Client sends target file name to the server

3: Server Input:
File Index FI, Metachunk Index MI
Metadata Containers, Data Containers

4: Receive: target file name from the client
5: Server retrieves MFP and EMK from FI
6: Filter stored metachunks and chunks, generating

Encrypted metachunks EMC f ile = (emc1, emc2, . . . , emcm)
Encrypted chunks EC f ile = (ec1, ec2, . . . , ecn)

where, for j in [1, m]:
Find the metadata container ID cidmetadata at MI[mfpj]
Retrieve (pemc, CIDSForSegment) from metadata container cidmetadata
Extract (pr, emc) from pemc
Add emc to EMC f ile
For each data container ID ciddata in CIDSForSegment:

Load manifest for data container ciddata
For each chunk fingerprint cfpi in pr:

If cfpi is in manifest of ciddata:
Retrieve eci from data container ciddata
Add eci to EC f ile

7: Server sends MFP, EMK, EMC f ile, and EC f ile to the client

8: Client Input: Client’s master key key
9: Receive: MFP, EMK, EMC f ile, and EC f ile from the server

10: Decrypt metachunk key recipe: MK = Decrypt(EMK, key)
11: for each encrypted metachunk emcj in EMC f ile do
12: mcj = Decrypt(emcj, mk j)
13: Extract chunk keys CK from mcj
14: Decrypt chunks EC f ile into C using CK
15: end for
16: Assemble chunks C to reconstruct the original file

In line 6, a list of encrypted metachunks (EMC) and encrypted chunks (EC) are

built to return to the client. These are selected from the metachunks and chunks by

processing one metachunk at a time. The metachunk is looked up in the metachunk

index (MI), and the partially encrypted metachunk (PEMC), along with a list of con-

tainer IDs for the chunks of the metachunk (CIDSForSegment), is retrieved from the

3.4 The Roles of Metachunks and Metachunk Fingerprints 86

metadata container.

The encrypted portion of the PEMC is added to the list of EMCs to be returned to

the client. The plaintext recipe (pr) of the PEMC contains chunk fingerprints for the

segment. Each data container in CIDsForSegment is loaded, and if it contains a chunk

fingerprint from pr, it is added to the list of encrypted chunks (ECs) to be returned to

the client.

Finally, The server sends the MFPs, their encrypted keys (EMK) and the encrypted

metachunks (EMCs) and encrypted chunks (ECs) to the client on lines 7.

On line 9, the client receives the data from the server, decrypts the metachunk key

recipe on line 10, then processes each encrypted metachunk (EMC) on lines 11-15. Each

EMC is decrypted with its key, revealing the keys to the chunks of the metachunk. The

chunks are decrypted in line 14. Finally, in line 16, the chunks are assembled into the

original file.

3.4 The Roles of Metachunks and Metachunk Fingerprints

The metachunk structure performs several roles in the design of SCAIL.

Grouping Chunks into Segments

Using CDC to form segments enables SCAIL to tolerate small changes from backup

to backup and still have a reasonable probability of producing many of the same

segments. Identical to Metadedup, we require a minimum segment size of one-half

and a maximum segment size of double a specified target segment size (typically 2

MiB). Note that in SCAIL, a change to a single chunk in a segment will create a new

metachunk, forcing all its chunks, even any previously stored chunks, to be uploaded.

Alternatively, if all chunks in a segment are new, there is no excess upload. The first

backup by a client is usually the largest single backup; for that client, all the chunks

will be new additions to the server.

3.5 Server-side Chunk Deduplication 87

Duplicate-lookup Queries for Client-side Deduplication Requires No Disk I/O

Metadedup maintains both metachunk and chunk fingerprints in its RAM-based duplicate-

lookup index, while SCAIL maintains only metachunk fingerprints. For 2 MiB seg-

ments from 8 KiB chunks, this reduces the memory requirements of the duplicate-

lookup index 250 times, enabling the metachunk fingerprint index to identify massive

amounts of previously backed-up physical data with only a small amount of mem-

ory. For instance, a 15 GB memory-based SCAIL metachunk fingerprint index with an

average segment size of 2 MB and 30 bytes (B) for index elements (20 B SHA-1, 4 B

container ID (CID), plus other metadata) could identify 1 PB of physical backup data.

SCAIL would use an additional 2 GB of memory for disk-based server-side dedupli-

cation. A chunk-based index like Metadedup would be infeasible, requiring at least

3,750 GB of memory.

Metachunks Compress File Recipes

SCAIL’s file recipes are lists of metachunk fingerprints rather than chunk fingerprints,

producing file recipes up to 250 times smaller. Since metachunks are deduplicated as

chunk data, the chunk list for a metachunk is stored only once.

3.5 Server-side Chunk Deduplication

Sorted Deduplication uses a Log-Structured Merge-Tree (LSM tree) for its implemen-

tation of SCI. SCAIL will never perform an individual fingerprint query against the

chunk index, so it uses an algorithm that takes advantage of this as follows:

New chunks are added to an in-memory cache containing a sorted list of CFP →

CID mappings during deduplication on the server. When the cache becomes full, it

is flushed to the disk. Figure 3.3 shows the disk I/O performed processing the FSL

and MS datasets (for descriptions of the datasets, see Subsection 3.12.1). The top charts

3.5 Server-side Chunk Deduplication 88

(a) Number of page I/Os for each backup generation

(b) Page I/O detail for the 92nd (FSL) and 8th (MS) backup

Figure 3.3: Disk I/O the chunk-level deduplication in SCAIL Stage 4. The top charts show the
number of I/O for each backup generation of the FSL and MS Datasets. The bottom charts show
the I/Os for a single, selected backup generation.

(Figure 3.3a) show the number of page I/Os performed during the deduplication of

chunks uploaded to the server. It can be seen that there are at most 350 I/Os per

backup generation, and often is it significantly less than that. Usually, only a read

pass through the sorted, disk-based index is required. However, if the cache reaches

capacity, it must be flushed to disk. This appears as the periodic spike of increased I/O

in these graphs.

3.6 Implementing Ownership 89

The detailed I/O behaviour for the final cache flush for each dataset, which occurs

on the 92nd backup for the FSL Dataset, and the 8th backup for the MS Data is shown

in Figure 3.3b. The sequence of the I/Os is on the X-axis, and the page number accessed

is on the Y-axis.

There are two passes through the pages, the first finding duplicates and the second

flushing new fingerprints from the cache to each page. The flushing process first reads

each page in the index in sorted order and determines whether adding the new finger-

prints to the page’s range of fingerprints would exceed the maximum page size. If not,

the new fingerprints are appended to the file.

In the event of a split, two new pages are written, the first with the lower half and

the second with the upper half of the consolidated fingerprints. Split pages start out

at approximately half the maximum page size but are padded to the maximum page

length (e.g. 128 MiB) to assist in keeping the later additions to the page on adjacent

disk cylinders to improve write and read speed.

3.6 Implementing Ownership

SCAIL only needs to maintain ownership information on metachunk fingerprints, not

on chunk fingerprints (as in Metadedup, see Section 2.5), since it only processes lookup

or data restore requests at the metachunk fingerprint level.

3.7 Containers

SCAIL uses a container system to store encrypted chunks and metachunks. Separate

container stores are used since these two data types have different average sizes and

access patterns.

3.8 Redundant Data Uploads 90

Data containers

To reduce the number of writes to disk when saving chunk data and to reduce the

number of seeks when retrieving data, the server accumulates chunk data into a client-

specific container, which is buffered in memory until filled, then written out. Contain-

ers have a manifest header, which maps fingerprints to data offsets in the container.

Containers enable a small (e.g. 6-byte) CID to identify chunk storage locations.

Metachunk containers

A separate container space holds metachunks for each client. Additional information

is stored in the manifest for each metachunk, specifically, a list of data CIDs containing

chunk data for the segment the metachunk represents. This is used during restore

requests.

SCAIL performs all lookup and restore requests at the metachunk level, so it does

not disclose storage status at the chunk level. As with uploads, in the worst case, this

can cause an entire segment of data to be downloaded to restore a single chunk of data.

SCAIL is compatible with mechanisms to support deletion operations. Reference

counts can be employed in the manifest entries of data and metadata containers. A

system of container reference indirection, as described in Sorted Deduplication [36],

can be used to consolidate under-utilised containers.

3.8 Redundant Data Uploads

We define redundant uploads as any metachunk or chunk data uploaded and found to

have been saved previously on the server. Note that SCAIL’s server-side deduplication

removes all redundantly uploaded data, preserving exact deduplication. These excess

uploads can have several causes:

• Cross-client redundancy in backup uploads. This occurs when two or more

3.8 Redundant Data Uploads 91

Figure 3.4: Breakdown of the cumulative upload volume by component type for the FSL (top) and
MS Dataset (bottom), comparing the Base and SCAIL techniques. SCAIL substantially reduces
metadata upload volume, but introduces RSD upload volume.

3.8 Redundant Data Uploads 92

clients upload new data in the same backup generation processed by the server.

Each client would have made a lookup request to the server and been notified

that the metachunk had not been stored previously. These redundant uploads

are typical on the first backup of groups of devices in corporate environments

where many clients have the same operating system and application software.

In the MS dataset (described in Subsection 3.12.1) in Figure 3.4, the first backup

of 140 client volumes has 2.1 TiB of data and 1.5 TiB of cross-client redundant

data upload. This produces a cross-client excess upload volume of 42% for Base

and SCAIL. Subsequent clients uploading the same data would experience cross-

client backup redundancy, as described next.

• Cross-client backup redundancy for data privacy. When a client performs a

lookup, another client may have already uploaded the metachunk on a previous

backup. But to avoid side-channel leakage, the system must deny existence for

non-owners, forcing a redundant upload. After these redundant uploads have

been processed, the client is registered as an owner of the data. In subsequent

backups, these cross-client redundant uploads on the same data will no longer

occur.

• Redundant Segment Data (RSD). This type of redundant upload is caused by

SCAIL’s technique of coarse client-side deduplication. It only occurs when chunks

making up the segment of a ‘new’ metachunk have already been backed up as

part of the chunks of some other previously uploaded segment. A worst-case ex-

ample would be a single chunk modified from a previously stored metachunk. A

‘new’ metachunk would be generated, all chunks of its segment uploaded, and

all but one of its chunks would have been uploaded previously.

RSD uploads could be avoided if the client waited for a second response from the

server’s chunk-level index or if the client maintained and consulted a list of chunks

they had uploaded previously. However, we found that the additional uploads had a

3.9 Threat Model 93

surprisingly small cost factor and impact on system performance. As best we could

determine, the primary cloud hosting services do not charge for uploads (e.g., [7, 66]),

and most consumer broadband plans do not charge by upload volume.

As seen in Figure 3.4, no RSD is uploaded in the first backup since all the metachunks

are new. Assuming a 60Mbps upload speed, the average FSL client for both SCAIL

and Base (with no metadata deduplication) would take 77 minutes to upload their first

backup of 32.2 GiB. Each of the subsequent 114 uploads would take an average of 89

seconds of upload time for each of the eight clients in Base (637 MiB) and 32 seconds

for SCAIL (232 MiB). For the MS dataset, the first upload would take 63.5 minutes (26.5

GiB), and the upload time per backup for one of the (on average) 92 devices would take

3 minutes (1.1 GiB) for Base and 4 minutes (1.5 GiB) for SCAIL.

The additional uploaded data must be stored on the server until it is processed, and

then it will be discarded. As noted in Sorted Deduplication [36], the performance of a

SCI deduplication system is primarily driven by the size of the previously backed-up

data rather than the size of the input data, so the additional RSD has a minimal impact

on processing time.

We present the threat model for SCAIL and introduce a security analysis of its de-

sign. We show that SCAIL maintains data privacy, even in the presence of internal and

external attackers. Our analysis considers practical attack scenarios and evaluates the

computational feasibility of potential attacks.

3.9 Threat Model

In this section, we define the threat model for SCAIL, classifying adversaries into two

categories: internal and external attackers. This analysis specifically addresses SCAIL’s

unique architecture and capabilities and includes key differences from the threat model

of Metadedup, as described in Section 2.5.7.

3.10 Security Analysis 94

3.9.1 Internal Attackers

Internal attackers such as hackers, malicious system administrators, or cloud service

provider employees have gained access to the backup server. In the context of SCAIL,

such attackers are assumed to have access to the following:

• Encrypted data chunks and their lengths.

• Chunk fingerprints (CFPs).

• Encrypted metachunks and their lengths.

• Metachunk fingerprints (MFPs).

• The metachunk fingerprint index.

• The SCI (Sorted Chunk Index).

• Plaintext sorted lists of CFPs within metachunks.

3.9.2 External Attackers

External attackers attempt to obtain data they are not authorised to access without

having direct access to the server. These adversaries may try to exploit the dedupli-

cation process to infer information about stored data. We assume that communication

channels between the client and server are secure using protocols such as SSL/TLS.

We focus primarily on side-channel attacks, as they present the most significant threat

by an external attacker to data confidentiality.

3.10 Security Analysis

3.10.1 Data Confidentiality

Chunk Encryption

As mentioned above in section 2.2.1, data chunks in SCAIL can be encrypted using ei-

ther MLE [8] or DupLESS [38]. MLE derives encryption keys directly from the content

of the chunks. However, MLE does not provide data privacy for predictable chunk

3.10 Security Analysis 95

sets—chunks that are widely known, easily guessed, or structured in a predictable

pattern (e.g., standard file headers, known template patterns, or common files).

DupLESS provides data security even for predictable chunks by generating the

encryption key k through a key server that relies on a global secret s. The client sends

the chunk fingerprint Hash(c) to the server, which computes k = F(Hash(c), s), where

F is an Oblivous Psuedo Random Function. This ensures that the key k cannot be

derived from the fingerprint Hash(c) alone, as it requires access to the global secret s.

Metachunk Construction and Encryption

A metachunk records the list of CFPs that constitute a segment, along with the lengths

of the chunks and the encryption keys for each chunk. In SCAIL, when a metachunk

is encrypted, it is split into 2 parts. The first part is a sorted, plaintext list of the con-

stituent CFPs for the metachunk. This sorted list is accessible to internal attackers. The

second part consists of an offset list into the plaintext chunks, (which can be used to

restore the CFP order), the length of each chunk and the encryption key of each chunk.

The second part is encrypted using MLE. The metachunk encryption key is encrypted

with a client-specific key, so that only the client can decrypt the metachunk.

By separating the plaintext sorted list of CFPs from the encrypted offsets, lengths

and keys, SCAIL avoids an additional server roundtrip during restore operations while

maintaining security.

3.10.2 Internal Attack Scenarios

An internal attacker with access to the stored data attempts to reconstruct the original

data segments by:

1. Accessing the plaintext sorted list of CFPs from a metachunk.

2. Attempting to determine the lengths and encryption keys for each chunk corre-

sponding to the CFPs.

3.10 Security Analysis 96

3. Reconstructing the original ordering of chunks by guessing the sequence repre-

sented by the encrypted offsets.

4. Encrypting the metachunk (using guessed chunk encryption keys and sequence)

and comparing the resulting MFP to the one stored on the server to validate their

guess.

We analyse the computational effort required for this attack and demonstrate its

infeasibility.

Step 1: Determining Chunk Lengths and Encryption Keys

Since the internal attacker has access to the CFPs, their task is to find the corre-

sponding chunk lengths and encryption keys. The length can be determined by search-

ing the SCI index for the target chunk, loading the data container where it is stored, and

noting the encrypted chunk length. The number of possible encryption keys depends

on the chunk content.

For each CFP, the attacker could attempt to generate possible chunks and derive the

encryption keys. However, unless the chunk content is highly predictable, the number

of possible chunks for each CFP is vast. Additionally, if DupLESS is used for chunk

encryption, the attacker cannot derive the encryption keys without compromising the

key server’s global secret.

Step 2: Reconstructing the Original Ordering

The attacker knows the sorted list of CFPs but not the original sequence of chunks

in the segment. The encrypted offsets within the metachunk represent a permutation

of the sorted list.

The total number of possible permutations of the set of chunks would be n!. For

segments of average size 2MiB, and chunks averaging 8KiB, the minimum number of

chunks in metachunk would be 128. So the possible permutations would be 128!.

Step 3: Encrypting Metachunk Candidates

For each possible permutation of the chunk sequence, the attacker would need to:

1. Arrange the chunks according to the permutation.

3.10 Security Analysis 97

2. Encrypt the candidate chunks.

3. Assemble the encrypted chunks’ metadata into a metachunk.

4. Encrypt the metachunk using MLE.

5. Compute the MFP by hashing the encrypted metachunk.

Caching Optimisation

The attacker can cache the encrypted chunks and their metadata after determining

them in Step 1, avoiding re-encrypting chunks for each permutation. However, the

need to consider all permutations remains, as the order of chunks affects the encrypted

offsets and, consequently, the encrypted metachunk and its fingerprint.

Total Computational Effort

Even with the cached encrypted chunks, the attacker must encrypt n! metachunk

candidates and compute each of their fingerprints.

Assuming that the time to encrypt a metachunk and compute its fingerprint is

Tmetachunk, the total time required is:

Tattack = n!× Tmetachunk.

For n = 128, n! is approximately 3.86× 10215. Even if Tmetachunk is extremely small

(e.g., 1 µs), the total time is:

Tattack = 3.86× 10215 × 1 µs = 3.86× 10209 seconds,

or 1.22× 10202 years, which is impractical.

Handling Small Metachunks

Metachunks generated from the metadata of only a few chunks and encrypted with

MLE will be much more susceptible to brute-force attacks. The number of permuta-

tions an attacker would need to generate is expressed by N = n!
(n−c)! , where c is the

3.10 Security Analysis 98

number of chunks in a segment (see Section 2.5.7). If c is small, the denominator ap-

proaches n, making the number of permutations feasible for brute-force attacks.

To mitigate this vulnerability, SCAIL processes incoming files as continuous streams

of bytes and pads the final generated metachunk if necessary. Small files are combined

with subsequent data to form larger metachunks, maintaining a high combinatorial

complexity.

Impact of Predictable Chunks

If the chunk content is highly predictable, the attacker may have an easier time de-

termining the chunk data and encryption keys. However, when using DupLESS for

chunk encryption, the attacker cannot derive the encryption keys without access to the

key server, even if the chunk content is known.

In the worst-case scenario where the attacker knows all chunk data and encryption

keys, they still face the challenge of permutation. The total number of permutations

remains n!, preserving the computational infeasibility of the attack.

Security of the Plaintext CFP List

While the plaintext sorted list of CFPs is accessible to internal attackers, it does not

reveal the original sequence of chunks in the segment. Without the encrypted offsets,

which are protected by the metachunk encryption, the attacker cannot reconstruct the

original data order.

Moreover, since clients request metachunks by their MFPs and receive the en-

crypted metachunk along with the encrypted chunks, they are never allowed to query

the server for the storage status of individual chunks or attempt to restore individual

chunks. This design reduces the risk of side-channel attacks that could exploit chunk

access patterns (see Side-Channel Attacks below).

3.10 Security Analysis 99

Effect of Key Server Compromise

If the key server used in DupLESS is compromised, the security of chunk encryption

reverts to that of standard MLE. While this reduces protection against brute-force at-

tacks on predictable chunk sets, the overall security of SCAIL remains robust due to:

• The high computational cost of permutation attacks on metachunks.

• The secure handling of encryption keys for metachunks, which are protected by

client-specific keys.

• The measures taken to handle small files and maintain large metachunk sizes.

3.10.3 External Attack Scenarios

External attackers attempt to obtain data they are not authorised to access without

having direct access to the server. These adversaries may try to exploit the dedupli-

cation process to infer information about stored data. We assume that communication

channels between the client and server are secure using protocols such as SSL/TLS.

We focus primarily on side-channel attacks, as they present the most significant threat

by an external attacker to data confidentiality.

Side-Channel Attacks in Deduplication Systems

Side-channel attacks exploit information leakage when a server reveals whether a par-

ticular piece of data already exists in storage. An adversary can utilise this information

to confirm the presence of specific files or infer sensitive information.

Common Side-Channel Attack Scenarios

Confirmation-of-File Attack

An adversary attempts to upload a target file and observes the server’s response.

If the server indicates that the file is a duplicate and does not require uploading, the

adversary can deduce that the file already exists on the server, implying that another

user has uploaded it [34].

3.10 Security Analysis 100

Content Guessing Attack

By systematically uploading files with known content and monitoring deduplica-

tion responses, an adversary can ascertain whether certain data segments are stored

on the server, potentially revealing confidential information [34].

Learning-the-Remaining-Information (LRI) Attack

An adversary who possesses most of a file’s content but lacks some sensitive parts

can attempt to guess the missing pieces. By uploading files with different variations of

the unknown content and analysing deduplication results, the adversary aims to learn

the missing information [32].

Mitigations Implemented in SCAIL

SCAIL incorporates several design choices to mitigate side-channel attacks:

1. Client-Side Deduplication Limited to Own Data

Clients perform deduplication only against data they have previously uploaded.

Consequently, when a client uploads data, it cannot determine whether other

clients have uploaded the same data.

Mitigation: Prevents adversaries from using deduplication responses to infer the

presence of other users’ data.

2. Server-Side Deduplication Without Disclosure

The server performs cross-client deduplication but does not reveal deduplication

status to clients. Clients are always instructed to proceed with the upload process

as if the data were new, regardless of whether it already exists on the server.

Mitigation: Ensures that adversaries cannot gain information about stored data

based on the server’s responses.

3. Uniform Server Responses

The server will disclose that a metachunk has been previously uploaded, if and

only if that client has previously uploaded the metachunk.

3.10 Security Analysis 101

Mitigation: Eliminates differences in communication patterns that could be ex-

ploited in side-channel attacks.

4. Data Upload Policies

Clients are required to upload data chunks or metachunks regardless of whether

other clients have uploaded them.

Mitigation: Prevents adversaries from avoiding data uploads to confirm the exis-

tence of data.

Analysis of Side-Channel Attack Resistance

We analyse how the design of SCAIL resists common side-channel attacks.

Confirmation-of-File and Content Guessing Attacks In SCAIL, since the server’s

responses do not reveal whether data has already been uploaded by some other client,

adversaries cannot confirm the presence of specific files or data chunks that they have

not uploaded.

Learning-the-Remaining-Information (LRI) Attacks Adversaries cannot leverage dedu-

plication responses to learn unknown parts of a file because the server does not dis-

close the deduplication status for other clients. The requirement for clients to upload

all data, even if it has been uploaded by some other client, combined with the inability

to detect whether cross-client deduplication occurs, prevents attempts to learn missing

information.

Impact on Legitimate Clients These mitigations help maintain client data privacy,

but require the client to upload data that is already on the server. We feel this trade-

off is acceptable since it maintains the data confidentiality and prevents side-channel

leakage.

3.10 Security Analysis 102

3.10.4 Summary

Our analysis demonstrates that SCAIL effectively maintains data confidentiality and

integrity, even in the presence of internal and external attackers. By encrypting data

chunks with DupLESS or MLE, securely managing encryption keys, and implementing

mechanisms for metachunk construction and encryption, SCAIL mitigates the risks

posed by potential attacks.

The inclusion of a plaintext sorted list of CFPs does not compromise security, as

attackers still face a prohibitively large number of permutations when attempting to

reconstruct the original data. By ensuring that metachunks are of adequate size by

merging small files in a streaming manner, SCAIL maintains a large combinatorial

complexity, making brute-force attacks computationally infeasible.

Integrity and Availability

Like Metadedup, SCAIL can be integrated with existing integrity verification schemes,

such as data auditing protocols [6, 21]. These mechanisms protect against malicious

modifications or deletions by the server, ensuring its integrity.

Availability and resilience for SCAIL can be enhanced through deduplication-aware

secret sharing with CDStore [46]. Building SCAIL upon CDStore leverages convergent

dispersal and multi-cloud storage to improve data resilience and maintain high avail-

ability. By splaying data across multiple independent servers using CDStore’s secret-

sharing mechanisms, SCAIL can ensure that the loss or failure of any single server

does not compromise data availability. An additional benefit is that the security model

would require an attacker to breach multiple servers to gain unauthorised access to the

data, significantly increasing the difficulty of potential attacks.

3.11 Limitations 103

3.11 Limitations

Next, we examine the limitations of SCAIL, highlighting challenges when dealing with

massive datasets, relatively small datasets, resource contention, minimally evolving

datasets and read/write amplification. We also note the computational overhead of en-

cryption, client-side deduplication restrictions, dependence upon batch-oriented pro-

cessing and synchronisation requirements among multiple clients.

3.11.1 Scalability Constraints with Very Large Datasets

The performance of SCAIL when handling massive datasets—specifically those con-

taining more than a few petabytes of unique data—is uncertain. The system relies on

in-memory data structures for mapping MFPs to the on-disk storage of their associ-

ated metachunk. With RAM constrained to 256 GiB, scaling these structures to accom-

modate multi-petabyte datasets becomes challenging. The limited RAM may lead to

increased disk I/O operations, adversely affecting performance and throughput.

3.11.2 Performance Compared to RAM Index-Based Systems

For datasets with unique data smaller than 100 TB, systems utilising RAM-based in-

dexes or other low-I/O deduplication mechanisms may outperform SCAIL. Such sys-

tems can hold the entire deduplication index in memory, enabling faster lookup and

deduplication operations. In contrast, our system may experience higher latency due

to its use of the disk-based SCI technique for chunk-level, cross-user deduplication.

3.11.3 Impact of Limited Client Numbers on Resource Contention

The advantages of SCI, particularly in eliminating resource contention, diminish in

environments with a limited number of clients. SCI is designed to optimise dedupli-

cation processes across numerous clients by organising and merging data efficiently

with very little disk I/O requirements. When the client base is small, the overhead

3.11 Limitations 104

associated with merge-sorting may not be justified, rendering simpler deduplication

strategies more effective.

3.11.4 Challenges with Low-change Datasets

SCAIL is at a disadvantage in processing datasets that don’t evolve much over time. In

scenarios where datasets exhibit very small deltas between versions, traditional disk-

based chunk-level indexing systems may process data faster than our system. The

need for a full SCI chunk index pass in our approach can introduce unnecessary over-

head, especially when only minor changes occur between backups.

3.11.5 Read and Write Amplification Issues

SCAIL exhibits read and write amplification, affecting bandwidth usage and perfor-

mance.

Read Amplification SCAIL is subject to reduced restore performance due to chunk

fragmentation issues inherent in container-based deduplication systems, as described

in [48]. These issues lead to read amplification, where restoring data requires reading

more than the necessary chunks.

SCAIL is compatible with schemes designed to mitigate the reduction in restore

performance. However, SCAIL introduces an additional source of read amplification.

Restoring a small portion of data will necessitate downloading an entire segment, as

data is retrieved at the segment level. This inefficiency arises from the transfer of un-

used data during partial restores.

Write Amplification A single changed chunk in a segment requires uploading the

entire segment. This results in increased storage and bandwidth consumption, as more

data than necessary is transferred and temporarily stored.

3.11 Limitations 105

3.11.6 Limitations Due to Client-Side Deduplication Restrictions

To protect against side-channel attacks and ensure data privacy, SCAIL avoids cross-

client deduplication on the client side. While this approach enhances security by pre-

venting potential leakage of information through deduplication patterns, it also means

that clients cannot benefit from the deduplication of data that exists on other clients.

Consequently, bandwidth usage will increase. Fortunately, storage requirements are

not increased since SCAIL performs exact, chunk-level deduplication when storing

data on the server.

3.11.7 Computational Overhead from Encryption

Providing data privacy guarantees necessitates the encryption of data both in transit

and at rest. The encryption and decryption processes introduce computational over-

head on both client and server machines. This overhead can impact the overall per-

formance of backup and restore operations, particularly in environments with limited

computational resources or where performance is a critical concern.

3.11.8 Dependence on Batch Uploads

The system’s requirement to wait for batches of client data before initiating server-side

deduplication can lead to delays in data processing. This limitation is especially per-

tinent in environments where immediate data backup is necessary. The reliance on

batch uploads contrasts with systems that support continuous or real-time deduplica-

tion, potentially reducing the system’s suitability for certain applications.

3.11.9 Single Batch Server-side Deduplication Limitation

We analysed only a single batch cross-user, server-side deduplication pass at a time.

This design choice makes the server wait for all client data to be uploaded before initi-

ating deduplication on any client. In contrast, Sorted Deduplication proposed running

3.12 Evaluation 106

multiple merge and store operations concurrently on a single datastore. The inabil-

ity to process multiple deduplication passes simultaneously may limit the system’s

throughput and responsiveness in high-load or real-time environments.

3.12 Evaluation

We wrote Python implementations of Base (traditional chunk-based deduplication, no

segment groupings, no metadata deduplication), Metadedup and SCAIL encrypted

deduplication systems and conducted experiments against trace-driven simulations of

different backup workloads.

3.12.1 Trace-driven Simulation

We evaluate SCAIL via trace-driven simulation.

Experimental Datasets

We use two real-world publicly available datasets:

• FSL The FSL dataset originates from the File systems and Storage Lab (FSL) at

Stony Brook University, as documented in [79]. It is the most commonly used

dataset in the literature, having been used in over 50 publications, including

over a dozen since 2020 [70, 20, 85, 50, 40, 78, 99, 86, 102, 103, 62, 47, 52, 42,

101]. We replicated the subset identified in Metadedup from the fslhomes 8 KiB

traces. These traces encompass periodic captures of home directory contents be-

longing to eight students on a communal network file system. The original FSL

snapshots provide variable-size chunk fingerprints, which were 48-bit in format,

which we have hashed to produce 20-byte SHA-1 values and have retained their

associated metadata details (i.e. file length, inode, chunk length). This included

all snapshots from January 22 to June 17, 2013, which were aggregated daily and

3.13 Evaluation Results 107

produced 115 backups. These backups comprised 56.2 TiB of logical data and

431.9 GiB of physical data.

• MS This public dataset was collected from desktop computers at Microsoft [58].

In addition to Sorted Deduplication, it has been used in several recent papers

where large numbers of clients and/or high data volume need to be simulated [40,

62, 42, 63, 27]. It consists of 857 Windows file system snapshots. Like Sorted

Deduplication, we collected the backup histories for the 140 distinct client streams.

Their selection was random, but we desired a reproducible dataset, so we se-

lected the 140 with the earliest backup time. To simulate large numbers of con-

current client backups, we grouped them into eight weekly backup generations.

Not all systems participated or were collected in every weekly backup. The max-

imum number of client streams was 140, the minimum was 64, and the average

was 102 devices per backup generation. The chunks used were generated using

CDC with a target chunk size of 8KiB [69]. This short-term dataset of backups

for 140 devices occupies 45.6 TiB of logical data and 2.7 TiB of physical data.

Methodology

Our simulator allows us to vary segment sizes and accept different backup workloads.

The traces representing client files for the FSL or MS backups are read from backup

folders in creation order, and the simulator runs through the four steps (see Subsec-

tion 3.3) of encrypted deduplication and we gather metrics.

3.13 Evaluation Results

We performed backup operations on the FSL and MS datasets with 512 KiB, 1 MiB, 2

MiB and 4 MiB segment sizes. For our SCI implementation, we used 128 MiB pages,

the same as Sorted Deduplication. We also used 128 MiB containers.

3.13 Evaluation Results 108

Table 3.1: Segment Size Effect on Memory and Upload Size in SCAIL

Components/Metrics 512KiB 1MiB 2MiB 4MiB
FS

L
Index Memory

Base (GiB) 1.400
SCAIL Intra-user (GiB) 0.032 0.018 0.010 0.006
SCAIL Inter-user (GiB) 0.250 0.250 0.250 0.250
Total SCAIL (GiB) 0.282 0.268 0.260 0.256
Memory Change -79.9% -80.9% -81.4% -81.7%

Upload Volume
Base (GiB) 825
SCAIL (GiB) 628 676 736 805
Upload Change -23.9% -18.1% -10.8% -2.5%

M
S

Index Memory
Base (GiB) 10.358
SCAIL Intra-user (GiB) 0.197 0.110 0.062 0.035
SCAIL Inter-user (GiB) 2.0 2.0 2.0 2.0
Total SCAIL (GiB) 2.197 2.110 2.062 2.035
Memory Change -78.8% -79.6% -80.1% -80.4%

Upload Volume
Base (GiB) 4,992
SCAIL (GiB) 5,019 5,177 5,397 5,679
Upload Change 0.5% 3.7% 8.1% 13.9%

Memory Use

For step 2 and step 4, we used memory-based indexes for Base and Metadedup. The

Base index contained chunk fingerprints only, and Metadedup’s index included metachunk

fingerprints as well, so was 1% larger. SCAIL used a metachunk fingerprint-only

memory-based index for step 2. For step 4, SCAIL used 128 MiB of memory for load-

ing a single chunk index page in each dataset. SCAIL also allocated a write cache for

the SCI, 128 MiB for the FSL dataset, and 1.875 GiB for the MS dataset.

Table 3.1 presents the change in memory requirements and the difference in upload

volume produced after storing all backups. The figures shown are the memory and

disk-volume measurements taken after running all client backups for the FSL (upper

group) and MS (lower group) Datasets.

The first line in each group shows the volume of memory consumed by the CFP

3.13 Evaluation Results 109

index used by the Base scheme. The ”SCAIL Intra-user” measurements reflect the vol-

ume of memory consumed by SCAIL’s MFP-only index, and the ”SCAIL Inter-user”

measurement reflects the volume SCAIL requires by using SCI to perform chunk-level

deduplication on the server.

Upload volumes shown at the bottom of each group differ between Base and SCAIL

because SCAIL deduplicates metadata, so it does not have to upload repeated File/Key

Recipes. These savings are offset required by RSD uploads in SCAIL, which increase

as segment size increases.

As segments increase in size, there are fewer of them to store, decreasing the re-

quired memory size. SCAIL uses 79.9-81.7% less memory than Base for the FSL dataset,

and 78.8-80.4% less memory for the MS dataset.

Chunk Index Disk I/O

The left side of Figure 3.3a shows SCAIL’s chunk index disk I/O for the FSL dataset.

Over 115 backup generations, the deduplication process stored 431 GiB of unique

chunk data with an effective chunk size of 7.7 KiB. The chunk index must store 58.5

million chunks; at 30B per chunk, it would occupy 1.6 GiB of disk space. SCAIL ended

up with eighteen pages and reads an average of 93 MiB per page consisting of 3.2 mil-

lion fingerprints. The spikes on the chart are the system flushing the new fingerprint

cache if it becomes full.

Upload Overhead

SCAIL’s use of coarse client-side deduplication caused it to upload redundant chunk

data (see Subsection 3.8). For the FSL dataset, though, the 97% reduction in metadata

upload more than offset additional uploads of redundant chunk data; see Table 3.1.

The net effect was to reduce upload size compared to Base from 2.5-23.9%. For the

MS dataset, which only had eight backups and only a 86-89% reduction in metadata

3.13 Evaluation Results 110

Figure 3.5: Stacked bar chart of total costs after all backups, showing the breakdown of deduplicated
data, metadata and memory costs for the FSL (top) and MS (bottom) datasets.

upload, SCAIL increased upload size compared to Base by 0.5-13.9%.

Memory and Storage Costs

We evaluate the memory and storage costs by comparing Base, Metadedup and SCAIL.

A chart comparing the costs for the FSL and MS datasets is shown in Figure 3.5.

All schemes use an average of 8 KiB-sized chunks. We use 2 MiB segments since

Metadedup [44] found this provided the best metadata savings for the FSL dataset.

We surveyed memory and storage costs from www.amazon.com in February 2022

and used US dollars of $4.25/GiB for memory ($68 for Crucial 16 GiB Single DDR

- CT16G4SFD824A) and $21.30/TiB for storage ($310 for Seagate 16 TB HDD Exos -

ST16000NM001G).

For the FSL dataset, Metadedup and SCAIL reduce Base’s metadata storage re-

quirements from 369.6 GiB to 10.4 GiB (97.5%) and 10.2 GiB (97.2%), respectively. This

reduces metadata storage costs from Base’s $7.69 to 22 cents for Metadedup and 25

cents for SCAIL. Physical data storage for each scheme is 431.9 GiB, costing $8.99.

Metadedup has a slight increase over Base’s memory size of 1.385 GiB to 1.393 GiB,

while SCAIL slashes memory to 260 MiB. This resulted in memory costs of $5.89, $5.92

and $1.10 for Base, Metadedup and SCAIL, respectively. Base’s total memory and stor-

3.14 Summary 111

age costs are $22.56, for Metadedup are $15.12, and for SCAIL are $10.34. The savings

over the price for Base are 33.2% for Metadedup, and for SCAIL they are 54.3%, which

is 21.1% additional savings.

For the MS dataset, Metadedup and SCAIL reduce Base’s metadata storage from

378.1 GiB to 50.1 GiB (89.2%) and 50.4 GiB (86.3%), respectively. This dataset had a

large volume of new data over a relatively short number of backups, which provided

fewer opportunities to reduce metadata storage. Nonetheless, Metadedup’s metadata

deduplication techniques reduced metadata storage cost from $7.87 for Base to $1.04

for Metadedup, and $1.05 for SCAIL. The large volume of physical data storage (2,753.7

GiB) for each scheme cost $57.29 to store. Required memory went from 10.3 GiB for

Base to 10.4 GiB for Metadedup and was reduced to 2.1 GiB for SCAIL. This resulted

in memory costs of $44.02, $44.28, and $8.76 for Base, Metadedup and SCAIL respec-

tively. So total memory and storage costs ended up being $109.18 for Base, $102.62 for

Metadedup and for for $67.10 SCAIL. The cost savings for Metadedup over Base are

6.0%, and for SCAIL, it is 38.5%, which is 32.5% additional savings.

3.14 Summary

We present SCAIL, which builds upon the metadata storage savings introduced by

Metadedup and integrates it with the low-memory requirements and high client ca-

pacity of Sorted Deduplication. SCAIL performs coarse-grained client-side deduplica-

tion, which causes the upload of previously saved chunks. Compared to traditional

encrypted deduplication systems, SCAIL significantly reduces metadata storage, re-

quired memory capacity and index disk I/Os while providing confidentiality guaran-

tees for both data and metadata.

Chapter 4

P-SCAIL: Parallel SCAIL

4.1 Introduction

We now turn our focus to increasing server throughput. Higher throughput enables

a system implementing P-SCAIL to fully utilise the increased data storage and higher

concurrent client capacities introduced by SCAIL. In P-SCAIL we:

• We reduce SCI cache requirements compared to SCAIL with an improved cache

flushing technique.

• We utilise data and task parallelism to take advantage of multiprocessor servers,

achieving significant speedups in client-side and server-side deduplication through-

put.

A quick response time to lookup queries (see Stage 2 in Figure 3.1) is critical for

any client-side deduplication system, since clients cannot assemble and upload data

until they have received a deduplication response from the server. SCAIL’s response

to lookup queries is very fast, but P-SCAIL further reduces client response times by

processing multiple client queries in parallel. P-SCAIL also parallelises server-side

deduplication to increase metadata processing throughput, which increases the num-

ber of concurrent clients that a server can accommodate in a given timeframe.

In the following sections, we first outline P-SCAIL’s parallel strategies for client-

side deduplication, and then delve into the use of data and task parallelism to enhance

112

4.2 Parallel Client-side Deduplication 113

the simultaneous multiclient, batched deduplication method employed for server-side

deduplication.

4.2 Parallel Client-side Deduplication

Clients send MFPs as lookup queries to the server. A separate process from a process

pool handles each client request in turn to enable parallel processing, so it is trivially

parallel. The server will return the set of “Missing” MFPs that have not been saved by

that client previously.

4.3 Batched, Parallel Server-side Deduplication

SCAIL employs a batched approach to concurrently handle the upload data from mul-

tiple clients. The system efficiently processes these data batches by leveraging the se-

quential access pattern of SCI. P-SCAIL enhances SCAIL’s batch approach and uses

both data and task parallelism to reduce batch processing times.

Inspired by Sorted Deduplication [36], we perform data parallelism by assigning

ranges of CFPs to specific processors and perform SCI in parallel. A given processor

manages all SCI operations within its specified range of CFPs.

Although it limits us to 256 processes and the number of processes must be divided

into 256 evenly, for efficiency, processors work on a range of fingerprints based on

the most significant byte of the CFP. For n processors, the i-th processor (where i =

0, 1, . . . , n− 1) will handle fingerprints falling within the range:

(
i · 256

n

)
to

(
(i + 1) · 256

n

)
− 1,

For example, with n = 8, the 0-th processor will handle chunks whose most significant

4.3 Batched, Parallel Server-side Deduplication 114

byte has a lower and upper bound of:

Lower bound =
0 · 256

8
=

0
8
= 0, and

Upper bound =
(0 + 1) · 256

8
− 1 =

1 · 256
8
− 1 =

256
8
− 1 = 32− 1 = 31.

Since the total number of possible byte values is 256 (ranging from 0 to 255), divid-

ing this range evenly among 8 processors results in each processor handling 256
8 = 32

byte values.

Before uploading, clients divide their sorted chunk fingerprint files into separate

files based on the number of processes.

Each process executes the SCI operations outlined in Figure 1.3 within its desig-

nated CFP range, constructing indexes for previously saved and cross-client chunks.

After duplicate detection, all these indexes are merged into a single index for use in

container allocation.

Container allocation is performed next, and we increase its throughput through

task parallelism. Multiple client uploads are processed simultaneously by assigning a

client’s recipe files to one of the n processes in a pool. The allotted cache size is divided

equally across the processors. The cache holds the CFP → CID mapping pairs of

newly allocated chunks. As the cache fills, it is sorted and then flushed to a client-

specific overflow file. When all recipes for the client have been processed, a final sort

and flush of the cache is performed.

After the container allocation has been completed for all client recipes, the overflow

files from each client are loaded, merged and partitioned into one file per processor

range. Using data parallelism again, a processor for each range updates the location of

the newly allocated chunks into the SCI bins. If the new chunks would overflow the

SCI bin, it is split.

4.4 Improved Caching 115

4.4 Improved Caching

P-SCAIL improves SCAIL’s caching technique described in Section 3.3 SCAIL Algo-

rithm Stage 4. When the new-chunks cache fills, instead of making a full pass through

the disk-based SCI index and writing the new chunks to the SCI bins, P-SCAIL sorts

them and writes them to a single overflow file, as seen on lines 29-32 of P-SCAIL Algo-

rithm, Stage 4, Part 2 (see page 116). After processing all the “Missing” chunk recipes,

the SCI process executes a final flush on lines 34-37.

In Part 2, as described above, the new chunk allocation locations are written to a

single disk file, in sorted groups of CFP → CID mapping pairs each time the cache

was flushed. To write these to the SCI, an additional algorithm is required. In P-SCAIL

Algorithm, Stage 4, Part 3 (see page 117), the sorted blocks of CFPs in the overflow file

are sorted-merged, and P-SCAIL conducts a single update pass through the SCI bins.

This approach requires only a small number of CFP’s to be held in memory (one

for each sorted CFP block flushed during allocation) and ensures only a single write

pass will be made through the SCI bins.

Since flushing the cache during container allocation is now a quick process, we can

allow more cache flushes, which will allow us to reduce the cache size. This results in

fewer overall disk I/Os and smaller memory requirements for P-SCAIL’s SCI imple-

mentation compared to SCAIL.

4.4 Improved Caching 116

P-SCAIL Algorithm, Stage 4, Part 2: Allocate to Containers in Recipe Order

/* Identical to SCAIL Algorithm, Stage 4, Part 2 (p. 82), except for highlighted areas. */
1: Server input:

Duplicate Index DI, Cross-user Index CI from Stage 4, Part 1
On-disk sorted chunk index SCI = ((f p, cid))
Metachunk index MI, File Index FI
Memory cache persisting between calls Cache = ((f p, cid))
Metadata Containers, Data Containers

2: Receive from Stage 3:
Target file name, MFP, EMK, UploadFP, UploadData

3: Initialise empty NewSCI for new sorted chunks locations

4: Initialise empty NewMI for new metachunk locations
5: while fp in UploadFP is a mfp do
6: Retrieve tuple (mfp, emc, CFPmc) from UploadData
7: Initialise empty list of data container ids CIDSForSegment = ()
8: while next fp in UploadFP is a cfp do
9: Retrieve pair (cfp, ec) from UploadData

10: if cfp ∈ DI then
11: Skip this chunk (duplicate)
12: else if cfp ∈ CI then
13: Retrieve cid from CI[cfp]
14: if cid ̸= nil then
15: Add cid to CIDSForSegment
16: else
17: Allocate ec to data container
18: Add (cfp, cid) to Cache
19: Add cid to CIDSForSegment
20: end if
21: else
22: Allocate ec to data container
23: Add (cfp, cid) to Cache
24: Add cid to CIDSForSegment
25: end if
26: end while
27: Store emc, CFPmc, CIDSForSegment into current metadata container cidmc

28: Add (mfp, cidmc) pair to NewMI
29: if Cache is full then
30: Append sorted Cache as NEWn to NewSCI
31: Clear Cache
32: end if
33: end while
34: if Cache is not empty then
35: Append sorted Cache as NEWn to NewSCI
36: Clear Cache
37: end if

4.4 Improved Caching 117

P-SCAIL Algorithm, Stage 4, Part 3: Update Chunk and Metachunk Indexes

1: Server input:
On-disk sorted chunk index SCI = ((cfp, cid))
Metachunk index MI, file index FI
From P-SCAIL Stage 4, Part 2:

File with sorted groups of new chunk storage locations NewSCI
File with appended metadata index updates: NewMI

2: Receive from P-SCAIL Stage 3:
Target file name, MFP, EMK

3: Sort-merge all NEW1, NEW2, . . . , NEWn from NewSCI into a sorted stream NEW
4: Initialise iterators: i← 0 for NEW, j← 0 for SCI
5: while i < |NEW| and j < |SCI| do
6: Find the next new chunk storage mapping: (cfpNew, cidNew)← NEW[i]
7: Find the next stored chunk storage mapping: (cfpStored, cidStored)← SCI[j]
8: if cfpNew < cfpStored then
9: Add (cfpNew, cidNew) at SCI[j]

10: if SCI bin full then
11: Split bin
12: end if
13: Increment i, moving to the next new storage mapping
14: else
15: Increment j, moving to the next stored storage mapping
16: end if
17: end while
18: for each (mfpNew, cidNew) pair in NewMI do
19: Update MI: MI[mfpNew] = cidNew
20: end for
21: Save MFP, EMK under target file name in FI

4.5 Security Analysis 118

4.5 Security Analysis

We adopt the same threat model for P-SCAIL as outlined for SCAIL (Section 3.9).

Given that P-SCAIL is identical to SCAIL — aside from using multiple processors on

a single server and an enhanced caching scheme — it inherits the security measures

described in Section 3.10. Specifically, P-SCAIL offers the same protections against

brute force attacks, as provided by MLE and DupLESS, as well as mitigations against

side-channel attacks by avoiding cross-user client-side deduplication.

4.6 Limitations

P-SCAIL inherits the limitations of SCAIL, as detailed in Section 3.11. Additionally, it

introduces further limitations resulting from its specific multiprocessor utilisation and

improved caching approach, which are described below.

4.6.1 Processor Count Dependencies

In the P-SCAIL design, clients partition their sorted chunk fingerprint files based on

the number of processors used for Stage 4. This approach complicates file management

during upload and processing on the server, as it locks the client upload to a specific

configuration of the server. If an adjustment to the processor configuration is needed,

the clients must be informed beforehand to adjust their partitioning accordingly. This

dependency creates rigidity and requires synchronisation between clients and servers.

While the server may reprocess these files to match a changed processor configuration,

we don’t address this in our design.

4.6.2 Additional Storage For Cache-Backing Files

During Stage 4, rather than immediately flushing the cache of new CFP→ CID (chunk

fingerprint to chunk ID) mappings directly to the on-disk SCI bins, our design utilises

4.7 Evaluation 119

cache-backing files. This method avoids multiple processes simultaneously writing to

the bins. It also enables all the mappings to be amalgamated and divided on a per-

processor basis so that data parallelism can be used to update the SCI index.

However, this approach introduces the need for additional storage to accommo-

date these cache-backing files. Also, it slightly increases the window of vulnerability

concerning data consistency. Specifically, there is a now a longer delay between when

new mappings are created and when they are securely written to their final, on-disk

chunk index location. On the other hand, since the cache is now file-backed, it may

assist in the recoverability of the operation if it fails or is interrupted.

4.7 Evaluation

For multiprocessor experiments, we used the distributed framework Ray [60], limiting

the number of CPUs available to the number required for each test. We also used an in-

memory Redis database [16] to hold the ‘previously stored’ and ‘cross-client’ duplicate

tables so multiple processes could access them. To update container allocations in the

Redis cross-client table, we used an atomic update mechanism to avoid lost updates

due to race conditions.

For the throughput experiments on the MS dataset, we created subsets of the vol-

umes, starting from the first 16, and then repeatedly doubling the number of volumes

up to the first 128, which comprised 43.2 TiB and 2.5 TiB after deduplication, also for a

duplicate elimination ratio of 17.

By adjusting the number of processors and clients involved in backups, we explore

SCAIL’s metadata deduplication throughput under various scenarios.

4.7.1 Deduplication Throughput

We present measurements for both the client-side and server-side deduplication stages

to assess the throughput performance of SCAIL. We define client-side and server-side

4.7 Evaluation 120

deduplication throughput as the total volume of data submitted by all clients for all

backups, divided by the total wall clock time for all backups to complete Stage 2 and

Stage 4, respectively.

We note that the reported throughput metrics are derived from trace datasets, which

primarily capture the metadata manipulation aspect of deduplication. Server-side

deduplication (Stage 4) throughput for complete (non-trace) datasets would be sub-

stantially lower due to the inherent overhead of transferring terabytes of data from

client upload files to data containers. Nonetheless, as the client-side deduplication

predominantly concerns metadata processing, we believe the throughput figures rep-

resent what one might expect in a real-data deployment scenario. While the server-

side throughput metrics offer less direct applicability, they still provide insights into

performance bounds for processing metadata in practical implementations.

We first discuss SCAIL (single processor) throughput, comparing it to Base, fol-

lowed by evaluation results for P-SCAIL multiprocessor scenarios.

Single Processor Throughput SCAIL’s client-side deduplication primarily involves

loading recipes and performing queries into the memory-based MFP-only hash table.

For the FSL dataset with eight clients and 115 backups, the total number of queries was

16.0 million on a hash table that grows to 350,000 elements, resulting in a throughput

of 100.9 GiB/second. For the MS dataset with 128 clients over eight backups, which

required 12.1 million queries on a hash table that grows to 2 million elements, the

throughput was 77.9 GiB/second.

In contrast, Base and Metadedup conduct client-side deduplication through queries

into memory-based CFP hash tables. These systems required a considerably higher

number of lookups: 6.3 billion on a hash table, growing to over 50 million elements for

the FSL dataset, and 5.8 billion lookups on a hash table, growing to over 350 million el-

ements for the MS dataset. The single-processor client-side deduplication performance

for Base against the FSL dataset was 1.9 GiB/second, and 1.3 GiB/second for the MS

4.7 Evaluation 121

dataset. The throughput for Metadedup would be slower than Base, since it works

with both MFPs and CFPs. Even with Base’s memory-based hash table (which would

be infeasible for large-scale workloads as outlined in Section 3.4), SCAIL’s single pro-

cessor client-side deduplication throughput is between 50 and 60 times faster.

P-SCAIL’s server-side metadata deduplication performs the disk-based operations

described in Section 3.3 SCAIL Stage 4, resulting in 1.7 GiB/second throughput for the

FSL dataset, 1.0 GiB/second for the MS dataset.

Base and Metadedup also assign new chunk data to containers in recipe order

and update the memory-based chunk fingerprint index with CIDs of the new chunks.

This memory-based operation enables server-side deduplication throughput of 56.1

GiB/second for the FSL dataset and 4.3 GiB/second for the MS dataset. The notably

high throughput for the FSL dataset reflects that, on average, only 4 GiB of new data –

specifically, data not filtered out with client-side deduplication – reaches the server for

deduplication. In contrast, the MS dataset introduces an average of 350 GiB of fresh

data with each backup. It’s also worth noting that within the FSL dataset, there are

numerous days, predominantly weekends, where no new data is generated. This ab-

sence of new data results in exceptionally high server-side deduplication throughput

rates for Base on such days.

As previously noted, these server-side throughput figures are based on trace datasets.

In real-world scenarios with non-trace dataset backups, all schemes’ throughput would

be substantially slower due to the extensive disk operations required for transferring

client data.

P-SCAIL Multiprocessor Throughput Our multiprocessor evaluation comprises two

separate experiments. In the first experiment, we repeatedly doubled the number of

processors, holding the number of clients steady. In the second, we hold the processor

count at 16 and repeatedly double the number of clients. Since the FSL dataset has

only eight clients, we don’t include it in the second experiment.

4.7 Evaluation 122

(a) FSL 8-clients, Client-side (b) MS 128-clients, Client-side

(c) FSL 8-clients, Server-side (d) MS 128-clients, Server-side

Figure 4.1: Client-side and server-side deduplication throughput for the FSL and MS datasets,
comparing single processor SCAIL (first x-bar) and multiprocessor P-SCAIL (with 2, 4, 8 and 16
processors).

4.7 Evaluation 123

Experiment I. We assessed the effect of increasing the number of available pro-

cessors using our two datasets: the long-term FSL dataset with eight clients over 115

backups, and the high-volume MS dataset with 128 clients across eight backups. For

single processor throughput measurements, we employed SCAIL (after incorporating

P-SCAIL’s cache overflow method). Then we used P-SCAIL, progressively doubling

the processors from 2 to 16.

The upper two bar charts of Figure 4.1 show client-side deduplication throughput

for the FSL and the MS datasets. The first bar in each chart shows the throughput

figures using the single processor SCAIL algorithm, enhanced with the cache manage-

ment introduced in P-SCAIL. This approach avoids the need to start multiple processes

for different phases of the backup process, eliminating the overhead of inter-process

communication.

For the FSL dataset, the deduplication process takes approximately 5 seconds to

deduplicate 500 GiB per backup. This short deduplication time means that overheads

in P-SCAIL’s multiprocessor scenarios, shown in the subsequent bars, reflect reduced

per-processor throughput measurements compared to single-processor SCAIL. More-

over, in Figure 4.1a, it can be seen that there’s no throughput increase beyond eight

processors. This is because the FSL dataset only has eight clients, and client-side dedu-

plication is task parallelised.

In contrast, for the MS dataset with 128 clients, throughput increases significantly

as the number of processors increases. On average, throughput rises by 35%, with

performance increasing from 77.9 GiB/second to 263.5 GiB/second as additional pro-

cessors are added.

The lower two bar charts of Figure 4.1 illustrate the server-side deduplication through-

put. The throughput of SCAIL once again benefits from the simplicity of its single-

processor algorithm, achieving 1.5 GiB/second(FSL) and 1.0 GiB/second(MS). Nonethe-

less, with each doubling of processors, throughput improves by an average of 60%,

culminating in 10 GiB/second (FSL) and 6.9 GiB/second (MS). When the number of

4.7 Evaluation 124

(a) MS 16-procs, Client-side (b) MS 16-procs, Server-side

Figure 4.2: Client-side and Server-side Deduplication Throughput with 16 processes on the MS
dataset. The number of client streams is repeatedly doubled from 16 to 128. As larger client
counts are reached, processor load starts to become balanced, resulting in less idle time and greater
throughput.

processors doubles from eight to 16 for the FSL dataset, it is interesting that throughput

continues to rise even though the number of processors exceeds the eight clients. This

demonstrates that SCI’s data parallelism operations continue to increase throughput

with increased processor availability.

Experiment II. For the second experiment, we fixed the processor count at 16 and

repeatedly doubled the number of clients in the MS dataset from 16 to 128, with re-

sults shown in Figure 4.2. Even though we processed the largest streams first [17],

throughput unexpectedly increased as client volumes doubled. We expected through-

put to be reduced as more clients and backup volume were introduced. This increase

was caused by a few clients with large volume streams that generated substantially

more new data at each backup than the other backup streams. The extended client-

side duplicate lookup and server-side container allocation processing times for these

larger streams left up to 15 processors idle. However, as the client count approached

128, the combined processing duration of the smaller clients began to match or exceed

that of the one or two larger client backups, leading to a more balanced workload and

subsequent improvements in throughput.

4.7 Evaluation 125

Table 4.1: Segment Size Effect on Memory and Upload Size in P-SCAIL

Segment Size 512KiB 1 MiB 2 MiB 4 MiB

FS
L

Index Memory (GiB)
Base 1.385
P-SCAIL Client-side 0.057 0.018 0.010 0.006
P-SCAIL Server-side 0.275 0.275 0.275 0.275
Total P-SCAIL 0.332 0.293 0.285 0.281
Memory Change -76.3% -79.1% -79.6% -79.9%

Upload Volume (GiB)
Base 825
P-SCAIL 628 676 736 805
Upload Change -23.9% -18.1% -10.8% -2.5%

M
S

Index Memory (GiB)
Base 10.358
P-SCAIL Client-side 0.197 0.110 0.062 0.035
P-SCAIL Server-side 0.549 0.549 0.549 0.549
Total P-SCAIL 0.746 0.659 0.610 0.584
Memory Change -92.8% -93.6% -94.1% -94.4%

Upload Volume (GiB)
Base 4,992
P-SCAIL 5,019 5,177 5,397 5,679
Upload Change 0.5% 3.7% 8.1% 13.9%

4.7.2 Memory Use and Upload Volume

To evaluate memory usage and upload volume, following Metadedup, we performed

backup operations on the datasets with 512KiB, 1 MiB, 2 MiB, and 4 MiB segment sizes.

Base and Metadedup both used a single memory-based index on the server for

Stage 2 (client-side deduplication) and Stage 4 (server-side deduplication). The Base

index contained CFPs only, and Metadedup’s index added MFPs, so it was 1% larger.

P-SCAIL used a much smaller MFP-only memory-based index for Stage 2. For Stage 4,

128 MiB of memory was required for loading a single SCI bin. Previously, SCAIL used

a 1.875 GiB write cache for the MS dataset to limit the number of full passes writing

newly allocated chunk locations to the SCI bins. P-SCAIL’s use of cache overflow files

allowed us to reduce the cache to 128 MiB, a 93% reduction. The FSL cache remains

4.7 Evaluation 126

128 MiB, as used in SCAIL. In addition, the duplicate index table required 26 MiB for

the FSL and 320 MiB for the MS datasets.

Table 4.1 presents the change in memory requirements and the difference in upload

volume produced after storing all backups in each dataset.

The figures shown are the memory and disk-volume measurements taken after

running all client backups for the FSL and MS Datasets.

The first line in each group shows the volume of memory consumed by the CFP

index used by the Base scheme. The ”SCAIL Client-side” measurements reflect the

volume of memory consumed by SCAIL’s MFP-only index, and the ”SCAIL Server-

side” measurement reflects the volume SCAIL requires by using SCI to perform chunk-

level deduplication on the server.

Upload volumes shown at the bottom of each group differ between Base and SCAIL

because SCAIL deduplicates metadata, so it does not have to upload repeated File

Recipes. These savings are offset required by RSD uploads in SCAIL, which increase

as segment size increases.

As segments increase in size, there are fewer of them to store, decreasing the re-

quired memory size. P-SCAIL uses 76.3-79.9% less memory than Base for the FSL

dataset and 92.9-94.4% less memory for the MS dataset.

4.7.3 Upload Overhead

P-SCAIL’s use of coarse client-side deduplication caused it to upload redundant chunk

data (see Section 3.8). For the FSL dataset, though, the 96-97% reduction (see Subsec-

tion 4.7.3) in metadata upload more than offset additional uploads of redundant chunk

data. The outcome was a reduction in upload size compared to Base by 2.5-23.9%. For

the MS dataset, which only had eight backups, there was an 86-88% decrease in meta-

data upload, resulting in an increased net upload size compared to Base of 0.5-13.8%.

4.7 Evaluation 127

(a) FSL dataset costs (b) MS dataset costs

Figure 4.3: Deduplication processing and storage costs using the prices from Table 4.2 for the FSL
and MS datasets. Base’s metadata storage costs are reduced by metadata deduplication of File/Key
Recipes, and memory requirements are further reduced by P-SCAIL.

Memory and Storage Costs

We evaluate the memory and storage costs of Base, Metadedup, and P-SCAIL, with

results shown in Figure 4.3 using prices from Table 4.2. Both Metadedup and P-SCAIL

utilise 2 MiB segments, as Metadedup [44] found this provided the best metadata sav-

ings for the FSL dataset.

Next, we detail the components making up the categories of Data, Memory, and

Metadata.

• Data: All schemes employ exact deduplication, so long-term data storage costs

on the HDD are identical.

• Memory: Base and Metadedup primarily incur costs from the chunk fingerprint

lookup hash table. In contrast, P-SCAIL uses the much smaller metachunk fin-

Table 4.2: Memory and storage prices in US dollars from www.amazon.com gathered June 2023.

Type Hardware Price Price per GiB

Memory Crucial 16 GiB Single DDR - CT16G4SFD824A $38 $2.3750
SSD Western Digital 4TB Internal SSD - WDS400T2B0A $230 $0.0617
HDD Seagate 16TB HDD Exos - ST16000NM001G $230 $0.0154

4.8 Summary 128

gerprint lookup hash, with added memory for SCI, including loading a single

bin from disk, the cache for new chunk container allocation mappings and the

duplicate chunk index.

• Metadata: SCAIL used an HDD for metadata, but with P-SCAIL, we’ve added

an SSD. File and Key Recipes start on the SSD during the deduplication process,

moving to the HDD for long-term storage. The SSD also provides storage for any

memory-based indexes, cache overflow files and SCI bins. We sum the HDD and

SSD metadata costs for the total metadata storage costs.

FSL Total Costs: For the FSL dataset, Base costs $17.70, Metadedup costs $10.26,

resulting in savings of 42.2% over Base. The P-SCAIL costs are $7.64, saving 56.9%

over Base.

MS Total Costs: For the MS dataset, Base has costs of $74.33, Metadedup is $68.51,

a savings of 7.8% over Base, and P-SCAIL is $45.22, a 39.2% reduction compared to

Base.

4.8 Summary

In this chapter, we presented P-SCAIL, which builds upon the metadata storage sav-

ings introduced by Metadedup [44], while dramatically reducing memory require-

ments, allowing us to increase scalability and significantly speed up client-side dedu-

plication throughput. P-SCAIL also benefits from the low-memory, high concurrent

client processing capacity of Sorted Deduplication[36], and we adapt that algorithm to

support robust security provisions. This integrated design enables P-SCAIL to increase

system capacity and throughput while significantly reducing required resources on the

server. P-SCAIL also integrates data and task parallelism within its architecture, accel-

erating client lookup responses and amplifying the deduplication server’s concurrent

client processing capabilities.

4.8 Summary 129

Looking ahead, we are currently investigating reducing the re-upload of previously

saved data chunks by incorporating resemblance techniques (see, e.g. [89, 104, 110,

87]).

Chapter 5

PR-SCAIL: Parallel Resemblance SCAIL

5.1 Introduction

In this chapter, we address the challenge of reducing Redundant Segment Data (RSD)

upload volume, which is an inherited side effect of the SCAIL algorithm and retained

in its parallel implementation, P-SCAIL. While P-SCAIL effectively harnesses parallel

processing for performance gains, like SCAIL, its segment-based approach to client-

side deduplication results in redundant uploads of some previously stored chunks.

To tackle this problem, we developed PR-SCAIL, which introduces a resemblance-

based technique for memory-efficient chunk-level client-side deduplication. By lever-

aging the core strengths of SCAIL and P-SCAIL while addressing their limitations,

PR-SCAIL minimises redundant uploads while retaining the performance benefits of

parallelism.

We begin by reviewing the P-SCAIL algorithm to identify the origins and implica-

tions of RSD. Next, we detail the design and implementation of PR-SCAIL, outlining

the enhancements made to reduce RSD. Finally, we compare PR-SCAIL with Resem-

blance Mergence Deduplication (RMD) [104], highlighting the advantages of our ap-

proach and its implications for encrypted deduplication backup servers.

130

5.2 P-SCAIL Overview 131

Figure 5.1: Breakdown of upload volume by component type for the FSL (left) and MS Dataset
(right), using the P-SCAIL technique. P-SCAIL substantially reduces metadata upload volume, but
introduces RSD upload volume.

5.2 P-SCAIL Overview

Recall that the P-SCAIL client encrypts chunks and generates the hash of the encrypted

chunk in a CDC algorithm, which uses patterns in the hash values to determine seg-

ment boundaries. It then gathers the metadata of the chunks of the segment, including

the chunk encryption keys, into a metachunk. The metachunk is then encrypted, and

the hash of the encryption is taken. This hash value is a metachunk fingerprint that acts

as a digest that uniquely identifies the segment. The MFP index holding metachunk

fingerprints is used to perform client-side deduplication and identify segments that

a client has previously stored so its constituent chunks do not have to be uploaded.

The metachunks themselves are also deduplicated, reducing metadata storage on the

server.

5.3 Redundant Segment Data Generation

Our previous designs, SCAIL and P-SCAIL, generate Redundant Segment Data (RSD)

uploads, as shown in Figure 5.1. For a full discussion of these results, see Section 3.8.

5.3 Redundant Segment Data Generation 132

These additional uploads are caused by P-SCAIL’s segment-based client-side dedupli-

cation; that is, it sometimes uploads previously-stored chunks. Note that our definition

of RSD excludes duplicate chunks from distinct clients in a given backup. Unlike RSD,

this form of upload redundancy should not be eliminated, because doing so would ex-

pose the system to side-channel attacks, where clients might be able to identify chunks

that other clients have uploaded.

To understand where RSD may occur, consider the situation of a modification of a

small number of chunks within a segment on a client’s machine, from one backup to

the next. Since CDC is used to create the segment boundaries, if the modifications are

minor, the segment boundary will remain the same. Another scenario is where the final

chunk of the segment is modified, which will likely extend the segment and shorten the

following segment unless the following segment is also extensively modified. But in

P-SCAIL, any change of a segment chunk will create a distinct metachunk fingerprint,

triggering P-SCAIL to upload all chunks of the segment. In this scenario, all chunks

except the modified chunks will be Redundant Segment Data (RSD), as described in

Section 3.8.

We therefore categorise some of the causes of RSD between backup generations as

follows:

1. Segments that have had a small number of chunks modified but retain their seg-

ment boundaries.

2. Segments that have been sufficiently modified that they generate new segment

boundaries.

3. Wholly new segments in the system that coincidentally contain one or more

chunks uploaded previously. Systems with specific commonly occurring chunks

(e.g., chunks containing all zeroes or all spaces) will more likely generate new

segments with these common, previously uploaded chunks.

Having identified possible sources of RSD, we discuss our attempts to reduce it.

5.4 Reducing Redundant Segment Data 133

5.4 Reducing Redundant Segment Data

Using a chunk-based index for client-side deduplication would eliminate RSD, but

P-SCAIL explicitly avoids this because it does not scale to large datasets as shown

in Subsection 2.3.1. To retain P-SCAIL’s scaling capabilities, we need a method of

efficiently identifying previously saved chunks that requires a low amount of memory.

Suppose we can identify the segment containing the previously saved chunks that

produced the RSD? In that case, we should be able to eliminate many of the previously

saved chunks, giving high, although not always exact, deduplication efficiency. As

shown by Resemblance Mergance Deduplication (RMD) [104], segments that resemble

each other can be identified by adapting Broder’s document resemblance to segment

resemblance. Citing from the RMD abstract (the following quotation is italicised):

At data ingesting time, RMD uses a resemblance algorithm to detect resemble

data segments and put resemblance segments in the same bin. As a result, at

querying time, it only needs to search in the corresponding bin to detect duplicate

content, which significantly speeds up the query process.

RMD and many other approaches [9, 92, 89, 106] use the data resemblance theory

advanced by Broder [14, 13] that the probability of two documents sharing the same

minimum hash value is highly dependent upon their similarity degree. From Section

2.2 in [89] quoting from Broder (the following quotation is italicised):

Consider two sets S1 and S2 with H(S1) and H(S2) being the corresponding sets of the

hashes of the elements of S1 and S2 respectively, where H is chosen uniformly and randomly

from a min-wise independent family of permutations. Let min(S) denote the smallest element

of the set of integers S. Then

Pr [min(H(S1)) = min(H(S2))] =
|S1 ∩ S2|
|S1 ∪ S2|

.

5.5 Design of PR-SCAIL 134

5.5 Design of PR-SCAIL

PR-SCAIL makes use of resemblance to reduce RSD. This involves modifications to

each of the four stages in P-SCAIL. In Stage 1, in addition to building recipes of MFPs,

the list of CFPs making up the MFP will be included, and one CFP (the minimum val-

ued CFP) is selected as the Representative Fingerprint (RFP) for each segment. During

Stage 2 (the lookup stage), the server adds and must maintain an RFP index, which

is used to find any previously saved similar segments used for chunk deduplication.

Stage 3 under P-SCAIL receives only a list of “Missing” MFPs and must upload all

chunks making up the MFP. In PR-SCAIL, only the CFPs for chunks not deduplicated

are specified, so only these chunks must be uploaded. In Stage 4, there are no dedupli-

cation changes for PR-SCAIL; the usual cross-user, chunk-level deduplication is per-

formed, resulting in exact deduplication. As the last step in Stage 4, the MFP and new

RFP index are updated for all new segments.

5.6 Modifying P-SCAIL for PR-SCAIL

This section outlines the key modifications necessary to transition from the P-SCAIL

system to PR-SCAIL. We detail how this enhancement improves chunk-level resem-

blance deduplication while maintaining the core functionality of the Metachunk Fin-

gerprint (MFP) Index. The following subsections explore these changes, highlighting

their impact on the system’s deduplication process and memory requirements.

5.6.1 Stage 1: Building the Lookup Query

Clients must upload not only the MFP fingerprints but also the segment recipes, which

is a list of CFPs, one of which is designated as the RFP. Using CFPs and RFPs enables

the server to perform chunk-level resemblance deduplication.

The client selects the RFP for each segment as the minimum CFP within the seg-

5.6 Modifying P-SCAIL for PR-SCAIL 135

PR-SCAIL Algorithm, Stage 1: Build Deduplication and Resemblance Query

1: Client input: Target file name, client’s key key, segment size Ssize, chunk size Csize

2: Generate and store MC, MK, PEMC, MFP as in P-SCAIL Stage 1 (p. 76)
3: Calculate resemblance recipes RR = (rr1, rr2, . . . , rrm), where, for j in [1, m]:

rrj = (mfpj, prj, rfpj),
mfpj = MFP[j],
pemc = PEMC[j]
Extract (prj, emcj) from pemc
rfpj = min(prj)

4: Send resemblance recipes RR to server

ment. That is, it selects the SHA-1 hash value with the lowest value when interpreted

as a 20-byte number.

5.6 Modifying P-SCAIL for PR-SCAIL 136

5.6.2 Stage 2: Lookup for Deduplication

Recall that a list of the constituent CFPs of segments are stored in the manifests of

metadata containers, see Subsection 3.10.1. For PR-SCAIL, we reduce the expected

metadata container size from 128 MiB to 4 MiB. This gives us much more discrimina-

tion in loading pertinent metadata manifests. Given an RFP, for resemblance dedupli-

cation, we must find the CID of the similar segment’s metadata container and retrieve

its CFPs from its manifest. The RFP index will hold this association.

Each segment will have an RFP, although by design, other segments may have this

same RFP. The number of RFP entries in the index will therefore be at most the number

of MFPs. For a PB of unique data using 2 MB segments, there would be at most 500

million RFPs. However, multiple segments will often be saved over time with the

same RFP. To preserve memory, the system could hold only the segment’s first or most

recent version. PR-SCAIL aims for a high level of deduplication and so maintains a set

with all of the CIDs of segments that have been backed up with the same RFP.

To minimise the memory and processing overhead of storing and comparing RFPs,

we take a non-cryptographic hash of the RFP using the xxHash-64 algorithm refer-

enced in [18], producing a 64-bit (8-byte) hash. This reduces the memory required to

hold the RFPs but will increase the chance of a hash collision. Since PR-SCAIL main-

tains a list of all CIDs that have ever been seen for each RFP, a collision will still result

in deduplication between all previously stored similar segments, but may also include

some dissimilar segments. The net effect of a collision would be the same deduplica-

tion efficiency but at the cost of loading chunk fingerprints from dissimilar segments

during the deduplication operation.

The lookup stage in the PR-SCAIL deduplication process involves a more complex

lookup operation than P-SCAIL. First, identical segments are eliminated using the

MFP index. This step is pivotal to PR-SCAIL’s performance, as it effectively eliminates

almost all segments in a backup workload, thereby isolating only the new or modified

5.6 Modifying P-SCAIL for PR-SCAIL 137

PR-SCAIL Algorithm, Stage 2: Deduplication Lookup with Resemblance

1: Server input:
Metachunk index MI
Resemblance index RI = ((rfp, CIDList))

2: Receive: resemblance recipe RR from PR-SCAIL Stage 1
3: Initialise:

MS, a list of (mfp, rfp) for missing segments
CFPclient = {}, a set to hold CFPs from client for deduplication
MR, a list of missing metachunks and chunks after resemblance deduplication

4: for each resemblance recipe (mfp, pr, rfp) in RR do
5: if mfp ∈ MI then
6: Remove (mfp, pr, rfp) from RR
7: else if then
8: Add CFPs of pr to set CFPclient
9: end if

10: end for
11: for each remaining resemblance recipe (mfp, pr, rfp) in RR do
12: if rfp ∈ RI then
13: Retrieve list of container IDs: CIDList = RI[rfp]
14: for each container ID cid in CIDList do
15: Load chunk fingerprints CFPcid from metadata container cid
16: Remove all CFPs in CFPcid from CFPclient
17: end for
18: end if
19: end for
20: for each remaining resemblance recipe (mfp, pr, rfp) in RR do
21: Initialise list prremaining = ()
22: for each cfpi in pr do
23: if cfpi ∈ CFPclient then
24: Add cfp to prremaining
25: end if
26: end for
27: if CFPremaining is not empty then
28: Add (mfp, prremaining, rfp) to MR
29: end if
30: end for
31: Send MR to the client

5.6 Modifying P-SCAIL for PR-SCAIL 138

segments for further processing. Next, for these remaining segments, we:

1. Build a set of all CFPs in the lookup recipes from the client.

2. Using the RFP index, build a set containing the CID recipe storage location for

any segment this client has previously saved that is similar to the segments of

this upload.

3. Search the CIDs with the most references first. Create a sorted list of the CIDs

in ascending order on the number of segments that reference the CID. Perform-

ing the search in this sorted order increases the chance that all CFPs have been

deduplicated without loading all CIDs, so the search can be terminated early, as

outlined in Step 6.

4. Process each CID in the sorted list, loading the set of CFPs from the manifest of

the metadata container.

5. Deduplicate using set difference: remove the set of loaded recipe CFPs from the

set of CFPs built in step 1.

6. If all CFPs from the recipes have been eliminated, the rest of the CIDs do not

have to be examined.

It should be noted that deduplicating a large quantity of CFPs is accomplished

through a single access to the manifest section of the metadata container. This process

facilitates the deduplication of hundreds of segments and tens of thousands of CFPs

in a single read and set difference operation. Also, the total number of retrievals is

limited to the number of metadata containers that the client has stored.

Next, the segment recipes uploaded from the client are processed to produce the

“Missing” recipes for Stage 3. Each CFP in the segment recipes is looked up in the

deduplicated CFPs set. If any CFPs are found in a segment, they are output associated

with the MFP of the segment. Note that for efficiency, instead of returning a list of the

5.6 Modifying P-SCAIL for PR-SCAIL 139

“Missing” CFPs, we output just the list of offsets for CFPs in the recipe list instead of a

list of CFPs. For instance, if the only remaining chunks in a segment are the 2nd and

3rd chunks in the segment recipe, we’ll return the zero-based offsets into the recipe,

for example “[1, 2]”. Since the client builds the recipe, it knows which CFPs are being

referred to.

Stage 2 directly benefits from the established task-based parallelism framework of

P-SCAIL. Specifically, lookup for the deduplication process, now enhanced by chunk-

level analysis, is processed independently in a separate task, allowing PR-SCAIL to

maintain high efficiency and throughput. Still, with near-exact client-side dedupli-

cation, there will be some duplicate chunks that will not be identified, and so will

be uploaded to the server. PR-SCAIL identifies and eliminates any of these remain-

ing duplicate chunks during cross-user server-side deduplication and produces exact

deduplication of chunks stored on the server.

5.6 Modifying P-SCAIL for PR-SCAIL 140

5.6.3 Stage 3: Assemble Missing Metachunks and Chunks

PR-SCAIL Algorithm, Stage 3: Assemble Missing Metachunks and Chunks

/* Identical to SCAIL Stage 3 (p. 79), except for highlighted areas. */
1: Client input:

• Target file name, client key key
• MFP, MC, PEMC, MK, EC from SCAIL Stage 1 (p. 76)

2: Receive: Missing resemblance list MR from PR-SCAIL Stage 2 (p. 137)
3: Initialise:

• Upload data list: UploadData = ()
• List of unique MFPs and their CFPs in recipe order: UploadFP = ()

4: for (mfp, pr, rfp) in MR do
5: if mfp /∈ UploadFP then
6: Find index j such that MFP[j] = mfp
7: Retrieve partially encrypted metachunk pemc = PEMC[j]
8: Append (mfp, pemc) to UploadData
9: Add pair (mfp, rfp) to UploadFP

10: for each cfp in CFPremaining do
11: if cfp /∈ UploadFP then
12: Find index i such that CFP[i] = cfp
13: Retrieve encrypted chunk ec = EC[i]
14: Append pair (cfp, ec) to UploadData
15: Add cfp to UploadFP
16: end if
17: end for
18: end if
19: end for
20: Extract and sort CFPs from UploadFP into SortedCFP
21: Encrypt metachunk key recipe: EMK = Encrypt(MK, key)
22: Send target file name, MFP, EMK, UploadFP, UploadData, SortedCFP to server

For all MFPs returned in the “Missing” recipes from Stage 2, P-SCAIL would in-

clude all chunks in the segments in the assembled upload. Since the PR-SCAIL “Miss-

ing” recipe includes specific CFPs, only these chunks will be assembled for upload,

achieving near-exact, chunk-level client-side deduplication.

5.6 Modifying P-SCAIL for PR-SCAIL 141

5.6.4 Stage 4: Cross-User Deduplication

To mitigate side-channel attacks, all SCAIL family algorithms do not perform cross-

client deduplication on the client. Any cross-client duplicate data or previously up-

loaded chunks missed using the resemblance technique will be eliminated during

chunk-level deduplication on the server. This novel approach results in exact dedu-

plication storage for PR-SCAIL, even though client-side deduplication is near-exact

since it is resemblance-based.

Finally, note that the segment resemblance is not performed during the system’s

first backup. This is because carrying out segment resemblance at this stage would

have no effect, given that no resemblance data has been generated yet. Consequently,

it is only implemented in the subsequent backups, where RFPs are available for simi-

larity detection.

5.6 Modifying P-SCAIL for PR-SCAIL 142

PR-SCAIL Algorithm, Stage 4, Part 2: Allocate to Containers in Recipe Order

/* Identical to P-SCAIL Stage 4 Part 2 (p. 116), except for highlighted areas. */
1: Server input:

Duplicate Index DI, Cross-user Index CI from Stage 4, Part 1
On-disk sorted chunk index SCI = ((cfp1, cid1), (cfp2, cid2), . . . , (cfpn, cidn))
Metachunk index MI, File Index FI
Persisting cache Cache = ((cfp1, cid1), (cfp2, cid2), . . . , (cfpn, cidn))
Metadata Containers, Data Containers

2: Receive: target file name, MFP, EMK, UploadFP, UploadData, SortedCFPs
3: Initialise empty NewSCI, NewMI, NewRI for new container mappings
4: while fp in UploadFP is a pair(mfp, rfp) do
5: Retrieve (mfp, emc) from UploadData
6: Initialise empty list of data container ids CIDSForSegment = ()
7: while next fp in UploadFP is a cfp do
8: Retrieve pair (cfp, ec) from UploadData
9: if cfp ∈ DI then

10: Skip this chunk (duplicate)
11: else if cfp ∈ CI then
12: Retrieve cid from CI[cfp]
13: if cid ̸= nil then
14: Add cid to CIDSForSegment
15: else
16: Allocate ec to data container
17: Add (cfp, cid) to Cache
18: Add cid to CIDSForSegment
19: end if
20: else
21: Allocate ec to data container
22: Add (cfp, cid) to Cache
23: Add cid to CIDSForSegment
24: end if
25: end while
26: Store emc, CFPmc, CIDSForSegment into current metadata container cidmc
27: Add (mfp, cidmc) pair to NewMI
28: Add (rfp, cidmc) pair to NewRI
29: if Cache is full then
30: Append sorted Cache as NEWn to NewSCI
31: Clear Cache
32: end if
33: end while
34: if Cache is not empty then
35: Append sorted Cache as NEWn to NewSCI
36: Clear Cache
37: end if

5.6 Modifying P-SCAIL for PR-SCAIL 143

PR-SCAIL Algorithm, Stage 4, Part 3: Update Chunk and Metachunk Indexes

/* Identical to P-SCAIL Stage 4 Part 3 (p. 117), except for highlighted areas. */
1: Server input:

On-disk sorted chunk index SCI = ((cfp1, cid1), (cfp2, cid2), . . . , (cfpn, cidn))
Metachunk index MI, file index FI
NewSCI, NewMI, NewRI from PR-SCAIL Stage 4, Part 2

2: Receive target file name, MFP, EMK from PR-SCAIL Stage 3
3: Sort-merge all NEW1, NEW2, . . . , NEWn from NewSCI into a sorted stream NEW
4: Initialise iterators: i← 0 for NEW, j← 0 for SCI
5: while i < |NEW| and j < |SCI| do
6: Find the next new chunk storage mapping: (cfpNew, cidNew)← NEW[i]
7: Find the next stored chunk storage mapping: (cfpStored, cidStored)← SCI[j]
8: if cfpNew < cfpStored then
9: Add (cfpNew, cidNew) at SCI[j]

10: if SCI bin full then
11: Split bin
12: end if
13: Increment i, moving to the next new storage mapping
14: else
15: Increment j, moving to the next stored storage mapping
16: end if
17: end while
18: for each (mfpNew, cidNew) pair in NewMI do
19: Update MI: MI[mfpNew] = cidNew
20: end for
21: for (rfpNew, cidNew) pair in NewRI do
22: Update RI: Add cidNew to CIDList at RI[rfpNew]
23: end for
24: Save MFP, EMK under target file name in FI

5.7 Comparison of PR-SCAIL with the RMD design 144

5.7 Comparison of PR-SCAIL with the RMD design

“RMD: A Resemblance and Mergence Based Approach for High Performance Dedupli-

cation” [104], described in the Related Works Subsection 2.7, differs from PR-SCAIL in

the following ways:

1. RMD uses fixed-size segments, PR-SCAIL uses variable-sized segments, which

increases the likelihood of producing the same segments even when modifica-

tions are made upstream of the segment.

2. RMD deduplicates the CFPs of recipes serially, in recipe order, loading all CFPs

in the bin file of similar segments into an LRU cache. If the backup workload is

large, the CFP cache will become ineffective, causing many cache misses. With

each cache miss, a disk I/O to load the segment bin will be required, often trig-

gering an additional cache eviction write.

3. RMD has to perform a disk write when segment bins are evicted from the LRU

cache, updating their reference statistics and, if necessary, pruning the chunk

lists stored in the bin. PR-SCAIL does not keep or update statistics for similar

segment usage.

4. RMD has no mechanism to skip chunk-level deduplication on identical, previ-

ously saved segments. Even if there are no changes to the segment, if its chunks

are not in the cache, it must load them from the disk and perform duplicate

checks on all chunks in the segment. The SCAIL family of algorithms uses the

MFP index to deduplicate an entire segment with a single memory-based lookup.

5. RMD maintains CFP reference counts stored in the segment bin files. It uses

these statistics to potentially limit the number of CFPs loaded to deduplicate a

segment. PR-SCAIL always loads all CFPs in a given CID record in one opera-

tion.

5.8 Security Analysis 145

6. RMD gathers chunks from similar segments to a single disk file, which requires

a disk read for each segment unless it is already in its cache. PR-SCAIL stores

the recipes for hundreds of segments in the manifest of each metadata container

record and so can load hundreds of thousands of chunks, describing more than

1 GiB of data, with a single manifest read operation.

5.8 Security Analysis

We assume the same threat model for PR-SCAIL as SCAIL and P-SCAIL (see Sec-

tion 3.9). Additionally, PR-SCAIL inherits the data privacy guarantees of SCAIL (see

Section 3.10). However, since the client-side deduplication queries and replies from the

server are performed at the chunk-level rather than the metachunk level, PR-SCAIL

does not have the extra level of side-channel attack resistance that SCAIL provides. It

aligns with those protections outlined in Metadedup (see Subsection 2.5.7).

5.9 Limitations

PR-SCAIL inherits the limitations of both P-SCAIL (Section 4.6) and SCAIL (Section 3.11),

except for reducing the write amplification limitation. This is because PR-SCAIL per-

forms similarity-based chunk-level client-side deduplication, that eliminates between

80% and nearly 97% of excess uploads on our evaluation datasets (Subsection 5.10.3),

substantially mitigating the write amplification limitations present in SCAIL and P-SCAIL.

Since client-side deduplication in PR-SCAIL requires disk I/O operations to sup-

port chunk-level deduplication, its throughput is significantly slower than P-SCAIL’s

throughput (see Subsection 5.10.5). This may limit PR-SCAIL’s ability to keep up with

high volumes of client data capacity that the SCAIL family of algorithms enables. See

Subsection 6.9.2 for a comparison of the trade-off between throughput and upload vol-

ume in P-SCAIL and PR-SCAIL.

5.10 Evaluation 146

(a) Before deduplication (b) After deduplication

Figure 5.2: Heatmaps reflecting the count of previously stored chunks in uploads before and after
segment-based resemblance deduplication.

5.10 Evaluation

We evaluate PR-SCAIL using the same methodology and experimental setup as P-SCAIL

(as detailed in Section 4.7). We begin by examining the efficacy of the resemblance

technique in diminishing Redundant Segment Data (RSD) upload volume in an exam-

ple client backup. This analysis is extended to full datasets using the 2MiB segment

size, and subsequently, we explore the technique’s behaviour across a range of seg-

ment sizes from 512 KiB to 4 MiB. Following this, we delve into how varying segment

sizes influence memory usage and the volume of data uploaded. Next, we examine

the throughput measurements for various numbers of processors and clients. Finally,

we will conclude this chapter by discussing the broader implications of our results.

5.10.1 Illustrating The Efficiency of Segment-based Resemblance Dedupli-

cation

In this subsection, we explore the effectiveness of the segment resemblance technique

on an individual backup for a single client. Figure 5.2, shows two heatmaps illustrating

the outcome of segment resemblance deduplication. The values in each heatmap ele-

5.10 Evaluation 147

ment denote the number of chunks within “modified” segments—defined as segments

where this specific sequence of chunks (as identified by the segment’s metachunk)

has not been saved before and contains less than 100% new chunks. The heatmap on

the left illustrates chunk counts per segment prior to deduplication, whereas the right

heatmap depicts the counts after deduplication.

To represent the data visually, we calculated the dimensions of each square-shaped

heatmap based on the total number of elements. By taking the square root of the total

number of modified segments, we determined the size of each side of the square. If the

number of segments was not a perfect square, we padded the final row of the heatmap

with zero counts.

We then transformed the list of chunk counts into a two-dimensional array, suitable

for heatmap visualisation. This involved reshaping the data into rows and columns,

correlating with the square root value calculated for the heatmap dimensions.

For the colour mapping, we employed a greyscale where different shades represent

varying chunk counts. A light shade indicates a low number of chunks, aiding in the

visual differentiation of segment densities before and after deduplication. This shade

scale aids in interpreting the changes in chunk distribution due to the deduplication

process.

These segments are prime candidates for containing previously uploaded chunks,

which our technique aims to minimise. Initially, the left heatmap reveals a wide range

of chunk counts in modified segments, averaging 316 chunks per segment. Post-

deduplication, as shown in the right heatmap, this average is significantly reduced

to 26 chunks per segment.

This specific analysis involves data from the 5th backup of Client 7 in the FSL

dataset, dated 2013-01-27, following a backup on 2013-01-26. The client’s backup query

consists of 12,313 MFPs describing 32.6 GiB of data across 3,582,414 CFPs. Upon ex-

amining the MFP index, we find that 11,020 segments, encompassing 3,172,260 CFPs,

had been previously saved and are therefore excluded from further analysis. The re-

5.10 Evaluation 148

Table 5.1: Segment Size Effect on Redundant Segment Data Volume

Segment Size 512KiB 1 MiB 2 MiB 4 MiB

FS
L P-SCAIL Redundant Segment (GiB) 170.1 219.4 279.9 348.4

PR-SCAIL Redundant Segment (GiB) 8.4 8.4 8.4 8.4

M
S P-SCAIL Redundant Segment (GiB) 599.1 754.3 964.0 1,248.0

PR-SCAIL Redundant Segment (GiB) 183.6 183.6 183.6 183.6

maining data includes 1,303 segments with 410,154 CFPs, equating to 3.5 GiB. Seven

segments are identified with 100% new chunks, reducing the count to 1,296 “modi-

fied” segments. Through the process of segment resemblance deduplication, 379,229

chunks (92.5%) are eliminated from these segments. Consequently, the average num-

ber of chunks per segment in the heatmaps is markedly lowered from 316 to 26.

5.10.2 Reducing RSD Volume for various segment sizes

In Table 5.1, we show the Redundant Segment Data (RSD) upload volumes in GiB

that accumulate after performing all backups in the FSL (top figures) and MS (bottom

figures). We start our analysis at segment size 512KiB, and double the segment size

until reaching 4 MiB segment size.

For the P-SCAIL method, as the segment size increases, RSD significantly increases.

This can be attributed to the fact that modifying even a single chunk in a larger seg-

ment results in a greater number of chunks being uploaded that were saved during a

previous backup. For instance, with the MS dataset, the volume of RSD for P-SCAIL

more than doubles as the segment size goes from 512 KiB to 4 MiB.

With PR-SCAIL, around 183 GiB of RSD still remains after segment resemblance

deduplication, but importantly, it does not grow with the increase in segment size.

This reflects the stable behaviour of PR-SCAIL deduplication since it is performed at

the chunk and segment levels.

5.10 Evaluation 149

Figure 5.3: Breakdown of upload cumulative volume by component type for the FSL (top) and MS
(bottom) datasets for the Base, P-SCAIL and PR-SCAIL techniques.

5.10.3 Total Upload Volume

The cumulative upload volume incurred running all backups for our two real-world

datasets, FSL and MS, is illustrated in Figure 5.3. We evaluate three approaches: Base,

P-SCAIL and the technique introduced in this chapter, PR-SCAIL. In this upload

overhead evaluation, all approaches use 8KiB expected chunk size, and P-SCAIL and

PR-SCAIL use 2MiB expected segment size.

In Stage 3 of the deduplication process, clients are responsible for uploading all en-

crypted chunk data that has not been filtered out during the client-side deduplication

of Stage 2. The uploaded data volumes collected for each backup are categorised as

follows:

1. Data: This category encompasses all uploaded unique encrypted chunks in all

client uploads which have not previously been stored. All schemes, including

Base, P-SCAIL and PR-SCAIL upload identical volumes of this type of data.

5.10 Evaluation 150

2. Cross-user Redundant Data: This includes data in the current upload batch that

was either uploaded by another client in the same backup cycle or in a previous

backup, but is not associated with the current client’s prior uploads. All three

schemes upload this type of data to protect against side-channel attacks.

3. Metadata: This pertains to file and key recipes that clients generate and save for

data restore operations. Base’s recipes are references to CFPs, while P-SCAIL and

PR-SCAIL recipes are MFPs.

4. Redundant Segment Data (P-SCAIL and PR-SCAIL only): This category is as-

signed to any chunks in the current upload that have not been classified in the

above categories and are identified as duplicates of chunks that are already stored

within the system. These chunks tend to be the result of modification of segments

between backups.

Base Algorithm: The Base algorithm employs a chunk index that maintains owner-

ship information, enabling client-side deduplication within individual client scopes.

It implements a strict privacy protocol to protect against side-channel attacks by ac-

knowledging only those chunks previously uploaded by the active client. This ensures

data uploaded by other clients remains undisclosed.

On the server side, it performs cross-user chunk-level deduplication. This achieves

exact duplication across users without compromising the confidentiality of upload sta-

tus. Within the FSL dataset — home directories from a small research lab — cross-user

data is minimal. Over the backup timeline, the metadata volume increases steadily,

eventually approaching the total size of unique data stored, even without significant

new data additions, as seen in the top left chart in Figure 5.3.

By contrast, the MS dataset, shown in the bottom left chart, encompasses complete

hard drive backups from a corporate setting. It exhibits substantial cross-user data in

the initial backup. The Base system establishes ownership for this cross-user data upon

5.10 Evaluation 151

Table 5.2: Total upload volume and the difference in upload volume between Base and PR-SCAIL

Segment Size 512KiB 1 MiB 2 MiB 4 MiB

FS
L Base (GiB) 823.5

PR-SCAIL (GiB) 465.5 464.3 464.0 464.2
Difference -43.6% -44.8% -43.8% -43.7%

M
S Base (GiB) 4,981.8

PR-SCAIL (GiB) 4,620.6 4,622.5 4,625.2 4,628.9
Difference -7.4% -7.4% -7.4% -7.3%

its first upload, effectively excluding such chunks from future uploads. Consequently,

in later backups, there is only a marginal increase in cross-user data in the MS dataset.

Although the volume of metadata increases with each backup, there are only eight

backups in total. As a result, the overall metadata remains small compared to the total

upload size.

P-SCAIL Metadata Deduplication: P-SCAIL significantly lowers the server’s meta-

data storage requirements by storing and deduplicating metachunks. However, its use

of segment-level deduplication (for example, using 2MiB segments) leads to the up-

load of redundant segment data (RSD), as seen in the top middle chart in Figure 5.3.

Fortunately, server-side deduplication efficiently eliminates all RSD before incorporat-

ing it into the server’s unique data store.

Within the FSL dataset, we observe a marked reduction in metadata volume be-

cause of metadata deduplication. However, the volume of RSD upload gradually be-

gins to rival that of unique data upload volume.

In the MS dataset in the bottom middle chart, P-SCAIL reduces the metadata up-

loads. Still, the accumulation of uploaded RSD surpasses the volume of saved meta-

data uploads, resulting in a net increase in upload volume compared to Base.

PR-SCAIL Resemblance Deduplication: PR-SCAIL retains P-SCAIL’s metadata dedu-

plication, and adds resemblance-based client-side deduplication. It identifies segments

similar to the segments uploaded by clients, loads the recipes for those similar seg-

5.10 Evaluation 152

ments and performs chunk-level deduplication. In the FSL dataset, this proves very

effective and eliminates 96.99% of RSD, as evidenced in the top right chart in Figure 5.3.

A summary of the upload volumes for all types of upload, including data, meta-

data, and excess uploads (see Subsection 3.8) for the Base and PR-SCAIL schemes are

shown in Table 5.2. Segment sizes in PR-SCAIL are sampled, ranging from 512 KiB to

4 MiB. The difference in upload volume between the two schemes is also shown.

This results in a 43.8% reduction in upload volume for PR-SCAIL vs. Base. In the

MS dataset, 80% of the RSD is eliminated, resulting in 7% reduction in upload volume

vs Base, as seen in the bottom right chart in Figure 5.3.

5.10 Evaluation 153

Table 5.3: Effect of Segment Size on Memory Usage for Metachunk Fingerprint (MFP) and Repre-
sentative Fingerprint (RFP) Indexes. Index sizes in MiB of RAM, with the number of index elements
in parenthesis.

Segment Size 512KiB 1 MiB 2 MiB 4 MiB
FS

L

MFP Index
31 MiB

(1,093,664)
17 MiB

(596,661)
9 MiB

(330,308)
5 MiB

(184,731)

RFP Index
12 MiB

(738,216)
6 MiB

(373,267)
3 MiB

(189,981)
2 MiB

(97,213)

M
S

MFP Index
198 MiB

(6,927,263)
110 MiB

(3,831,850)
61 MiB

(2,135,874)
34 MiB

(1,199,526)

RFP Index
101 MiB

(4,838,330)
52 MiB

(2,445,329)
27 MiB

(1,244,440)
14 MiB

(636,707)

5.10.4 Memory Requirements

We evaluate how much additional memory is required by PR-SCAIL with the intro-

duction of the RFP Index, in comparison to its predecessor, P-SCAIL. While both sys-

tems utilise the same MFP Index, PR-SCAIL’s introduction of the RFP Index slightly

elevates the overall memory footprint. Table 5.3 which details the memory size in MiB

and the count of elements in ”()” for both the MFP and RFP Indexes across the FSL and

MS datasets.

Observations from the Table:

• Reduced Element Count in RFP Index: The RFP Index consistently exhibits a

lower element count than the MFP Index. This reduction is due to the nature

of RFPs, where a single RFP represents all similar segments, thus aggregating

multiple MFPs.

• Memory Size Efficiency: The memory size required for the RFP Index is signifi-

cantly lower than that of the MFP Index, often around 50% lower. This efficiency

is attributed to the smaller number of RFPs and the reduced size of RFPs (8 bytes)

compared to MFPs (20 bytes).

• Impact of Segment Size: The table demonstrates how changes in segment size af-

fect the memory requirements of both indexes. It is observed that as the segment

5.10 Evaluation 154

size increases, the number of segments needed to identify backup data decreases,

requiring less memory to store them.

Summary: Integrating the RFP Index in PR-SCAIL introduces an additional mem-

ory overhead, which is minimal and justified by the benefits in chunk-level client-side

deduplication efficiency. PR-SCAIL thus significantly reduces RSD upload volume in

large-scale data backups with high efficiency, with only a modest increase in memory

requirements.

5.10.5 PR-SCAIL Throughput Analysis

This subsection analyses the throughput performance of the PR-SCAIL system, and

aims to provide insights into the behaviour of PR-SCAIL under varying computational

loads and client interactions. We conduct our study through experiments exploring the

system’s response to processor count and client volume changes.

The experimental infrastructure for this study mirrors that of P-SCAIL in Subsec-

tion 4.7.1, employing the Ray distributed framework for controlling CPU availability

based on test requirements. As a shared resource across CPUs, the in-memory Redis

database facilitates access to the ”previously stored” and ”cross-client” duplicate ta-

bles. Additionally, to ensure data integrity in container allocations, an atomic update

mechanism within Redis is utilised to prevent lost updates arising from race condi-

tions.

PR-SCAIL Multiprocessor Throughput. Our multiprocessor evaluation comprises

two separate experiments. In the first experiment, we repeatedly doubled the number

of processors, holding the number of clients steady. In the second, we hold the proces-

sor count at 16 and repeatedly double the number of clients. Since the FSL dataset has

only eight clients, we don’t include it in the second experiment.

Experiment I. We assessed the effect of increasing the number of available pro-

cessors using our two datasets: the long-term FSL dataset with eight clients over 115

5.10 Evaluation 155

(a) FSL 8-clients, Client-side (b) MS 128-clients, Client-side

(c) FSL 8-clients, Server-side (d) MS 128-clients, Server-side

Figure 5.4: Throughput measurements in GiB/second for Client-side (5.4a, 5.4b) and Server-side
(5.4c, 5.4d) deduplication on the FSL and MS datasets.

backups, and the high-volume MS dataset with 128 clients across eight backups. We

benchmarked PR-SCAIL, progressively doubling the processors from 1 to 16.

The upper two bar charts of Figure 5.4 show client-side deduplication throughput

for the FSL and the MS datasets. Deduplication throughput is the total size in GiB of all

client’s data in all backups of the dataset, divided by the time taken to deduplicate the

data. Also, in Figure 5.4a, it can be seen that so there’s no throughput increase beyond

eight processors since there are only 8 clients. In contrast, for the MS dataset with 128

clients, throughput increases from 30.8 GiB/second to 68.0 GiB/second.

The lower two bar charts of Figure 5.4 illustrate the server-side deduplication through-

put for PR-SCAIL. Throughput starts out as 1.8 GiB/second for FSL and 0.9 GiB/second

for the MS dataset. With each doubling of processors, throughput improves by an av-

erage of 55% and 65%, culminating in 10.5 GiB/second (FSL) and 6.8 GiB/second (MS).

5.10 Evaluation 156

(a) MS 16-procs, Client-side (b) MS 16-procs, Server-side

Figure 5.5: Client-side and Server-side Median Deduplication Throughput with 16 processes on the
MS dataset, as well as the slowest and fastest run represented as Range values.

For the FSL dataset, similar to P-SCAIL, throughput continues to rise even when the

number of processors surpasses the eight clients. This reinforces that SCI’s data paral-

lelism operations further enhance throughput as more processors become available.

Experiment II. In our second experiment, we focus on accurately representing the

central tendency of throughput in varying client load scenarios within the MS dataset,

encompassing the first 128 clients. Once again, we measure throughput as the total

number of GiBs of the specified number in 128 clients’ data, divided by the time taken

to deduplicate them. We adopt this approach by measuring throughput across all or-

dered subsets for each client group size. For instance, when evaluating 16-client loads,

we don’t just consider the first 16 clients but also all subsequent groups of 16. This will

result in eight runs of 16 clients, constituting the entire set of 128 clients.

We then use the median of these throughput measurements as our primary statis-

tical metric, rather than the mean. This decision is driven by the nature of our data,

which is subject to variability and potential outliers. The median, being the middle

value in a sorted list of numbers, more effectively represents the typical throughput

in our dataset, especially in scenarios where a single client’s performance could dis-

proportionately influence the mean. This is particularly pertinent when dealing with

smaller subsets of clients, where the impact of outliers is more pronounced.

5.11 Summary 157

Furthermore, we display the minimum and maximum throughput values as error

indicators on the bar chart to provide a view of the data’s variability in Figure 5.5.

This approach highlights the central tendency of our throughput performance. Even

though we processed the largest streams first, as outlined in Cheng and Kahlbacher

[17], similar to P-SCAIL, throughput unexpectedly increased as client volumes dou-

bled. We expected throughput to be reduced as more clients and backup volume were

introduced. The throughput decrease for backups with smaller numbers of clients was

caused by a few clients with large volume streams that generated substantially more

new data at each backup than the other backup streams. The extended client-side du-

plicate lookup and server-side container allocation processing times for these larger

client streams left up to 15 processors idle. However, as the client count approached

128, the combined processing duration of the smaller clients began to match or exceed

that of the one or two larger client backups, leading to a more balanced workload and

subsequent improvements in throughput.

5.11 Summary

In this chapter, we explored a resemblance-based strategy to reduce the volume of Re-

dundant Segment Data (RSD) uploads, an issue intrinsic in the design of P-SCAIL. We

found that PR-SCAIL’s architecture lends itself to a remarkably efficient application of

these techniques, compared to RMD. Leveraging the hybrid, two-phase deduplication

approach of the SCAIL family, we combined intra-client exact segment-level and near-

exact chunk-level client-side deduplication with cross-client chunk-level server-side

deduplication. This allowed us to achieve memory efficiency through resemblance

methods while maintaining high deduplication compression.

Chapter 6

Detailed Comparison

6.1 Introduction

In Chapter 3, we introduced a generic encrypted deduplication scheme, Base as well

as our improved scheme SCAIL. We then sped up throughput and memory efficiency

with P-SCAIL in Chapter 4. In Chapter 5 with PR-SCAIL, we added segment re-

semblance techniques to provide a low-memory footprint chunk-level to reduce Re-

dundant Segment Data (RSD) volume, but this also reduced client-side deduplication

throughput compared to P-SCAIL. In this chapter, we contrast these schemes across

various metrics and identify some workloads and environments each scheme is most

suited to.

In the next section, we’ll briefly review the three algorithms, Base, P-SCAIL and

PR-SCAIL and the two datasets, FSL and MS. After that are sections comparing Mem-

ory Requirements, Server Storage Requirements, Upload Volume, Single-Processor

Throughput, Multiprocessor Throughput, and Cost Comparison. Finally, in Section 6.9,

we’ll discuss workload suitability, system trade-offs, and the preferred deployment

scenarios for each system.

6.2 Algorithm and Dataset Recap

We briefly recap the Base, P-SCAIL and PR-SCAIL algorithms here.

158

6.2 Algorithm and Dataset Recap 159

Base Algorithm: The Base algorithm employs a memory-based chunk index that

maintains ownership information, enabling it to perform client-side deduplication within

individual client scopes. Like all the schemes in this paper, it implements a strict

privacy protocol to protect against side-channel attacks, acknowledging only those

chunks previously uploaded by the active client, thereby denying the existence of up-

loaded data by other clients. On the server side, it performs cross-user chunk-level

deduplication using the chunk index, achieving exact duplication across users with-

out compromising the confidentiality of upload status. After all of the chunks have

been committed to containers, the chunk index is updated with the new entries, or

existing entries are updated to reflect the ownership of chunks in the upload.

P-SCAIL Metadata Deduplication Algorithm: P-SCAIL stores and deduplicates metachunks

as well as data chunks. However, its coarser, segment-level fingerprint deduplica-

tion leads to the upload of Redundant Segment Data (RSD). Fortunately, chunk-level

server-side deduplication using Sorted Chunk Indexing (SCI) efficiently eliminates all

RSD before incorporating new chunks into the server’s unique data store. After all

chunks have been committed to containers the chunks index is updated with new en-

tries. No ownership information must be stored at the chunk level; P-SCAIL stores this

at the segment level.

PR-SCAIL Resemblance Deduplication Algorithm: PR-SCAIL retains P-SCAIL’s segment-

level deduplication and adds chunk-level resemblance-based client-side deduplica-

tion. This identifies segments similar to those previously uploaded by a client, loads

the CFPs of their File Recipes for those similar segments, and performs chunk-level

client-side deduplication. The cross-user, chunk-level server-side deduplication using

Sorted Chunk Indexing (SCI) is unchanged from P-SCAIL.

6.3 Memory Requirements 160

The FSL and MS datasets: Our two datasets differ significantly in the challenges they

pose. The FSL dataset is the backup of 8 home directories from a small research lab,

encompassing 115 backups, taken every few days over nine months. This results in

56.2 TiB of backup data, made up of 8 KiB chunks, which can be deduplicated to 431.9

GiB. This workload averages about four GiB of new data per backup day with only

a minimal amount of identical chunks stored by more than one lab home directory.

Throughout the backup timeline, the metadata volume increases steadily, approaching

the total size of unique data stored.

The MS dataset encompasses eight weeks of complete hard drive backups from up

to 140 workstations in a corporate setting, with all backups for each week grouped

into eight backup batches. This large volume short-term dataset of backups consists of

45.6 TiB of data before deduplication and 2.7 TiB after deduplication. The MS dataset

exhibits over 40% cross-user data in the initial backup, which likely represents operat-

ing systems or other files which are duplicated across workstations. A large average

volume (350 GiB) of new data is added at each aggregated backup compared to the

FSL dataset. Also, the metadata grows to 437 GiB, a sixth of the size of the data itself,

after eight backups.

6.3 Memory Requirements

The memory requirements of a deduplication algorithm significantly influence both its

performance and the associated hardware costs of its implementation. This is particu-

larly true in the context of differing workloads, where varying data characteristics can

lead to distinct memory demands. Multi-stage algorithms further accentuate this com-

plexity, as each component may have unique memory requirements. Understanding

these differences is important for optimizing algorithm design and implementation.

In this section, we delve into a detailed breakdown of the total memory require-

ments by component for each algorithmic scheme, against the backup of the FSL and

6.3 Memory Requirements 161

Figure 6.1: FSL Dataset: Stacked areas charts showing memory requirements by component in GiB
for the Base and PR-SCAIL schemes over 115 backups. The horizontal dashed line on the Base
chart is the total memory requirements for PR-SCAIL. Scales differ between charts.

MS datasets. The components of memory usage under examination are:

1. Lookup Index (All Systems): Used for answering client-side deduplication queries.

In the Base system, the keys are CFPs of previously saved chunks, and the val-

ues include a CID and a list of owners used in privacy protection. In contrast,

P-SCAIL and PR-SCAIL use an MFP key, with values also comprising a CID

and ownership information. Use of MFPs enables an index orders of magnitude

smaller than CFPs.

2. SCI Cache (P-SCAIL and PR-SCAIL): A constant-sized cache set up at system

initialisation. It includes 128 MiB for holding a single SCI bin page in memory

and a 128 MiB cache for new CFP → CID mappings. This cache is flushed to

disk and cleared if it becomes full.

3. Duplicates Indexes (P-SCAIL and PR-SCAIL): During SCI on the server, tran-

sient indexes, comprising ’previously saved’ and ’inter-user’ indexes, are gen-

erated anew for each backup. The ’previously saved’ index holds mappings of

CFP → CID for chunks uploaded from a client that has been previously saved,

6.3 Memory Requirements 162

the ’inter-user’ index stores CFPs for chunks uploaded by more than one client in

a backup batch. These indexes, generated during SCI processing, facilitate exact

deduplication in multiprocessor scenarios.

4. Resemble Index (PR-SCAIL only): A specialised, compact index that uses RFPs

as keys. The value associated with a key is a set of CIDs, which point to meta-

data containers which hold previously saved similar segments containing the

RFP key.

6.3.1 FSL Dataset Memory Requirements

The charts in Figure 6.1 show the memory requirements for the Base, P-SCAIL and

PR-SCAIL systems over the course of backing up the FSL dataset. Be aware that the

same scale is not used for all charts. This enables more detail to be shown for the

different memory usage components. Also, for reference, the horizontal dashed line

in the Base chart reflects the total memory requirements for P-SCAIL and PR-SCAIL

compared to Base.

Upon completing the 115 backups, the Base scheme consumes a total of 1.4 GiB of

memory. In contrast, the SCAIL family of algorithms — P-SCAIL and PR-SCAIL —

showcases remarkable efficiency, requiring merely 285 MiB of memory, approximately

one-fifth of the total memory utilised by Base. Most of this memory usage for both

P-SCAIL and PR-SCAIL is in the 256 MiB SCI Cache. An additional 9 MiB is occupied

by the MFP index. For P-SCAIL, the Duplicates Indexes require 25.7 MiB, while in

PR-SCAIL, these indexes are further optimised to use only 17.2 MiB. In PR-SCAIL, the

Resemblance Index adds a minimal 3 MiB to the overall memory footprint, underscor-

ing the efficient memory management inherent in the SCAIL algorithms.

The Lookup Index in both schemes grows as new (previously unseen) data comes

into the system. The CFP index in Base grows on average by 0.68% per backup, while

the MFP index actually grows faster than the CFP index at 1.45% per backup. This

6.3 Memory Requirements 163

faster growth is due to the modification of previously saved segments. While the Base

Lookup Index grows only with unique CFPs, a new MFP is generated whenever a

segment is modified, even if only a single chunk is new. However, the MFP Index

starts very small, and even with its faster growth rate, it ends up being less than 9 MiB,

which is around 1
150 the size of the Base Index.

If we extrapolated out the higher growth rate of MFPs to CFPs out to 1 PB of unique

data (assuming the same relative growth rate), the SCAIL Lookup Index would actu-

ally have to represent 3.12 PB of data. But this still would require less than 50 GiB of

memory, so would be feasible with today’s servers.

The bottom line is that for the FSL dataset, the SCAIL algorithms use much less

memory and, importantly for scaling operations, in absolute size, grow only a modest

amount with each backup.

6.3.2 MS Dataset Memory Requirements

Figure 6.2: MS Dataset: Stacked area charts of memory requirements (GiB) by component across
eight backups for the Base and PR-SCAIL schemes. The dashed line in the Base chart shows the
total memory requirement for PR-SCAIL. Scales differ between charts.

The charts in Figure 6.2 illustrate the memory requirements for the MS dataset. The

scale of the P-SCAIL and PR-SCAIL charts is smaller to detail the components and still

6.3 Memory Requirements 164

assess their growth rate. The horizontal dashed line on the Base chart represents the

comparative total memory requirements of P-SCAIL and PR-SCAIL against Base.

Upon completing the eight weekly backups, the Base system consumes 10.4 GiB

of memory. In contrast, the SCAIL-based algorithms require only about a total of 650

MiB, approximately 1
16 of Base’s memory usage. This considerable reduction in mem-

ory requirements demonstrates the efficiency of the SCAIL approach. The majority of

memory in P-SCAIL and PR-SCAIL is allocated to the 256 MiB SCI Cache (identical

with the FSL dataset backup) and the 305 MiB Duplicates Indexes. The Duplicates

Indexes in the MS dataset require more memory than in the FSL dataset due to the

substantial amount of cross-user duplicate data in MS’s initial backup. For the rest of

the indexes, the MFP Index utilises 61 MiB, while the Resemblance Index uses about

29 MiB.

The MS dataset also reveals differences in the average growth rate of the Lookup

Index. The Base’s Lookup Index grows by an average of 4.2% per backup, whereas

the MFP index in the SCAIL algorithms grows faster, at around 7.0% per backup due

to modified segments. Despite its faster growth, the MFP Index starts from a much

smaller base and remains under 60 MiB, less than 1
160 the size of the Base Index.

If we extrapolated out the higher growth rate of MFPs to CFPs out to 1 PB of unique

data (assuming the same relative growth rate), the SCAIL Lookup Index would actu-

ally have to represent around 3 PB of data. But this still would require less than 50 GiB

of memory, so would be feasible with today’s servers.

6.3.3 Summary of Memory Requirements Findings

The analysis of memory requirements across both the FSL and MS datasets highlights

the efficiency of the SCAIL family of algorithms. These algorithms demonstrate sub-

stantial memory savings, utilizing merely one-fifth and one-sixteenth of the memory

required by the Base scheme for the FSL and MS datasets, respectively. Such findings

6.4 Server Storage Requirements 165

emphasise the scalability of the SCAIL deduplication family and suggest that systems

managing larger volumes of data can achieve even greater comparative memory ad-

vantages.

While memory efficiency is a critical factor in the scalability of encrypted dedupli-

cation systems, it is not the sole determinant of their effectiveness. With the memory

requirements comprehensively analysed, our attention now shifts towards evaluating

the server storage requirements of each deduplication scheme, a crucial aspect in un-

derstanding the cost and performance of these systems.

6.4 Server Storage Requirements

The fundamental objective of encrypted deduplication systems lies in their ability to

significantly amplify the volume of data that can be backed up on a server relative to

the actual volume of data stored. This is particularly crucial in long-term backup sce-

narios, exemplified by the FSL dataset, where the challenge often lies in the continuous

growth of metadata in proportion to the logical data size presented to the system. By

modifying the metadata deduplication technique pioneered by Metadedup [44], the

SCAIL-family of algorithms substantially reduces server storage requirements. This

approach optimises storage utilisation and enhances the efficiency and scalability of

encrypted deduplication systems, making them more able to handle extensive data

backups with high throughput over prolonged periods.

The storage requirements on the server can broadly be grouped into storing unique

chunk data and metadata used for Restore operations. We show how data and meta-

data grow over backup generations for each dataset.

Since all systems under consideration are exact deduplication systems, we also

present charts that remove the data storage metric and provide greater detail into each

system’s types and volume of metadata.

6.4 Server Storage Requirements 166

Figure 6.3: FSL Dataset: Stacked areas charts showing cumulative data and metadata storage
volume on the server for Base and PR-SCAIL with 8 KiB chunks and 2 MiB metachunks.

6.4.1 FSL Server Storage Requirements

All schemes store the same 431.9 GiB volume of unique server data, as seen in Fig-

ure 6.3. The Base approach adds 369.9 GiB of metadata, while P-SCAIL and PR-SCAIL

deduplicate File and Key Recipes, so only store 9.8 and 9.5 GiB of metadata, respec-

tively. In total, Base must store 801 GiB and the SCAIL-based schemes only 442 GiB,

which is 44% smaller.

In Figure 6.4, we take a closer look at the metadata storage requirements. The

metrics charted in the metadata detail charts (note that scales differ between charts)

are:

1. Lookup Index (all systems, visible only in MS dataset, which appears in the

next subsection): This is the sum of the CFP Index for Base, MFP Index for

P-SCAIL and PR-SCAIL, and Resemble (RFP) Index for PR-SCAIL.

2. SCI Bins (P-SCAIL and PR-SCAIL): This is the full chunk index used for server-

side deduplication, stored on disk.

3. Recipes (all systems): These are File and Key Recipes used for decryption and

6.4 Server Storage Requirements 167

Figure 6.4: FSL Dataset: Stacked area chart showing accumulated metadata storage volume by
component. Scales vary across charts. The dashed line in the Base chart shows P-SCAIL/PR-SCAIL’s
accumulated volume for comparison. Lookup Index storage is omitted due to its small size.

Restore operations. Base uses CFPs, SCAIL algorithms use MFPs.

4. Metachunks (P-SCAIL and PR-SCAIL): These are the encrypted metachunks ref-

erenced by SCAIL-based File and Key Recipes.

The server will need to save disk-based copies of all memory resident indexes, but

for the FSL dataset, they are too small to be visible on these charts at 1.4 GiB for Base

and less than 14 MiB for the SCAIL schemes.

The Base scheme stores 368.5 GiB of File and Key Recipes for Restore operations.

The SCAIL schemes store 936.7 MiB of File and Key Recipes, but must also store 6.75

GiB of deduplicated Metachunks. For server-side SCI deduplication, 2 GiB is required

for the SCI Bins, constituting the chunk-level index for the SCAIL schemes. In total,

Base stores 369.9 GiB of metadata, P-SCAIL stores 9.7 GiB, and PR-SCAIL stores 9.3

GiB, which is a savings of 97.4% for the Base metadata storage requirements.

6.4 Server Storage Requirements 168

Figure 6.5: MS Dataset: Stacked areas chart showing sccumulated server storage volume by com-
ponent for the Base, P-SCAIL and PR-SCAIL schemes.

6.4.2 MS Server Storage Requirements

All schemes store the exact same 2.7 TiB volume of unique data on the server as shown

in Figure 6.5. Base must also store 437.1 GiB of metadata for a total of 3.1 TiB, while

P-SCAIL and PR-SCAIL must store around 70 GiB of metadata, for a total of 2.8 TiB,

for a savings of 11.5%.

Figure 6.6: MS Dataset: Stacked areas chart showing accumulated metadata server storage volume
by component. The dashed line in the Base graph indicates the volume of metadata storage required
for the SCAIL schemes. Not all graphs use the same scale.

6.5 Upload Volume 169

In the metadata detail charts at Figure 6.6 (note that not all chart scales are the

same), Base’s 10.4 GiB Lookup Index combined with File and Key Recipes of 426.7 GiB

takes a total of 437.1 GiB of storage. In the P-SCAIL and PR-SCAIL charts, the Lookup

Index and the Resemblence Index are included but not distinctly visible, since they

are less than 100 MiB total. The SCI Bins for the SCAIL algorithms required 18.1 GiB.

This is almost twice the size of Base’s Lookup Index, since we preallocate padding in

these bin files for performance reasons (see Subsection 3.5). The File and Key Recipe

storage is a mere 754 MiB, and the volume of deduplicated Metachunks referenced by

the recipes is 51 GiB. P-SCAIL and PR-SCAIL reduce the metadata storage required by

the system from Base’s 437.1 GiB to 70.3 GiB, an 83.9% reduction.

6.4.3 Summary of Storage Findings

In summary, the SCAIL algorithms perform client-side deduplication at the coarse seg-

ment level (e.g. 2 MiB chunks), but for server storage, are able to take advantage of

the fine, chunk level (e.g. 8 KiB chunks) during server-side, cross-user deduplication.

When combined with metachunk deduplication, it enables SCAIL algorithms to re-

duce metadata storage requirements by 97.4% (FSL dataset) and 83.9% (MS dataset).

While the SCAIL family of algorithms dramatically reduces metadata storage re-

quirements across the board, upload volume results are varied. In some cases, the

SCAIL overall upload can exceed the Base volume. In the next section, we’ll take a

detailed look at the upload volume.

6.5 Upload Volume

Client-side deduplication is used to reduce upload volume in client-server-based backup

systems. It’s based on the observation that data that has been uploaded to the server

doesn’t have to be uploaded again. Our investigation also requires that client data

be protected from side-channel attacks (see Subsection 3.9). The system should avoid

6.5 Upload Volume 170

disclosing whether another client has uploaded a piece of data. So, for a given client,

we limit client-side deduplication processing to data that only this client has previously

uploaded. Also, there will be cases where multiple clients will submit identical data

to the server within the same backup cycle. While the server could detect this scenario

and choose one client to upload the data, this would also violate data privacy, so the

system requires all the clients to upload identical data within a backup cycle.

Quantifying the cost implications of upload volumes proved challenging. How-

ever, by estimating upload times, we discovered that the excess uploads of RSD asso-

ciated with the P-SCAIL algorithm had a negligible impact, as outlined in Section 3.8.

The extra time required for P-SCAIL to handle its increased upload volume is an av-

erage of less than a minute per backup for each client, underscoring its minimal effect

on overall performance.

This section examines and compares the upload volumes of the three schemes:

Base, P-SCAIL and PR-SCAIL, presenting results against the two distinct datasets, FSL

and MS. While the bulk of the upload volume is unique encrypted data chunks, other

data like metadata and chunks that are redundant segment data must be uploaded by

some algorithms to the server as well. Understanding the components contributing to

the total upload volume helps assess each deduplication scheme’s overall impact and

efficiency.

6.5.1 FSL Upload Volume

Upload Volume By Components

In the upload volume chart for Stage 3 shown in Figure 6.7, the accumulating upload

component values are made up of:

1. Data (all schemes): This is the volume of all unique (deduplicated), encrypted

chunk data uploaded to the server.

6.5 Upload Volume 171

Figure 6.7: FSL Dataset: Stacked area chart showing accumulated upload volume by component for
the Base, P-SCAIL and PR-SCAIL schemes.

2. Cross-user Redundant (all schemes): When multiple clients upload new, identi-

cal data, the 2nd and subsequent copies will fall into this category.

3. Metadata (all schemes): This includes all upload volume other than non-data

upload volume (recipes, sorted CFPs, metachunks) each system must upload.

4. Redundant Segment (P-SCAIL and PR-SCAIL only): The volume of RSD; the

encrypted chunk data in each client’s upload that they have saved in a previous

backup. RSD is always discarded on the server after cross-user deduplication.

The comparative chart for the FSL dataset reveals distinct patterns in upload vol-

ume across the Base, P-SCAIL, and PR-SCAIL schemes based upon 8 KiB chunks and

2 MiB segments. In the Base scheme, there is a near-equal distribution between Data

and Metadata upload volume over the course of 115 backups, with a small amount

of Cross-user Redundant data, primarily in the initial backup. This pattern reflects

Metadata’s outsized influence on the upload volume of long-running backups, as it

constitutes nearly as much upload volume as the data itself.

In contrast, the P-SCAIL scheme exhibits the same volume of Data uploads as Base,

but the Metadata component is dramatically reduced – by approximately 97%. This

6.5 Upload Volume 172

results in a substantial server storage reduction for long-running backups, see Sub-

section 6.4. However, this reduction in upload volume is counterbalanced by a notable

increase in RSD uploads, nearly matching the volume saved in Metadata uploads. This

reflects the segment-level interaction of P-SCAIL clients with the server and highlights

the trade-off between Metadata reduction and the addition of RSD. Fortunately, all

RSD is discarded on the server after cross-user deduplication.

PR-SCAIL uploads the same volume of Data and Metadata as P-SCAIL, but man-

ages to substantially lower RSD – by about 96%. This reduction demonstrates the effi-

ciency of PR-SCAIL’s segment resemblance techniques in minimizing RSD. However,

it’s important to note that the client-side deduplication process in PR-SCAIL is slower,

although still much faster than Base, which we will explore in detail in the subsequent

throughput analysis sections.

Overall, Base uploads a total of 823.5 GiB, P-SCAIL uploads 737.2 GiB (11% less

than Base), and PR-SCAIL uploads 464.0 GiB (77% less than Base).

Figure 6.8: FSL Dataset: Stacked area chart showing accumulated upload volume by component,
after removing cross-user and chunk data upload from Figure 6.7.

6.5 Upload Volume 173

Non-data Upload Component Volume

Since all schemes upload the identical volume of Data and Cross-user Redundant data,

we drop these metrics and show a ’non-data’ upload volume chart in Figure 6.8 to

contrast the other required upload volumes. The data values in the ’non-data’ chart

are:

1. Recipes (all schemes): File and Key Recipes required for Restore operations.

2. Metachunks (P-SCAIL and PR-SCAIL only): These are the deduplicated en-

crypted metachunks which are referenced in the SCAIL family for File and Key

Recipes used for Restore.

3. Sorted Fingerprints (P-SCAIL and PR-SCAIL only): Each client uploads this list

for use in the chunk-level SCI algorithm, where server-side chunk-level dedupli-

cation is performed.

4. Redundant Segment (P-SCAIL and PR-SCAIL only): The summed volume of

encrypted chunk data in each client’s upload that they have previously saved.

In the ’non-data’ chart analysis, we observe a reduction in the combined volume

of File and Key Recipes and Metachunks for P-SCAIL and PR-SCAIL compared to the

volume of File and Key Recipes in Base. However, the introduction of a significant

volume of RSD by P-SCAIL is apparent, albeit still contributing to a reduced overall

upload volume when compared to Base. This reduction gives the total non-data up-

load volume for P-SCAIL as 290.7 GiB, a 21% decrease from Base’s 368.5 GiB.

Continuing the analysis of the ’non-data’ charts, in the PR-SCAIL scheme, the RSD

is considerably diminished. The total non-data upload volume for PR-SCAIL stands at

17.4 GiB, which is 95% less than the Base scheme. This highlights the effectiveness of

PR-SCAIL in minimizing the Metadata File and Key Recipe uploads and the reduction

of RSD, demonstrating its superior efficiency in reducing upload volumes. Once again,

6.5 Upload Volume 174

we note the caveat that PR-SCAIL is slower at client-side deduplication than P-SCAIL,

which we detail in the subsequent throughput analysis section.

Figure 6.9: FSL Dataset: Total upload volume by component. The Base scheme is the first bar,
subsequent bars labeled PS-x indicate a P-SCAIL scheme with segment size x in MiB.

Segment Size Effect on Upload Volume

The analysis above showed accumulating upload volume sums for the Base scheme

and the SCAIL schemes with 2 MiB segments. Here, we vary the segment size for the

P-SCAIL scheme and detail its effect on the total upload volume for each component

type, as well as compare the total upload volume. The results are shown in Figure 6.9.

The Base scheme’s upload volume, shown as the first stacked bar in the chart,

serves as our benchmark, reflecting the optimal upload volume for a traditional MLE

backup system. It is characterised by a nearly equal distribution between metadata

and data volumes after the 115 backups.

The subsequent P-SCAIL schemes in the chart exhibit a significant reduction in

6.5 Upload Volume 175

metadata volume. An incremental increase in RSD offsets this reduction as segment

size varies from 0.5 MiB to 16 MiB. This shift underscores the algorithm’s efficiency

in metadata management while highlighting the trade-off with RSD. Initially, for a

segment size of 0.5 MiB, the RSD constitutes less than half of the metadata volume

observed in the base scheme. However, with increasing segment size, the volume of

uploaded metadata by P-SCAIL approaches that of Base. For segment sizes up to 4

MiB, P-SCAIL uploads less metadata than Base; however, for segment sizes greater

than 4 MiB, P-SCAIL exceeds Base in uploaded metadata volume.

512KiB 1MiB 2MiB 4MiB 8MiB 16MiB
Logarithm of Segment Size

0.25

0.30

0.35

0.40

0.45

RS
D%

Data Points
Logarithmic Trendline

Figure 6.10: FSL Dataset: Percentage of Redundant Segment Data (RSD) of the total upload
volume, as a function of segment size, showing observed (dots) and predicted (line) percentage of
RSD across a range of segment sizes.

These findings highlight the relationship between segment size and upload volume

composition in the P-SCAIL deduplication system. To identify the prevalence of RSD

for a dataset, we introduce a metric that calculates the proportion of RSD volume to

the total upload volume, then subsequently normalised this ratio by the number of

backups. This approach provides a measure to gauge the impact of RSD.

6.5 Upload Volume 176

For example, consider the total upload volume for 2 MiB segments, which amounts

to 737.2 GiB, with 279.9 GiB (or 38%) constituting RSD. Normalised to volume per

backup, RSD accounts for 0.33% of the total upload volume per backup. We applied

this computation across various segment sizes, and the results are depicted in Fig-

ure 6.10.

This chart revealed a positive correlation between segment size and the percentage

of RSD, which can be attributed to the fact that even altering a single chunk within a

segment causes the classification of nearly the entire segment as RSD. Larger segments

consequently produce more substantial RSD. We calculated a logarithmic curve to fit

the empirical data, yielding the formula

RSD percentage = 0.068× log(segment size) + 0.287.

This model enables the estimation of RSD volumes for varying segment sizes. We

also found that segment size did not impact the small amount of RSD that PR-SCAIL

missed.

6.5.2 MS Upload Volume

As we shift our focus to the MS dataset, we encounter different dynamics in the up-

load volume analysis. The MS dataset, characterised by a much larger number of users

and a much higher volume of deduplicated data, presents unique challenges and in-

sights compared to the FSL dataset. Notably, with only eight backups, the MS dataset

offers fewer opportunities for deduplication, thereby influencing the efficiency of each

scheme differently. Additionally, the presence of a substantial amount of Cross-user

Redundant data, likely due to common operating system files shared across systems,

adds another layer to our comparative analysis. This section will delve into how the

Base, P-SCAIL, and PR-SCAIL schemes perform under these conditions, highlighting

the upload volume that emerges with this more diverse and larger but shorter-duration

6.5 Upload Volume 177

Figure 6.11: MS Dataset: Stacked area chart showing accumulated upload volume by component
for Base, P-SCAIL and PR-SCAIL.

dataset.

Upload Volume By Component

As defined in the FSL dataset analysis subsection above, the chart values, such as Data,

Cross-user Redundant, etc., follow the same meaning in the MS dataset comparison.

In the charts in Figure 6.11, we can see the upload volume in TiBs and that the

initial backup has 40% identical cross-user data. Metadata grows modestly, but RSD

grows faster in the P-SCAIL dataset, while RSD is reduced by 80% with PR-SCAIL.

The total upload volume for Base is 4.9 TiB, but for P-SCAIL, it increases 8% to 5.3 TiB,

while PR-SCAIL decreases in volume by 7% to 4.5 TiB.

Non-data Upload Component Volume

In the non-data upload volume chart in Figure 6.12, we see the substantial volume of

RSD in the P-SCAIL scheme, and that it has been reduced 80% by PR-SCAIL. At this

scale in the charts, Metachunks are visible at around 51 GiB, but File and Key Recipe

volume has been reduced to 754 MiB, so it is not visible. Sorted Fingerprints start at 15

6.5 Upload Volume 178

Figure 6.12: MS Dataset: Stacked areas charts for the non-data Upload Volume Chart for 2 MiB
Segments.

GiB on the first backup, and don’t grow much thereafter, reflecting that the volume of

new data to be uploaded does not grow appreciably after the first backup.

Segment Size Effect on Upload Volume

In the previous subsection, we showed the growth of the upload volumes for the

upload categories for the three schemes. Here we compare Base upload volumes to

P-SCAIL upload volumes for various segment sizes. In Figure 6.13, the first stacked

bar is for the Base scheme, which is our benchmark for the upload volume of a tra-

ditional, encrypted deduplication backup scheme. The Metadata volume of 437 GiB

is only about 15% of the 2.7 TiB Data volume for eight backups. Recall that the FSL

Dataset with 115 backups had accumulated nearly 50% Metadata. Metadata grows

with the volume of data presented to the server, while Data growth reflects only new

unique chunk data. As the number of backups grows, the SCAIL algorithms will in-

crease their advantage in upload volume compared to Base. With only eight backups,

the reduction in Metadata upload volume for the smallest segment size examined of

512 KiB is offset by the added volume of RSD.

Not surprisingly, as segment size increases with the P-SCAIL schemes, RSD in-

6.5 Upload Volume 179

Figure 6.13: MS Dataset: Stacked bar chart showing the total upload component volumes after the
Eight Backups of the MS Dataset.

creases. For the largest segment size examined of 16 MiB, the total upload volume is

34% larger than Base.

We investigate the relationship between segment size and RSD with the P-SCAIL

scheme. The methodology employed mirrors the FSL dataset analysis with the MS

dataset. As an example, for 2 MiB-sized segments, the total upload volume was 5.2

TiB, of which 964.0 GiB (18%) was RSD. Normalised over the eight backups gives 2.5%

of upload overhead per backup for RSD. For the MS dataset, the quantified relation-

ship between the segment size and RSD is encapsulated within the logarithmic fitting

formula given by

RSD percentage = 0.761× log(segment size) + 1.805.

The analysis is visually supported by Figure 6.14, which contrasts the logarithmic

6.5 Upload Volume 180

512KiB 1MiB 2MiB 4MiB 8MiB 16MiB
Logarithm of Segment Size

1.5

2.0

2.5

3.0

3.5

4.0
RS

D%
Data Points
Logarithmic128 Trendline

Figure 6.14: MS Dataset: Percentage of Redundant Segment Data (RSD) of the total upload
volume, as a function of segment size, showing observed (dots) and predicted (line) percentage of
RSD across a range of segment sizes.

trendline with the empirical data points.

6.5.3 Insights from Upload Volume Analysis

The comparative analysis of upload volumes for Base, P-SCAIL and PR-SCAIL schemes

across both the FSL and MS datasets offers insights into the efficiency and scalability of

the deduplication strategies. The FSL dataset, characterised by its longer-term backup

scenario, showcases the substantial advantage of the SCAIL algorithms in reducing

upload volume, particularly of Metadata. The Base scheme’s upload volume, heavily

influenced by Metadata, is significantly higher than that of P-SCAIL and PR-SCAIL,

which implement Metadedup’s technique to deduplicate Metadata effectively.

For total upload volume with the FSL dataset, P-SCAIL demonstrates a reduction

compared to Base with segment sizes up to 4 MiB. This is primarily due to the dra-

matic reduction in Metadata. However, as segment sizes grow, the presence of RSD in

6.5 Upload Volume 181

P-SCAIL increases and eventually offsets the saving of Metadata upload volume. The

upload volume, when considered as a percentage of the total volume for each backup,

RSD is actually quite small.

Because it effectively suppresses RSD in addition to metadata deduplication, the

PR-SCAIL scheme yields smaller upload volumes than Base for all segment sizes.

However, this strategy incurs a trade-off in the form of reduced client-side deduplica-

tion throughput compared to P-SCAIL, although it is still many times faster than Base

for client-side deduplication. This trade-off highlights the efficiency of the resemblance-

based deduplication approach employed by PR-SCAIL.

The MS dataset presents a different challenge with its distinct short-term but high-

volume backup scenario. Also, the initial backup is characterised by a high volume of

Cross-user Redundant data, which all schemes must upload due to privacy constraints.

For the smallest segment size tested, 512 KiB, P-SCAIL uploads about the same volume

as Base. Larger segment sizes increase the volume beyond Base, even though the ad-

ditional upload amounts to, at most, 34% of the total upload volume, which equates

to around 4% per backup. We anticipate that for longer backup workloads, which will

accumulate metadata that is deduplicated by P-SCAIL but not by Base, P-SCAIL will

demonstrate a growing advantage in upload volume reduction compared to Base.

PR-SCAIL significantly reduces RSD, along with File and Key Recipe deduplica-

tion, resulting in a lower total upload volume than Base for all segment sizes. This

demonstrates its ability to efficiently manage high-volume, short-term backup scenar-

ios, but at reduced throughput compared to P-SCAIL.

The RSD upload volume for the MS dataset, growing to nearly one TiB for the MS

dataset using 2 MiB segment size, was a strong motivating factor in developing the

PR-SCAIL scheme. However, this scheme, working at the chunk-level for client-side

deduplication, comes with slower client-side deduplication throughput than P-SCAIL,

but still many times faster than Base, as outlined in the throughput sections to follow.

6.6 Single-processor Throughput 182

6.6 Single-processor Throughput

The SCAIL suite has shown notable improvements in handling larger and longer-

running dataset workloads with an increased number of concurrent clients compared

to the Base scheme. A high level of throughput is essential to take advantage of

this scalability in a practical implementation. In this section, we examine the single-

processor throughput against our datasets with the Base, P-SCAIL, and PR-SCAIL

schemes.

As detailed in Subsection 4.7.1, we calculate throughput performance for client-

side and server-side deduplication by measuring the total volume of logical data pre-

sented to the server against the wall clock time for backups to reach completion in

specific stages.

First, we’ll examine the impact of segment size on client-side deduplication through-

put. It’s important to note that the charts illustrate “instantaneous” throughput to de-

pict variations during the backup process. That is, the instantaneous throughput (in

GiB/second) is the total volume of data deduplicated in a single backup generation,

divided by the time taken to perform the deduplication. Additionally, our description

and comparative analysis of performance utilises the ’cumulative average’. We define

cumulative average as the total number of GiB of data deduplicated for all backup gen-

erations, divided by the total time to deduplicate that data. The cumulative average

throughput is used to provide a summarised view of performance over time.

Next, we examine the server-side or cross-user deduplication throughput. We note

that while client-side deduplication in Stage 2 is metadata-only based, the server-side

deduplication in Stage 4 performs not only cross-user deduplication but also, in a real

implementation, would store the new data to each client’s data storage containers.

As such, overall throughput would be limited to the data transfer rate on the sys-

tem to long-term storage media like hard disk drives, which today range around 300

MiB/second. For our trace datasets, it is important that the metadata operations re-

6.6 Single-processor Throughput 183

quired for server-side deduplication do not slow down Stage 4; that is, they are at least

300 MiB/second. But this also implies that throughput at scale will be limited to the

system HDD data transfer rate.

6.6.1 FSL Single-processor Throughput

Figure 6.15: FSL Dataset: Single-Processor Throughput for Client-Side Deduplication. SCAIL and
R-SCAIL significantly outperform Base. While R-SCAIL is much slower than SCAIL, it is faster than
Base.

Client-side Deduplication Throughput

Figure 6.15 and the description below encapsulate the throughput dynamics, high-

lighting the computational demands and efficiencies inherent in each scheme on the

FSL Dataset.

Base: Exhibiting the lowest throughput among the evaluated schemes at a cumula-

tive average of 0.92 GiB/second, Base incurs a significant computational over-

head for client-side deduplication due to the requirement of performing 6.9 bil-

6.6 Single-processor Throughput 184

lion lookups into the chunk index. This index grows from 28 million to 50 mil-

lion elements over the course of the 115 backups. The throughput in the first

backup is slightly higher than the ongoing throughput since the index is initially

empty. While offering client-side deduplication at the chunk level, this granular

approach is computationally intensive, making it the most demanding of pro-

cessing resources among the three evaluated schemes.

SCAIL: SCAIL registers the highest throughput of the evaluated schemes. It lever-

ages a higher-order deduplication process using metachunk fingerprints, which

are much less numerous (91,000), and many fewer lookups (15 million) for the

115 backups, and consequently is much quicker to process. This highly leveraged

memory-based index system facilitates a significantly less resource-intensive lookup

process than Base’s chunk-based index. SCAIL’s throughput of 100.91 GiB/second

is more than 100 times faster in cumulative average throughput than Base.

R-SCAIL: This scheme also uses the MFP Index like SCAIL, eliminating any previ-

ously saved segments from further consideration. Next, it adds an additional

step of segment resemblance, giving chunk-level deduplication for the remain-

ing segments. While this effectively reduces RSD by 97% (see Subsection 6.5.1), it

requires disk-based lookups and the generation of larger “Missing” recipes since

they include CFP’s as well as MFPs. This additional step causes R-SCAIL to slow

down after the first backup due to the disk I/O involved. Even though it per-

forms 2,850 reads of metadata container manifests, it performs faster than the ex-

clusively memory-based Base algorithm because it efficiently loads these recipes

for deduplication and is able to avoid most of the chunk-level comparisons that

the Base must perform. Although it is slower than SCAIL at 5.85 GiB/second

cumulative average throughput, R-SCAIL markedly surpasses Base throughput

by a factor of more than 6.

6.6 Single-processor Throughput 185

Figure 6.16: FSL Dataset: Single-Processor Cumulative Average Throughput for Server-Side Dedu-
plication. Base substantially outperforms SCAIL and R-SCAIL.

Server-side Deduplication Throughput

As shown in Figure 6.16, Base at 46.3 GiB/second substantially outperforms SCAIL

and R-SCAIL’s 1.5 GiB/second. We note again that this throughput is for metadata

operations only, and at this scale of data, Base’s CFP Index can be memory-based rather

than disk-based, which would be orders of magnitude slower. Meanwhile, SCAIL

and R-SCAIL’s SCI Index and Metadata containers are disk-based but are above the

transfer rate to HDD, so they should not slow down Stage 4.

6.6.2 MS Single-processor Throughput

Client-side Deduplication Throughput

This subsection explores the throughput performance of client-side deduplication for

the MS dataset, showing the per-backup throughput in Figure 6.17. We also calculate

the cumulative average throughput for each scheme’s efficiency over time.

6.6 Single-processor Throughput 186

Figure 6.17: MS Dataset: Throughput for Client-Side Deduplication. All schemes use 8 KiB chunks,
SCAIL and R-SCAIL use 2 MiB segments. The chart depicts the throughput of Base, SCAIL, and
R-SCAIL, highlighting SCAIL’s substantial lead and R-SCAIL’s notable performance over Base.

Base: The Base scheme’s cumulative average throughput is the lowest, at 0.2 GiB/s,

which reflects its intensive computational overhead across all backups. The first

backup has a slightly higher throughput since the index is empty at this point.

The subsequent low throughput reflects the high number of lookups (7.3 bil-

lion) into the large (370 million entry) index, which must be performed for exact,

chunk-level deduplication.

SCAIL: SCAIL achieves a cumulative average throughput of 75.5 GiB/s, 300 times

faster than Base. This throughput indicates the high efficiency of SCAIL’s dedu-

plication process and its effective utilisation (12.7 million lookups) of a small

metachunk fingerprint index (2.2 million entries) that significantly reduces client-

side deduplication processing time.

R-SCAIL: With a cumulative average throughput of 8.9 GiB/s, PR-SCAIL performs 36

times faster than the Base scheme, though it does not match the throughput level

6.6 Single-processor Throughput 187

of SCAIL. Even though it is disk-based and performs 25,000 metadata container

manifest reads, it maintains a substantial improvement over Base, validating the

efficiency of its resemblance-based deduplication method.

The cumulative average throughputs underscore the superior scalability of SCAIL

for the MS dataset. R-SCAIL also demonstrates enhanced throughput compared to

Base, albeit to a lesser extent than SCAIL. These metrics reflect the raw throughput

capabilities of each scheme and their relative efficiencies in a client-side deduplication

context.

Figure 6.18: MS Dataset: Throughput for Server-Side Deduplication. Base outperforms SCAIL, and
R-SCAIL, but all schemes show throughput above HDD transfer rates.

Server-side Deduplication Throughput

In Figure 6.18, we see that Base is over four times faster than SCAIL and R-SCAIL’s

1 GiB/second of server-side deduplication throughput with these trace-based results,

but note that server-side deduplication throughput of would be limited to data transfer

rates in a real (non-trace) implementation.

6.7 Multiprocessor Throughput 188

6.6.3 Summary of Single Processor Throughput Analysis

The evaluation of single processor throughput for the Base, SCAIL, and R-SCAIL dedu-

plication schemes has underscored the significance of throughput as a pivotal perfor-

mance metric. Our analysis revealed that SCAIL and R-SCAIL schemes significantly

outperform the Base scheme in terms of client-side deduplication throughput across

both FSL and MS datasets.

The SCAIL scheme demonstrated remarkable efficiency, leveraging metachunk fin-

gerprints for a less resource-intensive lookup process. This approach facilitated a

throughput that was, 100 to 300 times faster than the Base scheme, highlighting the po-

tential for substantial performance improvements in practical deduplication scenarios.

Alternatively, the R-SCAIL scheme, while not matching the throughput of SCAIL, still

offered a significant improvement over the Base scheme by incorporating resemblance-

based deduplication to reduce redundant segment data (RSD) effectively and ranged

from 6 to 36 times faster.

Server-side throughput analysis further illustrated the limitations imposed by data

transfer rates to long-term storage media. Despite these constraints, the throughput

achieved by all schemes was found to be above the minimum transfer rates, suggesting

that metadata operations do not pose a bottleneck in the server-side deduplication

process.

Recognising the wide availability of multiprocessor servers, we next examine in-

creases in throughput in these systems.

6.7 Multiprocessor Throughput

In this analysis, we focus on P-SCAIL and PR-SCAIL schemes, which in the previous

single-processor throughput section, have been shown to significantly outperform the

Base scheme. With a 16-processor setup, we measure the effect of segment size on

throughput. The SCAIL multiprocessor approach utilises task-based parallelism to

6.7 Multiprocessor Throughput 189

enhance client-side deduplication, while task and data parallelism are used in server-

side deduplication.

The accompanying charts present instantaneous throughput for each backup in-

stance to assess performance over the course of backing up the dataset. However, we

employ the cumulative average throughput when discussing the schemes.

6.7.1 FSL Multiprocessor Throughput

For multiprocessor throughput on the FSL dataset, our analysis pivots to the perfor-

mance of P-SCAIL and PR-SCAIL under different segment sizes, given their compre-

hensive performance advantage over the Base scheme. Utilizing a 16-processor setup

simulated with the Ray framework (see Section 4.7), we aim to examine the throughput

behaviour across varying segment sizes and the implications of task-based parallelism

on client-side deduplication.

Figure 6.19: FSL Dataset: Multiprocessor Throughput Performance of P-SCAIL with Different
Segment Sizes. Larger segment sizes result in higher throughput. A dropoff in throughput after 95
backups is caused by reduced logical data submitted for backup, which can be observed in Figure 6.20.

6.7 Multiprocessor Throughput 190

Segment Size Effect On Throughput

Figure 6.20: FSL Dataset: Logical Size of Backup Volume for each Backup Generation. After the
95th backup, the volume of backup data falls off. This corresponds to the reduced throughput
observed in Figure 6.19.

Table 6.1: FSL Dataset: Client-side Deduplication Throughput with 16 Processors by Segment Size
for P-SCAIL and PR-SCAIL

Segment Size 512 KiB 1 MiB 2 MiB 4 MiB 8 MiB 16 MiB
P-SCAIL Throughput (GiB/s) 47.9 82.3 132.4 189.3 247.9 273.5

PR-SCAIL Throughput (GiB/s) 15.2 21.5 19.8 27.1 18.8 16.5

We observed that the impact of segment size on throughput for PR-SCAIL was lim-

ited; thus, our focus is on P-SCAIL where differences are more pronounced. The chart

in Figure 6.19 shows increasing segment size increases throughput for P-SCAIL. Ta-

ble 6.1 summarises the cumulative average throughput for each SCAIL scheme, where

the cumulative average throughput is the total volume of data for all backups, divided

by the time taken to deduplicate the data. We also observed that the logical volume of

data presented to the server for backup, as shown in Figure 6.20, influenced through-

put. As the logical volume was reduced, throughput also fell. This reflects that the pro-

6.7 Multiprocessor Throughput 191

cessing time remains relatively stable, so if logical volume falls, throughput will also

fall. Conversely, increased logical volume tends to increase throughput in P-SCAIL.

512KiB 1MiB 2MiB 4MiB 8MiB 16MiB
Logarithm of Segment Size

50

100

150

200

250

Th
ro

ug
hp

ut
 (G

iB
/s

)

Data Points
Logarithmic Trendline

Figure 6.21: FSL Dataset: Throughput in GiB/second as a function of segment size, showing
observed (dots) and predicted (line) percentage of RSD across a range of segment sizes.

Quantifying Segment Size Effect

In Figure 6.21, we chart client-side deduplication throughput for varying segment

sizes. We found a curve-fitting logarithmic formula that maps segment size to the

expected throughput to be:

throughput = 68.771× log(segment size) + 90.170. (6.1)

Alternatively, P-SCAIL has almost no RSD, but has lower throughput than P-SCAIL.

We find that segment size does not have much impact on throughput with PR-SCAIL

as well.

6.7 Multiprocessor Throughput 192

Figure 6.22: MS Dataset: Multiprocessor Throughput Performance of P-SCAIL with Different Seg-
ment Sizes. Larger segments produce higher throughput. Throughput also falls gradually for all
segment sizes as the volume of data to be backed up falls, as shown in Figure 6.23.

6.7.2 MS Multiprocessor Throughput

The multiprocessor throughput for the MS dataset mirrors the methodology applied

to the FSL dataset, emphasizing the performance under a 16-processor configuration.

This analysis excludes the Base scheme, focusing on the throughput of P-SCAIL with

varying segment sizes.

Segment Size Effect On Throughput

The instantaneous throughput for each backup is graphically represented in Figure 6.22,

but our discussion below references the cumulative average throughput (total volume

of client data in all backup generations divided by the time taken to deduplicate it), as

presented in Table 6.2. This metric offers a more consistent performance indicator over

the entire backup sequence.

6.7 Multiprocessor Throughput 193

Figure 6.23: MS Dataset: Logical Size of Backup Volume for each Backup Generation. The chart
shows that the logical data presented to the server for backup falls from 7.7 TiB on the first backup
to 3.4 TiB on the last.

Table 6.2: MS Dataset: Client-side Deduplication Throughput with 16 Processors by Segment Size
for P-SCAIL and PR-SCAIL

Segment Size 512 KiB 1 MiB 2 MiB 4 MiB 8 MiB 16 MiB
P-SCAIL Throughput (GiB/s) 95.2 158.9 228.9 320.7 373.9 434.2

PR-SCAIL Throughput (GiB/s) 37.3 58.1 79.3 91.8 91.8 79.0

Quantify Segment Size Effect

In Figure 6.24, we chart these results. We found a curve-fitting logarithmic formula

that mapped segment size to the expected throughput for client-side deduplication

throughput data to:

throughput = 105.903× log(segment size) + 169.513. (6.2)

We found that segment size does not substantially impact client-side deduplication

throughput for PR-SCAIL.

6.7 Multiprocessor Throughput 194

512KiB 1MiB 2MiB 4MiB 8MiB 16MiB
Logarithm of Segment Size

100

150

200

250

300

350

400

450
Th

ro
ug

hp
ut

 (G
iB

/s
)

Data Points
Logarithmic128 Trendline

Figure 6.24: FSL Dataset: Client-side deduplication throughput in GiB/second as a function of
segment size, showing observed (dots) and predicted (line) percentage of RSD across a range of
segment sizes.

6.7.3 Summary of Multiprocessor Analysis

Our analysis shows that for both FSL and MS datasets, increasing segment sizes in

a 16-processor setup boosts P-SCAIL throughput. The largest segments for P-SCAIL,

reached the highest throughput but with more data to upload, as described in Sec-

tion 6.5. Smaller segment sizes showed lower throughput and lower upload volumes.

We note that client-side deduplication throughput for the FSL dataset is about half

that of the MS dataset. This is because there are only 8 clients in the FSL dataset, so,

during client-side deduplication, half of the processors are idle. Also, we find that

the throughput trends follow the volume of logical data; a decrease in data volume

over time leads to reduced throughput. This points to the system’s suitability for high-

volume backup workloads.

With these throughput findings presented, we now turn to cost analysis.

6.8 Comparative Analysis of Server Component Costs 195

6.8 Comparative Analysis of Server Component Costs

In the preceding analysis, we presented the memory and server data and metadata

storage requirements for the Base, P-SCAIL and PR-SCAIL schemes. In this section we

integrate and summarise this data. This analysis will not only reveal the cost efficiency

of the SCAIL family compared to Base but also give insight into the practicality of

deploying these systems.

We use the costs outlined in Table 4.2, which we summarise here as $2.375 per GiB

memory, $0.0617 per GiB of SSD and $0.0154 per GiB of HDD. For the chart values

for Data, we multiply the volume of unique chunk data stored on the server by the

HDD cost. For Metadata, we multiply the volume for the components outlined as

Metadata in Section 6.4 (Lookup Index, SCI Bins, Recipes, Metachunks) by the SSD

cost. For Memory, we use the total volume presented in Section 6.3 and multiply by

memory cost. All results are based on 8 KiB chunks and 2 MiB segments for P-SCAIL

and PR-SCAIL. For more specific costing details, see Subsection 4.7.3.

6.8.1 FSL Component Costs

For the FSL Dataset, the Base scheme presents a traditional approach with associated

costs across data storage, index management, and cumulative metadata handling. The

total cost for the Base setup over the 115 backups amounts to $32.83, with the largest

share attributed to the metadata cost at $22.84, reflecting the SSD storage costs for the

large volume of File and Key Recipes and the disk storage for the CFP Index.

With P-SCAIL and PR-SCAIL, there is a marked reduction in both index and meta-

data costs, reflecting the efficiency of segment-level deduplication. The total cost is sig-

nificantly lower at around $7.94, attributing a 75% decrease in cost compared to Base.

This reduction underscores the optimised use of metachunk-only fingerprint lookup,

which incurs substantially less cost at $0.68 for index management and a minimised

metadata overhead at $0.60.

6.8 Comparative Analysis of Server Component Costs 196

Figure 6.25: FSL Dataset: Cumulative backup costs broken down by data, metadata and memory
components, for the Base, P-SCAIL and PR-SCAIL schemes.

Figure 6.25 visually encapsulates these cost differentials, showcasing the stark con-

trast between the Base scheme’s escalating costs and the flattened cost curve observed

in both P-SCAIL and PR-SCAIL. This chart solidifies the comparative analysis, high-

lighting the economic advantages of adopting more advanced deduplication strate-

gies.

6.8.2 MS Component Costs

With the MS dataset, we explore the cost implications of a high-demand corporate

environment, reflecting the routine and comprehensive data management needs of a

large-scale operation. This dataset presents a formidable challenge, with its substantial

volume and frequent updates necessitating a robust and efficient deduplication strat-

egy. The total cost analysis for the Base scheme reveals a significant expenditure across

data storage, index management, and metadata storage, culminating in a total cost of

$94.09. The substantial index cost of $24.60, alongside the metadata cost of $26.99, il-

lustrates the considerable resources required to manage the backup process over eight

weeks for a large number of workstations.

6.8 Comparative Analysis of Server Component Costs 197

Figure 6.26: MS Dataset: Stacked area chart showing component costs. All schemes use 8 KiB
chunks, and P-SCAIL and PR-SCAIL use 2 MiB segments.

Both PR-SCAIL and PR-SCAIL demonstrate a remarkable reduction in index and

metadata costs. The total costs for each SCAIL scheme are around $48.29, and index

and metadata expenses are around $1.45 and $4.34, respectively. This translates to a

total cost reduction of nearly 49% compared to the Base scheme.

Figure 6.26 provides a visual representation of these costs, underscoring the eco-

nomic advantage of adopting advanced deduplication strategies in environments char-

acterised by large data volumes and a high degree of cross-user data redundancy.

6.8.3 Summary of Cost Findings

Our cost analysis for the FSL and MS datasets highlights the economic impact of dedu-

plication schemes across two distinct backup environments. The Base scheme, while

serving as a benchmark, incurs higher costs across memory and metadata. Through

innovative deduplication strategies, the P-SCAIL and PR-SCAIL schemes significantly

lower these costs.

The cost reductions seen in the FSL dataset are consistent in the MS dataset, albeit

with different magnitudes due to the distinct nature of the data and the frequency of

6.9 Comparative Findings 198

backups. The P-SCAIL and PR-SCAIL schemes not only provide a technical upgrade

over the Base scheme but also present a compelling case for cost savings in long-term

data management strategies. These findings suggest that the SCAIL family of algo-

rithms offers a scalable, cost-effective solution for enterprise-level backup systems.

As we conclude this costing evaluation, it can be seen that the choice of dedupli-

cation scheme can significantly influence the total cost of ownership for data backup

systems. The insights garnered here will serve as a foundation for our overall compar-

ative findings, which we present next.

6.9 Comparative Findings

In this section, we synthesise insights from the extensive comparison of Base and the

SCAIL family of algorithms, focusing on their efficiency, performance and suitabil-

ity for different workloads. Across various metrics ranging from memory and stor-

age requirements to upload volume and throughput – the aim has been to explore

the strengths and limitations inherent in each approach. This comparison not only

highlights the trade-offs between resource utilisation and system performance but also

sets the stage for identifying preferred deployment scenarios based on specific require-

ments and constraints.

6.9 Comparative Findings 199

512KiB 1MiB 2MiB 4MiB 8MiB 16MiB
Logarithm of Segment Size

0.25

0.30

0.35

0.40

0.45

RS
D%

Data Points
Logarithmic Trendline

(a) Percentage of RSD

512KiB 1MiB 2MiB 4MiB 8MiB 16MiB
Logarithm of Segment Size

50

100

150

200

250

Th
ro

ug
hp

ut
 (G

iB
/s

)

Data Points
Logarithmic Trendline

(b) Client-side Deduplication Throughput

Figure 6.27: FSL Dataset: These two charts allow you to compare, for a given segment size, the
expected RSD% (top chart) and Throughput (bottom chart).

6.9 Comparative Findings 200

6.9.1 Efficiency and Performance Trade-offs

In deduplication, striking a balance between resource efficiency and system perfor-

mance is pivotal. Our comparative study has examined some trade-offs that come into

play with different deduplication schemes.

Memory and Storage Efficiency: The SCAIL family of algorithms exhibit a pro-

nounced advantage in memory and storage efficiency over the Base scheme. This is

especially critical when managing large-scale workloads where resource optimisation

is directly linked to system scalability and cost-effectiveness. The memory footprint

of the SCAIL schemes, being substantially smaller, offers a sustainable model for ex-

panding data management operations while reducing associated costs.

Server-side Deduplication Throughput: Server-side deduplication throughput for

the SCAIL family remains competent, adequately surpassing the throughput constraints

of disk-bound data transfers to HDD storage. This efficiency is paramount in maintain-

ing acceptable backup windows, making SCAIL schemes suitable for enterprise-level

deployments where time and data integrity are of the essence.

6.9 Comparative Findings 201

512KiB 1MiB 2MiB 4MiB 8MiB 16MiB
Logarithm of Segment Size

1.5

2.0

2.5

3.0

3.5

4.0

RS
D%

Data Points
Logarithmic128 Trendline

(a) Percentage of RSD

512KiB 1MiB 2MiB 4MiB 8MiB 16MiB
Logarithm of Segment Size

100

150

200

250

300

350

400

450

Th
ro

ug
hp

ut
 (G

iB
/s

)

Data Points
Logarithmic128 Trendline

(b) Client-side Deduplication Throughput

Figure 6.28: MS Dataset: These two charts allow you to compare, for a given segment size, the
expected RSD% (top chart) and Throughput (bottom chart).

6.9 Comparative Findings 202

Client-side Deduplication Throughput and Upload Volume: For client-side dedu-

plication, P-SCAIL demonstrates a remarkable throughput that far exceeds the Base

scheme, aligning well with high-performance requirements. However, this comes at

the cost of increased RSD volume. While this may represent a small fraction of total

uploads, the cumulative effect over time can impact short term storage demands and

network traffic of data backup solutions.

We collect the findings from the Upload Volume and Multiprocessor Through-

put sections above to present the RSD vs Throughput trade-offs for P-SCAIL for each

dataset. Given a percentage of RSD per backup that can be tolerated, the top charts in

Figure 6.27 and Figure 6.28 (which are detailed in Subsection 6.5.2) can be used to find

the resulting segment size. With this segment size identified, the expected throughput

can be read from the bottom charts (detailed in Subsection 6.7.2).

Our analysis shows a clear trade-off between the percentage of RSD and achievable

throughput in the P-SCAIL scheme. System administrators can use the provided charts

to determine an appropriate segment size that balances these factors according to their

specific RSD tolerance. The choice of segment size is a strategic decision that influences

immediate throughput and long-term aggregate upload volume from RSD.

6.9.2 Suitability for Different Workloads

FSL vs MS Performance With 16 processor configurations, we note that client-side

deduplication throughput for the FSL data is about 1/2 that of the MS dataset. This

reflects that only eight clients are in the FSL dataset, compared to 128 for the MS

dataset. So, if the workload has fewer clients than the number of processors dedi-

cated to backup, there will be system inefficiencies. SCAIL family schemes always

require less server storage than the Base scheme, and this is especially prominent in

longer-term backups, as un-deduplicated File and Key Recipes accumulate a signifi-

cant volume of space on the server.

6.9 Comparative Findings 203

Dataset Size We also found that the larger the dataset, the larger the advantage

SCAIL scheme over the Base scheme.

6.9.3 Final Recommendations

We compare the SCAIL family algorithm by three types of upload volume constraints:

• Baseline: Maintain the same approximate upload volume as Base.

• Unlimited: Prioritise throughput over upload volume.

• Minimise: Upload the smallest volume possible.

For example, examining the first row in Table 6.3, if the primary requirement is

to maintain the upload volume for a traditional encrypted deduplication system like

Base, then from Figure 6.9, we can see that a 4 MiB segment size will upload effectively

the same volume. From the comparison Figure 6.27 above, we can see that it will

produce an estimated client-side deduplication throughput of 189.3 GiB/second, and

the upload volume will have 0.38% RSD.

Table 6.3: Recommended Schemes and Segment Sizes for Different Upload Constraint Scenarios.

Upload Constraint Dataset Scheme Seg. Size % Baseline GiB/s RSD percentage

Baseline
FSL P-SCAIL 4 MiB -2.1% 189.3 0.38%
MS P-SCAIL 512 KiB 1.10% 95.2 1.50%

Unlimited
FSL P-SCAIL 16 MiB 21.5% 273.6 0.47%
MS P-SCAIL 16 MiB 134.0% 434.0 4.10%

Minimise
FSL PR-SCAIL 4 MiB -43.6% 27.1 0.02%
MS PR-SCAIL 8 MiB -7% 91.8 0.50%

Chapter 7

Conclusion

Encrypted deduplication backup systems are widely used, but face significant chal-

lenges. These include excessive metadata accumulation for long-term backups, limits

to the volume of data that can be accepted in the system imposed by memory con-

straints, slow throughput caused by excessive disk I/O, and resource contention be-

tween competing backup jobs. Although various solutions have been proposed, exist-

ing approaches often struggle to balance efficient duplicate elimination with scalability,

low memory overhead, and strong data privacy.

Recognising this gap in the field, we systematically investigated and developed

novel approaches to encrypted deduplication to address these issues. First, we intro-

duced Segment Chunks And Index Locality (SCAIL), a novel hybrid two-phase dedu-

plication system. To mitigate side-channel attacks, SCAIL performs client-side dedu-

plication on metachunks privately for each client, avoiding cross-client deduplication

at this phase. Using a metachunk-only deduplication index dramatically reduces the

amount of memory required for client-side deduplication, enabling the deduplication

index to be exclusively memory-based, even at large scales. This results in very fast

throughput, significantly improving performance over existing methods. After up-

loading the chunks of missing metachunks and sorted lists of their fingerprints, SCAIL

processes a multi-client batch backup using index locality to find and discard duplicate

chunks before final storage to the server. This technique uses low amounts of memory

and requires few disk I/Os at large scales.

204

7.1 Revisiting Our Objectives 205

Next, to enable backup servers to leverage the enhanced capacity introduced by

SCAIL, we developed Parallel SCAIL (P-SCAIL), a parallel implementation that em-

ploys data and task parallelism. This advancement ensures that backup servers have

the throughput needed to handle the increased data volumes.

Finally, we found that SCAIL and P-SCAIL produced redundant chunk uploads

in certain scenarios. To overcome this limitation, we designed Parallel Resemblance

SCAIL (PR-SCAIL), an extension of P-SCAIL that dramatically reduces excess uploads

through segment resemblance-based chunk deduplication techniques, albeit at the cost

of a reduction in throughput.

We rigorously evaluated each of these systems using real-world, trace backup datasets,

demonstrating significant improvements in storage capacity, efficiency, throughput,

and upload volume reduction.

7.1 Revisiting Our Objectives

In this thesis, our objectives aim to enhance the performance and capacity of client-

server deduplication systems. The objectives guided the development and evaluation

of our deduplication approaches, each designed to address specific challenges in large-

scale, secure data backup environments. The main objectives of this research are:

1. Reduce Server Storage: Reduce server storage requirements by deduplicating

metadata as well as performing exact, chunk-level deduplication at scale.

2. Reduce Memory Requirements: Reduce server memory requirements associ-

ated with processing client-side and server-side deduplication, aiming to miti-

gate disk bottlenecks and support petabyte scalability on a single server.

3. Fast Client-side Deduplication: Enable high-speed throughput for client-side

deduplication, demonstrating the feasibility of processing client backups in the

petabyte-scale of unique (deduplicated) data.

4. Ensure Data Privacy: Provide strong data privacy guarantees against brute force

7.1 Revisiting Our Objectives 206

and other attacks, and ensure resistance to side-channel attacks.

5. Reduce Resource Contention: Reduce, and if possible, eliminate resource con-

tention during client-side and server-side deduplication.

6. Increase Throughput with Parallelism: Increase deduplication throughput by

leveraging parallelism on multiprocessor systems.

7. Reduce Upload Volume: Achieve reduced upload volumes by incorporating

metadata deduplication and resemblance techniques.

With the given objectives, we provide a detailed examination of how they were ad-

dressed in the design, implementation, and testing phases of our work. In the follow-

ing, we discuss the specific techniques and approaches applied to meet each objective,

highlighting the key results and insights.

Objective 1. Reduce Server Storage: SCAIL, generates metachunks from encrypted

chunk metadata based on the Metadedup design. Deduplicating these metachunks

achieved a significant reduction in server metadata storage—97% for the FSL dataset

and 86% for the MS dataset (see evaluation results in Section 6.4). This approach

also reduced overall server storage requirements compared to traditional chunk-based

deduplication by 44% for the FSL dataset and 11% for the MS dataset.

However, the storage reductions above assume chunk-level deduplication is per-

formed on the server. Unlike Metadedup, SCAIL’s MFP-only index can only perform

deduplication at the segment level, not the chunk level. Deduplicating only at the seg-

ment or metachunk level would miss the additional compression benefits of chunk-

level deduplication. To maximise storage efficiency, we incorporated exact, cross-user,

chunk-level deduplication for server-side deduplication. This approach captures re-

dundancy at the finest granularity, ensuring that identical chunks within different seg-

ments are deduplicated.

Performing exact deduplication as the final step before storing data on the server

frees us to employ client-side deduplication approaches that accelerate throughput.

7.1 Revisiting Our Objectives 207

These include coarse-grained (segment-level) deduplication in Chapters 3 and 4, and

chunk-level, near-exact client-side deduplication in Chapter 5. Combining efficient

server-side chunk-level deduplication with these client-side strategies achieves storage

savings (Objective 1).

Objective 2. Reduce Memory Requirements: Having dramatically reduced memory

requirements for client-side deduplication in Objective 3, we still needed to implement

chunk-level cross-user deduplication for server-side deduplication. Memory require-

ments for traditional chunk-level encrypted deduplication grow with the size of the

accumulated unique data identified by the system. To address this, we utilised the

batch-oriented SCI design (see Subsection 4.7.1). This approach required only a single,

modestly-sized cache whose size was independent of the number of clients, and inde-

pendent of the volume of data in a batch. That is, adding more clients to a batch did

not require any increase in memory requirements (see Subsection 3.3.4).

Objective 3. Fast Client-side Deduplication: The MFP-only index enables us to per-

form memory only segment-level client-side deduplication theoretically up to petabyte-

scale datasets, as calculated in Section 3.4. This achieved exact (albeit at the segment-

level), high-throughput deduplication, but did cause the occasional upload of some

previously saved chunks.

Objective 4. Ensure Data Privacy: Ensuring the privacy of client data in a cloud

backup system is of the highest priority. We, therefore, aimed to provide strong data

privacy guarantees against brute-force and other attacks and to mitigate side-channel

attacks. This objective was achieved by employing the following techniques across the

different schemes developed in the thesis.

• Chunk and Metachunk Encryption We leveraged the Message-Locked Encryp-

tion (MLE) and DupLESS approaches to secure data and metadata chunks (see

7.1 Revisiting Our Objectives 208

Section 3.10).

• Small File Handling To maintain the computational complexity required to pro-

tect against brute-force attacks, we use a stream of bytes rather than individual

files to create metachunks (see Subsection 3.10.2).

• Side-Channel Attacks To mitigate side-channel attacks, we avoided cross-client

deduplication during the client-side deduplication phase, deferring it to the server-

side phase. This approach prevents the server from revealing the upload status of

specific data chunks to clients, though it reduces the upload efficiency of client-

side deduplication (see Subsection 3.10.3).

Objective 5. Reduce Resource Contention: For client-side deduplication, resource

contention was reduced by using read-only access to memory-based Metachunk Fin-

gerprint (MFP) index. This allows multiple clients to safely access the index simulta-

neously. After all client data is uploaded, deduplicated, and stored on disk, the index

is updated in a single pass (see Section 4.2).

PR-SCAIL was also able to reduce resource contention in client-side deduplication

since each client has their own data and metadata containers. This meant that a given

process could work on a client’s deduplication simultaneously without having to co-

ordinate access to common data containers (see the discussion of parallelism in Stage

2 of PR-SCAIL, Subsection 5.6.2).

For server-side deduplication, using the concept of Sorted Deduplication’s Sorted

Chunk Indexing (SCI) allowed all clients to be grouped into large batches. This en-

abled the simultaneous deduplication of a large number of client backup streams in a

single pass through the chunk-level disk-based index (see Subsection 3.3.4). This elim-

inated resource contention on the disk-based chunk-level index, which would have

been caused by allowing simultaneous access from multiple clients. This lack of re-

source contention enabled an increase in throughput by taking advantage of multipro-

7.1 Revisiting Our Objectives 209

cessor systems, as laid out in Section 4.3.

Objective 6. Increase Throughput with Parallelism: In Chapters 4 and 5, we im-

plemented task-based and data-based parallelism to increase system throughput. For

client-side deduplication, we implemented task-based parallelism.

For P-SCAIL, we dedicated a processor for each client query in turn, to perform

lookups into the segment-level index and achieved a throughput of up to 273 GiB/second

for the FSL dataset and up to 435 GiB/second for the MS dataset, (see Tables 6.1 (FSL)

and 6.2 (MS) for P-SCAIL).

For PR-SCAIL, we also implemented task-based parallelism, where the manifests

of similar segments were loaded from client-specific metachunk containers. We were

able to achieve near-exact chunk-level deduplication throughput of 27 GiB/second for

the FSL dataset, and 91 GiB/second for the MS dataset.

For server-side deduplication, we employed a combination of task-based and data-

based parallelism to increase deduplication throughput. Duplicate lookup in SCI was

split between processors using data parallelism, with each processor working on a

disjoint subrange of the total range of CFPs. Once duplicates had been found, we allo-

cated chunks to containers using task-based parallelism, allocating a processor to each

client stream. We achieved parallel processing throughput for server-side deduplica-

tion of up to 10 GiB/second for the FSL dataset and 6.9 GiB/second for the MS dataset,

(see Subsection 4.7.1).

Objective 7. Reduce Upload Volume: In Chapter 5, we addressed the issue inherent

in SCAIL’s design of the occasional re-upload of chunks already stored on the server by

introducing PR-SCAIL. By adding near-exact, chunk-level, resemblance-based dedu-

plication to our exact, segment-based deduplication, we reduced the excess upload

volume by 97% for the FSL dataset and 80% for the MS dataset (see Subsection 5.10.3).

The memory requirements of this design are still very low, but checking for previously

7.2 Implications and Significance 210

uploaded chunks in the on-disk metadata containers slowed down client-side dedu-

plication compared to segment-only (P-SCAIL) client-side deduplication.

7.2 Implications and Significance

Through the development of SCAIL, P-SCAIL, and PR-SCAIL, we have advanced the

field of encrypted deduplication by introducing innovative indexing structures and

deduplication techniques that increase efficiency, scalability, and security. Our work

demonstrates that it is possible to achieve high throughput and reduce resource con-

flict and consumption without compromising data privacy. These contributions lay the

groundwork for future research in designing next-generation deduplication systems in

data storage and backup in secure environments.

Practical Applications: Organisations can implement our methods to improve the

efficiency and security of their backup systems, particularly those handling petabyte-

scale amounts of data. Increasing single-server capacity to the petabyte scale, with

throughput performance to support it, and lowering operational costs, making it fea-

sible for small and medium-sized enterprises to adopt robust encrypted deduplication

backup solutions.

Theoretical Contributions: Our introduction of the MFP-only index and the hybrid

two-phase deduplication approach facilitates tailored indexing approaches for client-

side and server-side operations. Additionally, by combining exact and resemblance-

based deduplication techniques, we enhance the theoretical understanding of the en-

crypted deduplication process. These advancements challenge existing assumptions

regarding the trade-offs between deduplication granularity and system performance,

enabling more flexible and efficient systems.

7.3 Limitations 211

Influence on Future Research: Our work opens up new research directions, such as

adaptive deduplication strategies that adjust to workload characteristics for improved

performance. It encourages further exploration into hybrid deduplication methods

and efficient indexing structures that can be targeted to specific workload require-

ments.

Alignment with Industry Trends: As data privacy regulations become stricter and

data volumes grow rapidly, our solutions align with the industry’s need for secure,

scalable, and efficient data management systems. By providing strong data privacy

guarantees without sacrificing performance or capacity, our work supports organisa-

tions in meeting regulatory compliance and protecting sensitive information.

7.3 Limitations

Our designs and evaluations have several limitations. We list the salient ones here for

transparency and to guide further research.

Scalability and Memory Constraints: A core limitation across the SCAIL family is

the reliance on in-memory data structures, particularly the MFP index. While this de-

sign significantly reduces memory consumption and eliminates disk I/O compared to

traditional chunk fingerprint indexes at large scale, it still poses challenges for datasets

exceeding multiple petabytes of unique data. In addition, PR-SCAIL adds a second

index, the Representative Fingerprint (RFP), which is usually much smaller than the

MFP index. It might be possible to mitigate the memory limitation by using an SSD-

based index, and/or increasing metachunk size, which decreases the size of the MFP

index.

Performance Trade-offs: SCAIL demonstrates significant improvements in metadata

storage reduction and client-side deduplication speed. However, if a dataset is small

7.3 Limitations 212

enough to be deduplicated with a memory-only hash table (say under 100 TB of dedu-

plicated data), its use of the disk-based SCI technique for chunk-level server-side dedu-

plication would be slower than the speed of the memory-based index.

PR-SCAIL’s resemblance-based approach effectively mitigates Redundant Segment

Data (RSD) uploads, but at the cost of reduced client-side deduplication throughput

compared to P-SCAIL.

Data Characteristics and Workload Dependencies: The demonstrated efficiency and

effectiveness of the SCAIL family are influenced by the nature of the backup workload

and data characteristics. SCAIL’s performance might not compare favorably for low-

change datasets, since the amount of chunk-level data that must be deduplicated is

potentially small after the first backup is completed. In this case, other indexing tech-

niques, such as a disk-based hash table, may outperform SCI, as it requires a full pass

through the entire index, whereas the hash table may need only a few lookups.

SCAIL and P-SCAIL’s client-side deduplication is restricted to the metachunk level,

which means duplicate chunks within different metachunks are not identified before

uploading, causing write amplification. Similarly, restore operations, since they are

of metachunk granularity, also exhibit read amplification. Adding another round-trip

to the server, and enabling upload and download at the level of chunks rather than

metachunks could mitigate this issue, but the performance and security implications

of this approach should be weighed.

The evaluations in this research primarily rely on the FSL and MS datasets. These

datasets, while widely used, may not capture the full spectrum of real-world data

variations. Further investigation into diverse backup workloads could shed light on

whether there are further scenarios where SCAIL-based algorithms are not appropri-

ate.

7.4 Future Work: Adaptive Client-side Deduplication 213

Security and Privacy Considerations: The thesis strongly emphasises data privacy

through Message-Locked Encryption (MLE) and DupLESS. However, our focus on an

honest-but-curious adversary might not fully address potential vulnerabilities in real-

world deployments with more sophisticated attackers. Exploring defences against

attacks targeting access pattern leakage or employing advanced cryptographic tech-

niques could reveal vulnerabilities.

System Management and Flexibility: Certain design choices, such as P-SCAIL’s pro-

cessor count dependency for client-side data partitioning, might restrict system flexi-

bility and complicate management in a dynamic environment.

The batch-oriented nature of server-side deduplication in SCAIL could pose chal-

lenges for real-time or continuous backup scenarios that require immediate restore

data availability. A method to ease this situation might be to enable multiple passes to

be made through the SCI index simultaneously.

7.4 Future Work: Adaptive Client-side Deduplication

In our comparative analysis, the juxtaposition of the P-SCAIL system’s high client-

sided deduplication throughput (albeit with the accumulation of Redundant Segment

Data (RSD)) against the PR-SCAIL system’s lower throughput but minimal RSD high-

lighted the potential for an adaptive deduplication strategy. Our investigations, as

documented in our publication and prototype implementations, have traditionally fo-

cused on employing only one of the P-SCAIL or PR-SCAIL systems at a time, exam-

ining their respective strengths and limitations. This raises an intriguing question:

could an adaptive strategy be devised capable of tailoring deduplication techniques to

backup workload characteristics, or even to individual clients? Such a strategy could

potentially enhance throughput in addition to reducing RSD on a global scale.

7.4 Future Work: Adaptive Client-side Deduplication 214

Stage 2 Lookup Query: For the adaptive strategy to be viable, clients would need to

use a PR-SCAIL-style lookup query, including Representative Fingerprint (RFP)’s in

their Stage 2 lookup queries following the PR-SCAIL model, involving the upload of

Chunk Fingerprint (CFP) recipes for each backup segment, beyond just the Metachunk

Fingerprint (MFP) recipes. This enables the server to perform near-exact chunk-level

client-side deduplication.

Resemblance Data Collection: Implementing the adaptive strategy necessitates ac-

cumulating segment resemblance data via the RFP Index during backup, whether it is

used in subsequent backups or not. The RFP Index’s size is typically half that of the

already compact MFP index, and can be efficiently updated concurrently with the MFP

Index once the processing of “Missing” Recipes have been processed.

Threshold Determination: In the lookup phase, the system always conducts MFP

lookups to identify and eliminate duplicate segments. With the option of a resem-

blance index, the system could dynamically opt to execute chunk-level, segment resemblance-

based deduplication to diminish upload volume. Although this step may slow through-

put, it promises a significant reduction in the re-upload of previously stored chunks

(RSD).

The decision to shift from a P-SCAIL to a PR-SCAIL-styled lookup could be based

on various criteria, such as a predefined system-wide or client-specific threshold of

upload volume, or a percentage of non-duplicate segments. Furthermore, the system

might evaluate the number of segments resembling those previously stored to deter-

mine the appropriateness of chunk-level segment resemblance deduplication. This

decision-making process could also leverage historical data, either from the server or

individual client experiences. Future research will be crucial in developing sophisti-

cated algorithms for adaptive threshold management, potentially incorporating ma-

chine learning techniques for anticipatory analysis.

7.5 Future Work: Adaptive Server-side Deduplicaton 215

7.5 Future Work: Adaptive Server-side Deduplicaton

In our exploration of deduplication techniques, we employed Sorted Chunk Indexing

(SCI) for server-side deduplication within our hybrid two-phase deduplication frame-

work. While SCI offers significant advantages in terms of low memory usage and low

disk I/Os for large datasets, there is potential to further optimise server-side dedupli-

cation by adapting the deduplication strategy based on the characteristics of the data

that reaches the server after client-side deduplication processing.

In typical backup scenarios, a substantial portion of redundant data is eliminated

during client-side deduplication — especially in backups following the initial backup

— the volume of data requiring server-side deduplication is significantly reduced. This

observation opens up the possibility of exploring alternative server-side deduplication

techniques that could be more efficient or better suited to certain workloads than SCI.

One potential approach is to reconsider the use of a traditional CFP index for

server-side deduplication. Traditionally, these are avoided at large scales due to their

high memory requirements, or the significant, random disk I/O associated with a disk-

based full chunk index. However, with the reduced data volume resulting from effec-

tive client-side deduplication, the overhead associated with a CFP index might become

manageable. The lower number of chunks to be deduplicated could reduce the num-

ber of disk I/O to below those required by SCI, leading to faster deduplication times.

Another avenue is the exploration of low-memory, fast, inexact server-side dedu-

plication techniques. These techniques, which may use probabilistic data structures

like Bloom Filters can quickly identify duplicate chunks with a small chance of false

positives. While this may result in some duplicate chunks being stored, the additional

storage overhead might be acceptable when balanced against the benefits of reduced

deduplication time and resource usage. Moreover, the storage savings from metadata

deduplication could offset the impact of storing some redundant chunks.

7.6 Conclusion 216

7.6 Conclusion

In this thesis, we investigated increasing the data capacity and efficiency in encrypted

deduplication backup systems. We successfully integrated the lower system require-

ments and high-speed deduplication throughput of coarse granularity chunking with

the high storage reductions of fine-grained deduplication. We developed several novel

approaches that effectively extend and integrate these factors in SCAIL.

Once we had achieved these higher capacities, we found the need to increase the

throughput of the server system to handle expanded data and client capacity, which

we achieved by improving cache management and leveraging multiprocessor server

architectures in P-SCAIL.

The development of SCAIL and PR-SCAIL led to a new area of research: reducing

the volume of redundancy segment data (RSD) uploads generated by these designs.

This led to an analysis of RSD and the implementation of a new segment resemblance

technique introduced in PR-SCAIL.

Through these innovations, we have advanced the field of encrypted deduplica-

tion, offering scalable, efficient, and secure solutions to pressing challenges faced by

modern data storage systems. Our work lays the groundwork for future research in

the design of next-generation deduplication systems in secure environments.

Bibliography

[1] Atul Adya, William J Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,

John R Douceur, Jon Howell, Jacob R Lorch, Marvin Theimer, and Roger P Wat-

tenhofer. “Farsite: federated, available, and reliable storage for an incompletely

trusted environment”. In: ACM SIGOPS Operating Systems Review 36.SI (Dec.

2003), pp. 1–14.

[2] Bhavish Agarwal, Aditya Akella, Ashok Anand, Athula Balachandran, Pushkar

V Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee, and George Vargh-

ese. “Endre: An end-system redundancy elimination service for enterprises”.

In: NSDI. Vol. 10. 2010, pp. 419–432.

[3] Ashok Anand, Chitra Muthukrishnan, Aditya Akella, and Ramachandran Ram-

jee. “Redundancy in network traffic: findings and implications”. In: Proceedings

of the eleventh international joint conference on Measurement and modeling of com-

puter systems. SIGMETRICS ’09. New York, NY, USA: Association for Comput-

ing Machinery, June 2009, pp. 37–48.

[4] Paul Anderson and Le Zhang. “Fast and Secure Laptop Backups with Encrypted

De-duplication”. In: Research Gate (2010).

[5] L Aronovich, R Asher, D Harnik, M Hirsch, S T Klein, and Y Toaff. “Similarity

based deduplication with small data chunks”. In: Discrete applied mathematics

212 (2016), pp. 10–22.

217

BIBLIOGRAPHY 218

[6] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,

Zachary Peterson, and Dawn Song. Provable data possession at untrusted stores.

2007.

[7] Azure Pricing – bandwidth. en. https://azure.microsoft.com/en-gb/pricing/

details/bandwidth/. Accessed: 2022-4-12.

[8] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. “Message-Locked

Encryption and Secure Deduplication”. In: Advances in Cryptology – EUROCRYPT

2013. Springer Berlin Heidelberg, 2013, pp. 296–312.

[9] D Bhagwat, K Eshghi, D D E Long, and M Lillibridge. “Extreme Binning: Scal-

able, parallel deduplication for chunk-based file backup”. In: 2009 IEEE Inter-

national Symposium on Modeling, Analysis Simulation of Computer and Telecommu-

nication Systems. Sept. 2009, pp. 1–9.

[10] Pramod Bhatotia, Rodrigo Rodrigues, and Akshat Verma. “Shredder: GPU-accelerated

incremental storage and computation”. In: FAST. Vol. 14. 2012, p. 14.

[11] Nikolaj Bjørner, Andreas Blass, and Yuri Gurevich. “Content-dependent chunk-

ing for differential compression, the local maximum approach”. In: Journal of

Computer and System Sciences 76.3 (May 2010), pp. 154–203.

[12] Deepak R Bobbarjung, Suresh Jagannathan, and Cezary Dubnicki. “Improv-

ing duplicate elimination in storage systems”. In: ACM Trans. Storage 2.4 (Nov.

2006), pp. 424–448.

[13] Andrei Z Broder. “Identifying and Filtering Near-Duplicate Documents”. In:

Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching. COM

’00. Berlin, Heidelberg: Springer-Verlag, 2000, pp. 1–10.

[14] Andrei Z Broder. “On the resemblance and containment of documents”. In: Pro-

ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171).

1997, pp. 21–29.

https://azure.microsoft.com/en-gb/pricing/details/bandwidth/
https://azure.microsoft.com/en-gb/pricing/details/bandwidth/

BIBLIOGRAPHY 219

[15] Andrei Z Broder. “Some applications of Rabin’s fingerprinting method”. In:

Sequences II. Springer, 1993, pp. 143–152.

[16] Josiah Carlson. Redis in Action. en. Simon and Schuster, June 2013.

[17] T C E Cheng and H G Kahlbacher. “A proof for the longest-job-first policy

in one-machine scheduling”. en. In: Naval Research Logistics 38.5 (Oct. 1991),

pp. 715–720.

[18] Yann Collet. xxHash: Extremely fast non-cryptographic hash algorithm. https://

xxhash.com/. Accessed: 2023-9-1. Nov. 2023.

[19] Landon P Cox, Christopher D Murray, and Brian D Noble. “Pastiche: making

backup cheap and easy”. In: ACM SIGOPS Operating Systems Review 36.SI (Dec.

2003), pp. 285–298.

[20] Girum Dagnaw, Ke Zhou, and Hua Wang. “SACRO : Solid state drive-assisted

chunk caching for restore optimization”. en. In: Concurrency and computation:

practice & experience 35.18 (Aug. 2023).

[21] Dan Dobre, Paolo Viotti, and Marko Vukolić. “Hybris: Robust Hybrid Cloud

Storage”. In: Proceedings of the ACM Symposium on Cloud Computing. New York,

NY, USA: ACM, Nov. 2014.

[22] Wei Dong, Fred Douglis, Kai Li, R Hugo Patterson, Sazzala Reddy, and Philip

Shilane. “Tradeoffs in Scalable Data Routing for Deduplication Clusters”. In:

FAST. Vol. 11. 2011, pp. 15–29.

[23] J R Douceur, A Adya, W J Bolosky, P Simon, and M Theimer. “Reclaiming space

from duplicate files in a serverless distributed file system”. In: Proceedings 22nd

International Conference on Distributed Computing Systems. July 2002, pp. 617–624.

[24] F Douglis, Deepti Bhardwaj, Hangwei Qian, and Philip Shilane. “Content-aware

load balancing for distributed backup”. In: LiSA (Dec. 2011), pp. 13–13.

https://xxhash.com/
https://xxhash.com/

BIBLIOGRAPHY 220

[25] K Eshghi and Henry Hong Ki Tang. “A framework for analyzing and improv-

ing content-based chunking algorithms”. In: Hewlett-Packard Labs Technical Re-

port TR 30.2005 (2005).

[26] Steven D Feldman, Akshatha Bhat, Pierre LaBorde, Qing Yi, and Damain Dechev.

“Effective use of non-blocking data structures in a deduplication application”.

In: Proceedings of the 2013 companion publication for conference on Systems, program-

ming, & applications: software for humanity. SPLASH ’13. New York, NY, USA:

Association for Computing Machinery, Oct. 2013, pp. 133–142.

[27] Min Fu, Shujie Han, Patrick P C Lee, Dan Feng, Zuoning Chen, and Yu Xiao.

“A simulation analysis of redundancy and reliability in primary storage dedu-

plication”. In: IEEE transactions on computers. Institute of Electrical and Electronics

Engineers 67.9 (Sept. 2018), pp. 1259–1272.

[28] Yinjin Fu, Hong Jiang, and Nong Xiao. “A scalable inline cluster deduplication

framework for big data protection”. In: Lecture Notes in Computer Science. Lec-

ture notes in computer science. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012, pp. 354–373.

[29] Yinjin Fu, Nong Xiao, Hong Jiang, Guyu Hu, and Weiwei Chen. “Application-

Aware Big Data Deduplication in Cloud Environment”. In: IEEE Transactions on

Cloud Computing 7.4 (Oct. 2019), pp. 921–934.

[30] Abdullah Gharaibeh, Samer Al-Kiswany, Sathish Gopalakrishnan, and Matei

Ripeanu. “A GPU accelerated storage system”. In: Proceedings of the 19th ACM

International Symposium on High Performance Distributed Computing. HPDC ’10.

New York, NY, USA: Association for Computing Machinery, June 2010, pp. 167–

178.

[31] Fanglu Guo and Petros Efstathopoulos. “Building a High-performance Dedu-

plication System”. In: USENIX annual technical conference. 2011.

BIBLIOGRAPHY 221

[32] Guanxiong Ha, Hang Chen, Chunfu Jia, and Mingyue Li. “Threat Model and

Defense Scheme for Side-Channel Attacks in Client-Side Deduplication”. In:

Tsinghua science and technology 28.1 (Feb. 2023), pp. 1–12.

[33] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. “Proofs

of ownership in remote storage systems”. In: Proceedings of the 18th ACM con-

ference on Computer and communications security. CCS ’11. New York, NY, USA:

Association for Computing Machinery, Oct. 2011, pp. 491–500.

[34] D Harnik, B Pinkas, and A Shulman-Peleg. “Side Channels in Cloud Services:

Deduplication in Cloud Storage”. In: IEEE Security Privacy 8.6 (Nov. 2010), pp. 40–

47.

[35] O Heen, C Neumann, L Montalvo, and S Defrance. “Improving the Resistance

to Side-Channel Attacks on Cloud Storage Services”. In: 2012 5th International

Conference on New Technologies, Mobility and Security (NTMS). May 2012, pp. 1–5.

[36] J Kaiser, T Süß, L Nagel, and A Brinkmann. “Sorted deduplication: How to

process thousands of backup streams”. In: 2016 32nd Symposium on Mass Storage

Systems and Technologies (MSST). May 2016, pp. 1–14.

[37] Jürgen Kaiser, André Brinkmann, Tim Süß, and Dirk Meister. “Deriving and

comparing deduplication techniques using a model-based classification”. In:

Proceedings of the Tenth European Conference on Computer Systems. EuroSys ’15

Article 11. New York, NY, USA: Association for Computing Machinery, Apr.

2015, pp. 1–13.

[38] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. “DupLESS: server-

aided encryption for deduplicated storage”. In: Presented as part of the 22nd

Usenix Security Symposium (Usenix) Security 13). 2013, pp. 179–194.

[39] Chulmin Kim, Ki-Woong Park, and Kyu Ho Park. “GHOST: GPGPU-offloaded

high performance storage I/O deduplication for primary storage system”. In:

BIBLIOGRAPHY 222

Proceedings of the 2012 International Workshop on Programming Models and Applica-

tions for Multicores and Manycores. PMAM ’12. New York, NY, USA: Association

for Computing Machinery, Feb. 2012, pp. 17–26.

[40] Roei Kisous, Ariel Kolikant, Abhinav Duggal, Sarai Sheinvald, and Gala Yadgar.

“The what, The from, and The to: The Migration Games in Deduplicated Sys-

tems”. In: ACM Trans. Storage (Sept. 2022).

[41] Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan, and

Matei Ripeanu. “StoreGPU: Exploiting Graphics Processing Units to Acceler-

ate Distributed Storage Systems”. In: Proceedings of the 17th International Sym-

posium on High Performance Distributed Computing. HPDC ’08. New York, NY,

USA: ACM, 2008, pp. 165–174.

[42] Oleg Kolosov, Gala Yadgar, S Maheshwari, and E Soljanin. “Benchmarking in

the dark: On the absence of comprehensive edge datasets”. In: USENIX Work-

shop on Hot Topics in Edge Computing (2020).

[43] Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. “Bimodal content de-

fined chunking for backup streams”. In: Fast. 2010, pp. 239–252.

[44] J Li, P P C Lee, Y Ren, and X Zhang. “Metadedup: Deduplicating Metadata

in Encrypted Deduplication via Indirection”. In: 2019 35th Symposium on Mass

Storage Systems and Technologies (MSST). May 2019, pp. 269–281.

[45] Jingwei Li, Chuan Qin, Patrick P C Lee, and Xiaosong Zhang. Information Leak-

age in Encrypted Deduplication via Frequency Analysis. 2017.

[46] Mingqiang Li, Chuan Qin, Jingwei Li, and Patrick P C Lee. CDStore: Toward

Reliable, Secure, and Cost-Efficient Cloud Storage via Convergent Dispersal. 2016.

[47] Pengfei Li, Yu Hua, Qin Cao, and Mingxuan Zhang. “Improving the restore per-

formance via physical-locality middleware for backup systems”. In: Proceedings

BIBLIOGRAPHY 223

of the 21st International Middleware Conference. New York, NY, USA: ACM, Dec.

2020.

[48] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. “Improving restore

speed for backup systems that use inline chunk-based deduplication”. In: 11th

{USENIX} Conference on File and Storage Technologies ({FAST} 13). 2013, pp. 183–

197.

[49] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezis,

and Peter Camble. “Sparse Indexing: Large Scale, Inline Deduplication Using

Sampling and Locality”. In: 7th USENIX Conference on File and Storage Technolo-

gies (FAST 09). Vol. 9. 2009, pp. 111–123.

[50] Lifang Lin, Yuhui Deng, Yi Zhou, and Yifeng Zhu. “InDe: An inline data dedu-

plication approach via adaptive detection of valid container utilization”. In:

ACM Trans. Storage (Nov. 2022).

[51] Chuanyi Liu, Yibo Xue, Dapeng Ju, and Dongsheng Wang. “A Novel Optimiza-

tion Method to Improve De-duplication Storage System Performance”. In: 2009

15th International Conference on Parallel and Distributed Systems. IEEE, Dec. 2009,

pp. 228–235.

[52] Saiqin Long, Zhetao Li, Zihao Liu, Qingyong Deng, Sangyoon Oh, and Nobuyoshi

Komuro. “A similarity clustering-based deduplication strategy in cloud storage

systems”. In: 2020 IEEE 26th International Conference on Parallel and Distributed

Systems (ICPADS). Dec. 2020, pp. 35–43.

[53] Guanlin Lu, Yu Jin, and David H C Du. “Frequency Based Chunking for Data

De-Duplication”. In: 2010 IEEE International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems. IEEE, Aug. 2010.

BIBLIOGRAPHY 224

[54] Shengmei Luo, Guangyan Zhang, Chengwen Wu, Samee U Khan, and Keqin

Li. “Boafft: Distributed Deduplication for Big Data Storage in the Cloud”. In:

IEEE Transactions on Cloud Computing 8.4 (2020), pp. 1199–1211.

[55] Udi Manber. “Finding Similar Files in a Large File System”. In: Proceedings of

the Winter 1994 USENIX Technical Conference. Vol. 94. 1994, pp. 1–10.

[56] Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttamchan-

dani. “Demystifying Data Deduplication”. In: Proceedings of the ACM/IFIP/USENIX

Middleware ’08 Conference Companion. Companion ’08. New York, NY, USA: ACM,

2008, pp. 12–17.

[57] Dirk Meister, Jürgen Kaiser, and André Brinkmann. “Block Locality Caching for

Data Deduplication”. In: Proceedings of the 6th International Systems and Storage

Conference. SYSTOR ’13. New York, NY, USA: ACM, 2013, 15:1–15:12.

[58] Dutch T Meyer and William J Bolosky. “A study of practical deduplication”. In:

ACM Transactions on Storage 7.4 (2012), pp. 1–20.

[59] J Min, D Yoon, and Y Won. “Efficient Deduplication Techniques for Modern

Backup Operation”. In: IEEE transactions on computers. Institute of Electrical and

Electronics Engineers 60.6 (June 2011), pp. 824–840.

[60] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,

and Ion Stoica. “Ray: A Distributed Framework for Emerging AI Applications”.

In: arXiv [cs.DC] (Dec. 2017).

[61] Athicha Muthitacharoen, Benjie Chen, and David Mazières. “A low-bandwidth

network file system”. In: ACM SIGOPS Operating Systems Review 35.5 (2001),

pp. 174–187.

BIBLIOGRAPHY 225

[62] Aviv Nachman, Sarai Sheinvald, Ariel Kolikant, and Gala Yadgar. “GoSeed:

Optimal Seeding Plan for Deduplicated Storage”. In: ACM Trans. Storage 17.3

(Aug. 2021), pp. 1–28.

[63] Sabuzima Nayak and Ripon Patgiri. “Dr. Hadoop: In search of a needle in a

haystack”. In: Distributed Computing and Internet Technology. Lecture notes in

computer science. Cham: Springer International Publishing, 2019, pp. 99–107.

[64] Fan Ni, Xing Lin, and Song Jiang. “SS-CDC: a two-stage parallel content-defined

chunking for deduplicating backup storage”. In: Proceedings of the 12th ACM In-

ternational Conference on Systems and Storage. 2019, pp. 86–96.

[65] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. “The log-

structured merge-tree (LSM-tree)”. In: Acta Informatica 33.4 (June 1996), pp. 351–

385.

[66] Overview of AWS Data Transfer Costs. en. https://aws.amazon.com/blogs/

architecture/overview-of-data-transfer-costs-for-common-architectures/.

Accessed: 2022-4-12.

[67] P Puzio, R Molva, M Önen, and S Loureiro. “ClouDedup: Secure Deduplication

with Encrypted Data for Cloud Storage”. In: 2013 IEEE 5th International Confer-

ence on Cloud Computing Technology and Science. Vol. 1. Dec. 2013, pp. 363–370.

[68] Sean Quinlan and Sean Dorward. “Venti: A new approach to archival data stor-

age”. In: Conference on File and Storage Technologies (FAST 02). usenix.org, 2002.

[69] M O Rabin. “Fingerprinting by random polynomials”. In: Technical report: NAV-

TRADEVCEN. Naval Training Device Center (1981).

[70] Edward Richardson. “Enhancing Data Recovery in Deduplication Backup Sys-

tems: A Novel Rewriting Algorithm to Minimize Fragmentation Effects”. In:

Journal of Computer Science and Software Applications 4.2 (Mar. 2024), pp. 15–19.

https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/

BIBLIOGRAPHY 226

[71] Bartłomiej Romański, Łukasz Heldt, Wojciech Kilian, Krzysztof Lichota, and

Cezary Dubnicki. “Anchor-driven subchunk deduplication”. In: Proceedings of

the 4th Annual International Conference on Systems and Storage. SYSTOR ’11 Arti-

cle 16. New York, NY, USA: Association for Computing Machinery, May 2011,

pp. 1–13.

[72] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean, Jin Li, and Sudipta

Sengupta. “Primary data deduplication—large scale study and system design”.

In: Presented as part of the 2012 USENIX Annual Technical Conference (USENIX

ATC 12). 2012, pp. 285–296.

[73] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. “A Survey of Secure Data

Deduplication Schemes for Cloud Storage Systems”. In: ACM Comput. Surv.

49.4 (Jan. 2017), 74:1–74:38.

[74] Alex Spiridonov, Sahil Thaker, and Sourabh Patwardhan. Sharing and bandwidth

consumption in the low bandwidth file system. Tech. rep. Tech. rep., Department of

Computer Science, University of Texas at Austin, 2005.

[75] Jan Stanek, Alessandro Sorniotti, Elli Androulaki, and Lukas Kencl. “A Secure

Data Deduplication Scheme for Cloud Storage”. In: Financial Cryptography and

Data Security. Springer Berlin Heidelberg, 2014, pp. 99–118.

[76] Mark W Storer, Kevin Greenan, Darrell D E Long, and Ethan L Miller. “Secure

data deduplication”. In: Proceedings of the 4th ACM international workshop on Stor-

age security and survivability. StorageSS ’08. New York, NY, USA: Association for

Computing Machinery, Oct. 2008, pp. 1–10.

[77] Zhen “jason” Sun, Geoff Kuenning, Sonam Mandal, Philip Shilane, Vasily Tarasov,

Nong Xiao, and Erez Zadok. “Cluster and Single-Node Analysis of Long-Term

Deduplication Patterns”. In: ACM Trans. Storage 14.2 (May 2018), pp. 1–27.

BIBLIOGRAPHY 227

[78] Xingpeng Tang and Jingwei Li. “Improving online restore performance of backup

storage via historical file access pattern”. en. In: Communications in Computer and

Information Science. Communications in computer and information science. Sin-

gapore: Springer Nature Singapore, 2022, pp. 365–376.

[79] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuenning,

and Erez Zadok. “FSL-Dedup Traces (SNIA IOTTA Trace Set 5228)”. In: SNIA

IOTTA Trace Repository. Ed. by Geoff Kuenning. Storage Networking Industry

Association, May 2016.

[80] D Teodosiu, Nikolaj S Bjørner, Y Gurevich, M Manasse, and Joe Porkka. “Op-

timizing file replication over limited-bandwidth networks using remote differ-

ential compression”. In: Microsoft Corp (Nov. 2006).

[81] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone,

Mark Chamness, and Windsor Hsu. “Characteristics of backup workloads in

production systems”. In: FAST. Vol. 12. 2012, pp. 4–4.

[82] Longxiang Wang, Xiaoshe Dong, Xingjun Zhang, Fuliang Guo, Yinfeng Wang,

and Weifeng Gong. “A Logistic Based Mathematical Model to Optimize Dupli-

cate Elimination Ratio in Content Defined Chunking Based Big Data Storage

System”. In: Symmetry 8.7 (July 2016), p. 69.

[83] Zooko Wilcox-O’Hearn and Brian Warner. “Tahoe: the least-authority filesys-

tem”. In: Proceedings of the 4th ACM international workshop on Storage security and

survivability. StorageSS ’08. New York, NY, USA: Association for Computing

Machinery, Oct. 2008, pp. 21–26.

[84] J W J Williams. “Algorithm 232”. In: Communications of the ACM (1964).

[85] Tony Wong, Smriti Thakkar, Kao-Feng Hsieh, Zachary Tom, Hetaben Saraiya,

and Philip Shilane. “Dataset similarity detection for global deduplication in the

BIBLIOGRAPHY 228

DD file system”. In: 2023 IEEE 39th International Conference on Data Engineering

(ICDE). IEEE, Apr. 2023, pp. 3322–3335.

[86] Shaoqiang Wu, Chunfu Jia, and Ding Wang. “UP-MLE: Efficient and practi-

cal updatable block-level message-locked encryption scheme based on update

properties”. In: ICT Systems Security and Privacy Protection. IFIP advances in in-

formation and communication technology. Cham: Springer International Pub-

lishing, 2022, pp. 251–269.

[87] Xiaotong Wu, Jiaquan Gao, Genlin Ji, Taotao Wu, Yuan Tian, and Najla Al-

Nabhan. “A feature-based intelligent deduplication compression system with

extreme resemblance detection”. In: Connection science (Dec. 2020), pp. 1–29.

[88] W Xia, H Jiang, D Feng, F Douglis, P Shilane, Y Hua, M Fu, Y Zhang, and Y

Zhou. “A Comprehensive Study of the Past, Present, and Future of Data Dedu-

plication”. In: Proceedings of the IEEE 104.9 (Sept. 2016), pp. 1681–1710.

[89] W Xia, H Jiang, D Feng, and Y Hua. “Similarity and Locality Based Indexing

for High Performance Data Deduplication”. In: IEEE transactions on computers.

Institute of Electrical and Electronics Engineers 64.4 (Apr. 2015), pp. 1162–1176.

[90] W Xia, H Jiang, D Feng, and L Tian. “DARE: A Deduplication-Aware Resem-

blance Detection and Elimination Scheme for Data Reduction with Low Over-

heads”. In: IEEE transactions on computers. Institute of Electrical and Electronics

Engineers 65.6 (June 2016), pp. 1692–1705.

[91] Wen Xia, Dan Feng, Hong Jiang, Yucheng Zhang, Victor Chang, and Xiangyu

Zou. “Accelerating content-defined-chunking based data deduplication by ex-

ploiting parallelism”. In: Future generations computer systems: FGCS 98 (Sept.

2019), pp. 406–418.

BIBLIOGRAPHY 229

[92] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. “SiLo: A Similarity-Locality based

Near-Exact Deduplication Scheme with Low RAM Overhead and High Through-

put”. In: USENIX Annual Technical Conference. 2011, pp. 26–30.

[93] Wen Xia, Hong Jiang, Dan Feng, and Lei Tian. “Accelerating data deduplication

by exploiting pipelining and parallelism with multicore or manycore proces-

sors”. In: Proc. 10th USENIX Conf. File Storage Technol. 2012, pp. 1–2.

[94] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Zhongtao Wang. “P-

dedupe: Exploiting parallelism in data deduplication system”. In: 2012 IEEE

Seventh International Conference on Networking, Architecture, and Storage. IEEE,

June 2012.

[95] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou. “Ddelta: A

deduplication-inspired fast delta compression approach”. In: Performance Eval-

uation 79 (Sept. 2014), pp. 258–272.

[96] Zhen Xu and Wenbo Zhang. “QuickCDC: A Quick Content Defined Chunking

Algorithm Based on Jumping and Dynamically Adjusting Mask Bits”. In: 2021

IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud

Computing, Sustainable Computing Communications, Social Computing Networking

(ISPA/BDCloud/SocialCom/SustainCom). Sept. 2021, pp. 288–299.

[97] Zuoru Yang, Jingwei Li, and Patrick P C Lee. “Secure and Lightweight Dedupli-

cated Storage via Shielded Deduplication-Before-Encryption”. In: 2022 USENIX

Annual Technical Conference (USENIX ATC 22). 2022, pp. 37–52.

[98] Zuoru Yang, Jingwei Li, Yanjing Ren, and Patrick P C Lee. “Tunable Encrypted

Deduplication with Attack-resilient Key Management”. In: ACM Trans. Storage

18.4 (Nov. 2022), pp. 1–38.

BIBLIOGRAPHY 230

[99] Wenbin Yao, Mengyao Hao, Yingying Hou, and Xiaoyong Li. “FASR: An effi-

cient feature-aware deduplication method in distributed storage systems”. In:

IEEE Access: Practical Innovations, Open Solutions 10 (2022), pp. 15311–15321.

[100] Chuanshuai Yu, Chengwei Zhang, Yiping Mao, and Fulu Li. “Leap-based Con-

tent Defined Chunking — Theory and Implementation”. In: 2015 31st Sympo-

sium on Mass Storage Systems and Technologies (MSST). IEEE, May 2015, pp. 1–

12.

[101] C Zhang, D Qi, W Li, and J Guo. “Function of Content Defined Chunking Al-

gorithms in Incremental Synchronization”. In: IEEE Access 8 (2020), pp. 5316–

5330.

[102] Changjian Zhang, Deyu Qi, Wenlin Li, Wenhao Huang, and Xinyang Wang.

“SimpleSync: A parallel delta synchronization method based on Flink”. en. In:

Concurrency and Computation: Practice & Experience 33.20 (Oct. 2021).

[103] Datong Zhang, Yuhui Deng, Yi Zhou, Yifeng Zhu, and Xiao Qin. “Improving

the Performance of Deduplication-Based Backup Systems via Container Uti-

lization Based Hot Fingerprint Entry Distilling”. In: ACM Trans. Storage 17.4

(Oct. 2021), pp. 1–23.

[104] P Zhang, P Huang, X He, H Wang, L Yan, and K Zhou. “RMD: A Resemblance

and Mergence Based Approach for High Performance Deduplication”. In: 2016

45th International Conference on Parallel Processing (ICPP). Aug. 2016, pp. 536–

541.

[105] Y Zhang, H Jiang, D Feng, W Xia, M Fu, F Huang, and Y Zhou. “AE: An Asym-

metric Extremum content defined chunking algorithm for fast and bandwidth-

efficient data deduplication”. In: 2015 IEEE Conference on Computer Communica-

tions (INFOCOM). Apr. 2015, pp. 1337–1345.

BIBLIOGRAPHY 231

[106] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang, Yu Hua, and Qiang Wang.

“Finesse: fine-grained feature locality based fast resemblance detection for post-

deduplication delta compression”. In: 17th {USENIX} Conference on File and

Storage Technologies ({FAST} 19). 2019, pp. 121–128.

[107] Zhen Sun, N Xiao, F Liu, and Y Fu. “DS-Dedupe: A scalable, low network over-

head data routing algorithm for inline cluster deduplication system”. In: 2014

International Conference on Computing, Networking and Communications (ICNC).

Feb. 2014, pp. 895–899.

[108] B Zhou and J Wen. “Hysteresis Re-chunking Based Metadata Harnessing Dedu-

plication of Disk Images”. In: 2013 42nd International Conference on Parallel Pro-

cessing. Oct. 2013, pp. 389–398.

[109] Benjamin Zhu, Kai Li, and R Hugo Patterson. “Avoiding the Disk Bottleneck in

the Data Domain Deduplication File System”. In: 6th USENIX Conference on File

and Storage Technologies (FAST 08). Vol. 8. 2008, pp. 1–14.

[110] Xiangyu Zou, Cai Deng, Wen Xia, Philip Shilane, Haoliang Tan, Haijun Zhang,

and Xuan Wang. “Odess: Speeding up Resemblance Detection for Redundancy

Elimination by Fast Content-Defined Sampling”. In: 2021 IEEE 37th International

Conference on Data Engineering (ICDE). ieeexplore.ieee.org, Apr. 2021, pp. 480–

491.

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem settings
	Objectives
	Contributions
	Publications
	Thesis Structure and Methodology

	Related Work
	Data Deduplication
	Chunking and Fingerprinting
	Deduplication Location

	Encrypted Deduplication
	Challenges in Encrypted Deduplication

	Current Challenges and Limitations
	The Disk Bottleneck
	Resource Contention
	Metadata Storage

	Representative Designs in Encrypted Deduplication
	Reducing Index Size with Segments
	Fingerdiff
	Bimodal
	Algorithm Terminology and Notations

	Metadedup
	System Model
	Building Encrypted Chunks
	Building Encrypted Metachunks
	File Recipes and Key Recipes
	Backup and Metadata Deduplication
	Restore Operations
	Security Analysis
	Limitations
	Evaluation
	Metadedup Datasets
	Metadedup Summary

	Sorted Deduplication
	Background
	Design
	Limitations
	Evaluation Results

	Resemblance Mergence Deduplication (RMD)
	Security Analysis
	Limitations

	Research Gap and Motivation
	Summary

	SCAIL: Segment Chunks And Index Locality
	Introduction
	System Design
	SCAIL Algorithm
	Stage 1. Client: Chunk Processing and Query Construction.
	Stage 2. Server: Metachunk Fingerprint Lookup.
	Stage 3. Client: Chunk and Metadata Assembly and Upload.
	Stage 4. Server: Chunk Deduplication and Index Updates.
	SCAIL Restore

	The Roles of Metachunks and Metachunk Fingerprints
	Server-side Chunk Deduplication
	Implementing Ownership
	Containers
	Redundant Data Uploads
	Threat Model
	Internal Attackers
	External Attackers

	Security Analysis
	Data Confidentiality
	Internal Attack Scenarios
	External Attack Scenarios
	Summary

	Limitations
	Scalability Constraints with Very Large Datasets
	Performance Compared to RAM Index-Based Systems
	Impact of Limited Client Numbers on Resource Contention
	Challenges with Low-change Datasets
	Read and Write Amplification Issues
	Limitations Due to Client-Side Deduplication Restrictions
	Computational Overhead from Encryption
	Dependence on Batch Uploads
	Single Batch Server-side Deduplication Limitation

	Evaluation
	Trace-driven Simulation

	Evaluation Results
	Summary

	P-SCAIL: Parallel SCAIL
	Introduction
	Parallel Client-side Deduplication
	Batched, Parallel Server-side Deduplication
	Improved Caching
	Security Analysis
	Limitations
	Processor Count Dependencies
	Additional Storage For Cache-Backing Files

	Evaluation
	Deduplication Throughput
	Memory Use and Upload Volume
	Upload Overhead

	Summary

	PR-SCAIL: Parallel Resemblance SCAIL
	Introduction
	P-SCAIL Overview
	Redundant Segment Data Generation
	Reducing Redundant Segment Data
	Design of PR-SCAIL
	Modifying P-SCAIL for PR-SCAIL
	Stage 1: Building the Lookup Query
	Stage 2: Lookup for Deduplication
	Stage 3: Assemble Missing Metachunks and Chunks
	Stage 4: Cross-User Deduplication

	Comparison of PR-SCAIL with the RMD design
	Security Analysis
	Limitations
	Evaluation
	Illustrating The Efficiency of Segment-based Resemblance Deduplication
	Reducing RSD Volume for various segment sizes
	Total Upload Volume
	Memory Requirements
	PR-SCAIL Throughput Analysis

	Summary

	Detailed Comparison
	Introduction
	Algorithm and Dataset Recap
	Memory Requirements
	FSL Dataset Memory Requirements
	MS Dataset Memory Requirements
	Summary of Memory Requirements Findings

	Server Storage Requirements
	FSL Server Storage Requirements
	MS Server Storage Requirements
	Summary of Storage Findings

	Upload Volume
	FSL Upload Volume
	MS Upload Volume
	Insights from Upload Volume Analysis

	Single-processor Throughput
	FSL Single-processor Throughput
	MS Single-processor Throughput
	Summary of Single Processor Throughput Analysis

	Multiprocessor Throughput
	FSL Multiprocessor Throughput
	MS Multiprocessor Throughput
	Summary of Multiprocessor Analysis

	Comparative Analysis of Server Component Costs
	FSL Component Costs
	MS Component Costs
	Summary of Cost Findings

	Comparative Findings
	Efficiency and Performance Trade-offs
	Suitability for Different Workloads
	Final Recommendations

	Conclusion
	Revisiting Our Objectives
	Implications and Significance
	Limitations
	Future Work: Adaptive Client-side Deduplication
	Future Work: Adaptive Server-side Deduplicaton
	Conclusion

	Bibliography

