
BIROn - Birkbeck Institutional Research Online

Zuba, W. and Lachish, Oded and Pissis, S.P. (2024) Shortest Undirected
Paths in de Bruijn Graphs. In: https://cpm2025.pangenome.eu/, 17–19 Jun
2025, Milan, Italy. (In Press)

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/54935/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/54935/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Shortest Undirected Paths in de Bruijn Graphs1

Wiktor Zuba #2

CWI, Amsterdam, The Netherlands3

University of Warsaw, Warsaw, Poland4

Oded Lachish #5

Birkbeck, University of London, London, UK6

Solon P. Pissis #7

CWI, Amsterdam, The Netherlands8

Vrije Universiteit, Amsterdam, The Netherlands9

Abstract10

Computing shortest directed paths in de Bruijn graphs is well studied and well understood. This11

is not the case for computing undirected paths, which is algorithmically much more challenging.12

Here we present a general framework for computing shortest undirected paths in arbitrary de Bruijn13

graphs. We then present an application of our techniques for making any arbitrary order-k de Bruijn14

graph G(V, E) weakly connected by adding a set of edges of minimal total cost. This improves on15

the running time of the recent (2 − 2/d)-approximation algorithm by Bernardini et al. [CPM 2024]16

from O(k|V |2) to O(k|V | log d) time, where d is the number of weakly connected components of G.17

2012 ACM Subject Classification Theory of computation → Pattern matching18

Keywords and phrases string algorithm, graph algorithm, de Bruijn graph, Eulerian graph19

Funding A research visit during which part of the presented ideas were conceived was funded by a20

Royal Society International Exchanges Award.21

Wiktor Zuba: Supported in part by the Netherlands Organisation for Scientific Research (NWO)22

through Gravitation-grant NETWORKS that has received funding from the European Union’s23

Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement24

No 10103425325

Solon P. Pissis: Supported in part by the PANGAIA and ALPACA projects that have received26

funding from the European Union’s Horizon 2020 research and innovation programme under the27

Marie Skłodowska-Curie grant agreements No 872539 and 956229, respectively.28

mailto:w.zuba@mimuw.edu.pl
https://orcid.org/0000-0002-1988-3507
mailto:o.lachish@bbk.ac.uk
https://orcid.org/0000-0001-5406-8121
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932

2 Shortest Undirected Paths in de Bruijn Graphs

1 Introduction29

We start with some basic definitions and notation from [3]. An alphabet Σ is a finite set of30

elements called letters. We consider an integer alphabet Σ = [0, σ). Let X = X[0] · · · X[n−1]31

be a string of length n = |X| over Σ. By Σk we denote the set of all strings of length k > 0.32

For two indices i and j ≥ i of X, X[i . . j] is the fragment of X starting at position i and33

ending at position j. The fragment X[i . . j] is an occurrence of the underlying substring34

P = X[i] · · · X[j]; we say that P occurs at position i in X. A prefix of X is a substring of the35

form X[0 . . j] and a suffix of X is a substring of the form X[i . . n − 1]. By XY or X · Y we36

denote the concatenation of strings X and Y : XY = X[0] · · · X[|X| − 1]Y [0] · · · Y [|Y | − 1].37

For strings X and Y , a suffix/prefix overlap of X and Y is a suffix of X that is a prefix of Y .38

Let us fix a collection S of strings over alphabet Σ. We define the order-k de Bruijn39

graph (dBG, in short) of S as a directed multigraph, denoted by GS,k(V, E), where V is40

the set of length-k substrings of the strings in S and E has an edge (u, v) with multiplicity41

mu,v if and only if the strings u[0] · v and u · v[k − 1] are equal and occurring exactly mu,v42

times in total in the strings of collection S. In bioinformatics, S models a collection of DNA43

sequences coming from a genome sample through a sequencing experiment, and any Eulerian44

trail of GS,k(V, E) – a graph path using each edge of GS,k(V, E) exactly once – represents45

a potential reconstruction of the genome [15, 12]. Inspect Figure 1. This is an idealised46

model though as GS,k would never be Eulerian in practice due to sequencing errors [13]; and,47

furthermore, GS,k would not even be weakly connected. We could make GS,k Eulerian by48

increasing the multiplicity of some of its existing edges [11] or introducing new ones [3]. In49

either case, the natural optimization goal is to minimize the total cost of the added edges.50

Indeed many algorithms underlying genome assembly tackle similar problems [18, 1, 4, 17].51

We also define the complete de Bruijn graph of order k over the alphabet Σ, denoted by52

GΣ,k(V, E), as a directed graph, where V is the set of all the strings from Σk and E has an53

edge (u, v) if and only if string v is obtained from string u by appending letter v[k − 1] after54

its last position and removing letter u[0]: GΣ,k(V, E) has |Σ|k vertices and |Σ|k+1 edges.55

e1
e2

e8 e7

e5

e6

e4
e3

s

t

e1e3e6e5e2e4e7e8
e1e3e7e2e4e6e5e8
e1e3e7e8e6e5e2e4
e8e6e5e1e3e7e2e4
e8e7e1e3e6e5e2e4
e1e3e6e5e8e7e2e4

Eulerian trailsAT TT

TA AA

ATTAATTATA
ATTATTAATA
ATTATAATTA
ATAATTATTA
ATATTAATTA
ATTAATATTA

String reconstructions

Figure 1 Let S be a string collection consisting of AAT, ATA, ATT, ATT, TAA, TAT, TTA, TTA. The
de Bruijn graph GS,2(V, E) is presented on the left; the complete set of Eulerian trails from s to t is
presented in the middle; the corresponding set of string reconstructions is presented on the right.

Our Motivation. Bernardini et al. [2] studied the problem of making any arbitrary GS,k56

weakly connected by introducing a set of new edges of minimal total cost (as well as the57

underlying set of new vertices when those do not exist in GS,k). Solving this problem is58

important because we can then use the linear-time algorithm of Bernardini et al. from [3]59

to balance the weakly connected graph by adding a set of edges of minimal total cost thus60

W. Zuba et al. 3

making GS,k Eulerian.1 Recall that making GS,k directly Eulerian by adding a set of new61

edges of minimal total cost is NP-hard from the well-known shortest common superstring62

problem [6]; hence, the connect-and-balance strategy, which, generally serves as a good-63

performing heuristic [3]. Two remarks are in order: first, since the general task is to connect64

GS,k, we can safely assume that mu,v is either 0 or 1 (i.e., multiplicities play no role here);65

and second, since the task, in particular, is to connect GS,k with the smallest number of edge66

additions, we should rather seek shortest undirected paths in GS,k (i.e., shortest sequences of67

edges from GΣ,k, in which the edge directions are neglected). Inspect Figure 2.68

bcaa abca bcac

bcad

bcaa bcac

bcad

bcaa bcac

bcad

dbca

cadb cbca

adbc

cacb

acbc

Figure 2 An input dBG of order k = 4 with 3 weakly connected components (left); an optimal
solution, using shortest undirected paths, with cost 3 (middle); a feasible solution, using shortest
directed paths, with cost 8 (right). We color blue the edges and vertices we have added from GΣ,k.

Bernardini et al. [2] showed that making GS,k weakly connected by adding a set of edges69

of minimal total cost is NP-hard. They also showed that no polynomial-time approximation70

scheme (PTAS) exists for making GS,k weakly connected by adding a set of edges of minimal71

total cost (unless the unique games conjecture [7] fails). Finally, they also showed that there72

exists an O(k|V |2)-time (2 − 2/d)-approximation algorithm for the same problem, where73

d is the number of connected components of GS,k. In this paper, we introduce a general74

framework for finding shortest undirected paths in dBGs. In particular, by employing our75

framework, we improve on the running time of the approximation algorithm of Bernardini et76

al. from O(k|V |2) to O(k|V | log d), while maintaining the same approximation ratio.77

Our Framework. Let us fix d families C1, C2, . . . , Cd of vertices (forming connected compon-78

ents in most applications) from GΣ,k, and let us denote V = C1 ⊔ C2 ⊔ · · · ⊔ Cd.2 Throughout79

this whole paper, we treat vertices of dBGs and their length-k string representations as80

equivalent: indeed, vertices of GΣ,k are in a natural bijection with Σk. In particular, Cp, for81

any p ∈ [1, d], or V are also treated as sets of strings.82

We generally aim at obtaining efficient algorithms for finding the minimal distance between
the vertices from two different families Cp and Cq; more formally, for any p, q ∈ [1, d],

dist(p, q) = min{dist(u, v) : u ∈ Cp, v ∈ Cq},

where dist(u, v) denotes the length of a shortest undirected path from vertex u to vertex v.83

Note that if Cp and Cq form two weakly connected components of GΣ,k, then dist(p, q) is84

precisely the minimal number of edges that must be added to connect the two components85

into a single one – assuming that we also add the vertices implied by those edges. In the same86

1 By Euler’s famous theorem, we know that a weakly connected directed graph is Eulerian if and only if
every graph vertex has equal in-degree and out-degree (except perhaps for the source and target).

2 We assume that these families are pairwise disjoint. However, our solutions work without this assumption.

4 Shortest Undirected Paths in de Bruijn Graphs

manner, by adding d − 1 such undirected paths, we can (greedily) connect C1, C2, . . . , Cd87

into a single component, thus making any arbitrary dBG GS,k weakly connected.88

The problem of finding the shortest directed path between any two vertices of GΣ,k can89

be solved in the optimal O(k) time using the preprocessing of the classic KMP algorithm [8].90

The same problem for undirected paths can also be solved in the optimal O(k) time [10]. By91

iteratively applying the latter result, we can compute dist(p, q) in O(k|Cp| · |Cq|) time and for92

all p, q pairs in O(k|V |2) total time, which is very slow when V is large, even if the number93

d of families is relatively small. By using more refined techniques, based on the generalized94

suffix tree [19] of the strings from V , we develop algorithms for finding the distances much95

more efficiently when the families are large or when there are many of them.96

In particular, given the collection C1, C2, . . . , Cd, we consider the following problems:97

One-to-One(p, q): output dist(p, q). Here we are given, in addition, p and q, and we are98

asked to find the length of the shortest undirected path between any vertex of Cp and99

any vertex of Cq.100

One-to-All(p): output dist(p, q), for every q ∈ [1, d]. Here we are given, in addition, p, and101

we are asked to find the length of the shortest undirected path between any vertex of Cp102

and any vertex of Cq, for every q ∈ [1, d].103

All-to-All: output dist(p, q), for all p, q ∈ [1, d]. Here we are asked to find the length of104

the shortest undirected path between any vertex of Cp and any vertex of Cq, for all105

p, q ∈ [1, d].106

Top(r): Here we are given, in addition, r, and we are asked to output, for every q ∈ [1, d],107

r distinct p ∈ [1, d] with the smallest value of dist(p, q), breaking ties arbitrarily.108

Let us remark that the algorithms underlying our framework are constructive: whenever109

we compute dist(p, q), we also know the pair u ∈ Cp, v ∈ Cq of vertices that are at distance110

dist(p, q) – by applying the technique from [10], we can enhance the output of the above111

algorithms with the optimal paths realising those distances at the additional linear cost in112

the size of the output – k times the length of the shortest path (every vertex is explicitly113

encoded using k letters); alternatively we can pay only the length of the shortest path if the114

output is given in a compacted form: the difference between the next two vertices on the115

path in the form of the new letter introduced and whether it is put in the front or back.116

Our Results. We make the following specific contributions:117

an algorithm solving One-to-One(p, q) in O(k(|Cp| + |Cq|)) time and space.118

an algorithm solving One-to-All(p) in O(k|V |) time and space.119

an algorithm solving All-to-All in O(dk|V |) time and O(k|V |) space.120

an algorithm solving Top(r) in O(rk|V |) time and space.121

Application. By plugging our results directly in the approximation algorithm of Bernardini122

et al. [2], we improve the running time of their algorithm from O(k|V |2) to O(dk|V |). By using123

more refined techniques, we obtain an even further improvement to an O(k|V | log d)-time124

algorithm, while maintaining the same approximation ratio of (2 − 2/d).125

Paper Organization. In Section 2, we present some preliminaries essentially summarizing126

the work in [10]. In Section 3, we present a simple linear-time algorithm for computing127

shortest paths in undirected dBGs. In Section 4, we present our framework: how distances128

between sets of vertices can be computed more efficiently in many settings. In Section 5, we129

apply our framework to the problem of making any arbitrary dBG weakly connected [2].130

W. Zuba et al. 5

2 Preliminaries131

Let [k] denote the set {0, 1, . . . , k−1}, and let S[i . . j] denote the substring S[i]S[i+1] · · · S[j]132

of S. Let S1, S2 ∈ Σk represent vertices v1 and v2 (respectively) of GΣ,k.133

Let U be a common substring of S1 and S2 and assume that it occurs in those strings134

at positions i and j respectively, with i ≤ j. Notice that we can transform S1 into S2 by135

first removing the first i letters of S1 (appending i arbitrary letters at its end at the same136

time), then adding the first j letters of S2 to its front (removing j letters from its end – in137

particular all the letters added in the previous step), and then symmetrically remove the138

last k − j − |U | letters and add k − j − |U | new ones in their place. In total this requires139

i + j + 2 · (k − j − |U |) = 2k − 2|U | − (j − i) operations. It turns out one cannot get a140

path from v1 to v2 of shorter length other then by choosing a different common substring or141

different occurrences. This fact is summarized in Lemma 1 by Liu [10]. Inspect Figure 3.142

▶ Lemma 1 ([10]). Let v1, v2 be two vertices of GΣ,k and S1, S2 ∈ Σk be the string repres-143

entations of v1, v2, respectively. Then dist(v1, v2) = 2k − maxi,j∈[k] (2 · |Ui,j | + |j − i|), where144

Ui,j is the longest common prefix of S1[i . . k − 1] and S2[j . . k − 1].145

S1 = A A A C C C C C C C C C C T C C C C A C T

S2 = C T C C C C T C C C C C C C C C C A A A A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3 Consider strings S1 and S2 for k = 21. The distance from S1 to S2 in the directed dBG
is equal to 19 (CT is the longest suffix of S1 that is a prefix of S2), and the distance from S2 to S1 is
equal to 18 (AAA is the longest suffix of S2 that is a prefix of S1). In case of the undirected dBG
the distance between the two vertices is 2 · 21 − 2 · 9 − 7 = 17 witnessed by the common substring
C4TC4. Notice that even though C10 is a longer common substring it cannot be used to obtain a
shortest path between the nodes because it appears in S1 at position 3 and in S2 at position 7 (and
2 · 10 + 4 < 2 · 9 + 7). This shows that it is not enough to look at prefixes, suffixes or the longest
common substring when computing the distance in the undirected dBG.

Suffix Tree. The classic indexing solution for standard strings is the suffix tree [19]. Given146

a set F of strings, the compacted trie of these strings is the trie obtained by compressing each147

path of nodes of degree one in the trie of the strings in F , which takes O(|F|) space [14].148

Each edge in the compacted trie has a label represented as a fragment of a string in F . The149

suffix tree ST(S) is the compacted trie of the suffixes of string S. Assuming S ends with a150

unique terminating letter $, every suffix S[i . . |S|] is represented by a leaf decorated by index151

i; see Fig. 4 for an example. The suffix tree occupies O(|S|) space and it can be constructed152

in O(|S|) time [19, 5]. It supports pattern matching queries for any pattern of length m153

in O(m + |Occ|) time, where Occ is the set of output occurrences. The suffix tree can also154

be generalized to a collection S = {S1, . . . , SN } of N strings as the compacted trie of the155

suffixes of string S1$1 · · · SN $N , where $i /∈ Σ, for i ∈ [1, N], is a unique terminating symbol.156

6 Shortest Undirected Paths in de Bruijn Graphs

$

GA

A$

$

GA$

GA

CAGAGA$

$

GA$

0

1

3

5

6

2

4

u

Figure 4 Suffix tree ST(S) of string S = CAGAGA$. The node spelling string AG is implicit and
thus dissolved in this compacted trie; the node u spelling string AGA is explicit and thus stored. In
particular, the root node, the branching nodes, and the leaf nodes form the set of explicit nodes.

3 Simple Pairwise Distance Computation using Suffix Tree157

Let I1(U) = {i : S1[i . . i + |U |) = U} and let I2(U) = {j : S2[j . . j + |U |) = U}. The distance158

dist(v1, v2) as described in Lemma 1 can also be expressed as follows: 3
159

dist(v1, v2) = 2k−max
U

(2|U | + max [max(I1(U)) − min(I2(U)), max(I2(U)) − min(I1(U))]) .

(1)160

Equation (1) changes the order of the maxima: the outer one is over any substring U , and161

the inner one is over the occurrences (starting positions) of U . We will next view Equation (1)162

through the lens of the generalized suffix tree of S1 and S2.163

Let ST({S1, S2}) be the generalised suffix tree of S1 and S2. Since |S1| = |S2| = k,164

ST({S1, S2}) has O(k) explicit nodes (and edges). For an explicit node v of ST({S1, S2}),165

let d(v) be its string depth, Lx
v = min{i : Sx[i . . k − 1] is a leaf descendant of v}, and166

Rx
v = max{i : Sx[i . . k − 1] is a leaf descendant of v} for x ∈ {1, 2}.167

Each common substring U is represented by an explicit (or implicit) node of ST({S1, S2}).168

Notice, that if both U and U ′ = Ua for some letter a ∈ Σ appear at the very same positions169

in both S1 and S2, then the value for U ′ is better than the one for U by exactly 2, hence170

it is enough to focus on the explicit nodes of ST({S1, S2}) when we want to compute the171

optimal value. Hence Equation (1) can also be expressed as follows:172

dist(v1, v2) = 2k − max
v∈ST({S1,S2})

(
2 · d(v) + max

[
R1

v − L2
v, R2

v − L1
v

])
. (2)173

▶ Observation 2. Lx
v = minw∈Children(v) Lx

w for a branching node v. For a leaf v the set from174

which Lx
v is taken is either a singleton or an empty set.175

A direct consequence of Observation 2 is that the values L1
v, R1

v, L2
v, and R2

v can be176

computed bottom up. We thus compute these 4 values using a bottom-up traversal (and the177

depth d(v) via a top-down traversal) for each node in O(k) total time. This gives a simple178

O(k)-time algorithm for computing dist(u1, u2) – after precomputing those values, it suffices179

to find the optimal value over all the explicit nodes.180

3 If I1(U) = ∅ or I2(U) = ∅, then the distance for this U as witness is equal to ∞, and hence the distance
remains the same whether such U are considered or not.

W. Zuba et al. 7

▶ Lemma 3. Let v1, v2 be two vertices of GΣ,k and S1, S2 ∈ Σk be the string representations181

of v1, v2, respectively. Given ST({S1, S2}), we can compute dist(v1, v2) in O(k) time.182

Let us remark that a different, yet much more complicated, O(k)-time algorithm for183

computing dist(v1, v2) using suffix trees has already been described in [10].184

Recall that dist(p, q) = min
v1∈Cp,v2∈Cq

dist(v1, v2). A naïve application of Lemma 3 for185

computing dist(p, q) by explicitly computing the pairwise distance between all the pairs of186

vertices runs in O(k|Cp| · |Cq|) time. In the next section, we present our framework: how187

distances between sets of vertices can be computed more efficiently in many settings.188

4 Our Framework for Shortest Undirected Paths in de Bruijn Graphs189

In this section, we provide simple and efficient solutions to the considered distance (shortest-190

path) problems. Our solutions rely only on the generalised suffix tree of the strings in question191

(V or Cp ∪ Cq) and standard operations (graph traversals and dynamic programming) and192

hence are not only of theoretical interest but should also admit efficient implementations.193

4.1 One-to-One194

Recall that in One-to-One, we are given C1, C2, . . . , Cd, p and q, and we are asked to find195

the length of the shortest undirected path between any vertex of Cp and any vertex of Cq.196

Note that in Equation (1), it does not really matter from which string in Cp (resp. Cq) the197

occurrence of U at position i (resp. j) originates: by changing the order of the minima in the198

formula, we get that dist(p, q) can be expressed by Equation (1) if we naturally extend the199

set Ix(U) = {i : ∃Sx∈Cx
Sx[i . . i + |U |) = U}, for x ∈ {p, q}. In particular, for Equation (2),200

the required change is the use of the generalised suffix tree of the strings representing Cp ∪ Cq201

and the use of Lx
v , Rx

v , for x ∈ {p, q}, based on the suffixes of all the strings representing Cx.202

Inspect Figure 5.203

Since the size of ST(Cp ∪ Cq) is in O(k · (|Cp| + |Cq|)), and it can be constructed in linear204

time, by repeating the same operations as for the computation of dist(v1, v2), we obtain:205

▶ Theorem 4. We can solve One-to-One in O(k · (|Cp| + |Cq|)) time and space.206

4.2 One-to-All207

Recall that in One-to-All(p), we are given C1, C2, . . . , Cd and p, and we are asked to find the208

length of the shortest undirected path between any vertex of Cp and any vertex of Cq, for209

every q ∈ [1, d]. By using Theorem 4, we directly obtain a solution to One-to-All(p) and to210

All-to-All running in O(k(|V | + d|Cp|)) and O(dk|V |) time, respectively, using O(k maxq |Cq|)211

space. We now proceed to a more refined processing of the suffix tree that allows us to obtain212

a more efficient algorithm for One-to-All, and which is later used for solving Top(r). Our213

high-level goal is to reduce the number of vertices over which we must optimize Equation (2).214

Let A(v) denote the set of all ancestors of v in ST(V) (including the node itself). Further215

let Minx
v = maxw∈A(v)[2 · d(w) − Lx

w], and Maxx
v = maxw∈A(v)[2 · d(w) + Rx

w], for x ∈ {p, q}216

and q ∈ [1, d]. Recall that V = C1 ⊔ C2 ⊔ · · · ⊔ Cd. Recall that as noted in Observation 2217

for the leaf nodes of ST(V), denoted by Leaves(ST(V)), the sets Ix(U) are either equal to218

{ix
v} (when S[ix

v . . k − 1] = U for S ∈ Cx is represented by node v) or empty. 4 In particular219

4 Note that for a leaf v, d(v) = k − ix
v ; that is, the label $ is not taken into account in computation of the

length of the common substring represented – this plays a role only when computing dist(p, p) anyway.

8 Shortest Undirected Paths in de Bruijn Graphs

ST(Cp ∪ Cq)

A

B

C

A

B

C

X1$q

X2$p

D

E

X3$p

F

G

$p

X4$p

X1$q

U [6 . . 12] V [2 . . 12]

W [1 . . 12]

W [6 . . 12] V [5 . . 12]

U [9 . . 12]

[0, 0, 12]

[3, 1, 6]

[6, 2, 2]

[5, 1, 6]

[7, 5, 6]

u

Figure 5 The information [d, Lp
v, Rp

v] computed for the explicit non-leaf nodes v of ST(Cp ∪ Cq)
restricted to the part of the suffix tree where the first edge going out of the root is A. Let U ∈ Cq,
V, W ∈ Cp, and k = 13, for U = CBDCCCABCABCE, V = CDABCABCDEFGB, and W = BABCDEABCDEFG.
The labels on the edges leading to leaves are compacted for simplicity (and represented only with
suffixes X1, . . . , X4). By additionally computing Lq

u = 6 and Rq
u = 9, for the explicit node u

representing ABC, we get the distance 2 · 13 − 2 · 3 − max(9 − 1, 6 − 6) = 12 witnessed by the common
substring ABC. By then comparing the distances witnessed by all the common substrings (nodes of
the ST), we obtain the minimal distance 10 witnessed by ABCABC.

ix
v exists only for a single x. We can thus define Equation (3) as a more refined version of220

Equation (2):221

dist(p, q) = 2k − max
v∈Leaves(ST(V))

(max [Maxp
v − iq

v, Minp
v + iq

v]) . (3)222

223

▶ Example 5. Consider the example from Figure 5: U = CBDCCCABCABCE ∈ Cq, V =224

CDABCABCDEFGB ∈ Cp, and W = BABCDEABCDEFG ∈ Cp. Consider the leaf nodes representing225

strings V [2 . . 12] and U [6 . . 12]. Both leaf nodes have the following ancestors (other than226

themselves) and the following [d, Lp
v, Rp

v, Lq
v, Rq

v] values:227

ABCABC: [6, 2, 2, 6, 6];228

ABC: [3, 1, 6, 6, 9];229

empty string ε (root node): [0, 0, 12, 0, 12].230

Let v be the leaf node representing U [6 . . 12]. We iterate over all ancestors w of v:231

Minp
v = maxw∈A(v)[2 · d(w) − Lp

w] = max{−∞, 10, 5, 0} = 10;232

Maxp
v = maxw∈A(v)[2 · d(w) + Rp

w] = max{−∞, 14, 12, 12} = 14.233

We have 2k −max [Maxp
v − iq

v, Minp
v + iq

v] = 26− (10+6) = 10, which gives us the minimal234

distance, between Cq and Cp witnessed by ABCABC.235

The following lemma is crucial for the correctness of our approach.236

W. Zuba et al. 9

▶ Lemma 6. Equations (2) and (3) are equivalent.237

Proof. Let v be the node of ST for which Equation (2) attains the optimal value, which238

w.l.o.g. is equal to 2k − max(2 · d(v) + Rq
v − Lp

v), and let u, w be the leaf descendants of v239

for which Lp
v = ip

u and Rq
v = iq

w.240

Since v is an ancestor of w, we know that Minp
w ≥ 2 · d(v) − ip

u, hence Minp
w + iq

w ≥241

2 · d(v) − ip
u + iq

w = 2 · d(v) − Lp
v + Rq

v, thus the value of Equation (3) (witnessed by the node242

w) is at least as large as the value of Equation (2) (witnessed by the node v).243

For the converse inequality, w.l.o.g. the value of Equation (3) is equal to 2k − [Minp
w + iq

w]244

for a leaf node w. By the definition of Minp
w there exists an ancestor v of w such that245

Minp
w = 2 · d(v) − Lp

v. Hence 2 · d(v) − Lp
v + Rq

v ≥ Minp
w + iq

w (as Rq
v ≥ iq

w,), which shows that246

the value of Equation (2) cannot be smaller than the value of Equation (3).247

◀248

▶ Observation 7. Minp
v = max(Minp

Parent(v), 2d(v) − Lp
v).249

A direct consequence of Observation 7 is that the values Minp
v and Maxp

v can be computed250

top down. By computing these 2 values using a top-down traversal in O(k|V |) total time251

and space for all explicit nodes and computing Equation (3) for the leaves, we obtain:252

▶ Theorem 8. We can solve One-to-All in O(k|V |) time and space.253

By directly computing the values Minp
v and Maxp

v, for all p ∈ [1, d], we obtain another254

algorithm solving All-to-All in O(dk|V |) time. For this algorithm, the space used is O(dk|V |).255

By simply using Theorem 8 d times, the required space is reduced to O(k|V |). The computa-256

tion of all the values in a single run over the generalized suffix tree has other nice properties257

however – as shown in the next section it allows to restrict the output while also reducing258

the computation time and space.259

4.3 Top260

Recall that in Top(r), we are given C1, C2, . . . , Cd and an integer r, and we are asked to261

output, for every q ∈ [1, d], r distinct p ∈ [1, d] with the smallest value of dist(p, q), breaking262

ties arbitrarily.263

We start with the following simple yet crucial observation: If for a fixed leaf v of ST(V),264

the values of Minp
v and Maxp

v over p are ordered non-increasingly, it suffices to know the first265

r of those for each type (Min and Max), i.e. we do not need to compute all the 2d values.266

Recall that Minp
v and Maxp

v values are computed by first computing the values Lp
w and267

Rp
w bottom up and then computing the values Minp

w and Maxp
w top down for every node w of268

ST(V). If we store the best r values (over p ∈ [1, d]) for each of those 4 types, the values for269

the parent/children can be computed in time proportional to the number of nodes multiplied270

by r. Indeed when computing the smallest (up to) r values of Lp
w, it suffices to find the r271

smallest elements out of the values stored in the children; hence that can be computed in272

O(rc) time, where c is the number of children of w – this sums up to O(rk|V |) total time273

over all the explicit nodes of ST(V). Here we use O(rc) time to exclude the duplicate values274

p ∈ [1, d] – a check if this set Cp is already represented can be done using an extra integer275

array of size d (only one array for the whole computation) with O(1)-time updates.276

After the computation of Lp
w (resp. Rp

w) for all the nodes, the r largest values Minp
w277

(resp. Maxp
w) can be obtained using Observation 7 from the values stored in the parent node,278

and the r values 2 ·d(w)−Lp
w (resp. 2 ·d(w)+Rp

w) – which are already sorted non-increasingly279

due to the sorted order on Lp
w (resp. Rp

w).280

10 Shortest Undirected Paths in de Bruijn Graphs

Finally, we once again simply iterate over the leaves of ST(V), and gather the r smallest281

values of dist(p, q) over all the leaves representing a suffix of a string from Cq (with a use of282

a bucket queue) obtaining:283

▶ Theorem 9. Top(r) can be computed in O(rk|V |) time and space.284

5 Application: Connecting de Bruijn Graphs285

We anticipate that our framework has many applications revolving around dBGs. In this286

section, we showcase the application of making an arbitrary dBG weakly connected.287

Let us fix an arbitrary dBG of order k consisting of d weakly components and also denote288

it by G(V, E). Bernardini et al. [2] proved the following result.289

▶ Theorem 10 ([2]). For any order-k dBG G(V, E) consisting of d weakly connected compon-290

ents, there exists an O(k|V |2)-time (2 − 2/d)-approximation algorithm for making G weakly291

connected by adding a set of edges of minimal total cost.292

In this section, we improve Theorem 10 by slashing a factor of |V |/ log d from the running293

time. Let G′(V ′, E′) be the graph obtained from the complete dBG GΣ,k by collapsing each294

component Cp, p ∈ [1, d], of G(V, E) into one super-node. The solution in [2] consists of the295

following three steps:296

(i) Construct the metric closure of G′ – we do not explicitly construct G′ or GΣ,k.297

(ii) Compute a minimum spanning tree of the metric closure.298

(iii) Convert the minimum spanning tree into a set of nodes and a set of edges to be added299

to G to make it weakly connected.300

The correctness follows directly from the fact that a minimum spanning tree for the metric301

closure of G′ is a (2 − 2/d)-approximation for the minimum Steiner tree [9],5 where d is302

the number of terminals and thus the number of weakly connected components of G. Step303

(i) requires O(k|V |2) time by applying Lemma 3. Step (ii) can be done in O(d2) time by304

applying, e.g., Prim’s algorithm [16]. Finally, Step (iii) can be done by applying again305

Lemma 3 to compute the shortest undirected paths. This requires O(k|V |2) total time.306

To complement Theorem 10, Bernardini et al. also showed that making G(V, E) weakly307

connected by adding a set of edges of minimal total cost is NP-hard and admits no PTAS.308

Theorem 10 can be improved using our framework: Theorem 4 directly outputs the309

weights of the edges of the metric closure G′ in O(dk|V |) time; this improves the running310

time from O(k|V |2) to O(dk|V |) time. Notably, with the use of the Top queries, we can311

obtain an even more efficient solution by dropping the construction of the metric closure and312

instead computing its spanning tree directly from our input.313

Let G(V, E) be an arbitrary undirected weighted graph. Further let ETop be a subset of E314

defined by choosing, for each vertex v ∈ V , an edge incident with v with the smallest weight315

(one of such edges in case of ties), and then by removing, from each cycle obtained this way,316

the heaviest edge (breaking ties arbitrarily). We show the following lemma.317

▶ Lemma 11. ETop is a subset of a minimum spanning tree of G(V, E).318

Proof. We show that starting from any arbitrary spanning tree of G, we can modify it using319

a greedy approach so that the obtained spanning tree contains all the edges from ETop, and320

has total weight at most as large as the weight of the initial spanning tree.321

5 Recall that the minimum Steiner tree problem asks, given a graph G′(V ′, E′) with non-negative edge
weights and a subset of terminal nodes, to compute a tree of minimum weight that contains all terminals.

W. Zuba et al. 11

We iterate over the edges from ETop; we add the edge to the spanning tree, and then322

remove one edge from the newly created cycle: the one with the largest weight, and among323

possibly many such edges, we prefer an edge that does not belong to ETop.324

Clearly such an operation cannot increase the weight of the spanning tree – the worst-case325

scenario is that the newly added edge is immediately removed. If by applying this procedure,326

we never remove any edge from ETop, then the claimed solution exists.327

Hence we next assume that after adding an edge e1 ∈ ETop, we create a cycle in which328

all the heaviest edges belong to ETop. Take one such edge – it is associated with a vertex v.329

The other edge from the cycle incident with v cannot be lighter (by the definition of ETop),330

hence by assumption it must have the same weight, and hence must also belong to ETop (by331

the assumption of this paragraph of the proof); we move on to the vertex associated with this332

edge, and continue the same way. Since the graph is finite, at some point, we have to come333

back to v – but this means that the edges from ETop formed a cycle – a contradiction with334

the definition of ETop. Thus ETop is a subset of a minimum spanning tree of G(V, E). ◀335

Recall that G′(V ′, E′) is the graph obtained from the complete dBG GΣ,k by collapsing336

each component Cp, p ∈ [1, d], of G(V, E) into one super-node. We show the following lemma.337

▶ Lemma 12. We can find a minimum spanning tree of G′(V ′, E′) in O(k|V | log d) time338

using O(k|V |) space.339

Proof. Let us remark that we do not explicitly construct G′ or GΣ,k.340

We start from producing a set of edges ETop for G′ with a use of a Top(r) query, for r = 2.341

Such a query returns for each component Cq of G, that is, equivalently for each super-node q342

of G′, two super-nodes closest to it. In particular, what is implied by this is, that even if one343

of those two is q itself (which happens in most cases), the other one must be different. By344

Theorem 9, in O(k|V |) total time, we find, for each super-node of G′, one incident edge with345

the smallest weight possible – by taking this set of edges and removing from each cycle a346

single edge we obtain a valid set of edges ETop.347

By Lemma 11, we can safely report this set of edges as part of the output. We can348

also contract the super-nodes of G′ connected with the edges from ETop into other single349

super-nodes obtaining graph G′′. Now every spanning tree of G′ that contains ETop is350

equivalent to the sum of a spanning tree of G′′ and the set ETop, hence the problem reduces351

to finding the minimum spanning tree of G′′.352

Notice that G′′ is represented by the very same input to our original problem on a dBG,353

just with some of the sets Cp merged together, and so we can use the same generalized354

suffix tree just with different labels p, q. We can thus repeat the same approach until we355

reach a graph with a single super-node. Note that each such iteration takes O(k|V |) time356

(Theorem 9), and that there can be no more than log2 d such iterations because each time357

every super-node gets connected to another one, the number of super-nodes (components)358

drop by at least the factor 2 – the statement follows. ◀359

By applying Lemma 12 to the solution from [2] we obtain the following improved result.360

▶ Theorem 13. For any order-k dBG G(V, E) consisting of d weakly connected components,361

there exists an O(k|V | log d)-time (2 − 2/d)-approximation algorithm for making G weakly362

connected by adding a set of edges of minimal total cost.363

Since the algorithm underlying Theorem 13 is near-optimal, the main open question is364

whether we can improve the approximation ratio.365

12 Shortest Undirected Paths in de Bruijn Graphs

References366

1 Nidia Obscura Acosta, Veli Mäkinen, and Alexandru I. Tomescu. A safe and complete algorithm367

for metagenomic assembly. Algorithms Mol. Biol., 13(1):3:1–3:12, 2018.368

2 Giulia Bernardini, Huiping Chen, Inge Li Gørtz, Christoffer Krogh, Grigorios Loukides,369

Solon P. Pissis, Leen Stougie, and Michelle Sweering. Connecting de Bruijn Graphs. In370

Shunsuke Inenaga and Simon J. Puglisi, editors, 35th Annual Symposium on Combinatorial371

Pattern Matching (CPM 2024), volume 296 of Leibniz International Proceedings in Informatics372

(LIPIcs), pages 6:1–6:16, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für373

Informatik.374

3 Giulia Bernardini, Huiping Chen, Grigorios Loukides, Solon P. Pissis, Leen Stougie, and375

Michelle Sweering. Making de Bruijn graphs Eulerian. In Hideo Bannai and Jan Holub,376

editors, 33rd Annual Symposium on Combinatorial Pattern Matching, CPM 2022, June 27-29,377

2022, Prague, Czech Republic, volume 223 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl -378

Leibniz-Zentrum für Informatik, 2022.379

4 Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian Schmidt, Alexandru I. Tomescu, and380

Elia C. Zirondelli. The hydrostructure: a universal framework for safe and complete algorithms381

for genome assembly, 2021.382

5 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual383

Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,384

October 19-22, 1997, pages 137–143, 1997.385

6 John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings. J.386

Comput. Syst. Sci., 20(1):50–58, 1980.387

7 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 17th388

Annual IEEE Conference on Computational Complexity, Montréal, Québec, Canada, May389

21-24, 2002, page 25. IEEE Computer Society, 2002.390

8 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in391

strings. SIAM J. Comput., 6(2):323–350, 1977.392

9 Lawrence T. Kou, George Markowsky, and Leonard Berman. A fast algorithm for Steiner393

trees. Acta Informatica, 15:141–145, 1981.394

10 Zhen Liu. Optimal routing in the de Bruijn networks. In 10th International Conference on395

Distributed Computing Systems (ICDCS 1990), May 28 - June 1, 1990, Paris, France, pages396

537–544. IEEE Computer Society, 1990.397

11 Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Computability398

of models for sequence assembly. In 7th WABI, volume 4645 of Lecture Notes in Computer399

Science, pages 289–301. Springer, 2007.400

12 Paul Medvedev and Mihai Pop. What do Eulerian and Hamiltonian cycles have to do with401

genome assembly? PLOS Computational Biology, 17(5):1–5, 05 2021.402

13 Jason R. Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for next-generation403

sequencing data. Genomics, 95(6):315–327, 2010.404

14 Donald R. Morrison. PATRICIA - practical algorithm to retrieve information coded in405

alphanumeric. J. ACM, 15(4):514–534, 1968.406

15 Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to407

DNA fragment assembly. Proc Natl Acad Sci, 98(17):9748–9753, 2001.408

16 Robert C. Prim. Shortest connection networks and some generalizations. Bell System Technical409

Journal, 36:1389–1401, 1957.410

17 Sebastian Schmidt, Shahbaz Khan, Jarno N Alanko, Giulio E Pibiri, and Alexandru I Tomescu.411

Matchtigs: minimum plain text representation of k-mer sets. Genome Biology, 24(1):136, 2023.412

18 Alexandru I. Tomescu and Paul Medvedev. Safe and complete contig assembly through413

omnitigs. J. Comput. Biol., 24(6):590–602, 2017.414

19 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and415

Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer416

Society, 1973.417

	1 Introduction
	2 Preliminaries
	3 Simple Pairwise Distance Computation using Suffix Tree
	4 Our Framework for Shortest Undirected Paths in de Bruijn Graphs
	4.1 One-to-One
	4.2 One-to-All
	4.3 Top

	5 Application: Connecting de Bruijn Graphs

