
BIROn - Birkbeck Institutional Research Online

Rajha, Rawan and Shiode, Shino and Shiode, N. (2024) Improving traffic-flow
prediction using proximity to urban features and public space. Sustainability
17 (1), p. 68. ISSN 2071-1050.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/54744/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/54744/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Academic Editor: Xinqiang Chen

and Bin Ji

Received: 29 August 2024

Revised: 15 December 2024

Accepted: 23 December 2024

Published: 26 December 2024

Citation: Rajha, R.; Shiode, S.; Shiode,

N. Improving Traffic-Flow Prediction

Using Proximity to Urban Features

and Public Space. Sustainability 2025,

17, 68. https://doi.org/10.3390/

su17010068

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Improving Traffic-Flow Prediction Using Proximity to Urban
Features and Public Space
Rawan Rajha 1, Shino Shiode 1 and Narushige Shiode 2,*

1 Department of Geography, Birkbeck, University of London, London WC1E 7HX, UK;
rrajha01@student.bbk.ac.uk (R.R.); s.shiode@bbk.ac.uk (S.S.)

2 Department of Geography, Geology and the Environment, Kingston University,
Kingston upon Thames KT1 2EE, UK

* Correspondence: n.shiode@kingston.ac.uk

Abstract: Accurate traffic prediction and planning help alleviate congestion and facil-
itate sustainable traffic management through short-term traffic controls and long-term
infrastructure design. While recent uptake on Machine Learning (ML) approaches helps
refine our ability to predict the traffic flow, proximity to landmarks and public spaces are
often overlooked, thus undermining the impact of location-specific traffic patterns. Using
traffic-flow estimates from London, this study incorporates the proximity to urban features
approximated with Kernel Density Estimation (KDE) and compares the performance of
models with and without such features. They are also tested using classic spatial/non-
spatial regression models and ML-based regression models. Results suggest that adding
urban features considerably improves the performance of the ML models (Fine tree yielding
R2 = 0.94, RMSE = 0.129, and MAE = 0.069), which compares favourably against the best
performing non-ML model (the spatial error model returning R2 = 0.448, RMSE = 0.358,
and MAE = 0.280). Sensitivity of the KDE is tested across different bandwidths for includ-
ing urban features. The ML classification approach was also applied for estimating the
traffic density and achieved high accuracy, with Fine KNN achieving 98.7%. They offer a
robust framework for accurate traffic projection at specific locations, thus enabling road
infrastructure designs that cater to the specific needs of the local situations.

Keywords: machine learning; spatial modelling; traffic flow; traffic prediction

1. Introduction
Rapid urban growth has made traffic-flow prediction indispensable for the economic

and sustainable development of urban space. Making an accurate prediction of traffic
flows can help alleviate traffic congestion [1]. Indeed, traffic-flow prediction can feed the
road users with live traffic information, prompt the traffic controllers to enforce short-term
solutions [2], whilst also enabling planners to make informed decisions on the operation
and management of the road network (e.g., policy-led solutions for speed control, carbon
emission, and operation of autonomous vehicles) [3]. They could yield positive impact
on public safety, economy, as well as the environment and their quality of life. The World
Health Organization noted that road traffic fatality was on the rise with 1.35 million deaths
being recorded in 2016, and that traffic prediction would not only help reduce congestion
but also facilitate safer and more cost-effective travels [4].

Conventional statistical models such as ordinary least squares (OLS) regression, spatial
regression models, Autoregressive Integrated Moving (ARIMA), and Seasonal ARIMA
offer a clear and robust framework for making such predictions. Yet, they are limited in
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their scope to process large, complex, and non-linear data structure. This is reflected in
their choice of variables and the moderate accuracy of their prediction [5]. To overcome
such limitations and to improve on their performance, recent studies have increasingly
utilised Machine Learning (ML) approaches for predicting the traffic flows. Their capacity
to process large non-linear data generally improved the performance of the prediction
models [2,6]. However, the choice of the data and the variables used in the existing range
of ML-based models would benefit from further scrutiny, especially those pertaining to
the spatial features [7]. Traffic-flow prediction involves several factors, including traffic
volume, vehicle speed, vehicle counting, road characteristics, as well as seasonal and
weather information [8–10]. Some of these factors show spatial dependency (e.g., road
characteristics and the land use tend to be similar within small, confined areas) and, yet,
their traits are not always incorporated into the prediction model.

Against this background, this study develops a series of prediction models that incor-
porates the spatial proximity to the relevant features into ML methods and applies it to
traffic estimate data from the Great London area. Specifically, we will (1) identify suitable
predictors that are underused in the existing traffic prediction models, (2) incorporate them
into ML prediction models and evaluate their performance, (3) compare the performance
of the ML approach and the traditional statistical approaches by incorporating these pre-
dictors, and (4) conduct sensitivity analysis using the kernel density bandwidth. The focus
of our study lies on the development of offline models for traffic-flow prediction and traffic
density estimation, accounting for the urban features that are considered to affect the local
traffic patterns. A systematic evaluation is offered through the application of 21 ML and
non-ML methods against different combinations of variables that reflect proximity to these
urban features.

2. Literature Review
2.1. Traffic Features and Traffic Indicators

Traffic-flow prediction offers the short-term benefit of informing the road users whilst
also providing the long-term benefit of helping build more efficient, sustainable, and
liveable cities. The performance of the traffic-flow prediction largely depends on the
modelling framework, the predictors, as well as the quality and the granularity of the data
used. Prevailing predictors are often categorised into traffic features (e.g., road geometry,
angles at the junction, number of lanes) and indicators (e.g., transport facilities, volume,
and speed), and they both tend to have a strong impact on the model performance [11–14].

Some studies have also incorporated spatial features into their model, and these
include locations of POIs (Point of Interests) and their impact on traffic accidents, specific
land use (e.g., residential facilities and offices), and other landmarks [7,11,15–17].

Other studies noted the importance of understanding the impact of spatial features on
traffic characteristics, taking a holistic approach to account for multiple features, whilst also
observing the ways in which adjacent roads are connected, both of which are reported to
improve the prediction performance [18,19]. For instance, Zeng et al. (2022) [11] examined
how the presence of specific POIs would affect the traffic flows and heighten the risks
of traffic accidents. The study suggests that there is both temporal and spatial impact of
POIs on the local traffic flow. Other studies suggest the relevance of bus stops and how
that can impact the traffic flow, especially considering their locations on busy roads and
intersections. Similarly, train stations are considered to have a strong impact on the traffic
flow. Hospital locations, schools, and other landmark that attract a large number of people
are also prone to affecting the local traffic flow, owing to their influence on road network
capacity, and thus often leading to bottlenecks or congestion points.
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POIs of recreational purposes (e.g., large urban parks) and tourist attractions also tend
to form a hub for congestion hotspots, attracting more traffic in the area. They serve as
external factors on traffic-flow prediction, including tourist places. Finally, urban parks
and landscape areas (e.g., Hyde Park and Regent Park) are usually located near busy roads
or intersections. As they may restrict vehicles from crossing the area and thus force road
users to find alternative routes, that can also lead to increased congestion.

Traffic indicators, on the other hand, provide information on the state and the condition
of the road network that could affect the performance of traffic on a road network. They
are classified into two categories: traffic state and traffic-flow parameters [20]. Traffic state
focuses on the impact of traffic variables on road segments, using partially observable
traffic data, while traffic-flow parameters (e.g., average speed and flow rate) are used for
deciphering traffic-flow characteristics and predicting changes in their behaviour [21]. An
increasing number of traffic-flow prediction models utilise traffic state and parameters [22],
and their performance is based on the quality and the quantity of the available data [23].

2.2. Prediction Models: ML and Non-ML Methods

In terms of the model architecture, existing traffic-flow models can be classified into
(1) the conventional statistical methods and (2) the ML and deep learning (DL) approaches.
Use of ML and DL techniques for traffic prediction has been prominent in recent years,
supported by the increasingly available traffic data and computational resources [24]. They
allow us to tackle complex traffic prediction problems more efficiently than statistical
methods can [25].

Statistical models, such as OLS, K-Nearest Neighbour (KNN), Historical Average, and
Vector Autoregressive are often used for short-term traffic prediction owing to their simple
and clear computational structure as well as their capacity to facilitate robust theoretical
interpretation [26–31]. Parametric techniques such as ARIMA and Kalman filtering are
also used for predicting the temporal changes in the traffic flow [32,33]. These methods are
suitable for small and confined datasets, but they are not designed to handle a complex or
dynamic system that exhibits non-linear behaviour [34].

ML models can largely overcome the inherent limitations of the statistic models in
dealing with complex datasets. Specifically, they can analyse and process large and complex
datasets with their ability to generalise and learn complex relationships and, thereby, extract
meaningful patterns and associations among the attributes within the data [7,35]. They can
also adapt to the dynamic conditions of the traffic network [36].

ML approaches for traffic-flow prediction can be categorised into two sub-categories:
classification and regression. Classification helps predict a categorical variable such as the
state of traffic flow or the level of congestion. Some traffic-focused classifications include
the application of KNN [27] and random forest for predicting the level of traffic flow [37].
They deal with discrete classes and tend to be computationally efficient.

Regression, on the other hand, uses a set of predictors to estimate or forecast the
dependent variables that take a continuous range (e.g., traffic-flow volume, traffic speed).
Examples include the use of Ensemble tree ML regression to estimate the impact of road
accidents on traffic flow [38], and ML regression for predicting traffic flow with the effect
of data sharing across the Internet of Vehicles environment [39].

Both classification and regression algorithms use training data with known predictors
or input features and the corresponding target values to unravel the underlying patterns
and relationships. Indeed, ML models such as Support Vector Machine (SVM) and Decision
trees can be used for both regression and classification tasks. Table 1 shows a list of ML
models and their suitability for these tasks.
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Table 1. Machine learning methods and their description, with relevant references.

Model Description

Support
Vector
Machine
(SVM) [35]

Used as both classifier and regressor. It classifies data into different
classes and estimates the optimal boundary values for classes to
predict the value of a target variable based on input variables. SVMs
perform well when there is a clear separation between the classes and
the number of input variables is high. The model is also known for its
ability to hold high-dimensional data and can deal with multitude of
missing data. However, SVM is complex, resource-intensive, and is
sensitive to the configuration parameters (e.g., regularisation
parameter and kernel).

Neural
Network
(NN) [35,40]

Used as both classifier and regressor. It works through a network of
multiple interconnected layers to generate prediction. NN can learn
complex non-linear relationships between the input variables and
outputs. However, NN requires a large and good-quality training
dataset, and the use of small datasets could result in overfitting.

Decision trees
[41,42]

Used as both classifier and regressor. Arguably the most common ML
methods with a range of applications. It works through a tree-like
structure comprising nodes and branches to develop a prediction
model. Decision trees are easy to interpret and can provide valuable
insights into the most important input variables for predicting target
variables. They provide advantages in handling mixed data
(categorical and numerical) and are less susceptible to the impact of
outliers than other ML algorithms are. However, they have challenges
in coping with large datasets and are prone to overfitting.

K-Nearest
Neighbour
(KNN)
[20,28]

Used as both classifier and regressor. KNN is based on searching the
historical database for the k events that are closest to the current traffic
situation, which are subsequently averaged or weighted by their
distance to the current situation. KNN is a smoothing method that
uses more information compared to the present by considering
multiple close matches. KNN, however, is resource-intensive, as it
searches through the historical database and is sensitive to the change
in k values.

Gaussian
Process
Regression
(GPR)
[43,44]

Used as a regressor only but is widely used for traffic-flow prediction.
These models leverage the flexibility and the stochastic nature of
Gaussian processes to capture the complex and non-linear
relationships between traffic variables. GPR is sensitive to the
configuration parameters (Kernel and Hyperparameters), and takes a
complex high-dimensional form.

2.3. Deep Learning Methods

Alongside the ML models, DL methods are increasingly used for traffic-flow predic-
tion, especially in terms of improving the model performance when handling data from
different sources and for offering real-time predictions. While DL offers higher precision
on real-time applications, it is more complex than ML methods. The most common and
widely used DL models in the traffic prediction context include the following:

(1) Convolutional Neural Networks (CNNs) utilise a convolution matrix to capture the
long-range spatial dependence of traffic flows. CNN is effective in predicting traffic
flows, especially in case of a complex traffic pattern with multiple factors affecting the
traffic flow [2,34].

(2) Recurrent Neural Networks (RNNs) are widely used for time-series data processing.
They use Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs) as
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RNN variants to facilitate real-time traffic prediction. RNN can capture temporal
dependencies in sequential data and predict future traffic flow [45,46].

(3) Graph Convolutional Networks (GCNs) are specifically designed for processing
graph-structured data. The graphs are used for reflecting the degree of association
between features and the traffic flow, and are utilised for real-time operations [47,48].

(4) Deep Neural Network (DNN) can learn complex patterns from large datasets. It
connects the input layer to one or more hidden layers, and the output layer generates
the predicted traffic flow [49–51].

While DL models are known to deliver improved performance on traffic-flow pre-
diction, they also suffer from potential overfitting and limited interpretability. As these
traits do not align well with the scope of our study on evaluating the impact of POIs and
urban facilities on traffic-flow prediction, we will focus on the mainstream ML methods
and non-ML methods.

2.4. Gap in the Literature

While ML and DL methods are increasingly prevalent in traffic-flow modelling, the
following challenges remain:

(1) Urban features such as POIs and public space are underused as predictors in the
context of traffic-flow prediction. As the choice of predictors could significantly
affect the accuracy of the prediction, selecting the right set of features is critical for
developing an accurate and robust model. Nevertheless, existing studies have focused
mainly on refining their algorithms with less attention to incorporating the relevant
spatial features [11,17].

(2) The few studies that account for urban features in the vicinity of each data point
have used KDE and adopted a predetermined value for its bandwidth. This value
is usually fixed a priori with no sensitivity analysis of the bandwidth. For instance,
Zeng et al. (2022) [11] used KDE in conjunction with CNN to incorporate the spatial
features, while Jia et al. (2018) [15] applied KDE for OLS and spatial regression models
for traffic crashes. Neither study evaluates the impact of KDE bandwidth on the
respective ML model.

To offer a systematic evaluation on the validity and the sensitivity of the KDE for
traffic-flow modelling, a comprehensive framework is needed so that it can combine all
relevant spatial features and traffic indicators to improve prediction accuracy. There is also a
need for comparative evaluations of various ML models to identify the most accurate model
for predicting the traffic flow. Examining the sensitivity of KDE by changing its bandwidth
would allow us to empirically derive the optimal bandwidth for traffic prediction, although
it may vary between different countries and cities.

3. Methodology
3.1. Selecting the ML and the Non-ML Methods

To develop a robust and accurate model framework for traffic prediction, a total of
21 different models are constructed, consisting of 3 non-ML methods (non-spatial, OLS
regression; spatial lag model; and spatial error model) and 18 ML methods from across
5 families of ML approaches. They consist of the traditional mainstream ML models of tree-
based, Ensemble, SVM, GPR, and NN (as shown in Table 1) as well as their variants: namely,
Decision trees (fine, medium, and coarse), Decision tree ensembles (bagging, boosting),
Support vector machines (cubic, fine Gaussian, and medium Gaussian), Gaussian process
regressions (squared, exponential, and Matern covariogram), Kernels (rational quadratic,
Support vector machine, and least-squares), and Neural Networks (narrow, wide, bilayered,
and trilayered)). The choice of these methods was made on the basis of their collective



Sustainability 2025, 17, 68 6 of 21

ability to offer a comprehensive evaluation of the performance of each combination of the
variables (which we hereafter refer to as scenarios; please refer to Section 3.2 for the five
scenarios used in our study). The selection of models was also designed to accommodate
a range of possible associations between the variables; namely linear, non-linear, and
complex interactions.

Figure 1 shows the framework of our traffic-flow prediction modelling. It is designed to
address the research gaps identified and carry out the following steps for traffic prediction:

(1) Introduce a combination of relevant urban and spatial features into the traffic-flow
prediction model. The literature suggests that the urban features and the traffic char-
acteristics used in our study are considered to affect the local traffic patterns. They are
selected through either the review of the relevant literature (Table 2) [11,12,52–54] or
the prevailing trend on traffic-flow modelling. Their sphere of influence is represented
by means of a smoothing technique called Kernel Density Estimation (KDE).

(2) Develop non-ML regression models (namely, OLS and spatial regression models)
using features identified in the literature review.

(3) Develop a framework of ML regression models for traffic-flow prediction. We con-
duct grid search and cross-validation to optimise the parameters such as tree depth,
SVM kernel settings, and the size of the Neural Network layers, establishing a suit-
able balance between the model complexity and performance. Each ML model is
trained using multiple parameter configurations, including combinations of widely
recognised parameters.

(4) Assess the impact of utilising a combination of spatial and non-spatial features to
improve traffic prediction models. All experiments are conducted on a standard-
ised computational setup, with specifications noted for clarity and reproducibility.
Two programming languages are used for training the models (python 3.7.6 and
MATLAB R2022b).

(5) Identify the best performing ML methods for traffic-flow prediction and traffic density
estimation. Also, compare their performance against those derived by OLS and spatial
regression models.

(6) Conduct sensitivity analysis to identify the optimal kernel density bandwidth that can
improve the accuracy of prediction. The impact of urban features is weighted with a
predetermined KDE bandwidth of 1000 m. To determine the most relevant features
and their sphere of influence, five experiments are conducted in this framework.

Table 2. Features to be used as predictors in the ML prediction models.

Categories Features Description

Road charac-
teristics

Road type

Each road type has different capacities and speed limits. For instance,
high-capacity roads (e.g., major roads) are designed to hold large volumes of
traffic moving at higher speeds, and they naturally have high traffic flow. Road
types have a significant influence on the traffic [52].

Road environment

It represents the road nature, including the presence of a traffic island link,
proximity to a junction, dual carriageway, single carriageway, and the presence
of a slip road. The road environment (the number of lanes in particular)
impacts traffic flow, as it is directly linked to the road capacity and the traffic
volume [52].

Road
shape/length

The geometrical features of roads, including the road length and their shape,
are considered to affect the traffic flow [12]. Longer roads may introduce
variations in the traffic flow, due to changes in road characteristics,
intersections, access points, and other factors alongside their length.
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Table 2. Cont.

Categories Features Description

Facilites

Bus stops
Bus stops can impact the traffic flow, considering their locations on busy roads
and intersections, where buses may hold traffic whilst loading and
unloading passengers.

Train stations
Train stations have a strong impact on traffic flow [55]. In general, access to
public transport nodes is considered to affect traffic-flow prediction (e.g., the
multifaceted impacts on urban road systems) [53,54].

Point of
Interest Hospitals Hospital locations may also affect the traffic flow owing to their influence on

road network capacity, leading to bottlenecks or congestion points [56].

Colleges

A set of other POIs are also used to evaluate the temporal and spatial impact of
POIs on the traffic flow. Their impact is estimated by measuring the distance
from the road surface and traffic sensors, so as to improve the prediction
accuracy [11].

Public space Recreational space

POIs of recreational purposes may impact traffic-flow prediction. Recreational
space can attract a high volume of vehicles during peak hours or special events.
Increased traffic volume around these places can lead to localised congestion
and longer travel times in the surrounding area.

Tourism places

Tourist attractions often become congestion hotspots, as there is often an
increase in the traffic volume as well as loading and unloading of the
passengers around tourism destinations. They serve as external factors on
traffic-flow prediction including tourist places, considered an attraction point
for crowdedness in urban areas.

Landscape

Landscape areas, such as Hyde Park and Regent Park, are usually located near
busy roads or intersections, as they may restrict vehicles from crossing the area
and thus force road users to find alternative routes, which can also lead to
increased congestion.

3.2. Traffic Prediction Using Different Combinations of Features

Table 2 lists the urban features and road characteristics used in our traffic-flow pre-
diction modelling. The specific rationale for adopting each variable is described under
each feature entry. In essence, they are considered in the existing literature as having a
non-trivial impact on the traffic flow and, by comparing the prediction outcomes based on
the use of different combinations of these features, we will offer a systematic evaluation of
how these categories of features can be used towards explaining and predicting the traffic
flow around them.

To derive prediction from the ML methods, we use them as either a regressor (for
the traffic flow) or a classifier (for the traffic density) so that we can improve the overall
performance of predicting the traffic situation. The predictors will be determined by adding
different combinations of features to the prediction model, as listed below (Table 3):

• Scenario 1 uses the basic traffic indicators (average traffic density, hour, road segment,
and days) to establish a baseline prediction model.

• Scenario 2 uses the basic traffic indicators and the road characteristics (road type, road
nature, and road length) to assess the impact of road design on traffic flow.

• Scenario 3 uses the basic traffic indicators and spatial features (POIs such as hospitals
and colleges, as well as public nodes and public transport facilities).

• Scenario 4 uses the basic traffic indicators, road characteristics, and two of the POIs
(hospitals and colleges).

• Scenario 5 uses all feature categories, namely the basic traffic indicators, road charac-
teristics, as well as all spatial features.



Sustainability 2025, 17, 68 8 of 21Sustainability 2024, 17, x FOR PEER REVIEW  7  of  21 
 

 

Figure 1. Flow of research for traffic modelling. 

Table 2. Features to be used as predictors in the ML prediction models. 

Categories  Features  Description 

Road 

characteristics 
Road type 

Each road type has different capacities and speed limits. For instance, high-

capacity roads (e.g., major roads) are designed to hold large volumes of traffic 

moving at higher speeds, and they naturally have high traffic flow. Road 

types have a significant influence on the traffic [52]. 

Figure 1. Flow of research for traffic modelling.

The difference in the combinations of the predictors between these scenarios will enable
us to assess the performance of a particular type of predictors in refining the prediction.
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Table 3. The five scenarios’ combinations of predictors for the ML model.

Traffic
Indicators

Road Charac-
teristics Spatial Features

Traffic
Density by

Hours,
Days, Road
Segments

Road Type,
Road Nature,
Road Length

POIs (Urban Facilities)
Public

Transport
Facilities

Hospitals Colleges Public
Nodes * Bus Stops

Scenario 1
√

Scenario 2
√ √

Scenario 3
√ √ √ √ √

Scenario 4
√ √ √ √

Scenario 5
√ √ √ √ √ √

* Landscape areas, tourist places, and recreational places.

3.3. Traffic Data

Our study uses the traffic-flow data from London, UK. They are a set of annual road
traffic estimates provided by the UK Road Traffic, Department for Transport (roadtraffic.dft.
gov.uk [accessed on 24 April 2023]). It comprises street-level road traffic estimates, which
are derived through a combination of automatic traffic counts from around 300 locations
and approximately 8000 manual traffic counts carried 1000 out annually for the Department
for Transport’s road traffic statistics (conducted by trained enumerators from 7 a.m. to
7 p.m. on weekdays between March and October). As it takes the form of annual street-
level road traffic estimates with in-house preprocessing, no records were shown as missing
their fields or deemed incomplete, i.e., no data was truncated or eliminated for incomplete
entries, nor was any anomaly noted. This dataset caters the scope of our study well, as we
aim to develop offline models to evaluate the impact of urban facilities on predicting traffic
flows. However, any follow-up studies intended for developing a real-time prediction may
require training of the models with disaggregate real-world data that may be missing some
fields and/or contain anomalies. The impact of such localised and short-term anomalies
will also require a separate investigation.

4. Analysis
4.1. Machine Learning Model: Regression

As described earlier, a total of 18 supervised ML methods were used across five
families for predicting the traffic flow, and they were applied to all five scenarios (Table 3).
The results are shows in Table 4.

They confirm that the ML methods vastly outperform the classic regression models.
In particular, the validation metrics of the OLS regression model, spatial error, and spatial
lag were (R2 = 0.30, RMSE = 0.397, and MAE = 0.288), (R2 = 0.448, RMSE = 0.358, and
MAE = 0.280), and (R2 = 0.438, RMSE = 0.388, and MAE = 0.282), respectively; whereas
ML (Fine tree) applied to the same set of predictors returns (R2 = 0.94, RMSE = 0.129, and
MAE = 0.069). These results clearly illustrate the efficiency of ML methods in predicting
the traffic flow.

The ML methods generally perform much better when the spatial features are added
as predictors. For instance, using the traffic indicators alone (Scenario 1) only returned a
modest performance, whereas combining the traffic indicators with the road characteristics

roadtraffic.dft.gov.uk
roadtraffic.dft.gov.uk
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(Scenario 2) saw a considerable improvement in their performance. Similarly, the use of the
spatial features (POIs and bus stops) significantly improved the outcomes, particularly the
GPR and Bagged tree models, while the road characteristics in Scenario 2 helped improve
the performance for SVM, Bilayered NN, and narrow NN. Between Scenarios 2 and 3, the
spatial features had a higher impact than road characteristics on the final models.

Table 4. Performance of ML traffic-flow prediction against Scenarios 1–5.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE

Decision tree
(fine) 0.311 0.57 0.211 0.137 0.91 0.074 0.140 0.90 0.072 0.133 0.92 0.070 0.129 0.94 0.069

Decision tree
(med) 0.303 0.59 0.211 0.157 0.88 0.090 0.161 0.89 0.089 0.163 0.89 0.093 0.145 0.91 0.082

Decision tree
(coarse) 0.321 0.54 0.230 0.234 0.76 0.150 0.233 0.76 0.145 0.232 0.76 0.149 0.190 0.84 0.133

SVM Cubic 0.395 0.31 0.258 0.364 0.42 0.231 0.375 0.38 0.242 0.353 0.45 0.222 0.208 0.68 0.238

SVM Fine
Gaus. 0.384 0.38 0.245 0.277 0.66 0.161 0.267 0.69 0.154 0.231 0.77 0.131 0.178 0.84 0.202

SVM
Med.Gaus. 0.388 0.37 0.245 0.348 0.47 0.217 0.356 0.45 0.224 0.341 0.49 0.208 0.197 0.83 0.106

Ensemble
(Boosted) 0.333 0.51 0.244 0.289 0.63 0.211 0.291 0.63 0.212 0.290 0.63 0.211 0.263 0.69 0.194

Ensemble
(Bagged ) 0.322 0.54 0.231 0.226 0.78 0.158 0.145 0.91 0.083 0.166 0.88 0.108 0.130 0.92 0.074

Squared
GPR 0.358 0.43 0.257 0.255 0.72 0.172 0.236 0.76 0.152 0.192 0.84 0.121 0.148 0.90 0.195

Matern GPR 0.354 0.45 0.255 0.242 0.74 0.160 0.222 0.79 0.139 0.187 0.85 0.117 0.130 0.90 0.075

Exp. GPR 0.340 0.49 0.232 0.232 0.76 0.145 0.236 0.76 0.145 0.198 0.83 0.121 0.148 0.87 0.084

Rational
Quad. 0.338 0.50 0.237 0.237 0.75 0.152 0.227 0.77 0.143 0.184 0.85 0.112 0.149 0.91 0.084

Narrow NN 0.351 0.46 0.252 0.321 0.55 0.228 0.329 0.53 0.237 0.315 0.56 0.226 0.272 0.76 0.212

Wide NN 0.337 0.50 0.242 0.278 0.66 0.198 0.212 0.80 0.141 0.166 0.87 0.110 0.129 0.92 0.089

Bilayered
NN 0.342 0.48 0.246 0.182 0.85 0.124 0.294 0.62 0.207 0.272 0.67 0.193 0.238 0.76 0.175

Trilayered
NN 0.332 0.51 0.238 0.268 0.69 0.189 0.264 0.70 0.185 0.237 0.75 0.167 0.220 0.77 0.160

SVM Kernel 0.401 0.29 0.261 0.244 0.44 0.171 0.387 0.34 0.249 0.359 0.43 0.227 0.345 0.48 0.217

LS Kernel 0.384 0.35 0.279 0.364 0.42 0.229 0.375 0.39 0.274 0.355 0.44 0.255 0.340 0.49 0.245

Scenario 4 highlights the importance of using specific POIs, namely hospitals and
colleges. Finally, Scenario 5 confirms that utilizing all features improves the overall model
performance, with the Fine tree model returning the best performance with validation
metrics at R2 = 0.94, RMSE = 0.129, and MAE = 0.069, followed by Bagged tree and Wide NN
models with validation metrics (R2 = 0.92, RMSE = 0.130, and MAE = 0.074) and (R2 = 0.92,
RMSE = 0.129, and MAE = 0.089). Interestingly, the results from the Fine tree model are
consistently high in performance across Scenarios 2–5, whereas other models are affected by
the types and the combination of indicators. Nevertheless, the spatial features generally had
the highest impact on improving the model performance between feature categories, which
illustrates the importance of spatial features and analysis within traffic-flow prediction.

Figure 2 illustrates a summary of the highest R2 values achieved by each ML family
across five scenarios. While it confirms the consistently low performance of Scenario 1 (i.e.,
traffic characteristics alone), the difference between the remaining four scenarios varies
from one ML family to another, and Scenario 5 facilitates the highest overall performance.
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Figure 3 shows the aggregate performance of all ML methods combined for Scenarios
1, 2, and 5. Scenarios 3 and 4 are omitted, as Scenario 5 represents their composite and
yields better overall prediction performance than any ML methods. As expected, Scenario
5 returned the best overall performance compared to other scenarios. All families of ML
methods achieved R2 values above 0.90, except for the Kernel Approximation family which
returned low performance across all five scenarios.
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Figure 4 shows the discrepancy between the expected and the observed values for
Fine tree in Scenario 5, i.e., the best-performing ML method in Scenario 5. The fluctuation
suggests that the predictive power is not consistent across the different values of observation
index but returns an overall prediction that is highly accurate.
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Figure 4. Plotting the prediction by Fine tree traffic-flow prediction.

4.2. Machine Learning: Classification and Density Estimation

ML approaches were also used for predicting the traffic density. The performance of
these classification methods was also examined using Scenarios 1–5 (Table 3). The results
suggest that the addition of urban features also help improve the performance of the classifi-
cation phase, in that Scenario 5 returned the highest level of accuracy with a 98.7% accuracy
with Fine KNN (Table 5). Between the five scenarios, Scenario 1 yielded consistently low
performances across all ML methods applied. For instance, the Bagged tree model within
the Ensemble family achieved a singularly high cross-validation rate of 78.73% in Scenario
1, and it showed even higher estimation performance for Scenarios 2–5. In other words,
using the road characteristics and spatial features could lead to considerable improvements.

Table 5. Performance of traffic density classification by ML models under 5 scenarios.

ML-Model

Scenario Traffic Indic.
(TI)

Road Chara.
(RC)

Public Facility
(POI) RC and POI

All Features
(TI, RC, POI)

Decision Tree (Fine) 69.89 84.34 87.35 81.78 89.14

Decision Tree (Med.) 65.15 69.09 69.21 68.74 71.46

Kernel Naïve Bayes 56.27 57.74 64.50 57.72 64.37

SVM (Quadratic) 37.53 59.27 63.10 58.62 70.24

SVM (Cubic) 32.95 58.87 57.59 61.49 92.82

SVM (Fine Gaussian) 65.93 81.44 86.40 78.91 96.81

SVM (Med. Gaussian) 62.63 66.68 67.57 70.29 76.29

KNN (Fine) 65.81 88.77 87.12 91.72 98.70

KNN (Medium) 60.83 77.48 77.75 80.49 88.12

KNN (Cos) 59.78 76.41 76.32 64.21 88.07
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Table 5. Cont.

ML-Model

Scenario Traffic Indic.
(TI)

Road Chara.
(RC)

Public Facility
(POI) RC and POI

All Features
(TI, RC, POI)

KNN (Cubic) 60.34 75.28 75.33 80.61 85.04

KNN (Weighted) 66.50 88.95 86.06 77.90 97.16

Ensemble (Bagged) 78.73 94.61 91.67 82.86 98.67

KNN (Subspace) 25.17 82.77 92.46 71.76 98.62

Neural Network (Narrow) 58.05 68.56 67.96 67.24 71.04

Neural Network (Medium) 59.62 79.48 77.56 89.34 92.75

Neural Network (Wide) 64.82 95.42 94.38 85.63 98.24

Neural Network (bilayered) 60.07 75.86 76.03 80.86 83.88

Neural Network (trilayered) 62.08 79.13 82.14 85.75 90.44

SVM: Support Vector Machine; KNN: K-Nearest Neighbour.

In all five scenarios, Fine KNN, Bagged tree, and Wide NN consistently returned
a strong performance. Fine KNN achieved the highest accuracy of all MLs applied in
Scenarios 4 and 5, which again confirmed the positive impact the road characteristics and
the POI features had on the accuracy of the model.

Figure 5 shows the classification confusion matrix for the Fine KNN estimation model
in Scenario 5. The model yielded a consistently strong performance, accurately classifying
98.3% of the 10,692 cases into their respective traffic density class (1032 cases into class 1:
low density; 6059 into class 2: medium density; and 3420 cases into class 3: high density),
whilst containing the volume of all incorrect outputs at 1.7% (181 out of 10,692 cases).
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5. Sensitivity Analysis
5.1. Investigating the Sensitivity of the Kernel Density Bandwidth

As mentioned earlier, use of urban features in ML-based traffic prediction is still grow-
ing and for those that employ KDE for POIs or similar, the sensitivity of their bandwidth is
yet to be explored in a systematic fashion. The outcomes of the ML-based regression and
classification tests in our study demonstrate that the KDE of the proposed urban features
made a considerable improvement in their prediction accuracy. Yet, the KDE bandwidth
itself was fixed at 1000 m, and we did not explore how the models would perform against
different KDE bandwidth.

The bandwidth of KDE can be considered as the sphere of influence of each feature,
and its search radius would naturally affect the outcome. A shorter bandwidth will retain
more localised tendencies but may result in a noisy and abrupt distribution which may
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not be an accurate portrayal of the traffic flow; whilst a longer bandwidth will generate a
smoother surface but with less information on the local traffic situation, as it is averaged
out. To find the right balance between sensitivity to the local situation and the overall
smoothness, sensitivity analysis of KDE becomes crucial. This study pursues it in three
steps: (1) investigate the extent of changes in the model performance when using different
bandwidths in KDE, (2) determine the optimal bandwidth for achieving the highest accu-
racy of traffic prediction, and (3) measure the impact of bandwidth on the accuracy of the
ML models.

5.2. Sensitivity Analysis of the KDE Bandwidth

To test the sensitivity and the performance of the ML models against different KDE
bandwidths, we will use four of the ML models that yielded the highest accuracy at
1000 m and conduct sensitivity analysis under Scenario 5 (i.e., all urban features and road
characteristics) with bandwidth values of 200, 600, 1000, 1500, and 2000 m.

As the optimal KDE bandwidth is a function of the POI density and distribution, it
may vary by the configuration of the study area as well as the dataset used. However, the
following exercise should give us sufficient insights into how sensitive the ML models are
against changes in the KDE bandwidth.

Table 6 summarises the results of the top-performing ML regression models (Fine tree,
Wide Neural Network, Bagged tree, and Medium tree) with the five bandwidth distances.
The results generally show that the choice of the KDE bandwidth has some influence on the
model’s validation metrics (RMSE, MAE, and R2). However, the extent of their influence
remains marginal in some models. The results also confirm that the use of 1000 m KDE
bandwidth extracts the highest performance from these ML models for this dataset.

Table 6. Sensitivity analysis of the KDE bandwidth for ML traffic-flow prediction.

Model Bandwidth RMSE R-Squared MAE

Fine tree

200 0.160 0.88 0.082

600 0.132 0.92 0.071

1000 0.129 0.94 0.069

1500 0.133 0.92 0.071

2000 0.131 0.92 0.071

Wide Neural
Network

200 0.187 0.84 0.098

600 0.169 0.87 0.112

1000 0.129 0.92 0.089

1500 0.134 0.90 0.092

2000 0.165 0.88 0.110

Bagged tree

200 0.146 0.90 0.083

600 0.145 0.90 0.075

1000 0.130 0.92 0.074

1500 0.133 0.91 0.075

2000 0.132 0.91 0.075

Medium tree

200 0.164 0.88 0.087

600 0.147 0.90 0.083

1000 0.145 0.91 0.082

1500 0.146 0.90 0.084

2000 0.148 0.90 0.084
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Figure 6 shows the validation metrics for the best four ML models across different
values of bandwidth. Each model exhibited a generally similar tendency of changes against
the KDE bandwidth values. Among them, the Medium and Bagged trees showed low
variation in the validation metrics. The Bagged tree, in particular, showed very little
variation in its validation metrics across different KDE bandwidths, where R2 converged
between 0.90 and 0.92, RMSE between 0.130 and 0.146, and MAE between 0.074 and 0.083.
Medium tree validation metrics also showed a stable tendency across different bandwidths,
with R2 ranging between 0.88 and 0.91, RMSE between 0.145 and 0.164, and MAE between
0.082 and 0.087.
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In contrast, Fine tree and Wide NN showed more volatility against changes in the
bandwidth. Wide NN has the highest fluctuation in the validation metrics between the
models, with the R2 value ranging between 0.84 and 0.92.

5.3. Sensitivity Analysis of the Classification Models

Table 7 summarises the results of ML classification models with the highest perfor-
mance returned by Fine KNN, Bagged tree, Subspace KNN, and Wide Neural Network.
They were also applied across the same five values of bandwidths (200 m, 600 m, 1000 m,
1500 m, and 2000 m). The results are similar to those from the ML regression modelling,
where the bandwidth of 1000 m returned the highest performance from all tested models,
and changes in the KDE bandwidth made some, if not drastic, impact on their validation
metrics (RMSE, MAE, and R2). Figure 6 illustrates changes in the cross-validation perfor-
mance in estimating traffic density by these ML models across the bandwidths tested. In
most cases, the models show significant improvement in cross-validation accuracy as the
bandwidth increases from 200 m to 1000 m and a moderate decline after 1000 m. Subspace
KNN and Bagged tree are more sensitive than other ML methods are against changes in
the bandwidth, and their level of accuracy increased from 73.9% to 98.6%, and from 75.3%
to 98.67%, respectively.
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Table 7. Sensitivity analysis for ML traffic density prediction models.

Model Bandwidth Cross-Validation Accuracy (%)

Fine KNN

200 85.24

600 90.69

1000 98.70

1500 93.73

2000 91.28

Bagged tree

200 75.32

600 91.40

1000 98.67

1500 96.10

2000 94.37

Subspace KNN

200 73.95

600 79.74

1000 98.62

1500 94.26

2000 94.77

Wide Neural Network

200 83.64

600 88.83

1000 98.24

1500 95.30

2000 96.15

The results also suggest that the ranking of the performance of ML models changes
between different bandwidth values (Figure 7). For example, Bagged tree provides higher
accuracy than Wide KNN and Fine KNN at 600 m bandwidth, whereas, at 200 m bandwidth,
Bagged tree provides lower accuracy than Wide KNN and Fine KNN. The choice of the
optimal model would depend on the bandwidth values, which in turn may be confined by
the specific dataset and the study area used.
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Results from the sensitivity analysis of ML regression and ML classification suggest
that (1) 1000 m was the best overall bandwidth among those used for sensitivity analysis
(200, 600, 1000, 1500, and 2000 m), both for the regression and the classification models, and
(2) classification is more sensitive to changes in the KDE bandwidth, thus highlighting the
importance of identifying a suitable bandwidth for the classification models.

6. Discussion
The main goal of this study was to assess the importance of urban and spatial features,

how their presence would affect the local traffic flow, and whether we can improve the
traffic-flow prediction and traffic density estimation by accounting for the proximity to
these facilities [18,19]. As illustrated in the previous section, the urban features had the
highest impact among all other predictors towards improving the performance of the model.
For instance, the highest-performing ML regression model saw its R2 value rise from 0.59
to 0.91, whilst the RMSE and the MAE values reduced from 0.303 to 0.145, and from 0.211
to 0.018, respectively. In addition, the accuracy of the ML classification method itself has
yielded a much higher performance, improving its forecasting from 65.81% to 98.7%, by
utilising urban features besides the basic traffic indicators. These results demonstrate the
importance of spatial features that could impact the traffic flow to improve the prediction
models. In other words, we should reflect on the extent each region or urban area is affected
by their specific urban factors that may affect the local traffic flow.

In our study, ML methods demonstrated their capacity to produce a robust and
accurate prediction whilst also handling complex non-linear relationships between features
and responses, thus uncovering the intricate patterns of dependencies that may have been
otherwise obscured. Results from the prediction analysis of ML methods also demonstrated
that their performance was greatly enhanced when urban features were introduced as part
of the predictors. The best ML regression model was achieved by Fine tree using all
proposed features with validation metrics (R2 = 0.94, RMSE = 0.129, and MAE = 0.069),
while the validation metrics of OLS regression and spatial lags and spatial errors were
consistently lower at (R2 = 0.30, RMSE = 0.397, and MAE = 0.288), ( R2 = 0.43, RMSE = 0.388,
and MAE = 0.282), and (R2 =0.44, RMSE = 0.358, and MAE = 0.280), respectively. It confirms
the comparative advantage of ML models for making traffic prediction, which aligns well
with the existing literature [24,25]. Interestingly, the use of urban features would further
enhance the performance of ML models but has little impact on the performance of non-ML
regression models.

The fact that the Decision tree family, especially Fine tree, returned the best overall
performance is rather unsurprising, given its affinity with multiple data (i.e., traffic char-
acteristics and urban features) as well as its flexibility that facilitates classification and
regression through data mining. It is also less dependent on large volume or high quality
of data, thus making it a suitable and robust choice for traffic prediction that incorporates
proximity to urban facilities.

Since the proximity to urban features and public space plays a key role in our ML
traffic prediction, the choice of KDE bandwidth requires careful consideration, as does the
rationale for using KDE itself. In principle, KDE allows us to smooth out the sphere of
influence of POIs in all directions, and it offers a sensible solution for reflecting the impact
of urban facilities on local traffic, especially when we have no data on the weighting or the
significance of each facility, or the directions of flows around them. Where appropriate, KDE
also allows us to incorporate weighting of each POI (e.g., estimated annual visitor counts).
On the downside, KDE renders a simple smoothing technique, and its representation
is neither statistically verified, nor does it specify the exact value as the most suitable
bandwidth for traffic modelling. Still, it offers a suitable representation of point density in
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the area, and it is for this reason that the prevailing literature utilises KDE widely [11,15].
Our study aligns with this trend whilst also contributing to the literature by adding a
systematic account of the sensitivity of the KDE bandwidth.

Results from sensitivity analysis show that the performance of the ML regression
models and that of the classification models is affected by the choice of KDE bandwidth,
with classification being more significantly affected by the change in the KDE bandwidth.
Overall, 1000 m was the optimal bandwidth for both regressions and classification models.
It is unclear as to why 1000 m was the most effective representation of such urban features.
We would hypothesise that 1000 m marks the distance for the sphere of influence, or more
specifically, the area within which local travel would increase from a transport junction
(e.g., train station, bus stops) to the destination, whilst for private vehicles, more parking
and loading/unloading activities might arise, thus generating local traffic congestion. This
needs further ground truthing and empirical investigation.

Regardless, the optimal value is a function of POI density and geometry, which means
that the value that constitutes the optimal bandwidth may change from one study area and
dataset to another. The only viable solution would be to carry out sensitivity analysis first
to define the optimal KDE bandwidth for the particular study area empirically which, in the
case of our study, was 1000 m radius. This confirms the indicative examples identified in
the literature, thus suggesting its suitability across several different contexts and datasets.

The proposed framework has several limitations. First, sensitivity of the KDE was
tested with a finite set of discrete bandwidths. It was also applied to all POIs and public
transport facilities to maintain simplicity and consistency. Since these spatial features may
trigger various traffic behaviours, future works should reassess the bandwidth for each
feature, as this may further improve the performance of the models.

The size of the dataset also needs attention. The traffic data used in this study consisted
of 10,692 rows, but a larger dataset would help refine the models further. The ways in which
the dataset is prepared and processed also requires careful consideration. As our study
focused on developing and evaluating the performance of an offline model that is designed
for specific applications (which have their own utility, e.g., urban design and transport
planning), the annual estimate of traffic flows adopted was perfectly suitable. However, as a
future avenue of our research, we invariably wish to make near-real-time traffic prediction.
In this context, it would be vitally important to use a larger dataset whilst also accounting
for any missing entries or anomalies and sudden changes in traffic conditions (e.g., those
triggered by traffic accidents nearby). The framework and the predictors proposed in
this study should help inform such future works on developing DL real-time traffic flow
prediction using the features proposed in this study, but their sensitivity to such real-world
data requires further sensitivity analysis.

7. Conclusions
This study aimed to enhance and evaluate the performance of ML-based traffic pre-

diction models by comparing between 21 ML and non-ML models, and applying them to
different combinations of predictors, including proximity to urban features. Sensitivity
analysis was also carried out to determine the most suitable bandwidth for KDE. The
results show that the performance of ML methods is greatly enhanced by adding more
predictors, especially the spatial features. The change in KDE bandwidth also highlighted
the importance of deriving a suitable value to maximise the performance of the ML model.

The study also developed three non-ML traffic prediction models (OLS, spatial error,
and spatial lag), which were applied to the same set of features and dataset as those utilised
for the ML models. The results confirmed that ML methods were comprehensively more
accurate than these statistical methods in predicting the traffic flow. The best regression ML
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prediction was achieved by Fine tree with validation metrics of R2 = 0.94, RMSE = 0.129,
and MAE = 0.069; whereas the classification ML prediction for traffic density projection
was championed by Fine KNN with a cross-validation accuracy of 98.7%.

Our contribution was to demonstrate that the combination of a select few ML models
with proximity to urban features can offer a remarkably high level of precision in predicting
the traffic flow as well as estimating the traffic density. While our model was designed as
an offline model, there is a distinct scope for developing a model for accurate, real-time
prediction. However, as the use of urban features is crucial for both regression ML and
classification ML, the specific challenge lies with the preparation of a suitable set of data
to support the real-time projection of the traffic situation. In other words, a real-time
prediction model will require resilience against unprocessed real-world data with missing
entries and abrupt changes to the traffic situation, and further investigation is wanted for
developing models that can persevere in those conditions.
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