
BIROn - Birkbeck Institutional Research Online

Alsaggaf, Ibrahim and Freitas, A.A. and Wan, Cen (2024) Predicting the pro-
longevity or anti-longevity effect of model organism genes with enhanced
Gaussian noise augmentation-based contrastive learning on protein-protein
interaction networks. NAR Genomics and Bioinformatics 6 (4), ISSN 2631-
9268.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/54736/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/54736/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Journal Title Here, 2024, pp. 1–12

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

Predicting the pro-longevity or anti-longevity effect of
model organism genes with enhanced Gaussian noise
augmentation-based contrastive learning on
protein-protein interaction networks

Ibrahim Alsaggaf,1 Alex A. Freitas2 and Cen Wan1,∗

1School of Computing and Mathematical Sciences, Birkbeck, University of London, WC1E 7HX, London, United Kingdom and 2School of

Computing, University of Kent, CT2 7FS, Kent, United Kingdom
∗Corresponding author. cen.wan@bbk.ac.uk

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Ageing is a highly complex and important biological process that plays major roles in many diseases. Therefore, it is
essential to better understand the molecular mechanisms of ageing-related genes. In this work, we proposed a novel
enhanced Gaussian noise augmentation-based contrastive learning (EGsCL) framework to predict the pro-longevity or
anti-longevity effect of four model organisms’ ageing-related genes by exploiting protein-protein interaction networks.
The experimental results suggest that EGsCL successfully outperformed the conventional Gaussian noise augmentation-
based contrastive learning methods and obtained state-of-the-art performance on three model organisms’ predictive
tasks when merely relying on protein-protein interaction network data. In addition, we use EGsCL to predict 10 novel
pro-/anti-longevity mouse genes, and discuss the support for these predictions in the literature.
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Introduction

Ageing is a highly complex biological process that involves

many genes and biological pathways [50, 8]; and despite

significant progress in ageing-biology research, the precise

molecular mechanisms of ageing are still not well understood

[17, 8, 45]. In addition, ageing research is particularly important

because ageing is a major driving factor for many diseases

[12, 28, 31]; and so a better understanding of the effects

of ageing-related genes could lead to new therapies that

would potentially extend not only the longevity, but also the

healthspan (period of health life) of individuals [28, 36, 37].

With the help of Artificial Intelligence (more specifically,

machine learning), research has been carried out to predict

new ageing-related genes or biomarkers, and to identify ageing-

related biological pathways or processes [13, 65]. In this work,

we focus on predicting the pro-longevity or anti-longevity effect

of genes from four model organisms in ageing research (mouse,

worm, fly and yeast). We cast this problem as a classification

task from the perspective of supervised machine learning, where

each instance (example) represents an ageing-related gene, each

instance’s class label indicates whether that gene has a pro-

longevity or anti-longevity effect on the lifespan of an organism

[59, 57] – based on such class labels as recorded in the GenAge

database [9]. The predictive features are PPI network-based

features.

Protein-protein interaction (PPI) networks are a type of

biologically meaningful and relevant features that have been

widely used in multiple bioinformatics tasks like protein

function prediction [55, 61, 58] and disease-gene association

prediction [35, 33, 19]. PPI networks have also been used for

ageing research. Freitas et al. [16] first exploited PPI networks

as a type of features to classify DNA repair genes into ageing-

related or non-ageing-related genes. Fang et al. [14] classified

ageing-related genes into DNA repair or non-DNA repair-

related genes using PPI networks-based features. This type of

features were also used for predicting ageing-related genes for

flies [51], mice [15] and humans [27]. More recently, Magdaleno

et al. [30] exploited PPI network features to predict ageing-

related genes’ dietary restriction associations, and Ribeiro et

al. [46] used PPI network features to predict lifespan-extending

chemical compounds for worms.

In this work, we propose a new contrastive learning-based

framework to cope with PPI network features by developing two

novel contrastive learning algorithms. In general, contrastive

learning aims to learn a type of discriminative distribution

where similar instances are pulled closer whilst different

instances are pushed away. The conventional self-supervised

contrastive learning methods like SimCLR [4] first create two
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Fig. 1. The flowchart for the proposed enhanced Gaussian noise augmentation-based contrastive learning (EGsCL) framework based on protein-protein

interaction networks.

views for each instance by using different data augmentation

strategies. For each target instance, two views that are

generated from that target instance are treated as positive

views, and all other views that are not generated from that

target instance are treated as negative views. Then SimCLR

optimises the network parameters to reduce the distance

between two positive views, whilst enlarging the difference

between positive views and negative views. The self-supervised

learning paradigm was further extended to the supervised

contrastive learning paradigm [23], where the definition of

positive and negative views relies on the original labels of

instances. For each target instance, views are considered

positive if they are generated from those instances bearing

the same class label as that target instance. Vice versa,

the negative views are generated from the instances bearing

different labels to that target instance. This supervised

contrastive learning paradigm successfully demonstrated better

predictive performance than the self-supervised contrastive

learning paradigm.

Data augmentation plays a crucial role on contrastive

learning and is usually considered domain-specific. For

example, in the computer vision area, the mainstream

augmentation methods [4, 5, 23, 22, 47] rely on spatial and

colour transformations (e.g. random cropping and Gaussian

blur) to create different views of original images. In the

natural language processing area, text paraphrasing and word

replacement [42] are usually used as augmentation methods.

Several works introduced different data augmentation strategies

for bioinformatics research. For example, Ciortan and Defrance

[6] and Wan et al. [60] used a type of random masking strategy

to deal with single-cell RNA-seq expression profiles. Alsaggaf

et al. [1] and Xu et al. [62] adopted a noise-addition approach

by randomly adding Gaussian noise vectors to gene expression

profiles to create different views. In this work, we propose a new

Gaussian noise-based data augmentation strategy that adopts a

mean-shifting approach to enlarge the difference between views

to improve the contrastive learning process.

The remainder of this paper is organized as follows. The

materials and methods section introduces the newly proposed

enhanced Gaussian noise augmentation-based contrastive

learning algorithms, followed by the results section and the

discussion section, where a further analysis of the proposed

algorithms was conducted. Finally, the conclusion section

summaries this paper’s major findings and mentions some

future research directions.

Materials and methods

Enhanced Gaussian noise augmentation-based
contrastive learning.
In general, the proposed enhanced Gaussian noise augmentation-

based contrastive learning (EGsCL) framework learns a type of

discriminative feature representations based on protein-protein

interaction (PPI) networks. As shown in Figure 1, given a

protein-protein interaction network, EGsCL first extracts a

type of PPI network embedding features using the well-known

node2vec [18] method. Then the PPI network embedding

features were used to create augmented instances (a.k.a. views)

by using different Gaussian noises. For one d-dimensional PPI

network embedding instance x in a given dataset, EGsCL

randomly draws two Gaussian noises from two different

Gaussian distributions, i.e. N (µ+β, σ) and N (µ−β, σ), where

µ and σ denote the mean and standard deviation of the dataset,

whilst β is a shifting hyperparameter that is used to manipulate

the differences between those two Gaussian distributions. Those

two Gaussian noises are then added with the values of x,

leading to two different augmented PPI network embedding

instances. After creating a pair of augmented instances for all

individual PPI network embedding instances in the dataset, a

new sample set that includes all those augmented instances is

used as inputs for the contrastive learning networks consisting

of an encoder and a projector. The contrastive learning

networks optimise the parameters by adopting the conventional

supervised or self-supervised contrastive learning strategies, i.e.

minimising the dissimilarity between each augmented instance

and its corresponding positive augmented instance(s), whilst

maximising the dissimilarity to its corresponding negative

augmented instances. To cope with the classification tasks in

this work, we used the EGsCL-learned feature representations

to train support vector machines to predict the pro-longevity

or anti-longevity effect of different model organisms’ genes. The

notations used in this paper are summarised in Table 1.
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Table 1. The list of notations used in this paper.

Notation Description

x A d-dimensional PPI network embedding instance.

N (µ, σ) A Gaussian distribution, where µ and σ denote its

mean and standard deviation.

β A hyperparameter that is used to manipulate a

Gaussian distribution by shifting its mean.

X A training dataset.

Y A set of class labels.

B A set of m-sized training batches.

E A contrastive learning encoder.

P A contrastive learning projection head.

τ A temperature hyper-parameter.

b A m-sized training batch.

S A set to store two different augmentations of each

original instance.

z A d-dimensional Gaussian noise.

x̃ An augmentation (i.e. view) of the original

instance x.

LSL
i The supervised contrastive loss function value for

the ith instance.

H +
i A set of projections of positive augmented

instances w.r.t. x̃i.

Hi A set of projections of all positive and negative

augmented instances w.r.t. x̃i.

|H +
i | The number of positive augmented instances w.r.t.

x̃i.

F (·) The cosine similarity.

V (x̃) A variable that maps an augmented instance x̃ to

its original instance x.

LSSL
i The self-supervised contrastive loss function value

for the ith instance.

Algorithms 1 and S1 (in supplementary file 1) show two

different pseudocodes of the proposed enhanced Gaussian noise

augmentation-based contrastive learning (EGsCL) algorithms

working with supervised and self-supervised contrastive

learning loss functions, respectively. In Algorithm 1, supervised

enhanced Gaussian noise augmentation-based contrastive

learning (Sup-EGsCL) takes a training dataset X and a

corresponding class label set Y as inputs and initialised five

variables, i.e. a set of m-sized batches B, an untrained

encoder E, an untrained projection head P , a temperature

hyperparameter τ and a mean-shift hyperparameter β. From

lines 1 to 31, Sup-EGsCL processes each batch of training

instances b in turns. It creates an empty variable Lb to store

the loss function value for b and an empty set S to store the

augmented instances (a.k.a. views). For each training instance

xi in b (lines 4 - 11), two d-dimensional Gaussian noises, i.e.

za and zb, are randomly drawn from two different Gaussian

distributions, i.e. N (µ + β, σ) and N (µ − β, σ), where µ and σ

denote the mean and standard deviation of the training dataset

X . β is a hyperparameter that is used to adjust the differences

between those two Gaussian distributions. Then za and zb are

added to xi to create two different augmented instances, i.e. xia

and xib (lines 7 - 8). Those two augmented instances are added

to the set S (lines 9 - 10). After obtaining the complete set S that

consists of all the augmented instances for the entire training

dataset X , from lines 12 - 28, Sup-EGsCL processes each

augmented instance x̃i in S to compute the loss function value.

It creates three empty variables, i.e. a variable LSL
i for storing

the supervised loss function value for x̃i, a set H +
i for storing

the projections of positive augmented instances with respect

Algorithm 1: Supervised enhanced Gaussian noise augmentation-based
contrastive learning (Sup-EGsCL).

Input: a training dataset X ;

a class labels set Y for all individual instances x in X ;

initialise a set of m-sized batches B;

initialise an untrained contrastive learning encoder E ;

initialise an untrained contrastive learning projection head P ;

initialise a temperature hyperparameter ⌧ ;

initialise a mean-shift hyperparameter �.

Output: a trained contrastive learning encoder E⇤.
1 foreach b 2 B do

2 initialise an empty variable Lb for the loss function value of batch b;

3 initialise an empty set S for the augmented instances of X ;

4 foreach xi 2 b do

5 za ⇠ N (µ + �,�);

6 zb ⇠ N (µ� �,�);

7 xia  xi + za;

8 xib  xi + zb;

9 S  S [ xia;

10 S  S [ xib;

11 end

12 foreach x̃i 2 S do

13 initialise an empty variable LSL
i for the loss function value for x̃i;

14 initialise an empty positive augmented instances projection set H +
i for x̃i;

15 initialise an empty projection set Hi for all augmented instances except x̃i;

16 foreach x̃j 2 S do

17 if x̃i 6= x̃j then

18 hj  P (E(x̃j));

19 Hi  Hi [ hj ;

20 if Y (x̃i) == Y (x̃j) then

21 H +
i  H +

i [ hj ;

22 end

23 end

24 end

25 hi  P (E(x̃i));

26 LSL
i  LossFunction(hi, H +

i , Hi, ⌧);

27 Lb Lb + LSL
i ;

28 end

29 Lb  Lb/2m;

30 optimize E and P by using Lb;

31 end

32 return E⇤

19

to x̃i, and a set Hi for storing the projections of all positive

and negative augmented instances with respective to x̃i. From

lines 16 - 24, EGsCL defines the positive augmented instances

according to the pre-defined class labels. Each augmented

instance x̃j in S that is different from the target instance x̃i

is added to Hi after getting its corresponding projection using

the encoder E and the projector P (lines 17 - 19). Only the

projections of those augmented instances bearing the same

class label as x̃i will be considered as positive augmented

instances with respect to x̃i and their projections will be added

to H +
i (lines 20 - 22). Vice versa, the negative augmented

instances with respect to x̃i are defined as those augmented

instances bearing different class labels to x̃i. After obtained the

completed sets of H +
i and Hi, Sup-EGsCL creates the projection

of the target instance x̃i (line 25). Then Sup-EGsCL computes

the loss function value LSL
i that will then be added to Lb (lines

26 - 27). After processing all augmented instances in S , the loss

function value Lb will be normalised by 2m denoting the total

number of augmented instances in S , and both the encoder and

the projector will be optimised (lines 29 - 30). The pseudocode

will output a trained encoder E∗ after processing all batches

(line 32). Equation 1 defines the supervised contrastive loss

function for the target instance x̃i, where |H +
i | denotes the

number of positive augmented instances w.r.t. x̃i, j denotes

the indices of the positive augmented instances, and k denotes

the indices of all augmented instances except i. F (·) denotes the
cosine similarity and τ is a temperature hyper-parameter that

controls the strength of penalty on positives and negatives.
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LSL
i =

−1

|H +
i |

∑
hj∈H +

i

log
eF (hi,hj)/τ∑

hk∈Hi
eF (hi,hk)/τ

(1)

Algorithm S1 shows the pseudocode of the self-supervised

enhanced Gaussian noise augmentation-based contrastive

learning (Self-EGsCL) method, which shares the same

initialisation and data augmentation process with the Sup-

EGsCL method. The main difference between Algorithms 1

and S1 is the positive augmented instance selection strategy.

As shown in lines 9 and 10, Self-EGsCL stores the original

instance information for each augmented instance. For example,

the value of variable V (xia) is assigned as xi, if xia is the

augmented instance of xi. In lines 22 - 24, for each augmented

instance x̃i, Self-EGsCL treated another augmented instance

x̃j as a positive augmented instance, if both x̃i and x̃j are

generated by using the same original instance (i.e. V (x̃i) ==

V (x̃j)). All other augmented instances in S are treated as

negative augmented instances. Self-supervised EGsCL uses a

similar loss function (Equation S1 in supplementary file 1)

as Sup-EGsCL. Because there is only one positive augmented

sample w.r.t. one single target augmented instance (i.e. |H +
i | =

1), Self-EGsCL does not normalise the loss function value LSSL
i .

Computational experiments
We evaluated the predictive performance of EGsCL using

five different β values, i.e. 0.1, 0.2, 0.3, 0.4 and 0.5.

We also compared EGsCL with the conventional Gaussian

noise augmentation-based contrastive learning (GsCL) method,

which also randomly draws two different Gaussian noises to

create a pair of augmented instances for x, but from the

same Gaussian distribution, i.e. N (µ, σ). Therefore, GsCL is

equivalent to the case when EGsCL’s β value equals 0. We

also compared with another GsCL variant with N (0, 1), which

was used in [1] for cell type identification tasks. We used

the well-known multi-layer perceptron (MLP) to create the

encoder and the projection head of an EGsCL network. The

encoder consists of three hidden layers and one output layer

(i.e. the representation layer). The projection head consists of

one hidden layer and one output layer. The ReLU activation

function was used in both MLPs. We used Adam optimiser

with a learning rate of 10−4 and a weight decay of 10−6. The

number of maximum training epochs was set to 1,000. We set

the value of τ to 0.1 for the supervised contrastive loss and

0.07 for the self-supervised contrastive loss. Due to the small

number of instances, we set the batch size as the same as the

number of training instances. The proposed EGsCL methods

were implemented by PyTorch [38] and Scikit-learn [40].

We created 12 datasets in total using the ageing-related

genes for four model organisms, i.e. mouse, worm, fly and

yeast, as reported in the GenAge database [53]. We generated

three types of features based on the protein-protein interaction

networks deposited in the STRING database (version 12.0)

[52]. The first type of features is network embeddings learned

by the well-known node2vec method [18] leading to a 128-

dimensional vector for each individual protein included in the

most informative combined score STRING PPI networks. The

second type of features is binary PPI features, where the

value of 1 denotes protein a and protein b have an interaction

and the value of 0 means those two proteins do not have an

interaction. The third type of features is the combination of

both the network embedding and the binary PPI features. The

characteristics of all 12 datasets are listed in Table 2. The

numbers of instances for four different model organisms range

Table 2. Main characteristics of the created datasets.

Model Organisms Mouse Worm Fly Yeast

# Instances

Total 124 718 186 312

Pro-longevity 80 239 117 34

Anti-longevity 44 479 69 278

# Features

Embedding 128 128 128 128

Binary 17438 16010 11535 5957

Combined 17566 16138 11663 6085

between 124 and 718. The dimensionalities of binary features

range between 5,957 and 17,438 and the combined features

range between 6,085 and 17,566.

Each generated dataset was split into two subsets, i.e.

80% of the instances were used for conducting a 10-fold

cross-validation, and the remaining 20% of the instances

were used to create a validation set for conducting model

selection during the contrastive learning process. For each

fold of the cross validation, after every 5 training epochs, we

froze the encoder E and used it to transform the training

folds, the validation set and the testing fold into the EGsCL

feature representations. An SVM classifier was trained on the

transformed training folds and then predicted the labels of

the transformed validation set. The best encoder was selected

according to the highest validation set predictive accuracy. The

corresponding SVM classifier was used to predict the predictive

accuracy of the transformed testing fold. We measured the

predictive performance using three well-known metrics, i.e.

Matthews correlation coefficient (MCC), F1 score and average

precision (AP) score, which were also used as model selection

criteria when reporting corresponding metrics’ values.

Results

EGsCL successfully improved the predictive
performance of GsCL when using different types of
PPI features to predict the pro-longevity or
anti-longevity effect of four model organisms’ genes.
We first conducted pairwise comparisons between EGsCL and

GsCL using supervised and self-supervised settings. In general,

both Sup-EGsCL and Self-EGsCL outperformed Sup-GsCL and

Self-GsCL, respectively. As shown in Table 3, when using the

network embedding features to predict the longevity effects of

mouse’s genes, Sup-EGsCL with all different β values obtained

higher MCC values and AP scores than Sup-GsCL with both

N (0, 1) and N (µ, σ), denoting by the double up arrows. The

former with β values of 0.3 and 0.4 also obtained higher F1

scores than the latter. When using the binary PPI features,

Sup-EGsCL with almost all β values except 0.1 obtained higher

AP scores than Sup-GsCL. However the latter obtained higher

MCC values and F1 scores. When using the combined features,

Sup-EGsCL with β values of 0.3 and 0.5 obtained higher MCC

values and F1 scores than Sup-GsCL. The former with all β

values also outperformed the latter due to higher AP scores.

In terms of Self-EGsCL, when using the network embedding

features and binary PPI features, it outperformed Self-GsCL

with both N (0, 1) and N (µ, σ) according to the higher MCC

values, F1 and AP scores obtained with different β values, as

denoted by the single up arrows. When using the combined

features, Self-EGsCL with β values of 0.1 and 0.2 obtained

higher MCC values than Self-GsCL. It also obtained higher AP
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Table 3. Predictive performance of Sup-EGsCL, Sup-GsCL, Self-EGsCL, Self-GsCL and the benchmark method.

mouse (Mus musculus)

Feature
Metrics

Sup-EGsCL Sup-GsCL Self-EGsCL Self-GsCL
Benchmark

Types β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 N (0, 1)N (µ, σ) β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 N (0, 1)N (µ, σ)

Embeddings

MCC 0.309 ⇑ 0.366 ⇑0.380 ⇑ 0.397 ⇑0.427 ⇑ 0.075 0.248 0.176 0.169 0.245 ↑0.285 ↑0.285 ↑ 0.208 0.234 0.146

F1 0.780 0.783 0.797 ⇑ 0.818 ⇑0.789 0.747 0.796 0.797 ↑0.792 ↑0.788 0.799 ↑0.799 ↑ 0.738 0.788 0.744

AP 0.842 ⇑ 0.844 ⇑0.839 ⇑ 0.847 ⇑0.836 ⇑ 0.774 0.826 0.837 0.820 0.828 0.811 0.845 ↑ 0.844 0.791 0.764

Binary

MCC 0.237 0.237 0.263 0.263 0.280 0.373 0.237 0.151 0.155 0.212 ↑0.168 ↑0.175 ↑ 0.142 0.157 0.325

F1 0.794 0.800 0.800 0.800 0.800 0.821 0.821 0.816 ↑0.809 0.811 0.811 0.811 0.815 0.756 0.811

AP 0.853 0.855 ⇑0.855 ⇑ 0.856 ⇑0.855 ↑ 0.850 0.853 0.838 ↑0.821 0.788 0.827 ↑0.834 ↑ 0.824 0.808 0.805

Combined

MCC 0.237 0.278 0.329 ⇑ 0.270 0.402 ⇑ 0.309 0.237 0.367 ↑0.343 ↑0.254 0.234 0.288 0.271 0.334 0.371

F1 0.787 0.792 0.806 ⇑ 0.796 0.801 ⇑ 0.796 0.787 0.768 0.768 0.771 0.771 0.776 0.813 0.788 0.826

AP 0.860 ⇑0.837 ⇑0.838 ⇑ 0.838 ⇑0.839 ⇑ 0.827 0.836 0.770 0.826 ↑0.788 0.783 0.811 ↑ 0.794 0.798 0.813

worm (Caenorhabditis elegans)

Feature
Metrics

Sup-EGsCL Sup-GsCL Self-EGsCL Self-GsCL
Benchmark

Types β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 N (0, 1)N (µ, σ) β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 N (0, 1)N (µ, σ)

Embeddings

MCC 0.356 0.369 0.355 0.299 0.363 0.181 0.377 0.275 ↑0.335 ↑0.299 ↑0.350 ↑0.306 ↑ 0.177 0.269 0.367

F1 0.550 0.539 0.550 0.548 0.538 0.466 0.561 0.526 ↑0.515 0.492 0.487 0.506 0.447 0.524 0.529

AP 0.692 ⇑ 0.696 ⇑0.695 ⇑ 0.697 ⇑0.698 ⇑ 0.483 0.678 0.593 ↑0.597 ↑0.590 ↑0.593 ↑0.579 0.500 0.587 0.685

Binary

MCC 0.367 0.383 ⇑0.387 ⇑0.348 0.350 0.295 0.374 0.308 0.346 ↑0.301 0.308 0.313 0.316 0.308 0.377

F1 0.566 ⇑ 0.534 0.559 ⇑ 0.553 0.551 0.551 0.555 0.496 0.503 0.494 0.499 0.520 0.538 0.517 0.530

AP 0.639 0.641 0.644 0.643 0.629 0.663 0.649 0.598 0.638 ↑0.603 0.615 ↑0.607 0.546 0.607 0.664

Combined

MCC 0.344 0.352 0.338 0.347 0.379 ⇑ 0.354 0.354 0.287 ↑0.289 ↑0.316 ↑0.293 ↑0.284 0.211 0.285 0.369

F1 0.578 0.584 ⇑0.571 0.585 ⇑0.599 ⇑ 0.544 0.579 0.496 0.493 0.549 ↑0.516 0.460 0.492 0.516 0.529

AP 0.640 0.649 0.649 0.662 ⇑0.651 0.629 0.658 0.670 ↑0.675 ↑0.670 ↑0.665 ↑0.662 ↑ 0.562 0.586 0.647

fly (Drosophila melanogaster)

Feature
Metrics

Sup-EGsCL Sup-GsCL Self-EGsCL Self-GsCL
Benchmark

Types β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 N (0, 1)N (µ, σ) β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 N (0, 1)N (µ, σ)

Embeddings

MCC 0.260 ⇑ 0.231 0.328 ⇑0.278 ⇑0.212 0.038 0.242 0.191 0.135 0.198 ↑0.144 0.191 -0.052 0.194 0.134

F1 0.747 0.747 0.771 ⇑ 0.765 ⇑0.757 0.760 0.752 0.754 0.757 0.754 0.761 0.761 0.769 0.759 0.725

AP 0.761 0.760 0.757 0.765 0.741 0.691 0.769 0.779 ↑0.756 0.762 0.739 0.795 ↑ 0.710 0.764 0.753

Binary

MCC 0.157 0.157 0.157 0.157 0.157 0.147 0.207 0.014 0.038 0.021 0.113 ↑0.135 ↑ 0.015 0.101 0.270

F1 0.756 0.756 0.756 0.756 0.756 0.736 0.774 0.733 0.745 ↑0.725 0.738 ↑0.724 0.727 0.733 0.769

AP 0.802 0.801 0.803 0.804 0.801 0.806 0.802 0.752 ↑0.783 ↑0.751 ↑0.768 ↑0.747 0.748 0.722 0.826

Combined

MCC 0.283 0.267 0.283 0.275 0.292 ⇑ 0.275 0.283 0.172 ↑0.197 ↑0.241 ↑0.244 ↑0.180 ↑ 0.116 0.094 0.230

F1 0.771 0.771 0.782 0.776 0.774 0.781 0.782 0.768 0.765 0.762 0.759 0.774 0.767 0.777 0.760

AP 0.802 0.806 0.808 0.811 0.804 0.838 0.802 0.744 0.708 0.689 0.689 0.687 0.749 0.732 0.821

yeast (Saccharomyces cerevisiae)

Feature
Metrics

Sup-EGsCL Sup-GsCL Self-EGsCL Self-GsCL
Benchmark

Types β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 N (0, 1)N (µ, σ) β=0.1 β=0.2 β=0.3 β=0.4 β=0.5 N (0, 1)N (µ, σ)

Embeddings

MCC 0.099 0.154 0.074 0.082 0.114 0.219 0.016 0.034 0.040 0.026 0.004 0.133 0.152 0.023 0.274

F1 0.130 0.163 0.083 0.090 0.130 0.250 0.130 0.153 0.107 0.090 0.073 0.090 0.220 0.127 0.297

AP 0.393 ⇑ 0.329 0.384 ⇑ 0.350 0.323 0.277 0.362 0.315 0.347 0.272 0.285 0.444 ↑ 0.359 0.254 0.509

Binary

MCC 0.040 0.103 0.103 0.095 0.103 0.165 0.082 0.010 0.019 0.024 0.073 0.010 0.066 0.173 0.034

F1 0.050 0.100 0.100 0.100 0.100 0.167 0.090 0.040 0.040 0.040 0.040 0.040 0.126 0.247 0.050

AP 0.469 ⇑ 0.430 0.448 ⇑ 0.418 0.417 0.408 0.435 0.393 0.391 0.357 0.380 0.390 0.393 0.374 0.397

Combined

MCC 0.089 0.089 0.089 0.089 0.089 0.066 0.117 0.171 0.180 ↑0.171 0.171 0.163 0.112 0.171 0.034

F1 0.100 0.100 0.100 0.100 0.100 0.090 0.130 0.180 0.180 0.180 0.180 0.180 0.150 0.180 0.050

AP 0.379 ⇑ 0.367 ⇑0.357 ⇑ 0.385 ⇑0.374 ⇑ 0.321 0.346 0.306 0.310 0.325 0.301 0.287 0.263 0.385 0.402

1⇑: higher values obtained by Sup-EGsCL compared with Sup-GsCL with both N (0, 1) and N (µ, σ).

2↑: higher values obtained by Self-EGsCL compared with Self-GsCL with both N (0, 1) and N (µ, σ).

3Double underline: the highest value between Sup-EGsCL and Sup-GsCL over all parameters.

4Underline: the highest value between Self-EGsCL and Self-GsCL over all parameters.

5Bold text: the overall highest value for the model organism.

scores with β values of 0.2 and 0.5, though Self-GsCL with

N (0, 1) and N (µ, σ) obtained higher F1 scores.

When predicting the longevity effects of worm’s genes

using the network embedding features, Sup-GsCL with N (µ, σ)

outperformed Sup-EGsCL, according to MCC values and F1

scores. However, Sup-EGsCL with all different β values

obtained higher AP scores than Sup-GsCL with both N (µ, σ)

and N (0, 1). When using the binary PPI features, Sup-EGsCL

obtained higher MCC values with β values of 0.2 and 0.3.

It also obtained higher F1 scores with β values of 0.1 and

0.3. However, Sup-GsCL obtained higher AP scores. When

using the combined features, Sup-EGsCL with different β
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values outperformed Sup-GsCL with both N (µ, σ) and N (0, 1),

according to the higher MCC values, F1 and AP scores.

Analogously, as shown in Table 3, Self-EGsCL with almost

all different β values using the network embedding features

outperformed Self-GsCL with both N (µ, σ) and N (0, 1),

according to the higher MCC values and AP scores. It also

obtained a higher F1 score with a β value of 0.1. When using the

binary PPI features, Self-EGsCL with a β value of 0.2 obtained

a higher MCC value and a higher AP score than Self-GsCL, but

the latter obtained a higher F1 score with N (0, 1). When using

the combined features, Self-EGsCL with almost all different

β values obtained higher MCC values and AP scores. It also

obtained a higher F1 score than Self-GsCL with a β value of

0.3.

When using network embedding features to predict the

longevity effects of fly’s genes, Sup-EGsCL with β values of

0.3 and 0.4 obtained higher MCC values and F1 scores than

Sup-GsCL with both N (0, 1) and N (µ, σ). But Sup-GsCL with

N (µ, σ) obtained a higher AP score. When using the binary PPI

features, Sup-GsCL with N (µ, σ) outperformed Sup-EGsCL

due to the higher MCC value and F1 score. Sup-GsCL with

N (0, 1) also obtained a higher AP score than Sup-EGsCL.

When using the combined features, Sup-EGsCL with a β value

of 0.5 obtained a higher MCC value than Sup-GsCL. The former

with a β value of 0.3 also obtained the same F1 score as the

latter with N (µ, σ). But Sup-GsCL with N (0, 1) obtained a

higher AP score than Sup-EGsCL. In terms of Self-EGsCL, as

shown in Table 3, according to MCC values, it outperformed

Self-GsCL with a β value of 0.3 using the network embedding

features. It also obtained higher AP scores with β values of

0.1 and 0.5, though Self-GsCL with N (0, 1) obtained a higher

F1 score. When using the binary PPI features, Self-EGsCL

outperformed Self-GsCL with different β values, according

to the higher MCC values, F1 and AP scores. When using

the combined features, Self-EGsCL with all different β values

obtained higher MCC values, but Self-GsCL obtained higher

F1 and AP scores with N (µ, σ) and N (0, 1), respectively.

When predicting the longevity effects of yeast’s genes,

Sup-GsCL with N (0, 1) obtained higher MCC values and F1

scores than Sup-EGsCL using both the network embedding

and binary PPI features. Sup-EGsCL with β values of 0.1

and 0.3 obtained higher AP scores than Sup-GsCL with both

N (0, 1) and N (µ, σ). It also obtained higher AP scores than

Sup-GsCL when using the combined features with all different

β values. However, Sup-GsCL with N (µ, σ) performed better

due to the higher MCC value and F1 score. Analogously, when

using the network embedding features, Self-GsCL with N (0, 1)

outperformed Self-EGsCL, according to the higher MCC value

and F1 score. However, Self-EGsCL with a β value of 0.5

obtained a higher AP score. When using the binary PPI

features, Self-GsCL with N (µ, σ) performed better than Self-

EGsCL due to the higher MCC value and F1 score. Self-EGsCL

with a β value of 0.1 obtained the same AP score as Self-GsCL

with N (0, 1). When using the combined features, Self-EGsCL

with a β value of 0.2 obtained a higher MCC value than Self-

GsCL with both N (0, 1) and N (µ, σ). Self-EGsCL with all

different β values also obtained the same F1 scores as Self-

GsCL with N (µ, σ). However, the latter obtained a higher AP

score than the former.

EGsCL successfully obtained state-of-the-art
accuracy in predicting the pro-longevity or
anti-longevity effect of three model organisms’ genes
using PPI network-based features.
We further compared EGsCL with the benchmark method that

uses raw PPI network features to train SVM classifiers. When

predicting mouse genes’ longevity effects using the network

embedding features, both Sup-EGsCL and Self-EGsCL with

all different β values obtained higher MCC values, F1 and

AP scores than the benchmark method. Analogously, when

working with the binary PPI features, both Sup-EGsCL and

Self-EGsCL with almost all different β values obtained higher

AP scores, though the benchmark obtained a higher MCC

value. In addition, Self-EGsCL with a β value of 0.1 obtained

a higher F1 score. When working with the combined features,

Sup-EGsCL with a β value of 0.5 obtained a higher MCC value.

It also obtained higher AP scores with all different β values,

though the benchmark method obtained a higher F1 score. In

terms of Self-EGsCL, it failed to obtain any higher MCC value

and F1 score, but it obtained a higher AP score with a β value

of 0.2.

When predicting worm genes’ longevity effects using the

network embedding features, Sup-EGsCL with all different β

values obtained higher F1 and AP scores than the benchmark

method, though the latter obtained a higher MCC value. When

working with the binary PPI features, Sup-EGsCL with β

values of 0.2 and 0.3 obtained higher MCC values. It also

obtained higher F1 scores with all different β values, though

the benchmark method obtained a higher AP score. When

using the combined features, Sup-EGsCL with a β value of 0.5

obtained a higher MCC value. It also obtained higher F1 and

AP scores with almost all different β values than the benchmark

method. In terms of Self-EGsCL, it failed to obtain any higher

MCC value, F1 and AP scores than the benchmark method

using both the network embedding features and the binary PPI

features. However, when working with the combined features,

it obtained a higher F1 score with a β value of 0.3. It also

obtained higher AP scores than the benchmark method with

all different β values.

When predicting fly genes’ longevity effects, both Sup-

EGsCL and Self-EGsCL with almost all different β values

obtained higher MCC values, F1 and AP scores than the

benchmark method using the network embedding features.

However, when using the binary PPI features, the latter

obtained higher MCC value, F1 and AP scores. When working

with the combined features, Sup-EGsCL with all different β

values obtained higher MCC values and F1 scores, though the

benchmark method obtained a higher AP score. In terms of

Self-EGsCL, it obtained higher MCC values with β values of

0.3 and 0.4. It also obtained higher F1 scores with almost all

β values, though the benchmark method obtained a higher AP

score.

When predicting yeast genes’ longevity effects using

the network embedding features, the benchmark method

outperformed both Sup-EGsCL and Self-EGsCL due to its

higher MCC value, F1 and AP scores. However, when using

the binary PPI features, Sup-EGsCL with almost all different

β values obtained higher MCC values, F1 and AP scores, but

Self-EGsCL failed to obtained higher F1 and AP scores than

the benchmark method. When working with the combined

features, Sup-EGsCL outperforms the benchmark method with

all different β values due to the higher MCC values and

F1 scores, though the latter obtained a higher AP score.
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Table 4. New predictions about the pro-/anti-longevity effect of mouse genes and their homologous genes from human, fly and worm.

Mouse Mouse Predicted Predicted Homologous genes from

Gene ID Gene Name Class Probability Human (HS), Fly (DM) and Worm (CE)

Pofut1 protein O-fucosyltransferase 1 Pro-longevity 87.8% POFUT1 (HS), O-fut1 (DM), pfut-1 (CE)

Ints15 integrator complex subunit 15 Pro-longevity 87.7% INTS15 (HS), CG5274 (DM),)Y56A3A.31 (CE)

Plod2 procollagen lysine, 2-oxoglutarate 5-dioxygenase 2 Pro-longevity 87.7% PLOD2 (HS), Plod (DM), let-268 (CE)

Arid3a AT-rich interaction domain 3A Pro-longevity 87.6% ARID3A (HS), retn (DM), cfi-1 (CE)

Col3a1 collagen, type III, alpha 1 Pro-longevity 87.3% COL3A1 (HS)

Grk5 G protein-coupled receptor kinase 5 Anti-longevity 71.3% GRK5 (HS), Gprk2 (DM), grk-1 (CE)

C2cd4b C2 calcium-dependent domain containing 4B Anti-longevity 70.5% C2CD4B (HS)

Sstr3 somatostatin receptor 3 Anti-longevity 69.6% SSTR3 (HS), AstC-R1 (DM), npr-24 & npr-16 (CE)

Rab44 RAB44, member RAS oncogene family Anti-longevity 69.5% RAB44 (HS), rsef-1 (CE)

Ntsr1 neurotensin receptor 1 Anti-longevity 69.5% NTSR1 (HS)

‡ Apln apelin Anti-longevity 70.2% APLN (HS)

Analogously, Self-EGsCL also obtained higher MCC values and

F1 scores than the benchmark method with all different β

values.

Sup-EGsCL is also the overall best method for predicting

mouse, worm and fly genes’ longevity effects. As denoted by

the bold texts in Table 3, in terms of the mouse datasets, Sup-

EGsCL with a β value of 0.5 obtained the overall highest MCC

value (i.e. 0.427), whilst it also obtained the overall highest

AP score (i.e. 0.860) with a β value of 0.1. The overall highest

F1 score (i.e. 0.826) was obtained by the benchmark method.

Analogously, in terms of the worm datasets, Sup-EGsCL also

obtained the overall highest MCC value (i.e. 0.387), F1 score

(i.e. 0.599) and AP score (i.e. 0.698) with different β values.

The overall highest MCC value (i.e. 0.328) and F1 score (i.e.

0.782) for the fly datasets were obtained by Sup-EGsCL with a

β value of 0.3. Sup-GsCL with N (µ, σ) also obtained the same

overall highest F1 score, whilst Sup-GsCL with N (0, 1) obtained

the overall highest AP score (i.e. 0.838). In terms of the yeast

datasets, the overall highest MCC value (i.e. 0.274), F1 score

(i.e. 0.297) and AP score (i.e. 0.509) were all obtained by the

benchmark method.

Sup-EGsCL successfully predicted novel mouse genes
with the pro-/anti-longevity effect.
We then used one of the trained Sup-EGsCL-based classifiers

during the 10-fold cross-validation to predict the pro-/anti-

longevity effect of all the mouse genes included in the STRING

database. The pro-longevity genes are defined as those genes

whose decreased expression reduces lifespan and/or their

overexpression extends lifespan. Vice versa, the anti-longevity

genes are defined as those genes whose overexpression reduces

lifespan and/or their decreased expression extends lifespan [9].

We focus on predicting novel mouse genes for several

reasons, as follows. First, the predictive models for mouse

data are the most accurate models in general, across the

models for the 4 organisms. Second, mice are much closer to

humans than the other 3 model organisms investigated (with

results for mice being more useful as evidenced from pre-clinical

studies). Third, experiments with mice are much slower and

more time consuming than experiments with the other 3 types

of organisms investigated, so it is particularly important to use

machine learning methods to prioritise mouse genes for further

testing via wet-lab experiments.

Table 4 shows the top-ranked mouse genes that were

most likely to bear pro-/anti-longevity labels according to

their probabilities predicted by the trained Sup-EGsCL-based

classifier. Those genes are considered potentially novel pro-

/anti-longevity genes because they are not included in the

GenAge database (and so, they are not in the datasets used

to learn our Sup-EGsCL-based classifiers). The table also

includes information about homologous genes from human,

fly and worm according to the Alliance of Genome Resources

database [34] with the stringent homolog information deposit

criterion. The complete list of mouse genes that are included

in both STRING [52] and NCBI [7] databases with their

predicted probabilities of bearing the pro-/anti-longevity effect

is included in Supplementary File 2. Other genes might also be

considered potentially exhibiting a pro-/anti-longevity effect if

their predicted probabilities are no less than a certain threshold,

which can be specified by each researcher based on their

research requirements.

For example, in order to identify the small sets of top-

ranked genes reported in Table 4, we consider that a mouse

gene is likely to have a pro-longevity effect if its corresponding

predicted probability is no less than 85%; whilst a mouse gene

is likely to have an anti-longevity effect if its corresponding

probability is no less than 67%. We consider a somewhat

smaller probability threshold for identifying potentially novel

anti-longevity genes due to the fact that, overall, the degree

of confidence (predicted probabilities) for the predicted anti-

longevity genes is substantially smaller than the degree of

confidence for the predicted pro-longevity genes.

Regarding the predicted pro-longevity genes in Table 4,

there is support in the literature for their pro-longevity role, as

follows. As the top-ranked pro-longevity gene, Pofut1 and its

homologous genes from human, fly and worm play important

roles in the well-known ageing-related notch pathway [3]. It has

been found in mice that this gene’s deletion is linked to multiple

muscle ageing-related phenotypes [67] and promotes colorectal

cancer cell apoptosis [11]. Ints15 is another top-ranked mouse

gene predicted to have a pro-longevity effect. It is known to

be related to RNA polymerase II - another well-known ageing-

related factor in multiple species [10]. Recent research on mice’s

Ints15 gene [2] also confirmed its crucial role in cell survival

– the knockout of Ints15 induces cell apoptosis. Analogously,

Plod2 and its corresponding homologous human genes play an
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Fig. 2. 2D t-SNE visualisations of the training and testing datasets for

fly genes using the network embedding features (A, D) and the feature

representations learned by Sup-GsCL (B, E) and Sup-EGsCL – β=0.3 (C,

F), respectively.

important role in responses to hypoxia [49], which could extend

the lifespan of mice [48]. Arid3a and its homologous genes from

human, fly and worm are another group of genes that are linked

to RNA polymerase II-related transcription regulations. It has

been revealed that the loss of Arid3a gene leads to defects

in hematopoiesis [44] – a common pattern observed in aged

individuals [43]. Col3a1 and its human homolog are linked with

type III collagen, which plays a crucial role in normal collagen

I fibrillogenesis in the cardiovascular system, and the deletion

of Col3a1 shortens the lifespan of mouse [29].

Among those predicted mouse genes that have an anti-

longevity effect as shown in Table 4, Grk5 regulates responses to

inflammatory factors [54] – a key factor leading to senescence

[26]. Recent research in human and mouse has revealed that

silencing the Grk5 gene could suppress inflammatory factors

[54]. C2cd4b is linked with reactive oxygen species, which is

a well-known ageing-related factor [56]. The overexpression of

C2cd4b leads to an increased risk of type 2 diabetes [64, 25],

but inhibition of C2CD4B expression prevents hyperglycemia-

induced oxidative stress [41]. Sstr3 and its homologs are

linked with the G protein-coupled receptor (GPCR) signalling

pathway. It has been found that GPCRs play important roles in

T-cell-related ageing processes [32], and the blockade of SSTR3

in human cells can reduce T-cell responses [63]. Rab44 is also

closely associated with immunosenescence. The knockout of

Rab44 in mice diminishes anaphylaxis [21], which is a process

involving a large number of mast cells releasing a wide range

of inflammatory mediators [39]. Ntsr1 has also been found

to regulate apoptotic processes – the inhibition of NTSR1

in human breast cancer cell lines leads to reduced ERK 1/2

phosphorylation [20], which induces apoptotic processes [24].

However, among the top-ranked genes that are predicted to

have an anti-longevity effect, Apln was actually found to

be associated with the pro-longevity effect, since accelerated

senescence was observed in Apln knockout mice [66]. This shows

that of course even highly accurate models like our Sup-EGsCL-

based classifiers can occasionally make wrong predictions; and

so experiments measuring mouse lifespan need to be done, in

future work, to determine whether the novel pro-/anti-longevity

genes predicted in this work really have their predicted effect.

Fig. 3. A heatmap showing the numbers of datasets where the methods on

the rows obtained higher MCC values than the methods on the columns.

Discussion

Sup-EGsCL successfully learns discriminative feature
representations based on network embedding features
leading to better decision boundaries.
We compared the raw network embedding features and

two types of feature representations learned by Sup-EGsCL

and Sup-GsCL, respectively. Figure 2 shows the 2D t-SNE

visualisation of the training and testing datasets for fly genes

including the learned SVM decision boundaries. As shown in

Figures 2.A and 2.D, when using the raw network embedding

features, both the training and testing instances bearing

different class labels are distributed in overlapping areas. The

learned decision boundary also failed to distinguish the red

and green dots denoting two different class labels. As shown in

Figures 2.B and 2.E, Sup-GsRL failed to learn discriminative

feature representations since the instances bearing different

class labels were still distributed in the overlapping areas.

Analogously, the learning SVM decision boundaries also failed

to separate the majority of the red and green dots. In

contrast, Sup-EGsCL with a β value 0f 0.3 shows better sample

distributions. As shown in Figures 2.C and 2.F, both the

training and testing instances are grouped into two separate

areas, whilst the learned SVM decision boundaries successfully

distinguished more red and green dots.

Augmentation with noises sampled from two different
Gaussian distributions leads to higher predictive
accuracy.
We further discussed the differences in augmentation

approaches between EGsCL and GsCL. The former samples

noises from two different Gaussian distributions, i.e. N (µ+β, σ)

and N (µ − β, σ), whilst the latter samples two noises from

one single Gaussian distribution, e.g. N (µ, σ). In general,

noises sampled from two different Gaussian distributions lead

to higher predictive accuracy, compared with using noises

sampled from one single Gaussian distribution. Figure 3 shows

a heatmap for the pairwise comparisons between different

methods according to their MCC values obtained by 12

datasets, i.e. 4 model organisms’ ageing-related genes described

by 3 different feature types. Sup-EGsCL with both β values of
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0.3 and 0.5 obtained higher MCC values in more datasets (i.e.

7 out of 12) than Sup-GsCL with N (µ, σ), whilst Self-EGsCL

with almost all different β values except 0.1 also obtained higher

MCC values than Self-GsCL with N (µ, σ) in more datasets.

Sup-EGsCL with a β value of 0.4 obtained higher MCC values

in the same number of datasets as Sup-GsCL with N (µ, σ),

which obtained higher MCC values in more datasets than

Sup-EGsCL with β values of 0.1 and 0.2.

Supervised contrastive learning paradigm leads to
higher predictive accuracy than self-supervised
contrastive learning paradigm.
In terms of the differences between supervised and self-

supervised paradigms, the former leads to higher predictive

accuracy for both EGsCL and GsCL methods. As shown in

the top right area of Figure 3, Sup-EGsCL with all different

β values obtained higher MCC values than Self-EGsCL with

all different β values in the vast majority of the datasets.

Analogously, Sup-GsCL with N (µ, σ) obtained higher MCC

values than Self-GsCL with N (µ, σ) in 8 out of 12 datasets,

whilst Sup-GsCL with N (0, 1) also outperformed Self-GsCL

with N (0, 1) in 9 out of 12 datasets.

In terms of the differences between two Gaussian

distribution settings, i.e. N (µ, σ) and N (0, 1), the former

outperformed the latter using either supervised or self-

supervised settings. As shown in Figure 3, Sup-GsCL with

N (µ, σ) obtained higher MCC values than Sup-GsCL with

N (0, 1) in 7 out of 12 datasets, whilst Self-GsCL with N (µ, σ)

also outperformed Self-GsCL with N (0, 1) in 9 out of 12

datasets.

Conclusion

In summary, we proposed two new contrastive learning

methods, i.e. Sup-EGsCL and Self-EGsCL, which successfully

learn a type of discriminative representations based on protein-

protein interaction network data, leading to state-of-the-art

accuracy in predicting pro-longevity or anti-longevity effect of

model organisms’ genes. In addition, we have used Sup-EGsCL

to predict 10 novel pro-/anti-longevity mouse genes, and have

discussed the support for these predictions in the literature.

An interesting future research direction would be to propose

new contrastive learning methods for other features like Gene

Ontology terms or their corresponding hierarchy embeddings.
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