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ABSTRACT	
	

Human-adapted	Mycobacterium	tuberculosis	and	animal-adapted	Mycobacterium	

bovis	are	members	of	the	Mycobacterium	tuberculosis	complex	(MTBC)	with	nearly	

identical	genomes	but	different	host	preferences.	In	this	thesis,	the	basis	for	these	

phenotypic	differences	is	explored	using	global	assays.	Transposon	insertion	

sequencing	(tn-seq)	is	used	to	identify	the	essential	genes	for	both	species	in	in	

vitro	growth	in	identical	conditions.	Differences	in	the	importance	of	genes	

involved	in	nitrogen	and	sulfur	assimilation,	and	lipid	and	amino	acid	metabolism,	

highlight	the	evolution	of	metabolic	adjustments	made	to	exploit	a	microecological	

niche	in	a	particular	mammalian	host.	M.	tuberculosis	and	M.	bovis	are	reported	to	

be	differently	sensitive	to	oxidative	stress	and	tn-seq	was	also	used	to	determine	

conditional	gene	requirements	for	M.	bovis	under	oxidative	stress	with	menadione	

treatment.	A	fatty-acid	ligase,	fadD30	and	an	iron	transport	regulator,	irtA,	were	

only	conditionally	essential	with	oxidative	stress	in	M.	bovis	but	essential	for	in	

vitro	growth	in	M.	tuberculosis.	Regulation	of	these	differently-required	genes	may	

be	influenced	by	the	expression	of	regions	outside	of	protein-coding	genes.	

Transcriptomic	studies	in	both	genomes	have	revealed	pervasive	non-coding	

transcription,	increasing	in	stress	conditions.	Beginning	with	the	best	studied	

member	of	the	MTBC,	this	thesis	begins	to	address	this	question	by	presenting	a	

whole	genome	co-expression	network	analysis	of	M.	tuberculosis	RNA-seq	data	to	

infer	the	function	of	these	transcripts.	This	valuable	resource	can	be	used	by	

mycobacterial	researchers	to	find	potential	regulators	among	predicted	non-

coding	transcripts	expressed	in	a	multitude	of	experimental	conditions.	Finally,	

one	of	these	candidate	transcripts	is	investigated	using	CRISPR	inhibition	to	

silence	its	expression.	Antisense-phoR	is	located	within	an	important	regulatory	

operon,	phoPR,	which	functions	at	the	host-pathogen	interface	of	the	MTBC.	

Antisense	silencing	impacted	sense	transcript	abundance;	perhaps	an	indication	

that	the	transcript	plays	a	role	in	stabilising	phoR	mRNA.	
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Chapter	1: Introduction	
	

Some	of	the	text	in	this	chapter	is	adapted	from	work	previously	published	in:	 

Stiens,	J.,	Arnvig,	K.	B.,	Kendall,	S.	L.,	&	Nobeli,	I.	(2022).	Challenges	in	defining	the	
functional,	non-coding,	expressed	genome	of	members	of	the	Mycobacterium	
tuberculosis	complex.	Molecular	Microbiology,	117(1),	20–31.	
https://doi.org/10.1111/mmi.14862	
	

1.1	The	Mycobacterium	tuberculosis	Complex	and	tubercular	

disease	

Tuberculosis	continues	to	be	a	leading	cause	of	death	worldwide,	killing	over	1.3	

million	and	infecting	over	10.6	million	people	in	2022	(Geneva:	World	Health	

Organisation,	2023).		Tubercular	disease	affects	the	health	of	humans,	livestock,	

and	wild	animals	as	well	as	incurring	a	large	economic	burden.	It	is	caused	by	

members	of	the	Mycobacterium	tuberculosis	Complex	(MTBC),	a	group	of	closely-

related	pathological	bacteria	descended	from	a	common	ancestor	species	(itself	

evolved	from	a	soil-dwelling	bacterium)	through	a	series	of	gene	deletions	and	

acquisitions	(Brites	et	al.,	2018;	Gagneux,	2018;	Loiseau	et	al.,	2020;	Sapriel	et	al.,	

2019).	The	pathogens	primarily	infect	the	lungs	of	the	host	where	they	are	

engulfed	by	macrophages.	Within	the	macrophage,	the	pathogen	is	enclosed	in	a	

phagosome	where	the	invaders	are	presented	with	a	series	of	challenges	including	

restriction	of	nutrients,	available	oxygen	and	cofactors	such	as	iron,	and	by	

lowering	phagosomal	pH.	Members	of	the	MTBC	have	evolved	multiple	defences	

against	host	challenges	including	a	waxy	outer	cell	envelope	to	maintain	cell	

homeostasis	in	hostile	environments	and	mechanisms	to	scavenge	nutrients	from	

the	host.		

	

M.	tuberculosis	is	primarily	restricted	to	infection	and	transmission	among	humans	

with	very	seldomly	reported	cases	of	animal	infection	and	transmission1	(Gagneux,	

2018).	In	contrast,	the	animal-adapted	members	of	the	MTBC,	including	

Mycobacterium	bovis	(M.	bovis),	Mycobacterium	orygis	and	Mycobacterium	caprae,	

	
1	Reverse-zoonosis	has	been	reported	in	areas	with	high	TB	burden	and	needs	careful	monitoring	
to	avoid	creating	animal	reservoirs	for	multi-drug	resistant	strains	of	M.	tuberculosis	(Kock	et	al.,	
2021)	
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among	others,	are	able	to	infect	and	transmit	between	a	large	variety	of	

mammalian	hosts,	including	humans.	In	fact,	human	tuberculosis	can	be	caused	by	

either	M.	tuberculosis	or	M.	bovis	infection	and	the	clinical	and	pathological	

manifestations	of	M.	tuberculosis	and	M.	bovis	infections	in	humans	are	considered	

indistinguishable2	(Grange,	2001;	Sawyer	et	al.,	2023).	Zoonotic	tuberculosis	is	an	

under-appreciated	threat,	especially	in	countries	with	a	high	tuberculosis	burden	

(Kock	et	al.,	2021;	Olea-Popelka	et	al.,	2017;	Sawyer	et	al.,	2023).		

	

M.	tuberculosis	infection	is	initiated	by	the	respiration	of	aerosolised	bacteria.	The	

primary	acute	stage	of	infection	includes	the	activation	of	the	cell-mediated	

immune	system	and	dissemination	to	the	lymph	nodes	and	other	organs.	This	

involves	T-lymphocytes	which	release	cytokines	such	as	interferon-gamma	(IFN-g),	

which	is	used	in	assays	to	determine	infection.	At	this	point,	it	appears	that	most	

infections	are	cleared	(Smith,	2003).	However,	if	this	is	not	successful,	the	disease	

progresses,	and	caseous	granulomas	form	in	the	lungs	and	lymph	nodes	which	

progress	into	cavitary	lung	lesions	opening	into	the	airways	and	releasing	the	

bacteria,	leading	to	transmission	(Smith,	2003).	In	a	limited	number	of	M.	

tuberculosis	infections,	the	bacteria	are	successfully	contained	but	lie	dormant	in	a	

'latent'	infection	which	may	be	re-activated	in	response	to	an	unknown	trigger,	

perhaps	when	the	host	immune	system	is	more	compromised	and	conditions	more	

favourable	for	the	pathogen	(Getahun	et	al.,	2015).		In	cattle,	M.	tuberculosis	

infection	is	attenuated.	A	study	of	parallel	infections	of	cattle	with	M.	bovis	or	M.	

tuberculosis	found	that	the	granulatomous	lesions	in	lungs	and	lymph	nodes	typical	

of	M.	bovis	infection	were	not	found	with	M.	tuberculosis	infection,	despite	the	

presence	of	the	bacteria	in	the	lymph	nodes	and	positive	IFN-g	responses	(Waters	

et	al.,	2010).	In	cattle,	M.	tuberculosis	appears	to	be	more	rapidly	cleared,	with	less	

damage	caused	by	inflammation	and	a	lack	of	cavitary	lesions	(Basaraba	&	Hunter,	

2017;	Waters	et	al.,	2010).	

	

The	initial	response	of	cattle	or	humans	to	M.	bovis	(the	causative	agent	of	bovine	

tuberculosis)	is	similar	to	M.	tuberculosis,	first	initiating	the	cell-mediated	immune	

system	followed	by	humoral	response	(Holder	et	al.,	2024).	Infection	by	M.	bovis	is	

	
2	It	is	thought	that	extra-pulmonary	tuberculosis	in	humans	is	more	common	with	M.	bovis	infection	
(Grange,	2001).	
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primarily	by	the	respiratory	route,	but	also	through	contaminated	food,	water	and	

milk	(Grange,	2001;	Sawyer	et	al.,	2023).	Though	there	is	some	evidence	that	M.	

bovis	is	less	virulent	in	humans	(Gonzalo-Asensio	et	al.,	2014),	it	is	hyper-virulent	

in	certain	hosts	such	as	rabbits,	guinea	pigs	and	mice	(Rehren	et	al.,	2007).	It	is	

unclear	whether	M.	bovis	utilises	a	dormancy	strategy	similar	to	M.	tuberculosis	

(Sabio	y	García	et	al.,	2020).	

	

Though	the	immune	systems	of	mammals	are	very	similar,	there	is	evidence	of	co-

evolution	between	mammalian	hosts	and	host-specific	pathogens.	For	example,	

different	mammals	have	evolved	different	repertoires	of	antigen	receptors	(TLR's,	

toll-like	receptors)	on	their	immune	cells	(Bailey	et	al.,	2013)	and	a	recent	study	

showed	that	human	and	bovine	macrophages	have	diverse	metabolic	responses	to		

M.	bovis	antigens	(Bartens	et	al.,	2024).	Furthermore,	the	levels	of	specific	T-cell	

types	differ	between	humans	and	other	mammals,	with	rodents,	cattle	and	other	

ruminants	utilising	a	much	higher	level	of	TCR-gd	T-cells	(Bailey	et	al.,	2013).	

Perhaps	the	different	qualities	of	the	immune	systems	of	diverse	mammalian	hosts	

require	the	bacteria	to	either	employ	effective	and	specifically-adapted	strategies	

to	survive	and	spread	infection	within	a	single	host	group,	or	more	generally-

applicable	systems	to	survive	in	multiple	different	hosts.	

	

1.2	Host	adaptation	in	the	MTBC	

The	different	lineages	in	the	MTBC	have	evolved	to	maximise	survival	in	preferred	

hosts	with	seven	lineages	known	to	be	adapted	to	human	hosts	and	other	

members	adapted	to	animal	hosts.	The	animal-adapted	lineages	of	the	MTBC	have	

reduced	genomes	(four	deletion	regions,	'RD')	compared	to	the	human-adapted	

lineages	and	have	evolved	into	a	more	generalist	species	to	exploit	new	ecological	

opportunities.	This	could	either	have	occurred	independently	from	the	more	host-

limited	M.	tuberculosis,	through	a	common	generalist	ancestor,	or	directly	from	a	

human-adapted	ancestor3	(Brites	et	al.,	2018;	Gagneux,	2018)	(Figure	1.1).	The	

metabolic	needs	of	the	members	are	known	to	differ--with	M.	bovis	unable	to	

	
3	This	may	be	true	in	respect	to	the	'classical'	animal-adapted	species	including:	M.	bovis,	M.	caprae,	
M.	orygis,	M.	pinnipedii	and	M.	microtii;	the	case	is	less	clear	for	M.	mungi	and	M.	surricattae	which	
may	have	evolved	to/from	the	human-adapted	lineage,	M.	africanus	through	host	jumps	(Gagneux,	
2018)	
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utilise	carbohydrates	such	as	glycerol	as	a	carbon	source4	as	M.	tuberculosis	does	

(Keating	et	al.,	2005).	Proteomic	comparisons	of	the	two	strains	at	log-phase	in	the	

same	culture	media	have	identified	450	identical	proteins,	in	addition	to	248	

'variable'	proteins	with	different	amino	acid	sequences,	that	are	differentially	

expressed	(K.	M.	Malone	et	al.,	2018),	indicating	the	basic	gene	requirements	for	

growth	differ	between	the	strains.		

	

M.	bovis	shares	greater	than	99.5%	nucleotide	similarity	with	M.	tuberculosis,	and	

the	reference	genome,	AF2122/97	(Garnier	et	al.,	2003;	Malone	et	al.,	2017),	has	

approximately	2000	SNPs	compared	to	the	reference	genome	of	M.	tuberculosis,	

H37Rv	(Cole	et	al.,	1998;	Lew	et	al.,	2011).	Mutations	and	SNPs	in	orthologous	

protein	coding	genes	among	species	members	of	the	MTBC	and	between	species-

specific	strains,	explain	some	of	the	reported	differences	in	gene	expression	(Golby	

et	al.,	2007;	Malone	et	al.,	2018;	Rehren	et	al.,	2007).	For	example,	a	M.	bovis	

specific	mutation	in	the	gene	for	the	anti-sigma	factor,	rskA,	means	the	sigma	

factor,	SigK,	is	constitutively	active,	leading	to	higher	expression	of	much	of	the	

SigK	regulon	compared	to	M.	tuberculosis	(Golby	et	al.,	2007).	However,	mutations	

that	alter	promoter	sequences	and	create	or	destroy	transcriptional	start	sites	

(TSS)	can	also	alter	the	expression	of	genes	and	antisense	transcripts	(Chiner-Oms	

et	al.,	2019;	Dinan	et	al.,	2014;	Golby	et	al.,	2013).	Flexible	and	transient	regulation	

of	gene	expression	is	crucial	for	pathogens	to	respond	quickly	to	the	onslaught	of	

host	defences,	with	post-transcriptional	regulation	of	the	effect	and	stability	of	

transcripts	used	as	a	parsimonious	strategy	that	limits	the	waste	of	cell	resources	

(Chakravarty	&	Massé,	2019).	It	is	thus	not	unreasonable	to	hypothesise	more	

generally,	that	variations	in	the	genomic	sequence	of	non-coding	elements	could	

contribute	to	differences	in	gene	and	protein	expression	through	both	

transcriptional	and	post-transcriptional	levels	of	regulation		(Schwenk	&	Arnvig,	

2018).		

	

	
4	This	is	definitely	true	of	the	lab-adapted	M.	bovis	strain,	AF2122/97,	but	it	is	unclear	whether	this	
is	a	widely-shared	characteristic	of	the	field	strains	of	M.	bovis.	
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1.3	Studying	host-adapted	gene-regulation	

In	this	thesis,	I	will	consider	the	topic	of	host-adapted	gene	regulation	in	the	MTBC	

using	several	different	approaches.	Firstly,	in	the	introduction	to	Chapter	2,	I	

describe	how	non-coding	transcription	in	the	MTBC	remains	underexplored	with	

only	a	handful	of	non-coding	regulators	characterised	in	M.	tuberculosis,	and	

virtually	none	in	the	animal-adapted	species,	despite	pervasive	transcription	in	

non-coding	regions	(Arnvig	et	al.,	2011;	Dinan	et	al.,	2014;	Golby	et	al.,	2013;	Ju	et	

al.,	2024).	Gaining	understanding	of	both	the	mechanisms	of	RNA-mediated	

regulation	in	the	MTBC	and	identifying	functionally	relevant	transcripts	is	a	

starting	point	for	comparing	these	regulators	among	the	MTBC	members.	To	

contribute	to	the	landscape	of	gene	pathways	and	functions	that	may	involve	

ncRNA,	the	investigation	begins	by	predicting	unannotated	ncRNA	from	

transcriptomic	data	and	creating	a	co-expression	network	that	clusters	ncRNA	

with	protein-coding	genes,	some	involved	in	known	gene	pathways	or	functions.	

Prediction	of	non-coding	RNA	depends	on	the	availability	of	high-quality	

transcriptomic	data.	With	the	increasing	availability	and	decreasing	cost	of	RNA-

seq,	there	are	many	datasets	available	for	M.	tuberculosis	in	a	wide	range	of	

experimental	conditions.	Unfortunately,	there	are	very	few	transcriptomic	studies	

for	the	other	members	of	the	MTBC,	with	available	wild-type	M.	bovis	data	

currently	limited	to	exponential	growth	and	stationary	conditions.	Therefore,	

Chapter	2	is	limited	to	exploring	the	non-coding	genome	of	M.	tuberculosis	with	the	

hope	that	these	results	can	eventually	be	compared	to	a	similar	analysis	applied	to	

other	members	of	the	complex.		
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Figure	1.1.	Phylogenomic	tree	based	on	maximum	likelihood	topology	of	human-adapted	and	animal-
adapted	 members	 of	 MTBC	 shows	 that	 animal-adapted	 lineages	 (clades	 A1-A4)	 evolved	 through	
significant	 deletions	 in	 genomes	 relative	 to	 human-adapted	 lineages	 (L1-L6).	 Branch	 lengths	 are	
proportional	to	SNPs	versus	M.	canetti	ancestor	genome.	Red	arrows	mark	large	deletions	(RD7-10)	in	
animal-adapted	lineages.	Red	asterisk	marks	host	range	expansion	within	the	MTBC.	From	(Brites	et	al.,	
2018),	Figure	1.	

	

1.4	Evaluating	host-specific	gene	requirements	

As	the	lineages	must	evolve	to	adapt	to	different	host	immune	challenges,	the	

genes	required	for	these	adaptations	may	be	different	among	the	members	of	the	

MTBC.	Despite	the	nearly	identical	genomes,	M.	tuberculosis	and	M.	bovis,	differ	in	

metabolic	requirements	(Keating	et	al.,	2005),	ability	to	scavenge	iron	(Tullius	et	

al.,	2019)	and	their	response	to	oxidative	stress	(Golby	et	al.,	2007;	Sohaskey	&	

Modesti,	2009).	Some	of	these	differences	are	directly	related	to	deleted	genes	and	

SNPs	but	it	is	not	straightforward	to	determine	which	mutation	is	responsible	for	a	

particular	phenotype.	Transposon	insertion	sequencing	(tn-seq)	is	a	global	method	

that	directly	implicates	mutations	in	specific	genes	to	survival	in	a	particular	

environmental	context.	It	has	been	used	to	implicate	genes	that	are	required	for	M.	
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tuberculosis	survival	in	rich	versus	minimal	media	(Minato	et	al.,	2019)	and	with	

specific	carbon	sources	(Griffin	et	al.,	2011).	Tn-seq	has	also	been	used	to	highlight	

differences	in	susceptibility	to	antibiotics	among	clinical	strains	of	M.	tuberculosis	

which	were	not	predicted	by	whole	genome	sequencing	(Carey	et	al.,	2018).	

	

In	Chapter	3,	I	compare	parallel	tn-seq	libraries	created	in	M.	bovis	and	M.	

tuberculosis	to	indicate	genes	that	are	differentially	required	in	animal	versus	

human-adapted	members	of	the	MTBC	with	highly	similar	genomes.	Using	

identical	media	and	culture	conditions,	this	study	highlights	the	genes	that	are	

more	or	less	tolerant	of	mutations	in	one	species	than	the	other.	Some	of	the	

orthologous	genes	that	are	differently	required	contain	SNPs	or	mutations,	but	

some	of	them	are	identical	in	amino	acid	sequence,	indicating	different	regulation	

in	the	host-adapted	species.	I	also	consider	whether	the	genomic	regions	defined	

by	the	predicted	intergenic	ncRNAs	from	M.	tuberculosis	are	essential	in	either	

species.	

	

In	Chapter	4,	I	use	tn-seq	to	evaluate	M.	bovis	genes	required	for	survival	in	

oxidative	stress.	Phagosomes	in	mammalian	hosts	engulf	mycobacteria	and	

attempt	to	restrict	growth	by	creating	oxidative	stress	with	reactive	nitrogen	and	

oxygen	species	and	by	reducing	pH	of	the	intracellular	environment	(Rohde	et	al.,	

2007).	The	host-adapted	species	have	evolved	regulation	pathways	to	sense	and	

combat	this	challenge	in	different	ways	(Cumming	et	al.,	2014;	Magee	et	al.,	2014;	

Pacl	et	al.,	2018;	Queval	et	al.,	2021;	Widdison	et	al.,	2008).	It	has	been	proposed	

that	M.	bovis	has	different	sensitivity	to	oxidative	stress	than	M.	tuberculosis	(Golby	

et	al.,	2007;	Ma	et	al.,	2022;	Sohaskey	&	Modesti,	2009)	and	SNPs	in	regulators	of	

redox	homeostasis	in	M.	bovis,	such	as	whiB3	and	phoR	may	be	responsible	for	

differences	in	lipid	metabolism,	secretion	and	cell	envelope	composition	compared	

to	M.	tuberculosis	(García	et	al.,	2021;	Goar	et	al.,	2022;	Gonzalo-Asensio	et	al.,	

2014;	Malone	et	al.,	2018;	Singh	et	al.,	2009;	Urtasun-Elizari	et	al.,	2024).	In	

Chapter	4,	I	describe	the	creation	of	sequencing	libraries	from	transposon	libraries	

selected	on	media	with	and	without	menadione,	a	drug	that	causes	oxidative	stress	

in	mycobacteria.	I	then	identify	the	genes	in	M.	bovis	that	show	an	increased	

requirement	for	survival	under	this	selective	pressure.	This	will	add	to	the	

understanding	of	essential	genes	in	the	MTBC	host-pathogen	interface.		
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1.5	Focus	on	a	host-specific	gene	sensor	

The	PhoPR	two-component	system	is	an	essential	part	of	MTBC	detection	and	

response	to	host-generated	redox	stress.	Despite	a	SNP	in	the	phoR	ortholog,	an	

intact	phoPR	operon	is	necessary	for	normal	growth	and	virulence	of	both	M.	

tuberculosis	and	M.	bovis	(Gibson	et	al.,	2022;	Urtasun-Elizari	et	al.,	2024).	

Exploring	the	co-expression	network	created	in	Chapter	2,	I	observed	an	antisense	

transcript,	co-expressed	with	other	genes	involved	in	host-pathogen	adaptation,	

that	overlaps	the	phoR	gene.	Antisense	transcription	is	pervasive	in	the	MTBC	and	

yet	its	purpose	is	obscure.	To	explore	the	possibility	that	this	antisense	transcript	

is	involved	in	regulating	phoPR	expression,	in	Chapter	5,	I	present	the	results	of	an	

experiment	using	CRISPR-inhibition	(CRISPRi)	to	silence	the	transcript.	

Preliminary	results	indicate	that	the	antisense	transcript	may	be	involved	in	post-

transcriptional	regulation	of	phoR	mRNA.	This	would	be	a	novel	example	of	

antisense	regulation	of	mRNA	stability	in	the	MTBC	and	could	help	to	illuminate	

this	relatively	unstudied	phenomenon.	

	

1.6	Study	Aims	

This	thesis	aims	to	explore	host-specific	adaptation	of	members	of	the	MTBC	by	

utilising	genome-wide	transcriptomic	and	phenotypic	assays	in	M.	tuberculosis	and	

M.	bovis	including:	

• inferring	the	functional	associations	between	non-coding	RNA	and	

annotated	protein-coding	genes	in	M.	tuberculosis	using	a	gene	co-

expression	network	

• applying	global	phenotyping	(tn-seq)	to	identify	and	compare	essential	

gene	requirements	of	M.	tuberculosis	and	M.	bovis	for	in	vitro	growth,	and	

for	M.	bovis	under	oxidative	stress	

• describing	antisense	RNA	regulation	in	the	MTBC	by	targeting	a	well-

studied	gene	system	of	the	host-pathogen	interface	using	CRISPRi	and	RNA-

seq		
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Chapter	2: Using	a	Whole	Genome	Co-
expression	Network	to	Inform	the	Functional	
Characterisation	of	Predicted	Genomic	
Elements	from	Mycobacterium	tuberculosis	
Transcriptomic	Data	
	

This	chapter	includes	both	edited	and	verbatim	text	from	the	following	previously	

published	 manuscripts	 of	 which	 I	 was	 the	 original	 and	 primary	 author.	 The	

introduction	is	based	on:	

Stiens,	J.,	Arnvig,	K.	B.,	Kendall,	S.	L.,	&	Nobeli,	I.	(2022).	Challenges	in	
defining	the	functional,	non-coding,	expressed	genome	of	members	of	the	
Mycobacterium	tuberculosis	complex.	Molecular	Microbiology,	117(1),	20–
31.	https://doi.org/10.1111/mmi.14862	

The	results	and	discussion	come	from:	

Stiens,	J.,	Tan,	Y.	Y.,	Joyce,	R.,	Arnvig,	K.	B.,	Kendall,	S.	L.,	&	Nobeli,	I.	(2023).	
Using	a	whole	genome	co-expression	network	to	inform	the	functional	
characterisation	of	predicted	genomic	elements	from	Mycobacterium	
tuberculosis	transcriptomic	data.	Molecular	Microbiology,	119(4),	381-400.	
https://doi.org/https://doi.org/10.1111/mmi.15055	

	

2.1	ABSTRACT	

A	 whole	 genome	 co-expression	 network	 was	 created	 using	 Mycobacterium	

tuberculosis	 transcriptomic	 data	 from	 publicly	 available	 RNA-sequencing	

experiments	 covering	 a	 wide	 variety	 of	 experimental	 conditions.	 The	 network	

includes	 expressed	 regions	 with	 no	 formal	 annotation,	 including	 putative	 short	

RNAs	 and	 untranslated	 regions	 of	 expressed	 transcripts,	 along	with	 the	 protein-

coding	 genes.	 These	 unannotated	 expressed	 transcripts	 were	 among	 the	 best-

connected	members	of	the	module	sub-networks,	making	up	more	than	half	of	the	

‘hub’	elements	 in	modules	that	 include	protein-coding	genes	known	to	be	part	of	

regulatory	systems	 involved	 in	stress	response	and	host	adaptation.	This	dataset	

provides	 a	 valuable	 resource	 for	 investigating	 the	 role	 of	 non-coding	 RNA,	 and	

conserved	 hypothetical	 proteins,	 in	 transcriptomic	 remodelling.	 Based	 on	 their	

connections	 to	 genes	 with	 known	 functional	 groupings	 and	 correlations	 with	
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replicated	 host	 conditions,	 predicted	 expressed	 transcripts	 can	 be	 screened	 as	

suitable	candidates	for	further	experimental	validation.		

	

2.2	AIMS	

• Predict	non-coding	RNA	from	M.	tuberculosis	RNA-seq	data	over	wide	variety	

of	physiologically-relevant	culture	conditions		

• Create	 WGCNA	 network	 to	 cluster	 non-coding	 RNA	 along	 with	 protein-

coding	 transcripts	 into	 modules	 by	 co-expression	 over	 range	 of	 culture	

conditions	

• Evaluate	the	network	to	observe	trends	in	non-coding	RNA	expression	

• Use	 the	 principle	 of	 'guilt	 by	 association'	 to	 highlight	 non-coding	 RNA	 or	

uncharacterised	 protein	 candidates	 that	 may	 associate	 with	 proteins	 of	

known	function	for	further	study	

• Create	a	resource	for	M.	tuberculosis	researchers	to	explore	the	network	

	

2.3	INTRODUCTION	

The	members	 of	 the	Mycobacterium	 tuberculosis	 complex	 (MTBC)	 have	 complex	

lifestyles	 that	 require	 rapid	 adaptation	 to	 host	 defences	 and	 immune	 pressure,	

including	nutritional	 immunity,	hypoxia	and	 lipid-rich	environments.	To	adapt	 to	

these	environmental	challenges,	bacterial	cells	must	make	complex	transcriptomic	

adjustments,	 and	 these	are	 thought	 to	be	 complemented	and	 fine-tuned	by	post-

transcriptional	regulation	and	use	of	non-coding	RNA	(ncRNA).		NcRNA	can	alter	the	

abundance	 of	 RNA	 and	 proteins	 by	 controlling	 mRNA	 stability,	 processing	 and	

access	 to	 ribosome	binding	 sites.	Discovering	 the	 contribution	of	 the	non-coding	

genome	 to	 specific	 adaptation-response	 pathways	 may	 improve	 our	 ability	 to	

prevent	 the	 evolution	 of	 persistent	 phenotypes,	 design	 therapeutics	 to	 address	

zoonotic	infection,	and	prevent	reverse-zoonosis	of	drug-resistant	human-adapted	

M.	tuberculosis	in	animals.	In	this	introduction,	I	will	first	summarise	what	is	known	

about	ncRNA	 in	 the	MTBC,	discuss	 the	 challenges	of	 computational	prediction	of	

ncRNA,	and	outline	a	strategy	to	use	a	co-expression	network	to	discover	functional	

associations	of	predicted	ncRNA	using	publicly-available	M.	 tuberculosis	RNA-seq	

data.	
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2.3.1	Non-coding	RNA	in	the	MTBC	

The	mycobacterial	genome	produces	a	range	of	conditionally	expressed	transcripts,	

including	non-coding	RNA,	short,	unannotated	ORFs	and	untranslated	regions	at	the	

5’	and	3’	end	of	protein-coding	sequences,	many	of	which	are	poorly	annotated	and	

understood.	In	this	chapter,	I	focus	on	‘non-coding’	RNA	(ncRNA),	here	referring	to	

non-ribosomal	RNA	transcripts	not	known	to	be	translated	into	peptides,	such	as	

short	RNAs	 (sRNAs)	 acting	 on	 either	 distant	 or	 antisense	mRNA	 targets	 and	 the	

expressed	 untranslated	 regions	 (UTRs)	 flanking	 coding	 regions	 (which	may	 also	

contain	short	open	reading	frames	(sORFs)	upstream	from	coding	regions)	(Table	

2.1).	The	proportion	of	non-ribosomal,	ncRNA	in	the	M.	tuberculosis	transcriptome	

has	 been	 shown	 to	 increase	 in	 stationary	 and	 hypoxic	 conditions,	 indicating	 a	

potential	role	in	adjusting	to	environmental	cues	(Aguilar-Ayala	et	al.,	2017;	Arnvig	

et	al.,	2011;	Gerrick	et	al.,	2018;	Ignatov	et	al.,	2015).	Several	mycobacterial	ncRNA	

transcripts	 (particularly,	 sRNA)	 have	 been	 extensively	 studied	 and	 found	 to	 be	

associated	with	regulatory	systems	controlling	adaptation	 to	stress	conditions	or	

growth	phase,	linked	to	virulence	pathways	and	access	to	lipid	media	(Arnvig	et	al.,	

2011;	Gerrick	et	al.,	2018;	Girardin	&	McDonough,	2020;	Mai	et	al.,	2019;	Moores	et	

al.,	2017;	Solans	et	al.,	2014).		

	

A	 definitive	 atlas	 of	 expressed	 non-coding	 elements	 in	 pathogenic	mycobacteria	

does	 not	 exist.	 The	 lists	 available	 from	 databases	 and	 publications	 overlap	 only	

partially	and	are	only	available	for	the	reference	genomes	of	key	representatives	of	

the	 Mycobacterium	 tuberculosis	 complex	 (MTBC),	 such	 as	 Mycobacterium	

tuberculosis	 (M.	 tuberculosis)	 H37Rv.	 This	 gap	 in	 our	 knowledge	 impacts	 the	

successful	analysis	of	the	copious	amounts	of	genomic	and	transcriptomic	data	that	

have	become	available	in	the	last	decade.	For	example,	in	the	absence	of	a	formal	

annotation	 of	 the	 non-coding	 transcriptome,	 the	 easiest	 and	 most	 common	

approach	 to	 differential	 expression	 analysis	 is	 to	 largely,	 or	 entirely,	 ignore	

information	that	does	not	relate	to	regions	currently	annotated	as	coding	(CDS);	this	

issue	is	more	acute	in	studies	focusing	on	non-reference	M.	tuberculosis	strains	or	

the	 animal-adapted	 strains,	 such	 as	 Mycobacterium	 bovis,	 where	 non-coding	

annotation	is	scarce	or	non-existent.		
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Bacterial	non-coding	RNA	is	a	constantly	evolving	topic,	but	most	of	the	research	is	

focussed	on	the	model	organisms.	Mycobacteria	are	different,	in	genome,	physiology	

and	lifestyle;	and	it	appears	that	non-coding	regulation	in	MTBC	does	not	use	the	

same	 accessory	 proteins	 or	 have	 the	 same	 sequence	 signatures	 as	 the	 model	

systems.	Indeed,	efforts	to	find	an	Hfq	or	ProQ	analogue	acting	as	an	RNA	chaperone	

in	mycobacteria	have	so	 far	been	unsuccessful	 (Gerrick,	2018).	These	differences	

impact	not	only	on	our	ability	to	transfer	knowledge	from	model	organisms	to	the	

MTBC	species,	but	also	on	how	applicable	current	experimental	and	computational	

methods	are	to	discovering	new	regulators	in	mycobacteria.	

	



Table	2.1.	Origins	and	targets	of	non-coding	RNA	types	in	bacteria.	

	

.	

ncRNA Type Description Origin Target/ Mechanism 

sRNA 

 

 
Short structured RNA 
transcripts, 30-300 nt with 
short binding (‘seed’) 
region 

 
Intergenic regions, UTRs, or 
antisense strands of coding 
genes; transcribed from 
own promoter, or by 
cleavage of longer 
transcripts 

 
Involved in binding interactions 
with distant gene targets (‘trans-
acting’) to regulate translation, 
including: 
mRNAs of other genes (e.g. UTRs of 
transcription factors), other sRNAs 
(known as ‘sponge sRNAs’ or 
‘ceRNAs’), and RNA-binding 
proteins 
 

asRNA 

 

 
RNA transcript, 75-10,000 
nt long 

 
Complementary strand of 
UTR or coding sequence of 
regulated gene; transcribed 
from own promoter 

 
Cognate RNA strand (‘cis’-
regulatory). Regulates by binding to 
mRNA transcript with perfect 
complementarity, forming duplex 
RNA: altering sensitivity to RNases, 
action of terminators, or access to 
RBS (ribosome binding site), can 
also act in ‘trans’-regulatory 
manner with complementary 
sequences transcribed elsewhere in 
the genome 
 

5’ UTR 

 

 
5-100s nt long, including 
transcriptional start sites 
(TSS), ribosome binding site 
(RBS), alternative 
transcriptional terminators 
(TTS) and cleavage sites  
 
Riboswitches are  
structured 5’ UTRs that 
change secondary structure 
in response to ligand 
binding, controlling either 
transcription or translation 
of downstream gene by 
changing access to a 
‘regulatory sequence’ (R S) 
which could be an anti-
terminator sequence or 
RBS 

 
Upstream sequence of 
coding sequence, between 
TSS and start codon 
(alternative TSS may exist in 
gene locus) 

 
Binding interactions with sRNAs, 
proteins, metabolites and second 
messengers (‘cis’-regulation of 
downstream ORF) 

 
Antisense binding with other UTRs. 
Potential source of sRNAs that can 
act on distant RNA targets (‘trans’-
regulatory) 
 
 
 
 

3’ UTR 

 

 
5-100s nt long, following 
the coding ORF of the 
upstream gene. Can include 
RNase cleavage sites, 
alternative transcriptional 
start sites (TSS) and sRNA 
binding sites 

 
Downstream sequence 
between stop codon and 
TTS. Alternative TSS and 
TTS may exist in gene locus. 

 
Binding interactions with sRNAs, 
proteins, metabolites and second 
messengers to regulate upstream 
ORF (‘cis’-regulatory) 

 
Antisense binding with other UTRs, 
source of sRNAs (‘trans’-regulatory) 
 
 

 



	

2.3.2	How	many	functional	non-coding	RNAs	are	there	in	the	MTBC?	

Only	a	handful	of	 sRNAs	and	asRNAs	have	been	 functionally	characterised	 in	 the	

mycobacteria	 literature	(Table	2.2).	 In	most	cases,	 top-down	approaches,	such	as	

differential	expression	studies	and	ChIP-seq	(chromatin	immunoprecipitation	with	

sequencing),	 have	been	 employed	 to	discover	M.	 tuberculosis	 sRNAs,	 such	 as	 the	

RNAP-associated,	 Ms1	 (Arnvig	 et	 al.,	 2011;	 Šiková	 et	 al.,	 2019)	 and	 the	 PhoP-

regulated,	 Mcr7	 (Solans	 et	 al.,	 2014).	 Verification	 of	 the	 transcript	 size	 and	

abundance	 by	 Northern	 blot	 analysis	 has	 also	 established	 the	 stability	 of	 many	

ncRNAs	 in	 M.	 tuberculosis	 but	 identifying	 targets	 and	 functional	 associations	

requires	 extensive	 research.	 It	 is	 curious,	 that	 even	 among	 the	 eight	 well-

characterised	examples	in	Table	2.2,	there	are	two	(MrsI	and	asRelE2)	not	listed	in	

the	current	official	annotation	of	the	reference	H37Rv	genome,	available	from	the	

corresponding	 NCBI	 annotation	 (GFF)	 file	

(GCF_000195955.2_ASM19595v2_genomic.gff),	 most	 likely	 because	 they	 were	

relatively	 recent	 discoveries.	 This	 annotation	 file	 currently	 includes	 20	 features	

labelled	as	non-coding	RNAs,	15	of	which	are	listed	in	Arnvig	et	al.,	2011	(Arnvig	et	

al.,	2011)	and	9	in	DiChiara	et	al.	2010	(DiChiara	et	al.,	2010),	with	4	listed	in	both.	

It	also	includes	10	“sequence	features”	which	are	annotated	as	fragments	of	putative	

small	regulatory	RNAs	(sourced	from	DiChiara	et	al.,	2010;	Pelly	et	al.,	2012),		and	

two	“misc	RNA”	including	a	tmRNA	and	the	ribonuclease,	P	RNA.	Although	twenty	

or	even	thirty	non-coding	elements	is	almost	certainly	an	underestimate	of	the	total	

number	 of	 ncRNAs	 in	M.	 tuberculosis,	 it	 is	 of	 note	 that	 the	 corresponding	E.	 coli	

reference	genome	annotation	(GCF_000005845.2_ASM584v2_genomic.gff)	contains	

currently	72	elements	labelled	ncRNAs,	suggesting	that	either	functional	non-coding	

elements	are	not	very	common	in	bacteria,	or	that,	even	for	a	well-studied	organism,	

our	understanding	of	non-coding	regulation	is	incomplete.		
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Table	 2.2.	 Functionally	 characterised	 sRNA	 and	 asRNA	 in	 mycobacteria.	 *Annotation	 according	 to	
Lamichlane	et	al.,	2013.	

Name		
(H37Rv	annotation*,	
other	names)	

Mycobacterial	
organism	

Genomic	
coordinates	
(H37Rv)	

Citation	 Pathway	 /	
targets	

DrrS	(ncRv11733,	
MTS1338)	

M.	tuberculosis	
1960667-
1960783	(+)	

Moores	et	
al.,	(2017)	

DosR	regulon	
/	unknown	

Mcr7	(ncRv002,	
MTB000067)	 M.	tuberculosis	

2692172-
2692521	(+)	

Solans	et	al.,	
(2014)	

PhoP	regulon	
/	tatC	

MrsI	(ncRv11846)	 M.	tuberculosis,	M.	
smegmatis	

2096758-	
2096863	(+)	
	

Gerrick	et	al.,	
(2018)	

Iron-sparing	
response	/	
brfA	

Ms1	(ncRv0036a,	
MTS2823)	

M.	smegmatis,	M.	
tuberculosis	

4100669-
4100968	(+)	

Šiková	et	al.,	
(2019)	

Transcription	
regulation/	
RNAP	

6C	sRNA	
(ncRv13660c,	B11)	

M.	tuberculosis,	Msmeg,	
(homologues	in	all	GC-
rich	gram+	bacteria)	

4099386-
4099478	(-)	

Mai	et	al.,	
(2019)	

Growth,	
virulence	
(ESX-1)	/	
panD,	dnaB	
	

Mcr11	
(ncRv11264Ac)	 M.	tuberculosis	

1413227		-		
1413107/8	
(-)	

Girardin	and	
McDonough,	
(2020)	

Growth,	
metabolism	/	
unknown	

F6	(ncRv10243)	 M.	tuberculosis,	M.	
smegmatis	

293604	-	
293705	(+)	
	

Houghton	et	
al.,	(2021)	

SigF	regulon	/		
unknown	

asRelE2	
(ncRv2866c)	 M.	tuberculosis	

3178333	-	
3177822	(-)	

Dawson	et	
al.,	(2022)	

Toxin-
antitoxin	/	
relE2	

	

Whereas	functional	characterisation	is	ultimately	needed	to	create	a	reliable	list	of	

non-coding	 RNAs,	 homology	 to	 known	 families	 of	 RNAs	 from	 other	 organisms	

remains	the	most	popular	approach	for	predicting	non-coding	RNAs	in	the	absence	

of	 experimental	 evidence.	 The	 RNA	 families	 described	 in	 the	 RFAM	 database	

(Kalvari	et	al.,	2021)	derive	from	the	application	of	covariance	models	(and	where	

structure	 information	 is	 not	 available,	 Hidden	 Markov	 Models)	 representing	

meticulously	 curated	 multiple	 sequence	 and	 secondary	 structure	 alignments	 of	

homologous	RNAs.	RFAM	thus	represents	some	of	the	most	reliable	predictions	for	

non-coding	elements	in	genomes	and	its	predictions	for	M.	tuberculosis	H37Rv	are	

summarised	 in	 Table	 2.3.	 As	 conservation	 of	 structure	 is	 at	 the	 heart	 of	 RFAM	

families,	 non-coding	 RNAs	with	 few	 or	 no	 known	 relatives	 in	 other	 species,	 and	

those	that	do	not	fold	into	strongly	conserved	structures,	are	unlikely	to	be	found	in	

RFAM.	Hence,	this	database	too	is	likely	to	miss	elements	that	are	specific	to	a	small	
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number	 of	 pathogenic	 mycobacteria	 or	 that	 are	 too	 short	 to	 fold	 into	 a	 stable	

structure.	In	general,	homology-based	approaches	to	discovering	novel	non-coding	

elements	will	be	limited	in	pathogenic	mycobacteria	as	there	are	few	closely-related	

genomes	 outside	 the	 phyla.	 One	 notable	 exception,	 6C	 sRNA,	 is	 well-conserved	

among	 Gram-positive	 bacteria	 with	 over-expression	 leading	 to	 altered	 growth	

phenotypes	 in	 M.	 tuberculosis,	 M.	 smegmatis	 and	 another	 GC-rich	 bacterium,	

Corynebacterium	glutamicum.	Perhaps	 as	 a	 result,	 it	 is	 one	 of	 the	 few	 sRNAs	 for	

which	target	molecules	have	been	identified	and	experimentally	validated	(Mai	et	

al.,	2019).		
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Table	 2.3.	 Conserved	 non-coding	 RNA	 families	 and	 sequence	 listings	 from	 the	 RFAM	 database	
(https://rfam.xfam.org).		Ribozymes	(Group	II	catalytic	introns	and	Bacterial	RNase	P	class	A),	tRNAs	
and	rRNAs	have	not	been	included	in	this	table.	

RNA	Type	 Family	Name	 Rfam	ID	 Number	

Sequences	

in	RFAM	

Length	

(nt)	

Riboswitch	 Cobalamin	(B12)	 RF00174	 2	 173-218	

Riboswitch	 ykok	leader/Mbox	(Mg+)	 RF00380	 2	 169-174	

Riboswitch	 TPP/Thi-box	(thiamine)	 RF00059	 2	 110	

Riboswitch	 ydaO/yuA	leader	(Cyclic	

di-AMP)	

RF00379	 1	 222	

Riboswitch	 Glycine	 RF00504	 2	 90-97	

Riboswitch	 S-adenosyl	methionine	

(SAM-IV)	

RF00634	 1	 119	

sRNA	 Mcr7	 RF02671	 1	 348	

sRNA	 npcTB_6715	 RF02886	 2	 211	

sRNA	 Ms1	 RF02566	 1	 301	

sRNA	 ncRv12659	 RF02659	 1	 171	

sRNA	 ncrMT1302	 RF02341	 1	 108	

sRNA	 b55	 RF01783	 1	 60	

sRNA/asRNA	 ASdes	 RF0781	 2	 67	

sRNA	 F6	 RF01791	 1	 57	

sRNA	 Ms_AS-5	 RF02465	 1	 44	

sRNA/5’UTR	 5_ureB_sRNA	 RF02514	 1	 294	

asRNA	 ASpks	 RF01782	 5	 68-77	

	

Expanding	our	exploration	to	resources	beyond	the	official	NCBI	annotation,	further	

complicates	 the	question	of	what	 is	known	about	 functional,	non-coding	RNAs	 in	

mycobacteria.	Mycobrowser	(Kapopoulou	et	al.,	2011),	arguably	the	most	popular	

internet	 resource	 for	 the	 exploration	 of	 representative	 mycobacterial	 genomes,	

currently	 lists	 92	 non-coding	 RNAs,	 labelled	 as	 ‘ncRNA’	 (including	 sRNAs	 and	

asRNAs	under	this	moniker)	for	H37Rv:	40	overlap	the	official	NCBI	GFF	annotation	

and	 originate	 from	 the	 four	 key	publications	 listing	 experimentally-verified	 non-

coding	RNAs	(Arnvig	et	al.,	2011;	Arnvig	&	Young,	2009;	DiChiara	et	al.,	2010;	Pelly	

et	al.,	2012)	and	the	remaining	52	overlap	the	list	compiled	by	DeJesus	et	al.	using	
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their	in-house	computational	tool,	BS_finder,	applied	to	RNA-seq	data	derived	with	

a	 small-RNA	 sequencing	 protocol	 (Dejesus	 et	 al.,	 2017).	 Despite	 including	

annotations	from	nine	other	species	and	strains,	 including	M.	bovis,	M.	smegmatis	

and	M.	tuberculosis	18b,	non-coding	RNAs	annotated	with	the	tag	“ncRNA”	appear	in	

the	GFF	files	of	only	three	additional	species/strains	in	Mycobrowser,	and	only	M.	

tuberculosis	18b	has	more	than	two	ncRNAs	listed.		Strikingly,	M.	bovis,	sharing	more	

than	>99.95%	sequence	identity	to	M.	tuberculosis,	has	no	other	entries	for	RNAs	

apart	 from	 rRNAs,	 tRNAs	 and	 the	 same	 two	 RNAs	 tagged	 “misc_RNA”	 in	 the	M.	

tuberculosis	annotation;	it	is	highly	unlikely	that	many	of	the	ncRNAs	present	in	M.	

tuberculosis	do	not	have	a	counterpart	in	M.	bovis;	and	thus,	the	list	must	be	assumed	

to	 be	 incomplete.	 In	 fact,	 at	 least	 41	 of	 experimentally-verified	 sRNAs	 found	 in	

various	mycobacterial	species,	including	in	the	above	studies,	can	be	mapped	to	the	

M.	bovis	genome	(Dinan	et	al.,	2014)	and	a	sequence	comparison	(A2.1	Supplemental	

Tables:	Ch2_Supp_Table_1)	finds	that	only	three	of	the	listed	M.	tuberculosis	ncRNAs	

have	less	than	99.0	%	sequence	identity	in	M.	bovis	(and	all	have	greater	than	92%	

similarity).	 The	 lack	 of	 standardised	 tags	 and	 incomplete	 listings	 of	 non-coding	

elements	 (even	within	 the	 same	 resource),	 together	with	 the	 absence	 of	 a	 clear	

justification	for	which	elements	are	included	and	why,	likely	adds	to	the	confusion	

about	non-coding	regulation	 in	mycobacteria.	A	more	systematic	approach	to	the	

annotation	tags	of	these	elements,	similar	to	approaches	suggested	for	consistent	

naming	of	non-coding	RNA	(Lamichhane	et	al.,	2013),	could	go	some	way	towards	

eliminating	this	confusion.		

	

2.3.3	 Computational	 prediction	 of	 non-coding	 RNA	 from	 genomic	 and	

transcriptomic	data	

The	most	extensive	lists	of	putative	non-coding	RNAs	in	mycobacteria	are	the	result	

of	 computational	 predictions	 based	 on	 genomic	 or	 transcriptomic	 data	 (or	

sometimes	 both).	 	 Computational	 prediction	 algorithms	 have	 been	 used	 with	

moderate	 success	 in	 other	 bacteria,	 including	Salmonella	 enterica	 (Sridhar	 et	 al.,	

2010)	 and	Staphylococcus	aureus	 (Liu	 et	 al.,	 2018)	 and	new	 tools	 continue	 to	be	

developed	with	increasing	sophistication.	However,	the	utility	of	these	tools	is	even	

further	limited	when	applied	to	mycobacteria.	Genomics-based	methods	rely	on	the	

conservation	 of	 non-coding	 elements	 across	 several	 species	 and,	 like	 RFAM,	 are	

likely	to	miss	elements	specific	to	a	small	subset	of	the	genus	or	unique	to	a	species.	
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Such	 comparative	 genomics	 methods	 are	 typically	 enhanced	 by	 the	 search	 for	

characteristic	 sequence	 features	 and	 other	 signals	 of	 regulatory	 RNAs	 such	 as	

promoters,	 terminator	 structures	 and	 transcription-factor	 binding	 sites.	 For	

example,	 SIPHT	 begins	 with	 conserved	 intergenic	 sequences	 (defined	 as	 the	

sequence	 between	 two	 annotated	 genes	 or	 open	 reading	 frames	 (ORFs),	 on	 one	

strand)	 and	 looks	 for	 characteristic	 features	 of	 sRNAs	 in	 these	 regions,	 such	 as	

conserved	promoters	and	rho-independent	terminator	motifs	(Livny	et	al.,	2008).	

Other	 genomics-based	programs	 rely	 entirely	on	 sequence	 features	 and	genomic	

context	 (ignoring	 conservation).	 sRNAScanner	 determines	 intergenic	 sequences	

using	genome	annotation	files	and	differentiates	coding	from	non-coding	sequences	

using	position	scoring	matrices	for	sequence	signals	such	as	RBS	and	start	codons	

(Sridhar	 et	 al.,	 2010).	 A	 recently	 published	 tool,	 the	 Pred-GsRNA	 feature	 of	 the	

PresRAT	server,	extracts	 intergenic	sequences,	also	based	on	genome	annotation,	

and	excludes	candidates	that	have	an	8	nt	sequence	found	to	be	depleted	in	known	

sRNAs.	 It	 scores	 each	 predicted	 sequence	 with	 weighted	Minimum	 Free	 Energy	

scores	 for	predicted	paired	and	 loop	 regions	 and	 scores	 for	 the	predicted	U-rich	

consensus	 sequences	 typical	 of	 intrinsic	 terminators	 (Kumar	 et	 al.,	 2020).	 The	

server	 offers	 405	 possible	 ‘non-genic	 sRNA’	 predictions	 for	 the	M.	 tuberculosis	

H37Rv	genome	(http://www.hpppi.iicb.res.in/presrat/).	When	the	predicted	sRNA	

coordinates	are	compared	with	the	coordinates	of	the	92	‘stable’	RNAs	in	the	H37Rv	

genome	 on	 Mycobrowser	 (https://mycobrowser.epfl.ch),	 there	 are	 no	 PresRAT	

predicted	 sRNAs	 overlapping	 the	 boundaries	 of	 the	 Mycobrowser	 listed	 RNAs,	

except	for	low-ranking	predictions	that	were	over	4000	bp	long,	indicating	that	this	

method	has	limited	power	to	recognise	intergenic	sRNA	elements	in	mycobacterial	

genomes.		

	

Relying	 on	 the	 current	 annotation	 to	 define	 the	 intergenic	 search	 space	 is	

problematic	 given	 that	 ribosome	 occupancy	 studies	 suggest	 that	 there	 are	 a	

significant	 number	 of	 unannotated	proteins	 encoded	 at	 the	 5’	 ends	 of	 annotated	

genes	(Shell	et	al.,	2015;		Smith	et	al.,	2022).	Furthermore,	a	considerable	proportion	

of	 transcripts	 in	 the	 mycobacterial	 genome	 are	 either	 ‘leaderless’,	 meaning	 the	

transcription	 start	 site	 and	 the	 start	 codon	 are	 overlapping,	 and	 the	 transcripts	

therefore	 lack	 the	 canonical	 Shine-Dalgarno	 sequence	 used	 to	 identify	 ORF	

boundaries	(Cortes	et	al.,	2013;	 Ju	et	al.,	2024;	Martini	et	al.,	2019;	Sawyer	et	al.,	
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2021;	Shell	et	al.,	2015).	Programs	that	search	the	intergenic	regions	for	conserved	

sequence	features	based	on	sRNAs	discovered	in	the	model	organisms	are	also	less	

effective	in	mycobacteria	as	mycobacteria	make	use	of	a	large	number	of	alternative	

sigma	 factors	 which	 recognise	 diverse	 promoter	 sequences,	 and	 many	 lack	 a	

conserved	 -35	 sequence	 (Newton-Foot	 &	 Gey	 van	 Pittius,	 2013).	 Mycobacterial	

transcripts,	 including	 sRNAs,	 also	 generally	 lack	 the	 recognisable	 intrinsic	

terminator	motifs	at	their	3’	ends	typical	of	Hfq-binding	sRNAs	(Arnvig	et	al.,	2014;	

D’Halluin	 et	 al.,	 2023;	 DiChiara	 et	 al.,	 2010;	 Moores	 et	 al.,	 2017).	 Furthermore,	

identifying	regions	of	high	GC-content	in	order	to	detect	RNA	secondary	structure	

in	the	intergenic	space	is	even	more	challenging	in	the	context	of	the	GC-rich	genome	

of	mycobacteria.	 In	 any	 compact	 bacterial	 genome,	 tools	 that	 narrow	 the	 search	

space	 to	 strictly	 intergenic	 regions	 that	 lack	 annotated	 genes	 on	 either	 strand,	

effectively	 ignore	 sRNAs	 and	 asRNAs	 generated	 from	 coding	 regions,	 antisense	

regions	or	5’/3’	UTRs;	this	may	bias	our	understanding	of	non-coding	regulation	in	

mycobacteria.	

	

Transcriptomics-based	 detection	 methods	 are	 essentially	 versions	 of	 sliding	

window	approaches	looking	for	abrupt	increases	and	drops	in	the	expression	signal	

and	 using	 such	 changes	 to	 delineate	 the	 limits	 of	 putative	 non-coding	 elements.	

High-throughput	 RNA	 sequencing	 (RNA-seq)	 has	 exposed	 a	 multitude	 of	 short	

transcripts	 from	 intergenic	 sequences,	 5’	 and	 3’	 UTRs	 and	 antisense	 to	 coding	

regions.	 Identifying	 functional	 transcripts	 in	 the	conditions	examined	 is	 the	main	

challenge	 when	 using	 these	 data	 in	 non-coding	 RNA	 discovery.	 For	 example,	

sensitive	methods	are	able	 to	pick	up	expressed	elements	 in	 regions	of	 low	read	

coverage;	this	signal	may	represent	true	low-abundance	transcripts	but	it	can	also	

be	 the	 result	 of	 either	 technical	 noise	 or	 stochastic	 gene	 expression.	 The	 more	

sensitive	 computational	 methods	 will	 therefore	 inevitably	 over-predict	 putative	

non-coding	elements.	Ironically,	high-depth	sequencing	has	magnified	this	problem	

(Mao	et	al.,	 2015;	Tarazona	et	al.,	 2011).	Non-fragmented,	 size-selected	 libraries,	

where	small	transcripts	remain	intact,	are	superior	for	discerning	between	signal	

and	noise	for	small	RNA	transcripts	(Leonard	et	al.,	2019;	Wang	et	al.,	2016).	For	all	

the	 reasons	 discussed	 above,	 detecting	 the	 existence	 of	 sRNAs	 expressed	 in	 low	

levels	 against	 very	 strongly	 expressed	 coding	 genes	 remains	 a	 computational	

challenge.	Sequencing	strand-specific	cDNA	libraries,	where	the	information	about	
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which	 strand	 the	 transcript	 originates	 from	 is	 preserved,	 is	 necessary	 for	 the	

discovery	 of	 new	 ncRNAs.	 Preservation	 of	 the	 strand	 information	 avoids	 mis-

mapping	asRNAs	or	other	overlapping	sRNAs	that	might	otherwise	be	mapped	to	a	

coding	gene	on	the	opposite	strand.	

	

Many	 labs	have	developed	their	own	computational	pipelines	and	scripts	 to	map	

RNA-seq	data,	normalise	signals	and	identify	ncRNA	transcripts	across	the	genome	

(Ami	et	al.,	2020;	Dejesus	et	al.,	2017;	Gómez-Lozano	et	al.,	2014;	Miotto	et	al.,	2012;	

Wang	 et	 al.,	 2016),	whereas	 others	 have	 carried	 out	 this	 process	 semi-manually		

(Arnvig	 et	 al.,	 2011).	 Progress	 in	 the	 field,	 and	 an	 easy	 comparison	 between	

approaches,	 has	 been	 hindered	 by	 the	 fact	 that	 not	 all	 of	 the	 labs	 publishing	

computational	predictions	have	made	their	code	readily	available.		In	response	to	

this	challenge,	several	groups	have	created	publicly-available	prediction	programs	

or	 workflows	 such	 as	 Rockhopper	 (McClure	 et	 al.,	 2013),	 DETR’PROK	 (Toffano-

Nioche	et	al.,	2013),	ANNOgesic	(Yu	et	al.,	2018),		APERO	(Leonard	et	al.,	2019)	and	

baerhunter	(Ozuna	et	al.,	2019).	All	of	these	transcriptomics-based	methods	require	

users	to	set	thresholds	for	separating	background	noise	(whatever	its	origin)	from	

signal	 in	 the	 data.	 Indeed,	 most	 programs	 need	 adjustment	 to	 their	 default	

parameters	 in	 order	 to	 respond	 to	 sequencing	 depth	 and	 signal	 abundance,	 but	

tuning	these	parameters	can	be	a	matter	of	art	rather	than	science.			

	

The	 more	 sophisticated	 among	 the	 transcriptomics-based	 approaches	 use	 a	

combination	of	sources,	such	as	 transcriptional	start	sites	(TSSs)	or	conservation	

across	species,	 to	reduce	 false	positives.	DETR’PROK	is	a	Galaxy-based	workflow,	

coordinating	over	40	publicly-available	Galaxy	 sequence	 comparison	 tools	 into	 a	

pipeline	which	streamlines	the	number	of	user-defined	parameters.	However,	there	

are	still	14	different	user	inputs,	most	of	which	concern	filtering	to	account	for	read	

depth	and	transcriptional	noise	(Toffano-Nioche	et	al.,	2013).	The	ANNOgesic	suite	

of	tools	utilises	multiple	third-party	software	packages,	as	well	as	its	own	scripts	to	

analyse	RNA-seq	data	and	filter	predictions.	Although,	the	suite	includes	an	sRNA-

finder	 module,	 using	 this	 module	 in	 isolation	 on	 user-generated	 alignment	 files	

requires	 specific	 file	 formats	 for	 the	 alignment	 (wig)	 and	 several	 reference	

annotation	files.	Multiple	levels	of	filtering	are	possible	to	identify	bona	fide	ncRNAs,	

but	 such	 filtering	 requires	 downloading	 of	 tools	 and	 databases	 such	 as	 RNAfold	



 38 

(Denman,	1993),	BSRD	(Li	et	al.,	2013)	 	and	 the	NCBI	nr	protein	database	(NCBI	

Resource	 Coordinators,	 2014).	 In	 the	 context	 of	 validating	 mycobacteria	 ncRNA	

predictions,	 such	 databases	 may	 possibly	 be	 less	 relevant,	 given	 the	 lack	 of	

homology	or	shared	sequence	features	between	mycobacterial	and	other	bacterial	

ncRNAs.	 Additionally,	 fine-tuning	 cut-off	 parameters	 to	 distinguish	 signal	 from	

noise	is	ultimately	still	up	to	the	user.	Somewhat	surprisingly,	the	added	complexity	

of	 such	methods	does	not	always	 translate	 into	more	accurate	 results:	 in	 limited	

comparisons	 between	methods	 that	 use	 additional	 information	 and	 the	 simpler,	

signal-only-based	method	of	baerhunter,	used	 in	 this	chapter,	 it	was	 found	that	a	

naïve	 approach	 performs	 comparatively	 well,	 most	 likely	 because	 more	

sophisticated	 methods	 often	 require	 more	 tuning	 of	 their	 parameters	 to	 take	

advantage	 of	 their	 added	 complexity	 (Ozuna	 et	 al.,	 2019).	 Rockhopper	 is	 an	

independent,	 Java-based	 tool	 designed	 for	bacterial	RNAseq	data	 (McClure	 et	 al.,	

2013).	To	eliminate	guesswork	by	the	user	to	adjust	for	noise	vs.	signal,	the	program	

normalises	 for	 read	counts	using	 the	upper	quartile	of	non-zero	gene	expression	

values	and	generates	a	transcriptional	map	of	the	predicted	non-coding	elements.	

Baerhunter	(Ozuna	et	al.,	2019)	and	APERO	(Leonard	et	al.,	2019)	are	lighter	tools	

to	install,	both	written	in	R	and	requiring	only	the	most	commonly	used	BAM	format	

alignment	files	and	relevant	reference	annotations.	Like	Rockhopper,	the	output	of	

baerhunter	is	a	transcriptional	map	(in	gff	format)	and	can	consolidate	annotations	

from	multiple	samples.	APERO	exploits	improvements	in	sequencing	technology	by	

requiring	 paired-end	 reads	 (where	 each	 fragment	 is	 sequenced	 from	 both	 ends,	

creating	two	barcoded	reads	for	each	fragment)	and	optimising	parameters	for	non-

fragmented	 libraries.	 The	 output	 consists	 of	 a	 set	 of	 flat	 files	 of	 the	 predicted	

transcript	5’	and	3’	ends	for	each	sample	that	can	then	be	filtered	for	read	counts	

and	assembled	into	a	genomic	context.	

	

Steps	can	be	taken	to	 lend	support	 to	computational	predictions	of	sRNAs	and	5’	

UTRs	 in	 mycobacteria.	 In	 a	 recent	 study	 to	 identify	 differentially	 expressed,	

verifiable	 sRNAs	 in	 M.	 tuberculosis,	 software	 predictions	 based	 on	 RNA-seq	

produced	 over	 200	 candidate	 sRNAs	 (Dejesus	 et	 al.,	 2017),	 82	 of	 which	 were	

differentially	expressed	by	6-fold	in	at	least	one	experimental	condition	(Gerrick	et	

al.,	 2018).	 Applying	 additional	 filters	 to	 the	 92	 ‘stable	 ncRNAs’	 listed	 in	

Mycobrowser,	we	compared	their	5’	boundaries	with	a	compendium	of	published	
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predicted	TSSs	(Cortes	et	al.,	2013;	Shell	et	al.,	2015),	and	found	40	with		predicted	

TSS	within	10	nucleotides	of	 the	 annotated	5’	 boundary.	62	of	 the	Mycobrowser	

ncRNAs	are	putative	sRNAs	originating	from	the	DeJesus	et	al.	study	(Dejesus	et	al.,	

2017),	 25	 of	 which	 have	 TSSs	within	 10	 nucleotides	 of	 the	 5’	 boundary.	 	 These	

putative	sRNAs	were	also	compared	with	the	transcripts	found	to	be	differentially	

expressed	in	Gerrick	et	al	(Gerrick	et	al.,	2018),	and	found	17	putative	ncRNAs	with	

both	 TSSs	 and	 differential	 expression	 (A2.1	 Supplemental	 Tables:	

Ch2_Supp_Table_2).	However,	the	available	lists	of	M.	tuberculosis	TSS	sites	(Cortes	

et	al.,	2013;	D’Halluin	et	al.,	2023;	Shell	et	al.,	2015)	have	so	far	been	mapped	only	

in	 starvation	 and	exponential	 growth	 and	may	not	 include	TSSs	 that	 are	utilised	

under	different	experimental	conditions.	Furthermore,	3’	UTRs	that	are	functionally	

independent	 from	 their	 cognate	 coding	 sequence	 (CDS)	 have	 been	 identified	 in	

other	 bacteria	 (Desgranges	 et	 al.,	 2021;	Menendez-Gil	 et	 al.,	 2020;	 Ponath	 et	 al.,	

2022)	 and	 those	 generated	 from	 the	 3’	 UTRs	 of	 coding	 genes	 through	 RNase	

processing	 would	 presumably	 lack	 a	 TSS.	 RNase	 cleavage	 sites	 could	 also	 lend	

support	to	the	existence	of	other	sRNA	candidates	cleaved	from	longer	transcripts	

or	otherwise	processed	(Martini	et	al.,	2019;	Zhou	et	al.,	2023).	Finally,	polycistronic	

transcripts	often	include	non-coding	sequence	between	the	genes	of	an	operon,	and	

this	may	contain	 functional	 elements	and/or	processing	 sites	 (DeLoughery	et	 al.,	

2018;	Durand	et	al.,	2015;	Martini	et	al.,	2019;	Zhou	et	al.,	2023).	

	

Sequence	conservation	of	non-coding	elements	in	mycobacterial	genomes	outside	

the	MTBC	can	help	to	identify	bona	fide	predictions	made	by	RNA-seq	methods.	A	

comprehensive	 analysis	 of	 the	 genomic	 context,	 structural	 conservation	 and	

expression	profiles	of	non-coding	RNA	homologues	both	within	the	MTBC,	and	in	

the	 wider	 phyla,	 would	 be	 a	 valuable	 resource	 for	 the	 mycobacterial	 research	

community.	 In	 the	 absence	 of	 such	 a	 resource,	 I	 have	 performed	 a	 sequence	

similarity	search	with	each	of	the	non-coding	RNAs	annotated	in	M.	tuberculosis	in	

three	 related	 genomes:	 one	member	 of	 the	MTBC	 (M.	 bovis),	 the	non-pathogenic	

strain	widely	 used	 surrogate	 for	M.	 tuberculosis,	M.	 smegmatis,	and	 a	 pathogenic	

species	 outside	 the	 MTBC,	 Mycobacterium	 abscessus,	 using	 the	 web-based	

application,	 fastA	 (Madeira	et	al.,	2019).	43	of	 the	92	Mycobrowser	ncRNAs	have	

significant	(E-value	<	0.01)	sequence	matches	in	both	M.	smegmatis	and	M.	abscessus	

with	 sequence	 identities	 ranging	 from	 52-87%	 (A2.1	 Supplemental	 Tables:	
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Ch2_Supp_Table_1).	18	of	these	have	been	experimentally	verified	by	Northern	blot,	

but	25	of	them	were	predicted	by	RNA-seq	methods	alone.		

	

A	 further	 complication	 in	 defining	 the	 non-coding	 transcriptome	 is	 that	 putative	

non-coding	 elements	predicted	by	 computational	 algorithms	may	 actually	 be	 (or	

contain)	as	yet	unannotated	ORFs;	there	is	no	way	of	asserting	from	the	RNA-seq	

signal	alone	whether	a	transcript	is	coding	or	non-coding.	Early	ribosome	profiling	

studies	pointed	to	the	presence	of	hundreds	of	small	peptides	encoded	in	the	5’	UTR	

of	mycobacterial	transcripts	(Shell	et	al.,	2015),	and	more	recent	efforts	have	shown	

pervasive	translation	in	M.	tuberculosis,	uncovering	over	1000	novel	ORFs	(Smith	et	

al.,	 2022).	 The	 majority	 of	 these	 were	 short	 ORFs	 (sORFs)	 with	 non-canonical	

features	 that	 would	 thus	 be	 missed	 by	 regular	 gene	 prediction	 algorithms.	

Comparing	this	list	with	the	annotated	ncRNAs	listed	in	Mycobrowser,	two	of	the	

ncRNAs	 overlap	 with	 predicted	 sORFs	 (A2.1	 Supplemental	 Tables:	

Ch2_Supp_Table_2).	Although	translation	of	these	transcripts	does	not	necessarily	

render	them	functional,	they	may	constitute	a	pool	of	peptides	that	are	available	to	

use	 under	 the	 right	 conditions.	 	 The	 observation	 that	 leaderless	 transcripts	 are	

translated	more	efficiently	under	stress	conditions	(Sawyer	et	al.,	2021)	also	points	

to	the	fact	that	mycobacterial	non-canonical	ORFs	may	play	increasingly	important	

roles	in	conditions	of	nutrient	starvation	or	other	stresses.	Ribosome	profiling	will	

continue	to	be	instrumental	in	resolving	ambiguities	in	annotation	of	ORFs	versus	

non-coding	 elements	 in	 untranslated	 regions.	 Although	 such	 information	 can	

already	be	integrated	in	a	subset	of	computational	pipelines	(Yu	et	al.,	2018),	the	

corresponding	 data	 is	 only	 available	 for	 a	 limited	 number	 of	 reference	

mycobacterial	strains.	

	

2.3.4	Using	WGCNA	to	implicate	functional	associations	of	non-coding	RNA	

To	 include	 a	 complete	 picture	 of	 the	 interaction	 of	 the	 non-coding	 genome	with	

coding	genes	 involved	 in	adaptation	pathways,	we	have	generated	a	novel	 set	of	

ncRNA	sequence-based	predictions	 (sRNAs	and	UTRs)	 from	publicly	available	M.	

tuberculosis	datasets	using	our	in-house	software	package,	baerhunter	(Ozuna	et	al.,	

2019).	 Some	 of	 these	 predicted	 non-coding	 transcripts	 overlap	 with	 those	 of	

previous	 studies,	 but	many	 represent	 novel	 predictions.	 The	 expression	 of	 these	

transcripts	is	quantified	along	with	the	protein-coding	genes	and	used	in	network	
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analysis	to	provide	a	more	complete	picture	of	the	functional	groupings	involved	in	

adaptation	to	environmental	changes.	Including	a	variety	of	culture	conditions	that	

replicate	aspects	of	the	host	environment	improves	the	chances	that	the	expression	

of	any	ncRNA	that	is	restricted	to	one	or	more	conditions	is	included	in	the	network	

(Ami	et	al.,	2020).		

	

Weighted	gene	co-expression	network	analysis	(WGCNA)	(Zhang	&	Horvath,	2005)	

has	 been	 widely	 used	 to	 identify	 functional	 groups	 of	 genes,	 called	 ‘modules’,	

through	the	application	of	hierarchical	clustering	to	differential	expression	levels	of	

RNA	 transcripts	 in	 microarray	 or	 RNA-seq	 experiments.	 Recent	 studies	 have	

focussed	entirely	on	the	protein-coding	portion	of	the	transcriptome,	using	WGCNA	

with	 RNA-seq	 to	 cluster	 the	 differentially	 expressed	 genes	 of	 Mycobacterium	

marinum	 in	 response	 to	 resuscitation	 after	 hypoxia	 (Jiang	 et	 al.,	 2020)	 and	

Mycobacterium	 aurum	 infected	 macrophages	 (Lu	 et	 al.,	 2021).	 	 M.	 tuberculosis	

microarray	 data	 have	 been	 used	 to	 cluster	 protein-coding	 genes	 that	 show	

differential	expression	among	clinical	isolates	(Puniya	et	al.,	2013)	and	in	response	

to	two	different	hypoxic	models	to	identify	potential	transcription	factors	(Jiang	et	

al.,	2016).	Another	recent	network	analysis,	using	a	matrix	deconvolution	method	

followed	 by	 module	 clustering,	 uses	 a	 large	 number	 of	M.	 tuberculosis	RNA-seq	

samples	 including	 deletion	 mutants,	 infection	 models	 and	 antibiotic-treated	

samples	as	well	as	restricted	media	and	culture	conditions	(Yoo,	et	al.,	2022).	Here	

the	authors	identify	80	modules	of	protein-coding	genes	that	each	approximate	an	

isolated	 source	 of	 variance,	 together	 estimated	 to	 account	 for	 61%	 of	 the	 total	

variance	seen	in	in	the	dataset.	This	proportion	is	reportedly	lower	than	results	from	

similar	 analyses	 in	 other	 organisms,	 potentially	 due	 to	 the	 bias	 in	 the	 types	 of	

conditions	available	in	the	database	and/or	the	complex	nature	of	regulation	in	M.	

tuberculosis	 (Yoo,	 et	 al.,	 2022).	 However,	 the	 contribution	 of	 regulatory	 ncRNA	

elements	 may	 be	 a	 considerable	 unexplored	 source	 of	 variance	 in	 this	 complex	

system.	Here	we	use	an	alternative,	complementary	approach	by	including	ncRNA,	

as	well	as	annotated	protein-coding	genes,	in	the	modules.		

	

In	 this	 study,	 WGCNA	 was	 applied	 to	 multiple	 M.	 tuberculosis	 H37Rv	 datasets	

covering	 15	 different	 culture	 conditions	 replicating	 various	 growth	 conditions,	

nutrient	sources	and	stressors	encountered	in	the	host	environment.	A	global	view	
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of	 the	non-coding	genome	across	an	extensive	WGCNA	network	 is	presented	and	

selected	modules	are	interrogated	to	identify	functional	groupings	between	protein-

coding	and	non-coding	transcripts,	as	well	as	between	well-characterised	genes	and	

those	 with	 little	 functional	 annotation.	 The	 correlation	 of	 the	 modules	 with	 the	

various	 conditions	 can	 identify	 participants	 in	 large-scale	 transcriptomic	

remodelling	programs	in	response	to	changes	in	environmental	conditions.	

	

2.4	MATERIALS	AND	METHODS	

The	 overall	 workflow	 for	 this	 analysis	 is	 presented	 in	 Figure	 2.1.	 All	 scripts	 for	

baerhunter,	 WGCNA	 and	 subsequent	 analysis	 are	 available	 at:		

https://doi.org/10.5281/zenodo.7319853.		

	

	
Figure	2.1.	Analysis	workflow.	
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2.4.1	Data	Acquisition	and	Mapping	

Datasets	were	downloaded	 from	SRA	(https://www.ncbi.nlm.nih.gov/sra/docs/	)	

or	 Array	 Express	 (https://www.ebi.ac.uk/arrayexpress/)	 using	 the	 accession	

numbers	listed	in	Table	2.4.	To	minimise	batch	effects	and	ensure	compatibility	with	

RNA	 prediction	 software,	 we	 limited	 analysis	 to	 datasets	 with	 similar	 library	

strategies.	Samples	were	included	based	on	inspection	to	confirm	that	1)	samples	

were	 from	 monocultures	 of	 wild-type	 M.	 tuberculosis	 H37Rv	 strain	 and	 2)	

sequencing	was	using	a	paired-end,	 stranded	protocol.	 	Reads	 from	samples	 that	

passed	quality	control	thresholds	were	trimmed	using	Trimmomatic	(Bolger	et	al,	

2014)	 to	 remove	 adapters	 and	 low-quality	 bases	 from	 the	 5'	 and	 3’	 ends	 of	 the	

sequences.	Trimmed	reads	were	mapped	to	the	H37Rv	reference	genome	(GenBank	

AL123456.3)	using	BWA-mem	in	paired-end	mode	(Li,	2013).	All	samples	had	>70%	

percent	reads	mapped	with	an	overall	mean	of	~	27.75M	mapped	reads	and	a	range	

of	 3.97M	 to	 60.68M	 mapped	 reads	 per	 sample	 (A2.1	 Supplemental	 Tables:	

Ch2_Supp_Table_3).	
	

Table	2.4.	Datasets	used	in	analysis.	Project	accession	numbers	from	SRA	and	Array	Express.	

Dataset	 Num	 of	

sample

s	

Instrument	 Library	

Layout	

Library	

Strand	

Library	

Strategy	

Avg	Spot	

Length	

Ribo	

depleted	

PRJEB65014_3	

E-MTAB-6011	

3	 Illumina	

MiSeq	

paired	end	 reversely	

stranded	

cDNA	 150	 Y	

PRJNA278760	

GSE67035	

22	 Illumina	

HiSeq	2000	

paired	end	 reversely	

stranded	

cDNA	 50	 Y	

PRJNA327080	

GSE83814	

15	 Illumina	

HiSeq	2000	

paired	end	 reversely	

stranded	

cDNA	 180	 Y	

PRJNA390669	

GSE100097	

12	 Illumina	

NextSeq	

500	

paired	end	 reversely	

stranded	

cDNA	 287	 N	

	

	

2.4.2	Non-coding	RNA	prediction	and	quantification	

Each	dataset	was	run	through	the	R-package,	baerhunter	(Ozuna	et	al.,	2019),	using	

the	‘feature_file_editor’	function	optimised	to	the	most	appropriate	parameters	for	

the	sequencing	depth	https://github.com/jenjane118/mtb_wgcna.	‘Count_features’	
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and	 ‘tpm_norm_flagging’	 functions	were	used	 for	 transcript	 quantification	 and	 to	

identify	low	expression	hits	(less	than	or	equal	to	10	transcripts	per	million)	in	each	

dataset,	which	were	subsequently	eliminated.	When	viewed	on	a	genome	browser,	

coverage	 at	 the	 3’	 ends	 of	 putative	 sRNA	 and	 UTRs	 often	 appears	 to	 decrease	

gradually,	with	the	actual	end	of	the	transcript	appearing	indistinct,	compared	to	the	

5’	 end.	 Prokaryotic	 ncRNA	 transcripts	 may	 not	 demonstrate	 a	 clear	 fall-off	 of	

expression	signal	in	RNA-seq	due	to	incomplete	RNAP	processivity	and	pervasive	

transcription	regulated	by	the	changing	levels	of	Rho	protein	observed	in	different	

conditions	(Bidnenko	&	Bidnenko,	2018;	Wade	&	Grainger,	2014).	These	very	long	

predictions	can	mask	predicted	transcripts	in	the	same	region	from	other	samples,	

obscuring	 potentially	 interesting	 shorter	 transcripts	 expressed	 in	 different	

conditions.	 For	 this	 reason,	 transcripts	 longer	 than	 1000	 nucleotides	 were	

eliminated	 before	 combining	 the	 predictions	 between	 datasets.	 The	 predicted	

annotations	for	each	dataset	were	combined	into	a	single	annotation	file,	adding	the	

union	 of	 the	 predicted	 boundaries	 to	 the	 reference	 genome	 for	 H37Rv	

(AL123456.3).	 Predictions	 that	 overlapped	 with	 annotated	 ncRNAs	 and	 UTR	

predictions	 that	 overlapped	 sRNA	 predictions	 from	 a	 different	 dataset	 were	

eliminated.	 Transcript	 quantification	 was	 repeated	 on	 each	 dataset	 using	 the	

resulting	 combined	 annotation	 file	 and	 the	 count	 data	 from	 each	 dataset	 was	

merged	into	a	single	counts	matrix.		

	

DESeq2	v1.30.1	(Love	et	al.,	2014)	was	used	on	the	complete	counts	matrix	including	

the	filtered	baerhunter	predictions	to	calculate	size	factors,	estimate	dispersion	and	

normalise	the	data	with	the	regularised	log	transformation	function	(Appendix	A2.1,	

Figures	 S1	 and	S2).	The	normalised	data	was	 checked	 for	potential	 batch	 effects	

using	PCA	plots	and	hierarchical	dendrograms.	Limma	v3.46.0	(Ritchie	et	al.,	2015)	

‘removeBatchEffect’	 was	 applied	 with	 a	 single	 batch	 argument	 to	 remove	 batch	

effects	associated	with	the	first	component	(batching	the	data	according	to	dataset	

due	 to	 technical	 differences)	while	 preserving	 differences	 between	 samples.	 The	

final	 hierarchical	 dendrogram,	 post-batch	 correction,	 indicates	 successful	

application	as	samples	cluster	by	similar	experimental	conditions,	rather	than	by	

dataset	alone	(Figure	2.2	compared	to	A2.2	Supplemental	Figures,	S3).	Samples	from	

experiment	PRJEB65014	continue	to	group	together,	but	as	they	represent	single	

replicates	in	unique	conditions,	it	is	difficult	to	estimate	the	influence	of	confounding	



 45 

batch	effects	for	these	samples.	The	normalised,	batch-corrected	data	is	accessible	

as	 an	 R	 data	 object	 at	

https://github.com/jenjane118/mtb_wgcna/tree/master/R_data.	

	

	
Figure	2.2.	Hierarchical	dendrogram	of	rlog	transformed	and	limma	batch	corrected	expression	data	
by	 sample.	 The	 sample	 labels	 are	 coloured	 by	 dataset,	 demonstrating	 that	 they	 are	 clustering	 by	
condition,	rather	than	experiment.	

2.4.3	Creation	of	the	WGCNA	network	

The	normalised	and	batch-corrected	expression	matrix	was	used	to	create	a	signed	

co-expression	network	using	the	R	package,	WGCNA	v1.69	(Langfelder	&	Horvath,	

2008),	 with	 the	 following	 parameters:	 corType	 =	 "pearson",	 networkType	 =	

"signed",	 power	 =	 12,	 TOMType	 =	 "signed",	 	 	 minModuleSize	 =	 25,		

reassignThreshold	=	0,	mergeCutHeight	=	0.15,	deepSplit	=	2.	In	this	type	of	network,	

the	‘nodes’	are	the	genes,	and	the	‘edges’,	or	links,	are	created	when	gene	expression	

patterns	 correlate.	 In	 contrast	 to	 unweighted	 binary	 networks	 where	 links	 are	

assigned	 0	 or	 1	 to	 indicate	 whether	 or	 not	 the	 genes	 are	 linked,	 in	 a	 weighted	

network	the	links	are	given	a	numeric	weight	based	on	how	closely	correlated	the	

expression	is.	WGCNA	 first	calculates	the	signed	co-expression	similarity	 for	each	

gene	pair.	The	absolute	value	of	this	correlation	is	raised	to	a	power	(determined	by	

the	user,	based	on	a	scale-free	topology	model	that	mimics	biological	systems	(A2.2	

Supplemental	Figures,	S4)	 in	order	to	weight	the	strong	connections	more	highly	

than	 the	 weaker	 connections.	 The	 resulting	 similarity	 matrix	 is	 used	 to	 cluster	

groups	of	genes	with	strong	connections	to	each	other	in	a	non-supervised	manner	
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(i.e.,	 it	 doesn’t	 use	 any	 previous	 information	 about	 gene	 groups	 or	 connected	

regulons).	 A	 cluster	 dendrogram	 is	 created	 (A2.2	 Supplemental	 Figures,	 S8)	 and	

closely	connected	branches	of	the	dendrogram	are	merged	into	modules	based	on	a	

cut-off	value	(also	a	parameter	controlled	by	the	user).	Pairwise	correlations	were	

calculated	between	all	of	the	genes	in	each	module,	and	between	module	'hubs'	and	

all	of	the	other	genes	in	the	module,	using	the	Pearson	correlation	coefficient.	The	

mean	of	 these	values	 for	each	module	are	available	 in	A2.1	Supplemental	Tables:	

Ch2_Supp_Table_5.	The	modules	are	defined	by	a	‘module	eigengene’	(ME),	which	

explains	 most	 of	 the	 variance	 in	 the	 expression	 values	 in	 the	 module.	 The	

connectivity	of	the	MEs	define	the	shape	of	the	overall	network	(A2.2	Supplemental	

Figures,	 S9).	 The	 modules	 can	 then	 be	 tested	 for	 potential	 correlations	 with	

experimental	conditions	while	reducing	the	degree	of	penalties	for	multiple	testing.	

In	signed	networks,	correlation	of	the	module	with	a	condition	can	be	in	either	the	

positive	or	negative	direction,	as	modules	include	transcripts	that	are	similar	in	both	

the	degree	and	direction	of	correlation,	allowing	 for	a	more	 fine-grained	analysis	

than	with	unsigned	networks	(A2.2	Supplemental	Figures,	S10).	

	

To	test	correlations	of	modules	with	experimental	conditions,	the	individual	RNA-

seq	samples	were	assigned	to	a	condition	based	on	the	experimental	description	in	

the	project	metadata.	 Some	of	 these	 conditions	were	 shared	among	 the	different	

projects,	so	when	appropriate,	samples	from	different	datasets	were	assigned	the	

same	condition,	resulting	in	15	tested	conditions.	For	example,	late-stage	reaeration	

samples	 were	 tested	 along	 with	 exponential	 growth	 samples,	 and	 samples	 that	

tested	 hypoxia	 and	 cholesterol	 utilisation	 together	 were	 included	 in	 multiple	

conditions.	Models	 of	 hypoxia	 differed	 between	 the	 RNA-seq	 projects,	 and	 these	

samples	were	assigned	to	different	conditions:	‘hypoxia’	versus	‘extended	hypoxia’	

(Table	2.5).	Network	correlations	were	made	using	robust	biweight	midcorrelation	

tests	 and	 all	 p-values	 were	 corrected	 for	 multiple	 testing	 with	 the	 Benjamini-

Hochberg	(BH)	method	(Benjamini	&	Hochberg,	1995).	Significance	was	evaluated	

as	an	adjusted	p-value	(padj)	of	<	0.05.	

	

2.4.4	Module	Enrichment	

Modules	 were	 interrogated	 for	 enrichment	 for	 Gene	 Ontology	 (GO)	 terms	

(Ashburner	 et	 al.,	 2000;	 The	 Gene	 Ontology	 Consortium,	 2021),	 Clusters	 of	
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Orthologous	Groups	(COG)	(Galperin	et	al.,	2021),	KEGG	pathway	genes	(Kanehisa	

et	al.,	2022),	functional	categories	and	literature	searches	for	known	regulons.	GO	

terms,	COG	terms	and	KEGG	pathway	enrichment	were	accessed	programmatically	

using	the	DAVID	web	service	(Huang	et	al.,	2009b,	2009a;	Jiao	et	al.,	2012)	to	query	

the	list	of	protein-coding	genes	from	each	module	for	enrichment.	Enrichment	was	

determined	using	a	modified	one-sided	Fisher’s	Exact	Test	(‘EASE’	score)	with	BH	

correction	for	multiple	testing,	with	padj	<	0.01	considered	significantly	enriched	for	

a	particular	term,	pathway	or	COG	term.	Enrichment	for	the	11	functional	categories	

from	Mycobrowser	annotation	(Kapopoulou	et	al.,	2011)	was	determined	using	a	

one-sided	Fisher’s	Exact	Test	with	BH	correction	for	multiple	testing.	Modules	were	

enriched	for	a	particular	functional	category	if	padj	<	0.01.	Lists	of	genes	associated	

with	known	regulons	were	mined	from	literature	and	enrichment	was	tested	using	

the	 same	 one-sided	 Fisher’s	 Exact	 Test	 as	 above	 with	 a	 padj	 <	 0.01	 cut-off	 for	

enrichment.		

	

2.4.5	Data	exploration	

Non-coding	RNA	prediction,	network	analysis	and	subsequent	data	manipulation	

was	 performed	 with	 R	 (v4.0.5,	 2021-03-31).	 All	 plots	 were	made	 in	 R	 with	 the	

following	packages:	WGCNA	(v1.69),	dendextend	(v1.15.2),	ggplot2	(v3.3.5).	Scripts	

and	expression	data	are	available	at	https://github.com/jenjane118/mtb_wgcna.	

A	 downloadable	 app	 (https://github.com/jenjane118/mtb_wgcna)	 was	 made	 to	

query	and	explore	the	network	using	R	shiny	(v1.7.5),	JBrowseR	(v0.10.2)	and	shinyjs	

(v2.1.0).		
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Table	2.5.	Conditions	tested	in	the	various	samples	used	in	this	analysis.	Sample	run	acquisition	numbers	
from	(NCBI	Sequence	Read	Archive,	https://www.ncbi.nlm.nih.gov/sra)	

Condition	
Number	 of	
samples	 Samples	

ammonium	 1	 ERR2103718	
histidine	 1	 ERR2103722	
lysine	 1	 ERR2103723	
hypoxia	 4	 SRR5689228,	SRR5689229,	SRR5689234,	SRR5689235	
extended	
hypoxia	 3	 SRR3725585,	SRR3725586,	SRR3725587	
reaerated	
culture	 6	

SRR3725588,	 SRR3725589,	 SRR3725590,	 SRR3725591,	
SRR3725592,	SRR3725593	

exponential	 10	

SRR3725594,	 SRR3725595,	 SRR3725596,	 SRR3725597,	
SRR3725598,	 SRR3725599,	 SRR1917712,	 SRR1917713,	
SRR5689224,	SRR5689225	

butyrate	 3	 SRR1917694,	SRR1917695,	SRR1917696	
butyrate	 and	
glucose	 3	 SRR1917697,	SRR1917698,	SRR1917699	
glucose	 3	 SRR1917700,	SRR1917701,	SRR1917702	
high	iron	 3	 SRR1917703,	SRR1917704,	SRR1917705	

low	iron	 6	
SRR1917706,	 SRR1917707,	 SRR1917708,	 SRR1917709,	
SRR1917710,	SRR1917711	

acid	 2	 SRR1917714,	SRR1917715	

cholesterol	 6	
SRR5689230,	 SRR5689231,	 SRR5689232,	 SRR5689233,	
SRR5689234,	SRR5689235	

stationary	 4	 SRR5689226,	SRR5689227,	SRR5689232,	SRR5689233	
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2.5	RESULTS	AND	DISCUSSION	

2.5.1	M.	tuberculosis	expresses	an	extensive	range	of	ncRNA	transcripts	over	a	

wide	variety	of	experimental	conditions	

M.	tuberculosis		RNA-seq	datasets	were	selected	from	publicly	available	data	to	find	

experiments	using	the	wild-type	H37Rv	strain	and	representing	a	range	of	growth	

conditions	 the	 pathogen	 may	 encounter	 in	 a	 host	 environment.	 Four	 datasets	

passing	our	quality	standards	were	subjected	to	our	analysis	pipeline	(see	Material	

and	Methods)	and	included	52	samples	under	15	different	experimental	conditions	

(Table	2.5).	 The	R	package,	baerhunter	 (Ozuna	 et	 al.,	 2019),	was	used	 to	predict	

ncRNA	in	intergenic	regions,	antisense	RNA	(opposite	a	protein-coding	gene)	and	

UTRs	at	both	the	5’	and	3’	ends	of	genes	by	searching	the	mapped	RNA-seq	data	for	

expression	peaks	outside	of	 the	 annotated	 regions	 in	 the	 reference	 sequence	 for	

H37Rv.	 Non-coding	 RNA	 predictions	 from	 each	 dataset	 were	 filtered	 for	 low	

expression	and	combined	to	create	a	single	set	of	non-overlapping	annotations	that	

encompassed	 all	 predictions	 made	 from	 any	 sample	 under	 any	 experimental	

condition.	 In	 total,	 1283	 putative	 sRNAs	 were	 predicted	 (including	 both	 truly	

intergenic	 transcripts	 as	 well	 as	 those	 antisense	 to	 a	 protein-coding	 gene,	 or	

annotated	RNA)	and	1715	UTRs	which	includes	all	transcribed	regions	outside	of	

annotated	protein-coding	sequences	at	both	5’	and	3’	ends,	as	well	as	the	non-coding	

regions	between	adjacent	genes	in	operons.	All	putative	ncRNA	transcripts		(sRNAs	

and	UTRs)	were	searched	for	a	TSS	near	the	start	of	the	predicted	5’	boundary	using	

previously	published	annotations	(Cortes	et	al.,	2013;	Shell	et	al.,	2015).	Annotated	

TSSs	were	found	within	20	nucleotides	of	the	5’	end	in	43%	of	the	predicted	sRNA	

transcripts.	Predicted	5’	UTRs	had	a	TSS	within	10	nucleotides	of	the	start	in	42%	of	

cases,	 compared	with	 3%	 of	 the	 predicted	 3’	 UTRs.	Where	 the	UTR	 covered	 the	

entire	sequence	between	two	protein-coding	regions	(labelled	as	‘between’	UTRs),	

9%	 had	 a	 TSS	 in	 the	 first	 10	 nucleotides	 of	 the	 sequence	 (Table	 2.6	 and	 A2.1	

Supplemental	Tables:	Ch2_Supp_Table_4,	'putative_UTRs').	
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Table	2.6.	Tally	of	predicted	expressed	elements	in	the	baerhunter-generated	combined	annotation	file.	
4018	protein-coding	genes	were	included	in	the	annotation.	‘Between’	UTRs	cover	the	entire	sequence	
between	two	protein-coding	regions.	*TSS	predictions	under	exponential	and	starvation	conditions	from	
(Cortes	et	al.,	2013;	Shell	et	al.,	2015).	

	

Predicted	element	

	

Number	predicted	

	

With	predicted	TSS*		

Total	sRNA	 1283	 553	

sRNA	‘intergenic’	 88	 23	

sRNA	‘antisense’	 1195	 530	

Total	UTRs	 1715	 273	

5’	UTRs	 475	 200	

3’	UTRs	 602	 16	

‘Between’	UTRs	 638	 57	

	

The	 predicted	 sRNAs	 were	 further	 annotated	 using	 the	 accepted	 nomenclature	

(Lamichhane	et	al.,	2013)	which	identifies	the	putative	ncRNA	relative	to	annotated	

gene	loci	and	differently	signifies	truly	intergenic	sRNAs	and	those	that	overlap	any	

part	of	a	protein-coding	region	on	the	opposite	strand.	Most	of	the	putative	sRNAs	

are	antisense	 to	 the	protein-coding	region	of	one	or	more	genes,	but	88	putative	

sRNAs	have	predicted	boundaries	that	do	not	overlap	an	annotated	transcript	on	

either	strand	(or	overlap	an	annotated	transcript	on	the	opposite	strand	by	fewer	

than	10	nucleotides).	This	number	is	most	probably	an	underestimate	of	the	truly	

‘intergenic’	 sRNAs	 in	 the	genome,	 as	many	of	 the	 sRNA	predictions	appear	over-

estimated	at	the	3’	end,	effectively	classifying	them	as	an	antisense	RNA	even	though	

the	 5’	 half	 of	 the	 transcript	 does	 not	 overlap	 any	 genes	 on	 the	 opposite	 strand.	

Isoforms	of	annotated	sRNAs	can	be	subject	 to	post-transcriptional	processing	to	

create	an	active	transcript	(Moores	et	al.,	2017)	and	post-transcriptional	processing	

of	3’	ends	in	vivo	is	more	likely	the	norm	for	most	prokaryotic	transcripts	(Wang	et	

al.,	 2019).	 However,	 for	 our	 purposes,	 any	 RNA-seq	 transcripts	 that	 extend	 to	

overlap	a	protein-coding	gene	on	the	other	strand	in	any	dataset	will	be	labelled	as	

antisense	RNA.	

	

The	generated	combined	annotation	file	was	used	to	quantify	the	expression	of	all	

7046	 expressed	 elements,	 including	 every	 annotated	 CDS,	 annotated	 ncRNA	 and	

predicted	ncRNA,	in	each	sample.	Raw	counts	of	expression	varied	greatly	among	

the	datasets	due	to	different	sequencing	depth,	as	well	as	between	some	samples	

within	datasets	 (as	would	be	 expected	with	different	 environmental	 conditions).	
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The	raw	expression	counts	were	transformed	using	DESeq2’s	rlog	function	(Love	et	

al.,	2014),	and	plots	of	the	dispersion	of	count	data	show	that	the	median	expression	

level	 between	 samples	 and	 between	 datasets	 has	 been	 normalised	 (A2.2	

Supplemental	Figures,	 S1	and	S2).	The	distribution	of	 the	normalised	expression	

levels	of	protein-coding	regions	alone	shows	consistent	median	expression	 levels	

across	the	entire	dataset,	however	distribution	of	the	normalised	data	restricted	to	

putative	sRNAs	shows	more	variability,	with	certain	conditions	showing	increased	

or	decreased	expression	of	 these	 transcripts	 (A2.2	Supplemental	Figures,	 S5-S7).	

This	 is	 not	 unexpected,	 given	 that	 several	 studies	 have	 identified	 pervasive	

transcription	in	hypoxic	infection	models,	stationary	phase	and	dormancy.	This	is	

accompanied	 by	 a	 concomitant	 increase	 in	 non-rRNA	 abundance	 (especially	

antisense	RNA	transcripts)	and	in	the	number	of	predicted	TSSs	in	M.	tuberculosis	

and	M.	 smegmatis	 (a	 fast-growing,	 non-pathogenic	 strain)	 (Arnvig	 et	 al.,	 2011;	

Ignatov	et	al.,	2015;	Martini	et	al.,	2019).	

	

2.5.2	Module	networks	represent	groups	of	co-expressed	genes	and	predicted	

non-coding	RNA	

A	 weighted	 co-expression	 network	 was	 created	 from	 the	 normalised	 RNA-seq	

expression	 data	 using	WGCNA	 (Langfelder	 &	 Horvath,	 2008)	 (see	 Materials	 and	

Methods).	This	program	segregates	transcripts	with	similar	patterns	of	expression	

over	 a	 range	 of	 samples	 into	 modules.	 The	 modules	 represent	 sub-networks	 of	

connected	genes,	and	functional	relationships	can	be	explored	among	the	members	

of	 the	 individual	modules.	 The	 ‘hub’	 genes	 represent	 the	most	 highly	 connected	

genetic	 elements	within	 a	module	 and	 have	 highest	module	membership	 values.	

Module	 membership	 (MM)	 is	 measured	 by	 correlation	 of	 the	 expression	 of	 the	

individual	genes	with	the	module	eigengene	(ME),	the	vector	that	best	represents	

the	 variation	 in	 the	 module.	 This	 value	 is	 highly	 correlated	 with	 the	 level	 of	

interconnectivity	between	the	gene	and	the	other	genes	of	the	module	and	can	be	

used	to	find	the	best-connected	genes	in	the	module.		

	

The	signed	co-expression	network	presented	in	this	paper	consists	of	54	different	

modules,	 assigning	 99.3%	 of	 the	 expressed	 elements	 (CDS,	 putative	 UTRs	 and	

putative	 sRNAs)	 into	 53	modules,	with	 46	 unassigned	 elements	 clustered	 in	 the	

‘grey’	module	(A2.1	Supplemental	Tables:	Ch2_Supp_Table_4,	 'Module	Overview').	
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Module	size	ranged	from	766	to	25	expressed	elements.	The	modules	(using	the	ME)	

were	 tested	 for	 correlations	 with	 the	 various	 conditions	 used	 in	 the	 RNA-seq	

experiments	(see	Materials	and	Methods).	The	RNA-seq	data	was	categorised	into	

15	 different	 experimental	 conditions	 in	 total	with	 varying	 numbers	 of	 replicates	

(Table	2.5),	 therefore,	a	statistically	significant	correlation	of	modules	with	every	

condition	 was	 not	 expected.	 However,	 some	 modules	 do	 show	 significant	

correlations	with	conditions	such	as	iron	restriction,	cholesterol	media,	hypoxia	and	

growth	phase	and	this	can	be	informative	when	considering	the	association	of	the	

gene	groups	with	biological	processes	(Figure	2.3).		
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Figure	 2.3.	 Heat	 map	 of	 correlation	 of	 module	 eigengene	 (ME)	 of	 each	 module	 with	 selected	
experimental	conditions.	Correlation	was	calculated	using	biweight	midcorrelation	(bicor)	and	p-values	
were	adjusted	for	multiple	testing	(BH-fdr).	Positive	correlation	is	red,	negative	correlation	is	blue.	Non-
significant	correlations	in	grey	(padj	>	0.05).	

2.5.2.1	Well-established	regulons	cluster	together	in	single	modules	

In	 many	 cases,	 the	 gene	 membership	 of	 the	 modules	 includes	 well-established	

regulons	 or	 groups	 of	 functionally	 related	 genes,	 establishing	 the	 biological	

relevance	of	the	module	sub-networks	and	proof	of	concept	for	the	application	of	

WGCNA	on	such	a	heterogenous	dataset.	For	example,	the	DosR	regulon	is	a	well-

studied	 regulon	 associated	 with	 hypoxia	 and	 stress	 responses	 (Du	 et	 al.,	 2016;	

Rustad	 et	 al.,	 2008;	 Voskuil	 et	 al.,	 2004).	 47	 of	 48	 previously	 identified	 DosR-

regulated	 genes	 are	 found	 in	 a	 single	 module,	 ‘cyan’,	 representing	 statistically	

significant	enrichment	of	DosR-regulated	genes	in	the	module	(one-sided	Fisher’s	
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exact	test,	padj=3.81e-53).	The	 ‘cyan’	module	also	 includes	5	genes	 from	the	PhoP	

regulon	which	is	associated	with	hypoxic	response	and	coordination	with	the	DosR	

regulon	(Gonzalo-Asensio	et	al.,	2008;	Singh	et	al.,	2020)	and	the	DosR-regulated	

ncRNA,	DrrS/MTS1338,	known	to	be	upregulated	in	hypoxic	conditions	(Ignatov	et	

al.,	2015;	Moores	et	al.,	2017)	.	Unsurprisingly,	the	‘cyan’	module	is	enriched	for	the	

GO	term,	‘response	to	hypoxia’,	however,	a	statistically	significant	correlation	was	

not	 seen	with	 the	 hypoxia	 condition	 (though	 it	 is	 negatively	 correlated	with	 the	

exponential	growth	condition,	bicor=-0.35,	padj=0.05)	(Figure	2.3).	The	KstR	regulon	

includes	74	genes	under	control	of	 the	TetR-type	transcriptional	repressor,	KstR,	

known	to	be	involved	in	lipid	catabolism	and	upregulated	during	infection	(Kendall	

et	 al.,	 2007,	 2010;	 Nesbitt	 et	 al.,	 2010).	 The	 ‘royalblue’	 module	 is	 significantly	

enriched	for	known	KstR-regulated	genes	(one-sided	Fisher’s	exact	test,	padj	=	5.06e-

30)	 with	 30	 of	 72	 KstR-regulated	 genes	 clustering	 together	 in	 the	module.	 This	

module	 is	enriched	for	genes	of	 the	KEGG	pathway	for	steroid	degradation	(padj=	

3.32e-10)	and	the	GO	term	‘steroid	metabolic	process’	(padj	=	5.62e-16).	The	module	

shows	 statistically	 significant	 positive	 correlation	 for	 hypoxia	 (bicor=0.35,	

padj=0.03)	 and	 negative	 correlation	 with	 the	 low	 iron	 condition	 (bicor=-0.37,	

padj=0.03)	(Figure	2.3).	Genes	involved	in	mycobactin	synthesis	are	nearly	all	found	

in	 the	 ‘grey60’	 module	 (one-sided	 Fisher’s	 Exact	 test,	 padj=	 1.23e-17),	 a	 module	

enriched	 for	 the	KEGG	pathways	 ‘siderophore	metabolic	processes’	and	 ‘arginine	

biosynthesis’.	As	 these	examples	show,	known	associated	genes	are	co-located	 in	

modules	 which	 represent	 a	 functional	 group	 of	 genes	 that	 have	 co-regulated	

expression	 under	 various	 experimental	 conditions.	 The	 modules	 can	 be	 further	

explored	to	identify	novel	associations.		
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Figure	2.4.	Relative	proportion	of	annotated	CDS,	predicted	UTRs	and	predicted	sRNAs	in	each	module,	
ordered	by	module	size.	

	

2.5.2.2	Predicted	non-coding	RNAs	are	enriched	in	certain	modules	

Putative	sRNAs	and/or	predicted	UTRs	were	distributed	throughout	all	modules	in	

the	 network	 (Figure	 2.4).	 The	 number	 of	 predicted	 sRNAs	 were	 statistically	

enriched	in	seven	modules	and	predicted	UTRs	enriched	in	another	seven	modules	

(one-sided	 Fisher’s	 exact	 test,	 padj	 <	 0.01,	 A2.1	 Supplemental	 Tables:	

Ch2_Supp_Table_4,	'Module	Overview').	A	roughly	linear	relationship	between	the	

number	 of	 CDS	 and	 the	 number	 of	UTRs,	 is	 to	 be	 expected,	 given	 that	UTRs	 are	

defined	by	the	baerhunter	algorithm	by	their	position	at	the	start	or	end	of	protein-

coding	genes	(Ozuna	et	al.,	2019).	However,	if	the	UTRs	are	positioned	in	an	operon,	

there	will	be	a	smaller	increase	in	the	relative	number	of	UTRs	with	an	increasing	

number	of	protein-coding	genes,	 as	UTRs	between	 two	protein-coding	genes	 are	

predicted	as	a	single	UTR.	As	expected,	 the	 two	modules	 that	 include	the	highest	

number	of	predicted	operons	 (from	OperonDB,	Chetal	&	 Janga,	2015),	 ‘turquoise’	

and	‘brown’,	have	a	lower	relative	proportion	of	UTRs;	however,	the	‘blue’	module,	

which	 includes	15	complete	predicted	operons,	 is	significantly	enriched	for	UTRs	

(padj	=	6.79e-21)	(Figure	2.5).		
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Figure	 2.5.	 Plot	 of	 number	 of	 UTRs	 against	 number	 of	 CDS	 in	 each	module.	 Grey	 shading	 indicates	
confidence	interval	of	0.95.	

	

Within	the	module	sub-networks,	the	tight	co-expression	of	protein-coding	genes	

and	ncRNA	is	reflected	by	the	number	of	ncRNA	found	among	the	most	connected	

elements	in	the	module.	The	‘hub’	elements	are	those	with	the	best	correlation	to	

the	ME	and	therefore	the	most	tightly	connected	elements	in	the	individual	module	

networks.	 In	 14	modules,	 ncRNA	 (both	predicted	 and	 annotated)	make	up	more	

than	 half	 of	 the	 elements	with	module	membership	 values	 (MM	 )	 >	 =	 0.80	 (our	

threshold	 for	 identifying	 hub	 elements)	 (A2.1	 Supplemental	 Tables:	

Ch2_Supp_Table_4,	'Module	Overview').	These	associations	may	implicate	ncRNA	as	

co-conspirators	in	regulatory	pathways	implemented	to	adapt	to	conditions	such	as	

hypoxia,	 cholesterol	 media	 and	 low	 iron.	 The	 30	 annotated	 ncRNAs	 in	 the	 M.	

tuberculosis	reference	genome	(AL123456.3)	are	spread	over	20	modules,	with	10	
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of	them	hubs	of	the	module,	and	one	unassigned	(‘grey’	module)	(A2.1	Supplemental	

Tables:	 Ch2_Supp_Table_4,	 'Annotated	 ncRNA').	 For	 example,	 Ms1/MTS2823,	

observed	to	be	the	most	abundantly	expressed	ncRNA	in	expression	studies	over	

various	stress	conditions		(Arnvig	et	al.,	2011;	Arnvig	&	Young,	2012;	Ignatov	et	al.,	

2015;	Šiková	et	al.,	2019),	is	a	hub	element	in	a	module	that	is	positively	correlated	

with	 cholesterol-containing	media	 conditions	 (‘darkgreen’,	 bicor=0.35,	 padj=0.04)	

(Figure	2.3).	This	module	 is	 significantly	enriched	 for	KEGG	pathways,	 including:	

Pyruvate	metabolism	(padj	=	3.1e-3)	and	two-component	systems	(padj	=		3.8e-3),	and	

GO	terms:	plasma	membrane	respiratory	chain	complex	II	and	plasma	membrane	

fumarate	 reductase	 complex.	 Mcr7/ncRv2395A,	 found	 to	 be	 part	 of	 the	 PhoP	

regulon	 (Solans	 et	 al.,	 2014),	 is	 a	 hub	 in	 the	 ‘violet’	module	 enriched	 for	 lipid	

metabolism	and	PE/PPE	functional	categories,	correlated	positively	with	growth	in	

cholesterol	 (bicor=	 0.35,	 padj=	 0.04)	 and	 butyrate	 (bicor=	 0.41,	 padj=	 0.02)	 and	

negatively	 correlated	 with	 low	 iron	 (bicor=	 -0.36,	 padj=	 0.03)	 (Figure	 2.3).	

F6/ncRv10243/SfdS,	a	sRNA	upregulated	in	starvation	and	mouse	infection	models,	

is	thought	to	be	involved	in	regulating	lipid	metabolism	and	long-term	persistence	

(Houghton	et	al.,	2021).	This	ncRNA	is	a	hub	in	a	module	found	to	be	enriched	in	

‘lipid	metabolism’	genes	(‘saddlebrown’)	and	found	to	be	correlated	positively	with	

reaerated	 culture	 (bicor=	 0.38,	 padj=	 0.04)	 and	 butyrate	 (bicor=	 0.4,	 padj=	 0.02)	

conditions	(Figure	2.3).	

	

2.5.2.3	UTR	and	adjacent	ORF	expression	differ	in	over	50%	of	cases	

We	were	interested	to	see	how	many	of	the	predicted	UTRs	were	assigned	the	same	

module	as	the	adjacent	ORF—indicating	whether	the	ORF	and	its	adjacent	UTR	were	

co-regulated.	Intuitively,	the	UTR	of	a	protein-coding	gene	would	be	expected	to	be	

expressed	as	a	single	 transcript	along	with	 the	ORF	and	show	similar	expression	

patterns.	However,	both	5’	and	3’	UTRs	can	act	independently	of	the	attached	ORF	

and	RNA	abundance	in	RNA-seq	experiments	reflects	both	transcription	activity	and	

transcript	 stability.	 For	 example,	 some	5’	 UTRs	 are	 known	 to	 contain	 regulatory	

elements,	such	as	riboswitches,	that	alter	the	transcription	of	the	downstream	ORF	

(Dar	et	al.,	2016;	Kipkorir	et	al.,	2021;	Schwenk	&	Arnvig,	2018;	Warner	et	al.,	2007),	

whereas	sRNAs	cleaved	from	3’	UTRs	have	been	shown	to	regulate	the	stability	of	

the	remaining	transcript--with	different	half-lives	as	a	result	(Chao	et	al.,	2012;	Dar	

&	Sorek,	2018;	Menendez-Gil	&	Toledo-Arana,	2021).	Of	the	baerhunter	-predicted	
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UTRs	labelled	5'	and	3’,	the	UTRs	co-segregated	with	the	ORF	they	were	closest	to	

in	 fewer	 than	 half	 of	 cases	 (Table	 2.7.	 UTRs	 and	module	 assignment	 of	 adjacent	

ORFs).	We	would	expect	correctly-identified	5’	UTRs	to	utilise	a	TSS	(whether	or	not	

there	is	a	known	predicted	TSS),	whereas	it	appears	functional	3’	UTRs	are	more	

likely	to	be	cleaved	from	the	longer	mRNA	transcript	(Dar	&	Sorek,	2018;	Menendez-

Gil	&	Toledo-Arana,	2021;	Ponath	et	al.,	2022).	Our	data	confirms	this:	transcripts	

classified	as	5’	UTRs	are	much	more	likely	to	have	a	predicted	TSS	in	the	first	10	

nucleotides	than	transcripts	classified	as	3’	UTRs	(42%	vs	2.7%).	Approximately	9%	

of	the	UTRs	predicted	to	be	between	ORFs	(labelled,	‘Between’	UTRs)	have	predicted	

TSS	(Table	2.7.	UTRs	and	module	assignment	of	adjacent	ORFs).		The	presence	of	a	

TSS	in	the	first	10	nucleotides	of	the	predicted	UTR	appeared	to	have	little	bearing	

on	whether	or	not	the	UTR	and	its	adjacent	ORF	are	assigned	to	the	same	module,	

with	43%	of	5’	 and	19%	of	3’	UTRs	with	 a	predicted	TSS	 co-assigned	with	 their	

adjacent	ORF	partner.	42%	of	the	‘Between’	UTRs	do	not	segregate	with	either	the	

ORF	 upstream	 or	 downstream,	 indicating	 their	 expression	 is,	 to	 some	 degree,	

independent	of	either	adjacent	ORF.	195	UTRs	were	found	to	be	hubs	in	modules	

independent	 of	 their	 adjacent	 ORF(s),	 with	 27	 including	 a	 predicted	 TSS.	 All	

‘independent’	UTRs	are	found	in	the	A2.1	Supplemental	Tables:	Ch2_Supp_Table_4,	

'independent_UTRs'.	

	
Table	2.7.	UTRs	and	module	assignment	of	adjacent	ORFs	excluding	those	in	'grey'	module	(unassigned	
transcripts).	 DS=downstream,	 US=upstream.	 TSS	 indicates	 presence	 of	 annotated	 TSS	 in	 first	 10	
nucleotides	of	predicted	UTR	(Cortes	et	al.,	2013;	Shell	et	al.,	2015).	

	 Total		

(excluding	grey)	

Number	with	

TSS	

Number	in	

same	module	

as	adjacent	ORF	

Proportion	of	UTRs	

in	same	module	as	

adjacent	ORF	

5’	UTR	 471	 198	 173	DS	 37%	

3’	UTR	 597	 16	 254	US	 43%	

BTWN	UTR	 633	 56	 112	DS	 18%	

	 	 	 116	US	 18%	

	 	 	 137	both	 22%	

	

2.5.2.4	Antisense	RNAs	are	hubs	in	modules	independent	of	cognate	ORF	

It	has	been	observed	that	the	overall	abundance	of	antisense	RNA	and	other	non-

ribosomal	 RNA	 increases	 upon	 exposure	 to	 stress	 such	 as	 hypoxia	 and	 nutrient	

restriction	(Arnvig	et	al.,	2011;	Ignatov	et	al.,	2015),	and	in	our	network,	ncRNA	are	



 59 

well-connected	 in	 various	modules	 that	 include	 known	 transcription	 factors	 and	

gene	regulons	associated	with	stress	responses.	Not	unexpectedly,	very	few	(5%)	of	

the	 predicted	 antisense	 transcripts	 were	 assigned	 to	 the	 same	 module	 as	 the	

protein-coding	 region	 overlapping	 on	 the	 opposite	 strand	 (choosing	 the	 most	

downstream	 locus	 in	 the	event	of	multiple	overlapping	ORFs),	 signifying	distinct	

patterns	 of	 expression	 for	 transcripts	 on	 opposite	 strands,	 possibly	 due	 to	

independent	 or	 bi-directional	 promoters	 and/or	 overlapping	 transcription	

termination	 sites.	 Bi-directional	 promoters	 have	 been	 identified	 in	 multiple	

prokaryotic	genomes,	and	competition	for	RNA	polymerase	(RNAP)	binding	among	

divergently	 transcribed	 sense/antisense	 pairs	 may	 function	 as	 a	 mechanism	 for	

regulation	of	gene	expression	(Ju	et	al.,	2019;	Warman	et	al.,	2021).	Long	3’	UTRs	

that	overlap	with	converging	protein-coding	genes	on	the	opposite	strand	(or	with	

the	3’	UTR)	can	create	an	‘excludon’	regulatory	arrangement,	where	transcription	of	

the	 two	 opposite	 mRNAs	 is	 simultaneously	 regulated	 by	 RNase	 targeting,	 or	

mutually	exclusive	due	to	RNAP	collision		(Sáenz-Lahoya	et	al.,	2019;	Toledo-Arana	

&	Lasa,	2020).	Examining	 the	module	groupings	of	 the	antisense	RNAs	and	 their	

base-pairing	 target	 on	 the	 other	 strand	may	 provide	 insight	 on	which	 genes	 are	

regulated	by	antisense	transcription.	

	

2.5.3	Focus	on	selected	module	networks	

The	large-scale	transcription	analysis	presented	here	is	useful	for	the	more	global	

analysis	of	the	overall	trends	related	to	ncRNA	and	transcription,	but	there	is	a	great	

deal	 of	 information	 to	 be	 gleaned	 by	more	 fine-grained	 inspection	 of	 individual	

module	 groupings.	 To	 discover	 novel	 associations	 in	 such	 a	 large	 and	 complex	

dataset,	we	have	selected	a	few	modules	for	closer	examination,	focussing	on	those	

that	contain	gene	groups	or	regulons	related	to	the	tested	conditions.	Many	of	the	

modules	 that	 contain	 interesting	 correlations	 or	 gene	 regulon	 enrichments	 also	

include	an	abundance	of	putative	sRNAs	and	UTRs.	Using	the	‘guilt	by	association’	

principle,	we	 can	 hypothesise	 that	 the	well-connected	 ncRNAs	 found	 among	 the	

module	hub	 elements	 have	 a	 role	 in	 transcriptional	 ‘remodelling’	 in	 response	 to	

changes	 in	 environmental	 conditions	 such	 as	 growth	 on	 cholesterol-containing	

media,	restricted	iron	or	hypoxia.		
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2.5.3.1	Detoxification-linked	proteins	cluster	in	the	module	best	correlated	with	

cholesterol	media	condition		

The	‘darkolivegreen’	module	showed	positive	correlation	with	the	cholesterol	media	

condition	(bicor=0.57,	padj=5.0e-04)	and	negative	correlation	with	low	iron	(bicor	=	

-0.48,	 padj	 =	 0.001)	 (Figure	 2.3).	 Many	 protein-coding	 genes	 involved	 in	

detoxification	 pathways	 are	 hubs	 in	 the	 module,	 including	 several	 encoding	

transmembrane	proteins	such	as	the	mmpL5-mmpS5	efflux	pump	operon	(Rv0676c-

Rv0677c),	as	well	as	the	next	gene	downstream,	Rv0678,	which	was	identified	as	

part	of	a	‘core	lipid	response’	in	differential	expression	analysis	in	lipid-rich	media	

(Aguilar-Ayala	et	al.,	2017).	The	5’	UTR	for	Rv0677c	and	3’	UTRs	for	Rv0676c	and	

Rv0678	 are	 also	 hubs.	 This	 operon	 is	 involved	 in	 siderophore	 transport	 and	

expressed	 in	 cholesterol	 and	 lipid-rich	environments	 (Aguilar-Ayala,	 et	 al.,	 2017;	

Pawełczyk	et	al.,	2021).	The	module	contains	several	Type	II	toxin-antitoxin	systems	

including	 VapBC12	 (Rv1720c1721c),	 VapBC41	 (Rv2601A-2602),	 RBE2	 (relFG,	

Rv2865-2866)	 and	 vapB36	 and	 vapB40	 which	 may	 have	 roles	 in	 adaptation	 to	

cholesterol	and	the	evolution	of	persisters	(Ramage	et	al.,	2009;	Sala	et	al.,	2014).	

VapBC12,	specifically,	has	been	shown	to	inhibit	translation	and	promote	persister	

phenotypes	 in	response	to	cholesterol	(Talwar	et	al.,	2020).	Other	detoxification-

linked	 genes	 in	 the	 module,	 such	 as	 the	 ABC-family	 transporter	 efflux	 system,	

Rv1216c-1219c,	 have	 also	 been	 implicated	 in	 transcriptomic	 remodelling	 in	

response	to	cholesterol	(Aguilar-Ayala	et	al.,	2017;	Pawełczyk	et	al.,	2021).		

	

Two	 adjacent	 predictions,	 the	 3’	 UTR	 for	 Rv1772	

(putative_UTR:p2006948_2007063)	 followed	 by	

ncRv1773/putative_sRNA:p2007213_2007377,	 are	 hubs	 in	 the	 ‘darkolivegreen’	

module.	Together,	they	extend	to	overlap	the	antisense	strand	of	a	large	portion	of	

Rv1773c,	a	probable	transcriptional	regulator	in	the	IclR-family,	found	in	a	different	

module	(‘turquoise’).	The	3’	UTR	for	Rv1772	has	been	previously	 identified	as	an	

abundant	antisense	transcript	during	exponential	growth	(Arnvig	et	al.,	2011).	The	

start	of	the	predicted	sRNA	transcript	has	no	known	TSS	and	could	instead	be	an	

extension	 of	 the	 predicted	 3’	 UTR	 (Figure	 2.6).	 (When	 combining	 predicted	

annotations	from	different	datasets,	 long	predicted	UTRs	that	overlapped	shorter	

sRNA	 predictions	 were	 discarded,	 see	 Methods).	 In	 E.coli,	 the	 IclR-family	

transcriptional	regulators	demonstrate	both	activating	and	repressing	activities	on	
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targets	such	as	multidrug	efflux	pumps	and	the	aceBAK	operon	which	regulates	the	

glyoxylate	 shunt	 (Zhou	 et	 al.,	 2012).	 Icl2a	 (Rv1915)	 is	 one	of	 the	M.	 tuberculosis	

isoforms	of	the	isocitrate/methylocitrate	lyase	gene,	aceA,	and	may	be	regulated	by	

Rv1773c,	as	seen	in	E.coli.	Icl2a,	Rv1772,	its	predicted	UTR	and	the	antisense	RNA	

(ncRv1773)	are	all	hubs	in	the	‘darkolivegreen’	module.	Icl2a	has	been	observed	to	

be	upregulated	with	cholesterol	as	the	sole	carbon	source	and	likely	has	a	second	

function	 as	 part	 of	 the	methylcitrate	 cycle	 to	 convert	 the	 fatty	 acid	 metabolites	

propionate	 and	 propionyl	 CoA	 to	 less	 toxic	 compounds	 (Bhusal	 et	 al.,	 2017;	

Pawełczyk	et	al.,	2021).	

	

	
Figure	2.6.	Expression	of	antisense	transcripts,	putative_UTR:p2006948_2007063	(highlighted	in	green)	
and	 	 ncRv1773/putative_sRNA:p2007213_2007377	 (highlighted	 in	 magenta),	 appear	 to	 suppress	
expression	of	convergently	transcribed	gene,	Rv1773c	in	cholesterol	and	fatty	acid-containing	media	vs	
standard	 media	 without	 cholesterol.	 RNA-seq	 samples	 SRR5689230	 and	 SRR5689224	 from	
PRJNA390669.	Strand	coverage	using	the		‘second’	read	of	each	pair	mapping	to	the	transcript	strand,	
visualised	using	Artemis	genome	browser	(Carver	et	al.,	2012).	

	

2.5.3.2	 Module	 correlated	 with	 reaeration	 after	 non-replicating	 persistence	

includes	genes	for	amino-acid	synthesis	and	cell	wall	remodelling	

The	 module,	 ‘saddlebrown’	 	 is	 enriched	 for	 GO-terms	 for	 various	 amino-acid	

metabolic	 processes	 and	 COG	 ‘lipid	 metabolism’.	 It	 is	 positively	 correlated	 with	

reaeration	after	non-replicating	persistence	(bicor=	0.38,	padj=	0.04)	and	butyrate-

containing	media	(bicor=	0.4,	padj=	0.02)	(Figure	2.3).	This	pairing	of	upregulation	

of	amino-acid	synthesis	and	upregulation	of	the	synthesis	of	cell	wall	lipids	has	been	

observed	in	the	‘lag	phase’	after	reaeration	for	increased	protein	synthesis	(Du	et	al.,	

2016).	The	hubs	of	the	‘saddlebrown’	module	include	several	predicted	sRNAs,	and	

the	annotated	sRNA,	F6.	F6/ncRv10243/SfdS	is	a	sigF-dependent	ncRNA	which	has	

been	shown	to	be	induced	in	nutrient	starvation,	oxidative	stress,	acid	stress	(Arnvig	
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&	Young,	2009;	Houghton	et	al.,	2021)	and	the	fatty	acid	hypoxia	model	(Del	Portillo	

et	al.,	2019).	In	addition	to	being	expressed	from	its	own	promoter,	F6/SfdS	has	been	

proposed	to	be	co-transcribed	with	the	upstream	gene	fadA2	(Rv0243),	a	probable	

acetyl-CoA	acyltransferase;	however,	fadA2	is	clustered	in	a	different	module	from	

SfdS	(‘darkred’).		

	

One	 of	 the	 predicted	 sRNAs	 among	 the	 ‘saddlebrown’	module	 hubs	 is	 antisense	

transcript	 ncRv2489/putative_srna:p2801108_2801678	 with	 a	 TSS	 at	 2801108.	

This	 overlaps	 the	 3’	 end	 of	 PE-PGRS43	 (Rv2490c)	 (Figure	 2.7).	 There	 is	 a	 short	

reading	frame	(30	nucleotides,	10	amino	acids)	initiating	from	a	Methionine	at	this	

TSS	that	suggests	a	possible	dual-function	sRNA	or	sORF	with	independent	function.	

A	shorter,	possibly-leadered,	sORF	was	predicted	by	Shell	et	al.	 (	2015)	 that	 falls	

within	this	region	(2801238..2801261).	The	TSS	for	the	predicted	sRNA	overlaps	

the	5’	end	of	Rv2489c,	a	short,	hypothetical	‘alanine-rich	protein’.	The	TSSs	for	these	

convergently	overlapping	transcripts	are	42	nts	apart		

	

	
Figure	2.7.	Antisense	sRNA,	ncRv2489/putative_srna:p2801108_2801678,	(magenta	bar)	overlaps	two	
transcripts	and	may	encode	a	short	peptide.	TSS	for	sRNA	indicated	in	red	and	corresponding	amino	
acid	highlighted	in	pink.	Sample	SRR5689230	from	PRJNA390669,	exponential	growth	on	cholesterol	
and	fatty	acid	media.	Strand	coverage	using	the		‘second’	read	of	each	pair	mapping	to	the	transcript	
strand,	visualised	using	Artemis	genome	browser	(Carver	et	al.,	2012).	
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and	may	involve	RNAP	collision	if	both	are	transcribed	simultaneously.	Therefore,	

transcription	 of	 the	 predicted	 sRNA	 could	 impact	 either	 Rv2489c	 and/or	 PE-

PGRS43	 expression	 through	 two	 different	 mechanisms.	 Another	 hub	 sRNA	 in	

‘saddlebrown’	includes	ncRv1450/putative_sRNA:p1630466_1631246,	which	has	a	

TSS	at	1630466	and	is	likely	to	be	an	intergenic	transcript	between	two	divergently	

transcribed	genes	on	the	opposite	strand,	tkt	(Rv1449c)	and	PE-PGRS27	(Rv1450c),	

both	 of	 which	 are	 assigned	 to	 different	 modules.	 The	 3’	 end	 of	 the	 prediction	

includes	possible	run-on	transcription	antisense	to	the	3’	end	of	PE-PGRS27.	

	

The	fatty-acid	desaturase	gene,	Rv3229c	(desA3)	is	a	hub	in	the	module,	but	without	

its	operon	partner,	Rv3230c.	However,	the	module	does	contain	an	antisense	sRNA	

in	this	region,	ncRv3230/putative_sRNA:p3607084_3607499	which	is	antisense	to	

the	3’	end	of	Rv3230c,	but	lacks	a	known	TSS.	Interestingly,	Rv3230c	has	an	internal	

transcription	termination	site	predicted	at	3607550	which	coincides	with	the	3’	end	

of	the	antisense	sRNA	(D’Halluin	et	al.,	2023)	(Figure	2.8).	Another	hub	antisense	

sRNA,	 putative_sRNA:p3608313_3608866/ncRv3231c,	 overlaps	 the	 3’	 end	 of	 the	

upstream	gene,	Rv3231c,	and	has	a	predicted	TSS	at	3608313.		

	

	
Figure	2.8.	Antisense	sRNAs	(magenta	bars)	overlap	Rv3230c	and	Rv3231c.	TSSs	and	TTSs	are	indicated	
in	 black.	 Shown	 is	 sample	 SRR1917713	 from	PRJNA278760,	 exponential	 growth	 in	 dextrose	media.	
Coverage	 is	 limited	 to	 1500	 reads	 to	 aid	 visualisation	 of	 coverage	 on	 the	 +	 strand.	White	 bars	 are	
predicted	UTRs.	Strand	coverage	using	the	‘second’	read	of	each	pair	mapping	to	the	transcript	strand,	
visualised	using	Artemis	genome	browser	(Carver	et	al.,	2012).	
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2.5.3.3	 Slow-growth	 correlated	 module	 is	 associated	 with	 transcriptional	

remodelling	and	metal	ion	homeostasis	and	enriched	for	sRNAs	

The	 ‘green’	 module	 contains	 genes	 that	 are	 associated	 with	 transcriptional	

remodelling	in	response	to	hypoxic	or	stationary	growth	conditions.	It	is	positively	

correlated	 with	 hypoxic	 (bicor=0.49,	 padj=0.004)	 and	 stationary	 (bicor=0.4,	

padj=0.01)	 growth	 conditions,	 negatively	 correlated	 with	 exponential	 growth	

(bicor=-0.44,	 padj=0.01)	 (Figure	 2.3)	 and	 is	 enriched	 for	 GO	 terms	 related	 to	

response	to	metal	ions	as	well	as	regulation	of	gene	expression.	The	‘green’	module	

contains	at	least	30	known	transcription	factors,	with	14	of	them	hubs	in	the	module,	

including	FurA,	Zur	and	sigma	factor,	SigH,	as	well	as	being	enriched	for	SigH	regulon	

genes.	Three	of	the	most	well-connected	transcription	factors	(furA,	smtB	and	zur)	

are	involved	in	iron	uptake	and	utilisation,	and	the	Zur-regulated	ESAT-6	secretory	

proteins,	esxR	and	esxS	(Rv3019c,	Rv3020c),	are	also	present	in	the	module,	linking	

metal	homeostasis	with	response	to	hypoxia	(Maciąg	et	al.,	2007;	Zhang	et	al.,	2020).	

Two	chaperonin	protein	targets	of	the	non-coding	RNA	F6/Sfds,	GroES	(Rv3418c)	

and	GroEL2	 (Rv0440)	 are	 in	 the	module,	 as	well	 as	 the	 chaperonin	 protein,	 hsp	

(Rv0251c),	all	of	which	are	part	of	the	phoPR	virulence-regulating	system	(Gonzalo-

Asensio	et	al.,	2008,	2014).		

	

The	‘green’	module	is	enriched	for	sRNAs	(padj=0.011).	Among	the	best-connected,	

are	 27	 predicted	 antisense	 RNAs.	 One	 of	 these	 hubs,	

putative_sRNA:p1404640_1404929/	 ncRv1257	 is	 antisense	 to	 the	 3’	 end	 of	

Rv1257c,	 a	 probable	 oxidoreductase,	 and	 another	

(putative_sRNA:p1771044_1771498/	 ncRv1546)	 is	 antisense	 to	 the	 5’	 end	 of	 a	

trehalose	 synthetase,	 treX.	 Both	 of	 these	 sRNAs	 have	 TSSs	 and	 are	 expressed	

differentially	among	the	tested	conditions.	Control	of	reactive	oxygen	species	and	

synthesis	 of	 trehalose	 intermediates	 are	 important	 for	 cells	 in	 order	 to	 survive		

hypoxic	conditions	(Eoh	et	al.,	2017;	Harold	et	al.,	2019)	and	antisense	RNA	may	be	

involved	 in	 fine-tuning	 these	 responses.	 Another	 antisense	 RNA,	 ncRv1358c	

(putative_sRNA:m1530046_1530745)	has	a	TSS	near	its	start	and	is	found	antisense	

to	Rv1359.	Rv1359	and	the	upstream	gene,	Rv1358,	on	the	opposite	strand	are	very	

similar	 to	 each	 other	 (43.7%	 identity	 in	 197	 aa	 overlap)	 and	 to	 another	 gene	

elsewhere	in	the	genome,	Rv0891c	(48.5%	identity	in	204	aa	overlap)	(Kapopoulou	

et	 al.,	 2011).	 All	 three	 genes	 are	 possible	 LuxR	 family	 transcriptional	 regulators	
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which	 are	 thought	 to	 be	 involved	 in	 quorum-sensing	 adaptations	 and	 contain	 a	

probable	ATP/GTP	binding	site	motif	(Chen	&	Xie,	2011;	Modlin	et	al.,	2021)	and	are	

found	in	different	modules.	Expression	of	this	antisense	sRNA	appears	to	suppress	

the	 expression	 of	 the	 transcript	 on	 the	 opposite	 strand	 to	 varying	 degrees	 in	 all	

conditions	(Figure	2.9).	In	the	cholesterol	and	fatty	acid	media	samples,	expression	

of	a	shorter	transcript	appears	to	begin	inside	the	Rv1359	ORF,	where	the	transcript	

is	not	overlapped	by	the	antisense	transcript,	possibly	utilising	an	internal	TSS	at	

1530774.	
	

	
Figure	2.9.	Expression	of	antisense	transcript	putative_sRNA:m1530046_1530745	(magenta	bar)	seems	
to	suppress	the	expression	of	most	of	Rv1359	and	Rv1358	in	cholesterol	and	fatty	acid	media.	An	internal	
TSS	 exists	 inside	 the	 Rv1359	 CDS	 at	 1530774	 near	where	 expression	 begins.	Note,	 prediction	 of	 an	
individual	sRNA	is	an	aggregate	of	predictions	under	different	conditions,	so	will	not	always	match	the	
expression	 of	 the	 sRNA	 in	 any	 particular	 sample.	 Sample	 SRR5689230	 from	 PRJNA27860.	 Strand	
coverage	using	the		‘second’	read	of	each	pair	mapping	to	the	transcript	strand,	visualised	using	Artemis	
genome	browser	(Carver	et	al.,	2012).	

	

2.5.3.4	 Metal	 ion	 homeostasis	 genes	 cluster	 in	 module	 that	 is	 negatively	

correlated	with	the	hypoxia	condition.	

The	 ‘darkred’	module	is	negatively	correlated	with	the	hypoxia	condition	(bicor=-

0.46,	padj=0.005,	Figure	2.3).	This	module	contains	most	of	the	ESX-3	genes	(Rv0282-

Rv0292)	related	to	siderophore-mediated	iron	(and	zinc)	uptake	in	M.	tuberculosis	

(Serafini	et	al.,	2013;	Zhang	et	al.,	2020),	with	nine	of	these	representing	hubs	in	the	

module.	The	module	is	enriched	for	the	PE/PPE	functional	category,	and	includes	

the	two	genes	preceding	the	ESX-3	genes,	Rv0280	(PPE3)	and	Rv0281	(a	possible	S-

adenosylmethionine-dependent	 methyltransferase	 involved	 in	 lipid	 metabolism,	

though	its	position	in	the	genome	would	suggest	regulation	could	be	linked	to	ESX-

3	(Lunge	et	al.,	2020)),	and	an	ESX-5	gene,	Rv1797	(eccE5).	The	module	also	contains	



 66 

another	 Zur-regulated	 gene,	 Rv0106,	 which	 is	 a	 potential	 zinc-ion	 transporter	

(Zondervan	et	al.,	2018).	Among	the	hubs	of	the	module	are	several	genes	related	to	

lipid	 metabolism	 and	 fatty	 acid	 synthesis,	 including:	 	 probable	 triglyceride	

transporter,	Rv1410;	 the	operon	 consisting	of	Rv0241c	 (htdX),	 Rv0242c	 (fabG4),	

and	Rv0243	(fadA2)	(Dutta,	2018);	and	a	gene	involved	in	the	pentose	phosphate	

pathway,	zwf2	(Rv1447c).		

	

There	 are	 some	 well-connected	 ncRNAs	 in	 the	 ‘darkred’	 module,	 including	 a	

predicted	 antisense	 RNA	 to	 Rv0281,	 ‘ncRv0281c’	

(putative_sRNA:m341328_342075).	This	putative	sRNA	has	a	predicted	TSS	at	the	

5’	end	and	is	transcribed	divergently	from	Rv0282	(eccA3).	This	is	one	of	the	rarer	

cases	where	the	antisense	transcript	and	cognate	protein-coding	gene	(Rv0281)	are	

clustered	in	the	same	module.	The	prevailing	direction	of	transcription	at	this	locus	

may	be	a	result	of	competition	for	RNAP	binding	at	a	bi-directional	promoter	in	the	

predicted	5’	UTR	of	Rv0282	which	also	clusters	 in	 the	module.	There	are	several	

UTRs	in	the	module	hubs,	including	a	3’	UTR	for	the	gene	Rv1133c,	metE		(also	found	

in	 the	 module).	 This	 UTR	 was	 previously	 identified	 as	 abundantly	 expressed	 in	

exponential	culture	(Arnvig	et	al.,	2011).	There	is	a	3’	UTR	for	Rv0292	(eccE3,	also	a	

hub	in	the	‘darkred’	module)	that	is	antisense	to	a	large	part	of	the	3’	end	of	Rv0293c	

which	has	a	converging	orientation	to	Rv0292	(Figure	2.10).	Rv0293c	is	a	hub	in	a	

different	module	(‘lightgreen’)	along	with	its	3’	UTR.	Overlapping	3’	ends	of	genes	

could	 function	 to	 regulate	 transcription,	 possibly	 by	 bi-directional	 termination	

brought	about	by	RNAP	collision,	or	function	post-transcriptionally	by	influencing	

transcript	stability	(Ju	et	al.,	2019;	Vargas-Blanco	&	Shell,	2020).	
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Figure	2.10.	Overlapping	3’	UTRs	for	Rv0292	(EccE3)	and	Rv0293c,	(light	green	bars)	may	regulated	
transcription	termination	or	transcript	stability.	Sample	SRR5689224	from	PRJNA390669,	exponential	
growth	in	dextrose-containing	media.	Strand	coverage	using	the	‘second’	read	of	each	pair	mapping	to	
the	transcript	strand,	visualised	using	Artemis	genome	browser	(Carver	et	al.,	2012).	

	

2.5.3.5	 Module	 enriched	 for	 sRNAs	 and	 PE/PPE	 genes	 is	 correlated	 with	

stationary	condition	

The	 ‘darkturquoise’	 module	 is	 enriched	 with	 sRNAs,	 with	 33	 hub	 sRNAs.	 It	 is	

negatively	 correlated	 with	 the	 low	 iron	 condition	 (bicor	 =	 -0.37,	 padj=0.03)	 and	

positively	correlated	with	stationary	growth	(bicor=	0.43,	padj=0.007).	The	genes	of	

the	module	are	enriched	for	the	PE/PPE	functional	category	and	there	are	several	

PE/PPE	genes	among	the	hubs.		The	previously	annotated	ncRNA,	B11	(also	known	

as	6C	or	ncRv13660c),	 is	one	of	the	most	well-connected	elements	in	the	module	

and	overexpression	of	B11	in	M.smegmatis	has	been	shown	to	cause	growth	arrest	

and	downregulation	of	a	large	set	of	genes	including	those	involved	in	cell	division	

and	 virulence,	 including	 all	 the	 ESX-1	 secretion	 system	 genes	 (Mai	 et	 al.,	 2019).	

Mcr11	is	also	found	in	the	module.	This	sRNA	is	known	to	respond	to	the	second	

messenger	 3’,5’-cyclic	 adenosine	 monophosphate	 and	 has	 been	 found	 to	 be	

expressed	 in	 hypoxic	 M.	 tuberculosis	 cultures	 and	 in	 a	 mouse	 infection	 model	

(Girardin	&	McDonough,	 2020).	Mcr11	 regulates	 the	 expression	of	 several	 genes	

that	adapt	central	carbon	metabolism	during	slow	growth	conditions	(Girardin	&	

McDonough,	2020).		

	

There	 are	 two	well-connected	 intergenic	 sRNAs	 predicted	 in	 the	 ‘darkturquoise’	

module.	Putative_sRNA:p1164036_1164162	/	ncRv11040	is	 located	between	PE8	
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and	 a	 possible	 transposase,	 Rv1041c,	 but	 on	 the	 antisense	 strand.	 There	 is	 a	

predicted	TSS	at	1163697,	39	nucleotides	upstream	of	the	predicted	start	sequence.	

This	 transcript	 is	 in	 a	 converging	 orientation	 to	 the	 transposase	 and	 may	 be	

instrumental	in	regulating	horizontal	gene	transfer	(Ellis	&	Haniford,	2016;	Lejars	

et	al.,	2019).	The	other	intergenic	hub	is	also	upstream	from	possible	transposase,	

Rv3114,	but	in	diverging	orientation	on	the	opposite	strand.	The	TSS	is	at	3481459,	

and	the	sRNA	is	within	a	predicted	‘MT-complex-specific’	genomic	island	associated	

with	virulence	genes	 (Becq	et	al.,	2007).	Rv3112-14	are	clustered	 in	 the	 ‘salmon’	

module.	

	

There	 are	 several	 interesting	 ‘independent’	 UTRs	 that	 are	well-connected	 in	 the	

module,	 but	 their	 assumed	 transcriptional	 partner	 clusters	 in	 another	 module.	

There	 are	 several	 predicted	 TSS’s	 and	 transcriptional	 termination	 sites	 (TTS)	

(D’Halluin	et	 al.,	 2023)	within	 the	predicted	boundaries	of	 a	3’	UTR	 for	 the	gene	

Rv2081c	 (putative_UTR:m2337218_2338064)	 and	 a	 predicted	 sORF	 based	 on	

ribosome	profiling	(Smith	et	al.,	2022)	(Figure	2.11).	The	adjacent	gene,	Rv2081c,	is	

in	 the	 ‘cyan’	module	along	with	most	of	 the	DosR	regulated	genes.	The	5’	UTR	of	

Rv0281c	is	also	a	hub	in	the	module	and	contains	predicted	TSSs,	TTS	and	sORF.	It	

would	be	interesting	to	discover	whether	these	UTRs	could	have	dual	functions	as	

regulatory	RNA	elements	as	well	as	being	translated	into	short	peptides.	Rv2081c	is	

a	conserved	membrane	protein	containing	a	simple	sequence	repeat	of	8	C’s	and	has	

been	 identified	 as	 a	 source	 of	 sequence	 variation	 in	M.	 tuberculosis	 sputum	 and	

culture	(Shockey	et	al.,	2019;	Sreenu	et	al.,	2007).	
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Figure	2.11.	5’	and	3’	UTRs	for	Rv2081c	(green	bars)	are	overlapped	by	predicted	sORFs	(yellow	bars).	
(Cortes	 et	 al.,	 2013;	 Smith	 et	 al.,	 2022).	 Shown	 is	 sample	 SRR5689224,	 exponential	 growth,	 from	
PRJNA27860.	Strand	coverage	using	the		‘second’	read	of	each	pair	mapping	to	the	transcript	strand,	
visualised	using	Artemis	genome	browser	(Carver	et	al.,	2012).	

	

The	 best	 connected	 elements	 in	 the	 module	 are	 antisense	 sRNAs,	 including	

putative_sRNA:p2081553_2082178/	ncRv1835,	with	a	predicted	TSS	at	its	start.	It	

is	 antisense	 to	 Rv1835c,	 the	 gene	 for	 a	 putative	 serine	 esterase	 clustered	 in	 the	

‘mediumpurple3’	module,	in	particular	to	the	3’	end	of	the	peptidase	domain	(Xaa-

Pro	 dipeptidyl-peptidase-like	 domain)	 (Blum	 et	 al.,	 2020).	

Putative_sRNA:m2497549_2498369	 /ncRv2225c,	 with	 a	 TSS	 at	 2498368,	 is	

antisense	 to	 Rv2225,	 coding	 for	 a	 3-methyl-2-oxobutanoate	

hydroxymethyltransferase	PanB.	This	gene	clusters	in	the	‘turquoise’	module.			

	

2.5.4	Comparison	with	other	global	M.	tuberculosis	networks	

Other	 regulatory	 networks	 have	 been	 developed	 for	 M.	 tuberculosis	 that	 use	

transcriptomic	data	to	cluster	protein-coding	genes	according	to	their	responses	to	

environmental	conditions	(Peterson	et	al.,	2014;	Yoo	et	al.,	2022).	Peterson	et	al.	

(Peterson	 et	 al.,	 2014),	 utilises	 a	 'biclustering'	 algorithm,	 cMonkey,	 that	 clusters		

genes	and	conditions	based	on	co-expression	in	publicly	available	microarray	data	

and	the	presence	of	common	transcription	factor	binding	motifs	(Reiss	et	al.,	2006).	

The	network	is	pruned	and	shaped	by	adjusting	the	weights	of	particular	lines	of	

evidence	a	priori	input	such	as	binding	motifs,	protein	homology,	operon	groupings	

and	known	protein-protein	 interactions	(PPIs)	(Peterson	et	al.,	2014;	Reiss	et	al.,	
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2006).	 This	 network's	 ability	 to	 assimilate	 both	 a	 priori	 and	 transcriptomic	

expression	 data	was	 tested	 by	 its	 ability	 to	 recapitulate	 known	 associations	 and	

groupings	 found	 by	 overexpression	 of	 transcription	 factors	 and	 identification	 of	

transcription	factor	binding	motifs.	Thus,	a	'parsimonious'	network	was	created	that	

uncovers	 novel	 transcriptomic	 responses	 to	 particular	 environmental	 conditions	

that	are	validated	by	several	 lines	of	evidence	 (Peterson	et	al.,	2014;	Reiss	et	al.,	

2006).	 This	 approach	 differs	 significantly	 from	 ours	 in	 several	 important	 ways.	

Firstly,	the	WGCNA	network	we	present	relies	entirely	on	transcriptomic	data	alone-

-RNA-seq,	in	particular.	RNA-seq	is	more	sensitive	than	microarray	data	and	is	able	

to	 detect	 the	 expression	 of	 novel	 transcripts	 that	 may	 represent	 non-coding	 or	

unknown	protein-coding	RNA	transcripts.	Our	network	is	more	comprehensive	in	

an	attempt	to	include	every	detectable	RNA	transcript	found	in	the	included	RNA-

seq	datasets.	These	novel	transcripts	naturally	 lack	any	a	priori	 	data	to	shape	or	

reinforce	associations,	and	we	have	not	applied	any	 filtering	methods	other	 than	

evaluating	the	strength	of	module	membership.		

	

A	 more	 recent	 approach	 uses	 a	 large	 number	 of	 RNA-seq	 datasets	 with	

deconvolution	methods	 to	 reduce	 the	 noise	 in	 the	 network	 and	 find	 clusters	 of	

protein-coding	genes	('iModulons')	that	together	account	for	significant	chunks	of	

variation	in	expression	levels	in	response	to	environmental	conditions	(Yoo	et	al.,	

2022).	 In	both	the	Yoo	et	al	and	Peterson	et	al	studies,	genes	can	be	members	of	

more	 than	 one	 module,	 unlike	 our	 WGCNA	 network	 where	 all	 transcripts	 are	

assigned	 only	 to	 a	 single	 module,	 making	 any	 direct	 comparison	 of	 the	 entire	

network	 of	 limited	 value.	 However,	 several	 of	 the	 modules	 highlighted	 in	 the	

previous	studies	do	show	considerable	overlap	with	the	protein-coding	members	of	

some	 of	 the	 modules	 presented	 here,	 especially	 in	 modules	 associated	 with	

response	 to	 hypoxia	 or	 cholesterol	 media.	 For	 example,	 a	 comparison	 of	 the	

hypoxia-linked,	'DevR',	iModulon	and	the	protein-coding	genes	of	the	'cyan'	module	

with	a	MM	cutoff	of	0.7,	reveals	34	overlapping	genes	between	them.	All	13	of	the	

hypothetical	 proteins	 in	 the	 'cyan'	 	 hubs	 are	 also	 in	 the	 'DevR'	 iModulon.	 The	

hypoxia-linked	'Bicluster	182'	shares	7	genes	with	both	the	iModulon	and	the	'cyan'		

module	(Figure	2.12A).	The	kstR	 	 regulon-enriched	module,	 'royalblue',	discussed	

earlier,	shares	15	hub	genes	with	the	Rv0681	iModulon	and	18	genes	with	the	group	



 71 

of	three	biclusters	identified	in	the	Peterson	et	al	study	as	enriched	for	steroid	ring	

degradation	(Biclusters	199,	200	and	337)	(Figure	2.12B).	

	

	
Figure	2.12.	Protein	coding	genes	involved	in	responses	to	hypoxia	and	adaptation	to	cholesterol	cluster	
together	 in	 overlapping	modules	 in	 different	 network	approaches.	 A)	 Comparison	of	 protein-coding	
genes	with	MM	>	0.7	in	'cyan'	module	with	Bicluster	182	(Peterson	et	al,	2014),	DevR	iModulon	(Yoo	et	
al,	2022)	and	DevR	regulon.	B)	Comparison	of	cholesterol	metabolism	biclusters	linked	to	steroid	ring	
degradation	(bc_0199,	bc_0200,	bc_337)	(Peterson	et	al,	2014),	Rv0681	iModulon	(Yoo	et	al,	2022)	and	
the	protein-coding	genes	of	'royalblue'	module	with	MM	>	0.8.	Regulons	were	defined	as	in	Yoo	et	al,	
2022	(downloaded	from	https://github.com/Reosu/modulome_mtb)	and	include	genes	with	predicted	
binding.	

	

As	all	the	RNA-seq	datasets	included	in	this	WGCNA	analysis	are	also	included	in	the	

iModulon	analysis,	overlaps	between	these	two	studies	are	perhaps	not	surprising.	

An	important	distinction	between	our	study	and	these	other	approaches	is	that	the	

network	presented	here	seeks	to	identify	not	just	groupings	of	protein-coding	genes	

linked	by	transcriptional	regulation,	but	associations	involving	non-coding	RNA,	as	

well.	For	example,	the	protein-coding	hub	genes	of	the	'violet'	module	overlap	with	

the	 'VirS'	 iModulon	 which	 was	 linked	 in	 Yoo	 et	 al	 (2022)	 to	 response	 to	 acid	
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environment	and	remodelling	of	cell	membrane.	In	addition	to	the	coding	genes	that	

overlap	the	'VirS'	iModulon,	the	hubs	of	the	'violet'	module	include	the	non-coding	

RNA,	Mcr7.	Mcr7	 is	a	ncRNA	known	to	be	activated	by	 the	PhoPR	regulon	which	

responds	to	acid	pH	(Solans	et	al.,	2014).	The	hypothetical	protein-coding	transcript	

that	 overlaps	 this	 locus,	 Rv2395A,	 is	 found	 in	 the	 'PhoP'	 iModulon.	 The	 'violet'	

module	 also	 includes	 several	UTRs	 among	 the	hub	members	 that	may	 represent	

important	players	 in	 this	 adaptation	 response.	Thus,	our	approach	adds	value	 to	

these	previous	methods	by	including	unannotated	elements	that	may	have	roles	in	

the	regulation	of	gene	expression.	

	

One	advantage	of	the	deconvolution	method	over	WGCNA	is	that	by	filtering	for	only	

the	 strongest	 associations	 and	 allowing	 genes	 to	 be	members	 of	more	 than	 one	

iModulon,	 the	modules	are	 less	 'noisy'.	However,	deconvolution	methods	require	

extremely	large	numbers	of	samples	to	perform	well,	may	be	subject	to	batch	effect	

issues	between	experimental	datasets	and	characterise	a	limited	proportion	of	the	

protein-coding	transcripts	expressed	by	M.	tuberculosis	(Saelens	et	al.,	2018;	Yoo,	et	

al.,	2022).	In	order	to	include	predicted	ncRNA	in	the	network,	a	significant	degree	

of	quality	control,	parameter	adjustment	and	manual	curation	is	required,	limiting	

the	number	of	datasets	that	could	be	included	in	our	analysis.	Including	more	data	

would	most	likely	strengthen	the	correlations	with	certain	conditions	and	improve	

the	overall	specificity	of	the	WGCNA	modules.		

	

The	gene	modules	presented	here	are	somewhat	‘blunt-force	instruments’	applied	

to	 transcripts	 that	 are	 part	 of	 overlapping,	 coordinated	 responses	 to	 various	

environmental	 cues,	 but	 restricted	 to	 a	 single	 module	 grouping.	 Recent	 work	

exploring	 differentially	 expressed	 genes	 in	 response	 to	 various	 environmental	

conditions	have	revealed	highly	integrated	adaptation	responses.	In	other	words,	a	

single	environmental	change,	e.g.	hypoxia	or	growth	on	fatty	acids	or	cholesterol,	

stimulates	 transcriptomic	 remodelling	 across	 diverse	 cellular	 functions,	 perhaps	

acting	as	cues	to	stimulate	anticipatory	pathways	and	ready	the	pathogen	for	the	

next	 challenge	 (Eoh	et	 al.,	 2017;	Gerrick	et	 al.,	 2018).	Confounders	 such	as	dual-

function,	 ‘moonlighting’,	proteins	may	weaken	the	correlation	of	a	module	with	a	

specific	 condition	 and	 may	 create	 noise	 in	 otherwise	 well-connected	 modules.	

Rather	 than	 using	 an	 arbitrary	 cutoff	 to	 decide	 which	 module	 associations	 are	
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relevant,	we	utilise	a	flexible	measure	of	module	membership	that	allows	the	user	

to	filter	the	strength	of	associations.	In	our	discussion,	we	used	a	relatively	stringent	

threshold	 'module	 membership'	 score	 of	 0.8	 to	 identify	 the	 transcripts	 in	 each	

module	 that	have	the	 tightest	correlation	to	 the	module	eigengene,	but	 there	has	

been	no	pruning	or	editing	of	the	modules,	in	order	to	avoid	any	loss	of	information.	

	

An	 important	 advantage	 of	 including	 ncRNA	 in	 a	 co-expression	 network	 is	 the	

chance	 to	 observe	 post-transcriptional	 groupings	 that	 result	 from	 adaptive	

responses,	 as	 well	 as	 the	 transcriptional	 responses.	 By	 focussing	 on	 the	 best	

connected	transcripts	in	various	modules,	unexpected	connections	between	genes	

of	 diverse	 pathways	 can	 be	 discovered.	 The	work	 presented	 here	 confirms	 that	

ncRNA	 are	 important	 players	 in	 adaptation	 responses,	 and	 the	 existence	 of	

informative	 protein-coding	 co-expression	 networks	 can	 help	 to	 implicate	 these	

transcripts	in	adaptive	responses	and	provide	context	for	their	activity.	

	

2.6	CONCLUSION	

This	 paper	 presents	 a	 large-scale	 network	 analysis	 of	 over	 7000	 transcripts	

expressed	 by	M.	 tuberculosis	 under	 a	 variety	 of	 conditions.	 The	 modules	 group	

together	clusters	of	co-expressed	protein-coding	genes,	as	well	as	ncRNA	transcripts	

predicted	 from	 RNA-Seq	 signals.	 Several	 modules	 are	 statistically	 enriched	 for	

sRNAs,	especially	those	modules	positively	correlated	with	hypoxia.	The	abundance	

of	antisense	RNA	in	conditions	of	stress	has	been	widely	observed,	and	it	is	therefore	

not	a	surprise	to	find	them	in	the	hubs	of	these	modules.	However,	it	is	noticeable	

that	 the	 complementary	 ORF	 is	 usually	 excluded,	 which	 leads	 us	 to	 seriously	

consider	 antisense	 transcription	 as	 part	 of	 strategic	 regulation	 of	 protein	

production	 in	 response	 to	 environmental	 cues	 through	mechanisms	of	 divergent	

transcription,	translational	control	or	by	regulating	mRNA	stability	(Vargas-Blanco	

&	Shell,	2020;	Warman	et	al.,	 2021).	 If	 these	 strategies	actually	differ	among	 the	

members	of	the	MTBC,	it	may	have	implications	for	host	specificity	and	virulence	

(Dinan	 et	 al.,	 2014).	 By	 the	 same	 logic,	 3’	 UTR	 transcripts	 clustering	 in	modules	

distinct	 from	 their	 upstream	 ORF	 implies	 independent	 function	 from	 the	 ORF.	

sRNAs	 generated	 from	 3’	 UTRs	 have	 been	 reported	 in	 other	 prokaryotes	 and	

evidence	points	 to	widespread	mRNA	processing	 that	 could	 release	 independent	
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transcripts	at	the	3’	end	(Dar	&	Sorek,	2018;	Desgranges	et	al.,	2021;	Updegrove	et	

al.,	2019;	Wang	et	al.,	2019).	In	compact	bacterial	genomes,	3’	UTRs	are	also	found	

to	overlap	other	3’	UTRs	in	a	converging	transcription	pattern	which	may	provide	a	

mechanism	for	regulating	the	expression	or	stability	of	either	transcript	(Ju	et	al.,	

2019;	Vargas-Blanco	&	Shell,	2020).		

	

The	modules	discussed	in	depth	in	this	paper	represent	a	limited	snapshot	of	this	

extensive	 co-expression	 network.	 Modules	 of	 interest	 can	 be	 identified	 by	

correlations	to	experimental	conditions,	associated	GO	terms,	functional	categories,	

or	gene	group	enrichment.	The	supplementary	tables	(A2.1	Supplemental	Tables:	

Ch2_Supp_Table_4)	have	been	organised	into	an	easily-accessible	spreadsheets	for	

researchers	 to	query	particular	 genes	or	modules	of	 interest	 and	 find	associated	

protein-coding	genes	or	ncRNA.	These	spreadsheets	provide	information	about	the	

module	 association,	 membership	 values,	 TSSs	 and	 for	 UTRs,	 the	 module	

membership	of	 the	adjacent	ORFs	 for	each	predicted	ncRNA.	To	 facilitate	 further	

exploration	of	this	extensive	data,	we	have	made	a	simple	R	Shiny	app	available	at	

https://github.com/jenjane118/mtb_wgcna.	 Modules	 can	 be	 explored	 for	 hub	

members	 and	 individual	 transcripts	 can	 be	 queried	 for	 expression	 profiles	 and	

adjacent	non-coding	RNA.	We	anticipate	this	to	be	a	useful	resource	for	discovering	

ncRNA	 candidates	 for	 further	 investigation,	 add	 context	 to	 the	 circumstances	 of	

expression	 of	 previously	 identified	 ncRNAs,	 identify	 associations	 of	 genes	 with	

unknown	 functions	 and	 suggest	 roles	 for	 ‘moonlighting’	 proteins	 that	 may	 be	

associated	with	unexpected	gene	groupings.	
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Chapter	3: Using	 transposon-insertion	
sequencing	 to	 identify	 the	 different	 essential	
gene	 requirements	 in	 vitro	 between	 human-
adapted	and	animal-adapted	members	of	 the	
MTBC	
	

*The	data	used	in	this	chapter,	and	some	analysis,	was	previously	published	in	the	

following	article.	The	chapter	includes	the	original	published	TRANSIT	analysis	and	

additional	complementary	analysis.	All	of	the	text	is	original	to	this	chapter.	

	

Gibson,	A.	 J.,	Passmore,	 I.	 J.,	Faulkner,	V.,	Xia,	D.,	Nobeli,	 I.,	 Stiens,	 J.,	Willcocks,	S.,	
Clark,	T.	G.,	Sobkowiak,	B.,	Werling,	D.,	Villarreal-Ramos,	B.,	Wren,	B.	W.,	&	Kendall,	
S.	 L.,	 2021,	 "Probing	 Differences	 in	 Gene	 Essentiality	 Between	 the	 Human	 and	
Animal	Adapted	Lineages	of	the	Mycobacterium	tuberculosis	Complex	Using	TnSeq",	
Frontiers	in	Veterinary	Science,	8(December),	1-12	(Gibson	et	al.,	2021).	
	

3.1	ABSTRACT	

The	 host-adapted	 species	 of	 the	Mycobacterium	 tuberculosis	 complex	 share	 high	

degrees	 of	 sequence	 similarity	 but	 differ	 in	 pathology,	 virulence	 and	 host	

preference.	Adapting	to	different	host	environments	and	 immune	systems	causes	

different	 requirements	 for	 orthologous	 genes	 among	 the	 animal-adapted	 and	

human-adapted	 lineages.	 In	 this	 study,	 the	 essential	 gene	 requirements	 of	

Mycobacterium	bovis	and	Mycobacterium	tuberculosis	are	compared	using	parallel	

transposon	 insertion	 sequencing	 experiments	 in	 identical	 culture	 conditions.	

Libraries	with	similar	insertion	density	levels	were	created	for	each	species	(55%	

for	M.	bovis,	40%	for	M.	tuberculosis)	and	the	essentiality	of	orthologous	genes	were	

compared	 using	 orthogonal	 statistical	 and	 quantitative	 analyses.	 Comparing	

essentiality	predictions	from	independent	analyses	of	each	library	using	an	HMM	

model,	363	(10%)	of	orthologous	gene	pairs	were	essential	and	492	(13.7%)	had	

some	 level	 of	 fitness	 defect	 in	 both	 species.	 Using	 a	 quantitative	 statistical	

comparison	of	the	differences	in	the	insertion	frequency	between	orthologous	gene	

pairs,	 32	 genes	 had	 statistically	 significant	 differences	 in	 mean	 insertions.	 Non-

coding	RNA	predictions	and	annotations	 from	M.	tuberculosis	RNA-seq	data	were	

also	 tested	 for	 differences	 in	 essentiality	 and	 15	 transcripts	 had	 different	
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essentiality	predictions	with	the	HMM	analysis,	however,	none	of	these	transcripts	

showed	a	statistically	significant	difference	in	mean	insertions.	This	study	provides	

a	 resource	 for	mycobacterial	 researchers	 interested	 in	 characterising	 genes	 and	

non-coding	RNA	that	may	be	involved	in	host	adaptation.	

	

3.2	AIMS 

• Evaluate	transposon	insertion	sequencing	libraries	from	parallel	cultures	of	

M.	 tuberculosis	 and	 M.	 bovis	 grown	 in	 identical	 culture	 conditions	 to	

determine	gene	requirements	

• Apply	an	additional	quantitative	'resampling'	analysis	complementary	to	the	

qualitative	analysis	used	in	the	published	work	

• Identify	 predicted	 non-coding	 RNAs	 required	 for	 survival	 in	 the	 M.	

tuberculosis	or	M.	bovis	genomes	

	

3.3		INTRODUCTION	

3.3.1	Host-adapted	species	may	have	different	gene	requirements	

Determining	which	bacterial	genes	are	essential	for	survival	can	inform	researchers	

about	the	most	important	gene	targets	for	future	therapies.	Zoonotic	tuberculosis	

by	 M.	 bovis	 is	 an	 under-recognised	 human	 health	 problem,	 requiring	 different	

strategies	 for	 treatment	 and	 prevention	 than	 for	 human-adapted	M.	 tuberculosis	

(Olea-Popelka	 et	 al.,	 2017).	 Members	 of	 the	 MTBC,	 including	 M.	 bovis	 and	 M.	

tuberculosis,	 are	 likely	 to	 have	 different	 gene	 requirements	 in	 order	 to	meet	 the	

diverse	 challenges	 presented	 by	 different	 host	 immune	 systems.	 	 However,	 it	 is	

difficult	to	predict	which	genes	are	more,	or	less,	required	for	survival	among	the	

closely	 related	 strains	 of	 the	 MTBC	 based	 on	 transcriptional	 differences.	 The	

correlation	 between	 gene	 expression	 and	 gene	 essentiality	 is	 low,	 as	 changes	 in	

expression	 under	 different	 conditions	 may	 not	 reveal	 the	 essential	 role	 of	

constitutively	active	genes,	or	gene	regions	(Carey	et	al.,	2018;	Griffin	et	al.,	2011;	

Rengarajan	et	al.,	2005).	Genes	can	code	for	both	essential	and	non-essential	protein	

domains,	and	even	non-coding	regions	of	the	genome	may	be	essential.		
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3.3.2	Determining	gene	essentiality	with	transposon	insertion	sequencing	

Transposon	 insertion	 sequencing	 (tn-seq)	 is	 a	 next-generation	 sequencing	

technique	that	can	be	used	to	identify	required,	or	'essential'	regions	of	a	genome	

for	 survival	 of	 a	 bacteria	 in	 a	 particular	 environment.	 Tn-seq	 has	 been	 used	 to	

characterise	the	essentiality	of	genes	in	M.	tuberculosis	cultured	in	vitro,	using	the	

reference	strain,	H37Rv,	(Dejesus	et	al.,	2017;	Griffin	et	al.,	2011;	Minato	et	al.,	2019;	

Patil	et	al.,	2021;	Sassetti	&	Rubin,	2003;	Zhang	et	al.,	2012),	the	attenuated	vaccine	

strain	 Mycobacterium	 bovis	 BCG	 (Mendum	 et	 al.,	 2019),	 and	 in	 various	 other	

mycobacterial	species	(Budell	et	al.,	2020;	Lefrançois	et	al.,	2024;	Majumdar	et	al.,	

2017;	Tateishi	et	al.,	2020);	but	only	one	previous	study	has	applied	tn-seq	to	M.	

bovis	(Butler	et	al.,	2020).	Experimental	challenges	and	differences	in	culture	media	

have	 resulted	 in	 significant	 variation	 among	 reports,	 which	 confounds	 simple	

comparisons	between	experiments.	For	M.	tuberculosis	experiments,	many	of	these	

studies	 are	 compiled	 and	 re-standardised	 in	 an	 interactive	 database,	

https://www.mtbtndb.app/analyze_datasets	(Jinich	et	al.,	2021)	which	somewhat	

improves	the	situation	for	M.	tuberculosis,	but	there	exists	a	need	to	compare	gene	

requirements	 between	 different	 mycobacterial	 species	 and	 strains	 in	 order	 to	

evaluate	 the	 applicability	 of	 vaccine	 and	 treatment	 regimens.	 For	 example,	 a	

quantitative	approach	using	tn-seq	libraries	of	9	clinical	isolates	of	M.	tuberculosis	

identified	significant	differences	 in	gene	requirements	between	these	strains	and	

the	 reference	 strain	 for	M.	 tuberculosis	 (H37Rv),	 leading	 to	 the	 identification	 of	

differences	in	antibiotic	susceptibility	among	the	clinical	strains	(Carey	et	al.,	2018).	

	

The	 tn-seq	 protocol	 used	 in	 this	 study	 begins	 with	 transducing	 a	 bacterial	

population	with	a	phage	(MycomarT7)	that	inserts	a	transposon	(Himar1	mariner)	

at	 regular	 positions	 throughout	 the	 target	 genome	 (at	 'TA'	 dinucleotides,	

specifically)	to	create	transposon	libraries	of	mutants	each	with	a	single	insertion	

(Griffin	et	al.,	2011;	van	Opijnen	et	al.,	2009;	Zhang	et	al.,	2012).	These	 libraries,	

ideally,	would	include	individual	mutants	with	insertions	at	every	possible	insertion	

motif	in	the	genome	(and	in	multiple	positions	in	each	gene),	though	it	is	recognised	

that	some	insertion	sites	are	relatively	non-permissive	for	insertions	(DeJesus	et	al,	

2017).	 Insertions	 interrupt	normal	transcription	and	gene	function	depending	on	

their	 location	within	the	gene,	with	 insertions	 inside	the	open	reading	frame	less	

likely	to	be	tolerated	than	insertions	closer	to	the	5'	and	3'	ends	(Griffin	et	al.,	2011;	
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Hutchison	et	al.,	1999;	Zhang	et	al.,	2012).	After	growth	in	culture,	or	in	an	organ	or	

animal	model,	 next	 generation	 sequencing	 of	 the	 pooled	 genomic	 DNA	 from	 the	

libraries	 allows	 the	 location	 of	 the	 insertions	 to	 be	 determined	 and	 quantified	

(Figure	3.1).	It	has	been	demonstrated	that	insertion	counts	are	a	reliable	proxy	for	

the	number	of	unique	mutants	in	the	population	(Griffin	et	al.,	2011).	The	analysis	

is	often	applied	using	gene	boundaries,	and	genes	containing	the	expected	number	

of	 mapped	 reads	 at	 the	 possible	 insertion	 sites	 based	 on	 the	 overall	 insertion	

density,	are	inferred	to	be	'non-essential'	 for	the	fitness	of	the	mutant--indicating	

that	inactivation	of	the	gene	does	not	result	in	a	significant	loss	of	fitness.	If	genes	

have	 fewer	 insertions	 than	expected,	 it	 can	be	 inferred	 that	 inactivation	of	 these	

genes	 leads	 to	 a	 significant	 loss	 of	 fitness	 in	 these	 mutants	 and	 thus	

underrepresentation	in	the	cultured	library.	Various	statistical	approaches	are	used	

to	clarify	whether	a	gene	 is	 'essential',	 i.e.	 inactivation	 is	 fatal	or	causes	a	 severe	

growth	 disadvantage,	 versus	 those	 genes	 that,	 when	 inactivated,	 cause	 a	milder	

growth	defect.	The	location	of	the	insertion	also	impacts	the	severity	of	the	growth	

defect	 as	 some	 proteins	 include	 both	 essential	 and	 less-essential/dispensable	

domains	(Dejesus	et	al.,	2017;	Patil	et	al.,	2021).	However,	inactivation	of	a	gene	with	

a	 redundant,	 but	 essential,	 function	 may	 result	 in	 a	 mild	 growth	 defect,	 or	 no	

phenotype	 at	 all,	 in	 which	 case	 it	 will	 be	 categorised	 as	 'non-essential'.	 Less	

commonly,	insertions	that	inactivate	the	gene	can	cause	a	growth	advantage	to	the	

mutant--resulting	in	its	overrepresentation	in	the	mutant	pool.		
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Figure	 3.1.	 Overview	 of	 transposon	 insertion	 sequencing	 (tn-seq)	 experiments.	 A)	 Library	 of	 single	
insertion	mutants	created	with	transposon	insertions	(Tn-KanR)	at	'TA'	dinucleotides	throughout	the	
genome.	B)	Transduced	bacteria	were	selected	for	on	kanamycin-containing	plates	and	genomic	DNA	
extracted.	C)	Genomic	DNA	was	 fragmented	using	 sonication	and	adapters	 (green	boxes)	 ligated	 to	
gDNA	fragments.	D)	PCR	using	primers	(P1,	P2)	complementary	to	transposon	sequence	and	adapter	
amplifies	only	transposon-containing	fragments.	E)	Sequenced	reads	are	mapped	to	reference	genome	
and	quantified;	each	read	is	a	proxy	for	one	insertion	event.	Figure	made	with	Biorender.com	

	

3.3.3	Statistical	analysis	of	transposon	insertion	sequencing	results	

There	are	several	different	statistical	models	used	to	predict	the	essentiality	status	

of	a	gene	or	gene	region	from	the	reads	mapped	to	insertion	sites	(Cain	et	al.,	2020;	

Chao	et	al.,	2016;	Long	et	al.,	2015).	Annotation-dependent	methods	 include	Bio-

Tradis	 (Langridge	 et	 al.,	 2009),	which	 uses	 an	 empirical	method	 to	 compare	 the	

typically	bimodal	 frequency	distribution	of	normalised	 insertion	 indices	 for	 each	

gene	with	 a	 liklihood	 ratio	 to	 determine	whether	 or	 not	 a	 gene	 falls	 within	 the	
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'essential'	 or	 'non-essential'	 peaks.	 This	 method	 is	 based	 on	 the	 use	 of	 the	 Tn5	

transposon	(TraDIS	method)	which	inserts	at	random	places	in	the	genome,	versus	

the	Himar1	 transposon,	used	in	most	tn-seq	protocols,	which	inserts	at	 'TA'	sites,	

meaning	 the	 Bio-Tradis	 pipeline	 (Barquist	 et	 al.,	 2016)	 is	 not	 applicable	 to	 tn-

seq/Himar1	analysis	without	modification.	Bayesian	methods	have	also	been	used	

to	calculate	the	posterior	probability	of	a	gene	being	essential.	The	saturation	and	

potential	number	of	insertion	sites	are	used	to	predict	the	largest	possible	window	

of	nucleotides	that	could	have	no	insertions	based	on	chance	alone	(DeJesus	et	al.,	

2013).	If	a	gene	contains	a	region	with	no	insertions	that	is	larger	than	this	predicted	

size,	it	is	determined	to	be	essential.	This	method	is	easier	to	apply	in	tn-seq/Himar1	

transposon	 experiments	 where	 the	 number	 of	 possible	 insertion	 sites	 can	 be	

determined	definitively.	

	

Annotation-independent	methods	predict	regions	of	essentiality	across	the	genome,	

without	being	restricted	to	protein-coding	gene	annotations.	These	include	'sliding-

window'	methods	that	test	small,	overlapping	windows	of	the	genome	to	determine	

if	insertions	are	underrepresented	in	the	window	compared	to	all	other	windows	

using	a	non-parametric	test	(Chao	et	al.,	2016;	Zhang	et	al.,	2012).	This	also	assumes	

the	 uniform	 insertion	 probability	 offered	 by	 the	Himar1	 transposon	 to	 estimate	

library	saturation,	but	its	power	is	limited	by	a	large	multiple	testing	penalty	(Chao	

et	al.,	2016).	One	of	the	most	frequently	utilised	programs	applies	a	Hidden	Markov	

Model	(HMM)	to	convert	the	number	of	reads	mapping	to	insertion	sites	to	a	series	

of	probabilities	of	moving	 from	an	 'essential'	 to	a	 'non-essential'	state.	 Individual	

sites	have	a	probability	of	being	in	a	particular	state	depending	on	the	state	of	the	

sites	before	and	after	them.	The	parameters	of	the	HMM	prediction	algorithm	were	

tested	 on	 datasets	 with	 various	 levels	 of	 saturation	 and	 thus	 the	 probability	

assignments	are	adjusted	in	response	to	different	levels	of	saturation.	This	site-by-

site	 analysis	 is	 more	 fine-grained	 than	 a	 gene-based	 approach	 but	 can	 be	

compounded	to	determine	the	essentiality	status	of	a	gene	(or	protein	domain	or	

any	 other	 defined	 region)	 containing	 multiple	 sites.	 Furthermore,	 the	 model	

incorporates	 two	 intermediate	 states,	 'growth	 defect'	 (GD),	 which	 reflects	 a	

probability	state	where	the	number	of	reads	at	an	 insertion	site	 is	more	 likely	to	

represent	 a	 mild	 negative	 impact	 on	 growth	 relative	 to	 wild-type	 and	 'growth	
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advantage'	 (GA)	where	 insertions	 at	 a	 specific	 'TA'	 site	 are	 actually	 beneficial	 to	

survival	of	the	mutant	(DeJesus	&	Ioerger,	2013).		

	

Due	 to	 technical	 constraints	 such	 as	 experimental	 bottlenecks,	 no	 single	 tn-seq	

library	 is	 likely	 to	 have	 every	 possible	 insertion	 site	 occupied	 by	 a	 transposon.	

However,	 the	assumption	of	 independence	between	 independent	 tn-seq	 libraries	

(as	 each	 library	will	 have	 an	 independent	 selection	 of	which	 insertions	 sites	 are	

occupied	by	a	transposon)	means	that	individual	libraries	created	under	the	same	

experimental	conditions	can	be	pooled	to	increase	the	number	of	unique	insertion	

sites	in	an	experiment	(also	known	as	'insertion	density'	or	'saturation').	Increasing	

the	insertion	density	before	statistical	analysis	is	important	to	reduce	false	positives	

resulting	from	stochastic	processes	(Dejesus	et	al.,	2017;	DeJesus	&	Ioerger,	2013;	

Mahmutovic	et	al.,	2020;	Patil	et	al.,	2021).			

	

In	this	chapter,	data	from	parallel	whole-genome	transposon	insertion	sequencing	

experiments	 in	 the	reference	strains	 for	M.	bovis	 and	M.	 tuberculosis	was	used	 to	

identify	 different	 requirements	 for	 survival	 in	 identical	 rich	 media	 culture	

conditions.	 As	 different	 culture	 conditions	 can	 impact	 the	 variety	 of	 mutants	

recovered	 from	 culture	 (Griffin	 et	 al.,	 2011),	 for	 purposes	 of	 comparison	 it	 is	

important	to	grow	the	libraries	in	controlled	conditions	rather	than	compare	a	new	

M.	 bovis	 tn-seq	 library	 with	 published	 M.	 tuberculosis	 results	 from	 diverse	

laboratories.	 To	 this	 end,	M.	 bovis	 and	M.	 tuberculosis	 transposon	 libraries	were	

created	 to	 identify	 and	 compare	 genes	 essential	 for	 survival	 in	 identical	 in	 vitro	

culture	 conditions.	 I	 consider	 host-specific	 differences	 in	 requirements	 for	 the	

protein-coding	 genes	 between	 the	 species	 both	 by	 comparing	 the	 results	 of	

independent	HMM	analyses	(published	in	Gibson	et	al,	2021)	and	a	complementary,	

quantitative	 analysis,	 previously	 used	 by	 Carey	 et	 al	 to	 compare	M.	 tuberculosis	

clinical	strains	to	the	reference	strain,	H37Rv	(Carey	et	al.,	2018).	Expression	of	non-

coding	RNA	shows	species-specific	differences	between	M.	bovis	and	M.	tuberculosis	

(Dinan,	et	al.,	2014;	Golby	et	al.,	2013)	and	it	is	possible	these	differences	can	have	

a	 role	 in	 host-specific	 adaptation.	 Therefore,	 I	 have	 also	 evaluated	 the	 set	 of	

predicted,	intergenic,	non-coding	RNA	elements	expressed	in	M.	tuberculosis	from	

Chapter	2	(Stiens	et	al.,	2023)	to	determine	whether	these	are	essential	 in	either	

species.		
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3.4	MATERIALS	AND	METHODS	

3.4.1	Creation	of	Libraries	

Transposon	insertion	libraries	were	created	for	M.	bovis	by	transduction	with	the	

mariner-transposon	containing	MycoMarT7	phage,	selection	on	kanamycin	plates	

and	genomic	DNA	extraction	using	bead-beating	and	enzymatic	lysis	as	per	(Gibson	

et	al.,	2021)	by	members	of	the	Kendall	lab	at	the	Royal	Veterinary	College.	M.	bovis	

and	 M.	 tuberculosis	 libraries	 were	 grown	 on	 Middlebrook	 7H11	 solid	 medium	

containing	0.5%	lysed	defibrinated	sheep	blood,	10%	heat	inactivated	foetal	bovine	

serum,	10%	OADC,	25µg/ml	kanamycin	and	0.05%	Tweenâ80.	Genomic	DNA	was	

extracted	from	three	subsamples	of	the	M.	bovis	library	and	two	technical	replicates	

of	 the	 M.	 tuberculosis	 libraries.	 Sequencing	 libraries	 for	 Illumina	 sequencing	 of	

gDNA	enriched	for	transposon	insertions	were	created	by	Ian	Passmore	in	the	lab	

of	Brendan	Wren	at	the	London	School	of	Hygiene	and	Tropical	Medicine	(Gibson	et	

al.,	2021)	and	sequenced	on	the	Illumina	HiSeq	3000	platform	with	20%	PhiX	spike-

in	to	increase	the	heterogeneity	of	signal	in	the	early	sequencing	rounds.	Paired-end	

fastq	files	of	150	base-pair	length	were	generated	and	used	by	the	author	for	all	the	

subsequent	data	analysis	steps	included	in	this	chapter.	

	

3.4.2	Processing	sequencing	reads	

Raw	 fastq	 reads	 were	 assessed	 for	 read	 quality	 using	 bash	 scripts	 and	 fastQC	

(Andrews,	2010)	and	pre-processed	using	the	TPP	utility	from	the	TRANSIT	package	

in	 single-end	 mode	 (DeJesus	 et	 al.,	 2015).	 Only	 the	 first	 read	 from	 each	 pair	

(containing	 the	 transposon-gDNA	 junction)	was	 used	 for	 analysis,	 as	 the	 second	

read	 will	 not	 always	 include	 the	 transposon	 sequence	 and	 is	 not	 necessary	 for	

mapping.	 The	 first	 step	 identifies	 reads	 containing	 a	 transposon	 insertion	 by	

searching	the	read	for	the	terminal	sequence	of	the	transposon	(ending	in	'-GTTA')	

and	trimming	this	 transposon	 'tag'.	BWA-mem	 (Li,	2013)	 is	 then	used	to	map	the	

subsequent	gDNA	suffix	to	the	appropriate	genome:	M.	tuberculosis	(H37Rv,	NCBI	

Accession	Number	AL123456.3)	or	M.	bovis	(AF2122/97,	 NCBI	Accession	Number	

LT708304.1).	The	TPP	program	uses	annotation	tables	in	a	specific	format	('prot-

tables')	in	order	to	map	'TA'	insertion	sites	to	gene	regions.	These	were	created	for	

each	 genome	 using	 the	 appropriate	 genome	 annotations	 (gff	 file)	 with	 scripts	
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written	in	R.	The	resulting	insertion	files	(in	wig	format)	were	analysed	for	insertion	

density,	skew	and	indication	of	PCR	jackpots	or	hotspots	using	TRANSIT	tnseq-stats	

functions	and	custom	R	scripts.		

	

3.4.3	Data	Analysis	

The	HMM	algorithm	from	the	TRANSIT	package	was	applied	separately	to	the	M.	

bovis	 and	M.	 tuberculosis	 insertion	 files	 to	 identify	 the	essentiality	status	of	each	

coding	gene.	TRANSIT-HMM	was	run	using	a	sum	of	reads	per	insertion	site	and	TTR	

("trimmed	 total	 reads")	 normalisation	 parameters.	 TTR	 normalisation	 trims	 the	

highest	and	lowest	5%	of	read	counts	before	normalising	to	the	mean	read	count.		

This	method	was	used	as	it	is	most	flexible	with	less	saturated	datasets.		

	

Bio-Tradis	(Barquist	et	al.,	2016;	Langridge	et	al.,	2009)	processing	and	analysis	was	

also	undertaken	for	purposes	of	comparison.	The	transposon	tags	were	filtered	and	

removed	from	quality-checked	fastq	files	using	Bio-Tradis	scripts	(https://sanger-

pathogens.github.io/Bio-Tradis)	 and	 the	 reads	 were	 mapped	 to	 the	 respective	

genomes	(as	above)	using	BWA-mem.	Reads	were	assigned	to	'TA'	sites	using	Bio-

Tradis	commands.	However,	when	used	with	Himar1	mariner	transposon	libraries,	

the	 scripts	 resulted	 in	 inaccurate	 insertion	 coordinates	 for	 reads	 on	 the	 lagging	

strand,	and	therefore	artificially	inflated	the	number	of	unique	insertions	for	each	

sample.	

	

For	the	TRANSIT	resampling	analysis,	a	'bovis_on_tb'	prot-table	was	made	for	the	M.	

bovis	libraries,	mapping	the	coordinates	of	the	orthologous	M.	tuberculosis	genes	to	

the	M.	 bovis	 genome	 using	 custom	 R	 scripts.	 A	 null	 distribution	was	 created	 by	

performing	the	permutation	100,000	times	and	p-values	were	assigned	based	on	

the	difference	between	the	observed	distribution	and	the	null.	The	returned	2-tail	

p-values	 were	 corrected	 for	 multiple	 testing	 using	 the	 Benjamini	 &	 Hochberg	

method	 (Benjamini	 &	 Hochberg,	 1995).	 Resampling	 was	 run	 with	 the	 following	

parameters:	 TTR	 normalisation,	 100000	 permutations,	 winsorization	 and	

pseudocount	=	5	to	decrease	the	effect	of	individual	sites	with	unusually	high	read	

counts.	 For	 non-coding	 RNA,	 separate	 prot-tables	 were	 created	 using	 the	 non-

coding	RNA	M.	tuberculosis	coordinates	and	the	corresponding	genomic	coordinates	

in	M.	 bovis,	 and	 used	 with	 TRANSIT	 resampling	 (same	 parameters	 as	 above)	 to	
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evaluate	 log2	 fold-change	 of	 mean	 insertions	 within	 the	 genomic	 region	 of	 the	

ncRNA	features.		

	

3.4.4	Compiling	set	of	orthologous	genes	

The	essentiality	calls	were	compared	for	orthologous	genes	in	the	M.	bovis	and	M.	

tuberculosis	 genomes.	 Orthologous	 pairs	 of	 genes	 were	 identified	 by	 a	 previous	

study	(Malone	et	al.,	2018)	based	on	amino-acid	sequence	of	the	protein	products.	

As	differences	in	the	DNA	sequence	length	could	affect	the	number	of	'TA'	sites	in	

the	gene,	and	therefore	the	determination	of	essentiality,	this	is	unsatisfactory	for	

comparing	 essentiality	 between	 two	 orthologous	 genes	 with	 the	 HMM	 method.		

Therefore,	 reciprocal	 (or	 bidirectional)	 BLAST	 best	 hits	 between	 nucleotide	

sequences	 of	 coding	 genes	 in	M.	 bovis	 and	M.	 tuberculosis	 were	 inferred	 to	 be	

orthologs	(Wolf	&	Koonin,	2012).	A	list	of	'positionally	orthologous'	genes	was	also	

generated	using	the	Progressive	Mauve	alignment	tool	(Darling	et	al.,	2010)	with	

corresponding	 genomic	 coordinates	 for	 protein	 coding	 genes	 in	M.	 bovis	 and	M.	

tuberculosis	 genomes	which	 showed	 good	 agreement	with	 the	 reciprocal	 BLAST	

orthologs.	Some	genes	are	split	 into	two	or	more	ORFs	 in	one	of	 the	genomes.	 In	

these	cases,	the	split	genes	in	one	genome	were	associated	with	a	single	gene	in	the	

other	genome	(example:	Mb0074	and	Mb0075	map	to	Rv0073).	The	number	of	'TA'	

sites	for	each	gene	was	calculated	and	only	gene	pairs	with	equal	number	+/-	1	'TA'	

sites	 were	 considered	 orthologs	 for	 comparison	 purposes.	 The	 gene	 set	 was	

annotated	 to	 show	 the	 existence	 of	 SNPs	 in	 the	M.	 bovis	 genome	 relative	 to	M.	

tuberculosis,	 and	 with	 a	 'variable'	 or	 'identical'	 label	 based	 on	 the	 amino	 acid	

sequence	of	the	protein	product	as	in	(Malone	et	al.,	2018).		

	

3.4.5	Analysis	of	non-coding	RNA	

Intergenic	 regions	 expressed	 in	 M.	 tuberculosis	 were	 selected	 from	 previously	

compiled	list	of	non-coding	RNA	expressed	in	M.	tuberculosis	using	baerhunter,	as	

described	in	Chapter	2.	These	were	filtered	to	include	only	intergenic	sRNA	and	3'	

UTRs,	 resulting	 in	253	genomic	 features.	All	ncRNAs	were	 trimmed	 to	200	bp	 to	

ensure	 the	 UTRs	 did	 not	 overlap	 any	 coding	 regions	 and	 prevent	 overlong	

transcripts,	as	expression	of	non-coding	RNAs	show	indistinct	3'	boundaries	(Ju	et	

al.,	2024;	Wade	&	Grainger,	2014).	MUMMER	v3.2	(Marçais	et	al.,	2018)	was	used	to	

align	the	query	M.	tuberculosis	non-coding	RNAs	to	the	M.	bovis	genome	reference	
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sequence	 (AF2122/97)	 and	 obtain	 coordinates	 of	 matching	 sequences	 within	 a	

threshold	percent	identity.	This	resulted	in	157	M.	tuberculosis	ncRNA	elements	also	

present	in	M.	bovis.	The	HMM	predictions	for	each	'TA'	site	within	the	feature	were	

used	 to	determine	a	prediction	 for	 the	entire	 feature,	using	 the	majority	call	and	

noting	both	calls	in	case	of	ties.	

	

3.4.6	Functional	enrichment	

Overrepresentation	 of	 genes	 assigned	 to	 a	 particular	 functional	 category	 was	

determined	using	Mycobrowser	 annotation	 (Kapopoulou	 et	 al.,	 2011)	 and	 tested	

using	 Fisher's	 exact	 test	 with	mid	 p	 adjustment	 and	 BH	 correction	 for	 multiple	

testing	with	 the	 "exact2x2"	R	package	 (Fay,	2009).	Gene	 set	 enrichment	analysis	

(GSEA)	 (Subramanian	 et	 al.,	 2005)	 was	 performed	 using	 the	 "clusterProfiler"	 R	

package	(Wu	et	al.,	2021)	to	discover	whether	genes	with	similar	log2	fold-changes	

after	treatment	were	enriched	for	any	COG	(clusters	of	orthologous	genes),	GO	(gene	

ontology)	terms	or	KEGG	pathways	(Ashburner	et	al.,	2000;	Galperin	et	al.,	2021;	

Kanehisa	 et	 al.,	 2022).	 Analysis	 was	 performed	 using	 ranked	 signed-log-p-value	

(SLPV,	the	log2	fold-change	multiplied	by	the	log	of	the	p-value)	with	BH	correction	

for	multiple	testing	(adj.	p-value).		

	

All	 bioinformatic	 scripts	 are	 available	 at	

https://github.com/jenjane118/thesis_work/tree/main/Chapter_3.	 Data	

manipulation	and	plots	were	created	using	R	(version	4.3.1,	2023-06-16)	with	the	

following	 packages:	 dplyr,	 ggplot2,	 VennDiagram,	 eulerr	 and	 Circlize	 (Gu	 et	 al.,	

2014).	

	

3.5	RESULTS	

3.5.1	Libraries	show	good	saturation	of	'TA'	sites	

The	 saturation,	 or	 proportion	 of	 'TA'	 sites	 that	 had	 reads	mapped	 to	 them	 (also	

known	as	'insertion	density'),	ranged	between	13-49%	for	the	M.	bovis	sub-samples	

and	32-36%	for	the	M.	tuberculosis	replicates	(Table	3.1).	The	cumulative	number	of	

'TA'	sites	with	mapped	insertions	was	40482	of	73,536	possible	sites	(55%)	for	M.	

bovis	and	29,919	of	74,604	(40%)	for	M.	tuberculosis	(Figure	3.2).		These	numbers	

compare	favourably	with	other	tn-seq	studies	(Butler	et	al.,	2020;	Griffin	et	al.,	2011;	
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Mendum	et	al.,	2019;	Minato	et	al.,	2019;	Zhang	et	al.,	2012)	but	are	significantly	less	

than	an	assay	by	Dejesus	et	al	(Dejesus	et	al.,	2017)	which	used	multiple	composite	

M.	tuberculosis	libraries	to	achieve	84.3%	saturation	of	'TA'	sites,	which	appears	to	

be	the	maximum	number	of	permissible	insertions.	However,	the	saturation	levels	

of	the	individual	libraries	in	the	Dejesus	et	al.	study	was	between	42-64%.	Another	

published	M.	 tuberculosis	 study	by	Patil	 et	al.,	 (Patil	 et	al.,	2021)	created	a	 single	

library	with	67.1%	of	'TA'	sites	with	insertions.	

	

	
Figure	3.2.	'TA'	site	saturation	for	tn-seq	libraries.	Saturation	measured	in	number	of	unique	'TA'	sites	
with	insertions.	Black	line	indicates	cumulative	number	of	unique	insertions.	a)	M.	bovis	sub-samples	
from	single	library	(increasing	CFU	recovered).	b)	M.	tuberculosis	technical	replicates.	

	

The	M.	 bovis	 samples	 represented	 sub-samples	 of	 increasing	 CFU	 plated	 from	 a	

single	transposon	library	(Table	3.1).	The	location	and	number	of	insertion	reads	

per	gene	in	these	sub-samples	showed	moderate	correlation	(Pearson's	correlation	

coefficients	of	0.57-0.68)	with	samples	19	and	21	better	correlated	than	20.	This	is	

likely	due	to	the	sparse	coverage	of	'TA'	sites	in	sample	20.	Samples	19	and	21	each	

had	~5M	reads	mapped	with	non-zero	means	of	168.2	and	215.5.	Sample	20	had	

only	~34,000	reads	mapped	and	a	non-zero	mean	of	3.5	despite	having	double	the	

number	of	 colonies	used	 for	 gDNA	extraction	 as	 sample	19	 (Table	3.1).	 The	 two	

technical	 replicates	 of	 the	M.	 tuberculosis	 library	were	 relatively	well	 correlated	

(Pearson's	correlation	coefficient	=	0.6,	p-value	<	2.2e-16).	They	both	had	over	1M	

reads	mapped	and	non-zero	means	of	51.2	and	57.3.	There	was	a	positive	trend	for	

increase	in	saturation	of	'TA'	sites	with	the	number	of	mapped	reads	(Figure	3.3).	

a	
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Library Sample Colonies 

in sample 
Reads 
mapped to 
'TA' sites 

Unique 'TA' site 
Insertions 

Insertion density 
(saturation) 

M. 

bovis 

Mbovis_19 ~5000 4856314 22539 30.7% 

M. 

bovis 

Mbovis_20 ~10000 34035 9692 13.2% 

M. 

bovis 

Mbovis_21 ~35000 6057051 36021 49.0% 

M. tb Mtb_22 ~15000 
 

1538393 26828 36.0% 

M. tb Mtb_23 ~15000 1210855 23634 31.7% 

Table	3.1.	Sequencing	statistics	from	M.	bovis	and	M.	tuberculosis	tn-seq	libraries.	

	

	
Figure	3.3.	The	number	of	mapped	reads	is	loosely	correlated	to	the	number	of	unique	'TA'	sites	with	
insertions.

Histograms	 of	 non-zero	 reads	 resembled	 a	 geometric	 distribution	 but	 quartile-

quartile	 plots,	 comparing	 the	 data	 distribution	 with	 the	 theoretical	 geometric	

distribution,	 show	 skew	 in	 all	 M.	 bovis	 samples,	 especially	 Mbovis_19	 and	 20	

(Appendix	A3.1,	Figures	S1,	S2).	This	may	be	an	indication	of	PCR	duplication	events	
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which	cause	outliers	of	large	numbers	of	reads	at	a	few	sites,	or	technical	issues	with	

sampling	 or	 sequencing.	 A	 decision	 was	 made	 to	 exclude	 Mbovis_20	 from	

subsequent	 analysis	 and	 sum	 the	 insertion	 site	 reads	 of	 the	 remaining	 two	 sub-

samples	as	it	appeared	to	be	an	outlier	in	respect	to	saturation	and	read	distribution.	

This	did	not	significantly	reduce	the	number	of	unique	insertions	in	the	cumulative	

library	and	the	final	saturation	was	54%	with	39,987	unique	insertions.	The	reads	

were	summed	for	the	technical	M.	tuberculosis	replicates,	resulting	in	29,919	unique	

insertions	and	saturation	of	40%.	Insertions	were	evenly	distributed	throughout	the	

genome	and	detected	in	91%	of	coding	sequences	in	M.	bovis	(3625	of	3990	genes)	

and	88%	(3554	of	4019	genes)	in	M.	tuberculosis	(Figure	3.4).	However,	some	genes	

will	continue	to	function	with	insertions	at	the	extremes	of	the	transcript	(Griffin	et	

al.,	2011),	or	in	select	domains,	(Dejesus	et	al.,	2017;	Patil	et	al.,	2021)	and	so	some	

genes	essential	for	survival	may	still	be	represented	among	genes	with	insertions.		
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Figure	3.4.	Insertion	sites	were	well-distributed	across	the	genomes.	Length	of	coloured	lines	indicate	
read	 coverage.	 Blocks	 indicate	 gaps	 in	 coverage	 which	 correspond	 to	 known	 essential	 regions	 of	
genome.	a)	M.	bovis	b)	M.	tuberculosis.	Plots	made	with	the	R	package,	Circlize	(Gu	et	al.,	2014).	
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3.5.2	Essential	genes	overlap	with	published	datasets	

The	TRANSIT	HMM	method	(DeJesus	et	al.,	2015)	was	used	to	predict	essentiality	of	

each	gene.	In	total,	there	were	530	genes	predicted	to	be	essential	(ES)	in	M.	bovis	

(13.2%	of	genes	analysed)	and	489	predicted	ES	in	M.	tuberculosis	(12%)	(Figure	

3.5,	A3.1	Supplemental	Tables:	Ch3_Supp_Table_3).	The	proportion	of	ES	genes	in	

our	datasets	 (13.2%	for	M.	bovis,	12%	for	M.	 tuberculosis)	are	comparable	 to	 the	

saturated	M.	 tuberculosis	 dataset	 by	 DeJesus	 et	 al	 (11.5%).	 326	 (52.2%)	 of	 the	

essential	genes	observed	for	M.	tuberculosis	overlapped	with	the	461	ES	calls	from	

the	Dejesus	et	al	study	(Figure	3.6)(Dejesus	et	al.,	2017).	The	highly	saturated	single	

M.	tuberculosis	library	by	Patil	et	al.,	sequenced	over	5	passages,	identified	678	genes	

(close	to	17%	of	coding	genes)	that	had	no	fluctuations	 in	 insertions	at	 'TA'	sites	

throughout	 the	 passages	 in	 over	 60%	 of	 the	 gene	 body	 and	 were	 therefore	

considered	essential	for	survival	(Patil	et	al.,	2021).	412	of	these	genes	were	called	

ES	in	this	M.	tuberculosis	dataset	(60.8%	of	them)	(Figure	3.6C).		The	Butler	et	al	M.	

bovis	dataset	predicted	a	lower	proportion	of	genes	to	be	ES	(7.3%)	but	had	a	very	

similar	level	of	saturation	to	this	M.	bovis	dataset	(58%	'TA'	sites	with	insertions	vs.	

54%	in	this	experiment).	The	M.	bovis	library	shared	220	(35.2%)	of	ES	calls	with	

the	Butler	et	al	dataset	(Figure	3.6A)	(Butler	et	al.,	2020).	However,	the	Butler	et	al	

study	indicated	more	genes	with	a	growth	defect	(GD),	(322	vs	176	in	this	study).	

Half	of	these	(161)	were	called	ES	in	this	study	and	30	GD	genes	in	this	study	were	

called	ES	in	Butler	et	al.	Overall,	there	were	463	genes	that	showed	some	level	of	

survival	defect	(predicted	either	ES	or	GD)	in	both	M.	bovis	datasets	(Figure	3.6A,	B).		
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Figure	 3.5.	 Essentiality	 calls	 for	 M.	 bovis	 and	 M.	 tuberculosis	 genomes	 with	 TRANSIT	 HMM.	
'ES'=essential,	'GD'=growth	defect,	'NE'=non-essential,	'GA'=growth	advantage.	



 92 

	

	
Figure	3.6.	Essential	genes	in	M.	bovis	and	M.	tuberculosis	show	a	large	overlap	with	published	datasets	
(A3.1	 Supplemental	 Tables:	 Ch3_Supp_Table_3).	 A)	 Overlap	 between	 M.	 bovis	 essential	 genes	
('Mbovis_ES')	and	essential	 ('Butler_ES')	genes	 in	Butler	et	al,	2020.	B)	 Including	both	essential	and	
growth	defect	genes	('Mbovis_ES_GD')	shows	greater	overlap	(66%	of	ES/GD	calls)	with	the	Butler	et	al	
dataset.	C)	Overlap	of	M.	tuberculosis	essential	genes	('Mtb_ES',	484	total)		with	Dejesus	et	al	(461	total)	
and	Patil	et	al	(678	total).		(Dejesus	et	al.,	2017;	Patil	et	al.,	2021).		

	

3.5.3	Comparing	essentiality	between	M.	bovis	and	M.	tuberculosis	orthologous	

genes	with	a	qualitative	approach	

Despite	 the	 high	 level	 of	 sequence	 similarity	 between	 the	 M.	 bovis	 and	 M.	

tuberculosis,	deletions,	gene	merges	and	SNPs	can	affect	the	essentiality	of	a	gene.	If	

an	orthologous	gene	has	a	different	essentiality	prediction	 in	 the	 two	datasets,	 it	

may	be	due	 to	either	a	difference	 in	 the	gene	sequence,	and	 therefore	 translated	

A B

C 
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protein	product,	or	it	could	be	a	result	of	the	identical	gene	product	being	more,	or	

less,	 important	 to	 the	 survival	 of	 the	particular	host-adapted	 strain	of	MTBC.	 	 In	

addition,	SNPs	and	differences	in	ORF	length	between	orthologous	genes	can	lead	to	

a	 different	 number	 of	 possible	 'TA'	 sites	 within	 the	 annotated	 gene	 boundaries	

which	 can	 change	 the	 probabilities	 used	 to	 calculate	 essentiality.	 To	 tease	 apart	

these	possibilities,	further	analysis	was	made	restricting	the	gene	set	to	3587	unique	

pairs	of	orthologous	genes	with	a	maximum	difference	of	+/-	1	'TA'	site	in	the	gene	

sequence.	Differences	in	essentiality	among	this	set	of	genes	should	not	be	related	

to	differences	in	number	of	possible	insertion	sites	or	large	insertions	or	deletions;	

however,	SNPs	that	do	not	create	or	destroy	'TA'	sites	may	still	be	present.	363	of	

these	orthologous	gene	pairs	(10	%)	were	called	essential	in	both	species	(Figure	

3.7,	A3.1	Supplemental	Tables:	Ch3_Supp_Table_1).	The	overlapping	essential	genes	

were	 enriched	 with	 the	 functional	 categories	 of	 'information	 pathways'	 and	

'intermediary	metabolism	and	respiration'	(adjusted	p-values:	8.24	x	10-21	and	2.03	

x	 10-15,	 respectively,	 using	 hypergeometric	 test).	 298	 orthologous	 genes	 were	

designated	'growth	defect'	(GD)	genes	in	one	or	both	species	(Figure	3.7).	Insertions	

in	these	genes	presumably	have	a	less	deleterious	effect	on	survival	than	essential	

genes.	61	of	the	ES	orthologous	genes	in	M.	bovis	were	called	GD	in	M.	tuberculosis	

and	39	ES	 genes	 in	M.	 tuberculosis	were	GD	 in	M.	 bovis.	 In	 total,	 492	 (13.7%)	of	

orthologous	gene	pairs	showed	a	fitness	defect	of	some	degree	(called	ES	or	GD)	in	

both	the	M.	bovis	and	M.	tuberculosis	tn-seq	libraries.		

	

M.	bovis	had	more	orthologous	genes	than	M.	tuberculosis	with	a	'growth	advantage'	

(GA)	prediction	(115	vs	1)	which	indicates	a	relative	advantage	to	inactivating	the	

gene	product.	These	genes	were	non-essential	(NE)	in	M.	tuberculosis.	In	contrast,	

the	composite	saturated	library	from	DeJesus,	et	al,	called	244	of	the	orthologous	M.	

tuberculosis	genes	GA,	while	the	M.	bovis	library	from	Butler	et	al	only	predicted	2	

GA	genes	in	M.	bovis.	The	115	M.	bovis	GA	genes	were	not	found	to	be	enriched	for	

any	functional	category	(using	hypergeometric	test).	Stochastic	processes	make	it	

difficult	 to	discern	a	 true	difference	between	 levels	of	 insertions	 that	 indicate	an	

advantage	 to	growth	versus	having	no	effect	and,	 therefore,	 the	difference	 in	 the	

number	of	GA	genes	in	the	two	libraries	could	be	due	to	the	lower	saturation	level	

of	the	M.	tuberculosis	library	relative	to	M.	bovis.		
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Figure	3.7.	There	is	significant	overlap	of	essential	and	growth	defect	calls	among	orthologous	protein-
coding	genes	in	the	two	genomes.	363	genes	were	ES	in	both	M.	bovis	and	M.	tuberculosis.	A	further	61	
M.	bovis	ES	genes	overlap	M.	tuberculosis	GD	genes	(smaller	royal	blue	circle)	and	39	M.	tuberculosis	ES	
genes	 overlap	M.	 bovis	 GD	 genes.	 ES	 =	 essential,	 GD	 =	 growth	 defect.	 	 Diagram	made	 using	 eulerr	
package	in	R.	

	

3.5.4	Determination	of	different	non-coding	RNA	requirements	

It	is	possible	that	there	are	non-coding	RNA	features	that	are	required	for	survival	

in	 the	 MTBC,	 and	 the	 importance	 of	 these	 elements	 may	 differ	 between	 M.	

tuberculosis	and	M.	bovis.	Therefore,	an	attempt	was	made	to	compare	the	effects	of	

transposon	 insertions	 on	 annotated	 and	 predicted	 non-coding	 RNA	 between	 the	

species.	Annotated	and	predicted	intergenic	short	RNAs	and	3'	UTRs	that	did	not	

overlap	any	coding	regions	on	 the	opposite	 strand	were	selected	 for	comparison	

(see	Materials	and	Methods).	5'	UTRs	were	not	 included	 in	 the	analysis,	as	 these	

often	 include	 promoter	 elements	 that,	 when	 disrupted,	 directly	 affect	 the	

transcription	of	a	possibly	essential	downstream	coding	gene	(polar	effects)	rather	

than	 comprising	 an	 independently-regulated	 transcript.	 Sequence	 comparison	

verified	the	presence	and	coordinates	of	the	non-coding	features	 in	both	M.	bovis	

and	 M.	 tuberculosis	 genomes	 and	 comparisons	 were	 made	 between	 the	 HMM	

predictions	for	the	entire	region.	The	limited	saturation	in	the	libraries,	combined	

with	the	low	number	of	'TA'	sites	in	characteristically	short	ncRNA	features,	makes	

it	difficult	to	be	confident	in	what	may	be	arbitrary	differences	in	insertions	across	
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a	low	number	of	sites.	Limiting	the	results	to	ncRNA	transcripts	with	3	or	more	'TA'	

sites,	15	had	different	HMM	predictions	in	M.	bovis	versus	M.	tuberculosis	(Table	3.2,	

A3.1	 Supplemental	 Tables:	 Ch3_Supp_Table_2),	 including	 two	 annotated	 RNAs:	

G2/ncRv11689c	 and	MTS0858/ncRv1092c,	 both	 predicted	 to	 have	 an	 increased	

requirement	in	M.	tuberculosis	than	in	M.	bovis.		

	
Table	3.2.	Non-coding	RNAs	with	different	essentiality	calls	in	M.	bovis	versus	M.	tuberculosis	with	>2	
'TA'	sites.	*Indicates	a	tie	between	number	of	'TA'	sites	with	a	particular	call	(see	Methods	and	Materials	
3.4.5)	

	
	

3.5.5	 Quantitative	 comparison	 of	 gene	 requirements	 between	 orthologous	

genes	in	M.	tuberculosis	and	M.	bovis	libraries		

The	TRANSIT	resampling	algorithm	was	also	used	to	identify	statistically	significant	

differences	 in	mean	 read	 counts	 between	 the	 orthologous	 gene	 pairs	 in	 the	 two	

genomes	 (DeJesus	 et	 al.,	 2015)	 as	 an	 orthogonal	 approach	 to	 the	 qualitative	

comparison	of	the	HMM	predictions.	This	permutation	method	calculates	a	p-value	

by	shuffling	the	observed	reads	among	all	possible	'TA'	sites	in	a	designated	region	

(typically,	 within	 protein-coding	 gene	 boundaries)	 and	 therefore	 should	 only	 be	

Mtb ID start Mb end Mb
width 

Mb
strand 

Mb
TAs 
Mb call Mb start Mtb end Mtb

width 
Mtb

strand 
Mtb

TAs 
Mtb call Mtb

putative_UTR:p731365_731493 732601 732729 128 + 4 NE 731365 731493 128 + 4 GD/NE*

putative_UTR:p733326_733523 734562 734759 197 + 3 GA 733326 733523 197 + 3 NE

MTS0858/ncRv1092c 1221788 1221888 100 - 3 NE 1220388 1220487 99 - 3 GD

G2/ncRv11689c 1904739 1904940 201 - 4 NE 1914990 1915190 200 - 4 ES

putative_sRNA:p2038697_2038955 2033561 2033761 200 + 9 GD 2038697 2038897 200 + 9 ES

putative_sRNA:m2207133_2207499 2203343 2203543 200 - 4 ES 2207299 2207499 200 - 4 GD

putative_UTR:p2265039_2265188 2248365 2248514 149 + 4 NE 2265039 2265188 149 + 4 ES

putative_sRNA:p2500386_2500819 2483944 2484144 200 + 4 ES 2500386 2500586 200 + 4 GD

putative_sRNA:m2500131_2500820 2484178 2484378 200 - 3 ES 2500620 2500820 200 - 3 GD

putative_UTR:m3359212_3359584 3320411 3320611 200 - 4 NE 3359384 3359584 200 - 4 GD

putative_sRNA:p3467971_3468335 3428930 3429130 200 + 4 ES 3467971 3468171 200 + 4 NE

putative_sRNA:m3834596_3834735 3791637 3791776 139 - 8 GD 3834596 3834735 139 - 8 NE

putative_sRNA:p3907294_3907456 3857330 3857492 162 + 4 GA 3907294 3907456 162 + 4 NE

putative_sRNA:m3939324_3939465 3887974 3888115 141 - 3 GA 3939324 3939465 141 - 3 NE

putative_sRNA:m4386818_4387144 4325317 4325517 200 - 4 GA 4386944 4387144 200 - 4 NE
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applied	 to	 gene	 regions	of	 roughly	 the	 same	 length	 and	number	of	 'TA'	 sites.	 32	

genes	 showed	 statistically	 significant	 differences	 (adj	 p-value	 <	 0.05)	 in	 the	

distribution	 of	 insertions	 between	 the	 two	 species,	 (Table	 3.3,	 Figure	 3.8,	 A3.1	

Supplemental	 Tables:	 Ch3_Supp_Table_1).	 These	 genes	 showed	 an	 absolute	 log2	

fold-difference	 in	 mean	 insertion	 counts	 greater	 than	 2	 (representing	 a	 4-fold	

difference).	Gene	set	enrichment	analysis	(GSEA)	(Subramanian	et	al.,	2005),	using	

the	 ranked	 log2	 fold-differences,	 showed	 enrichment	 of	 genes	 involved	 in	 sulfate	

assimilation,	 folate-containing	 compounds,	 quinone	 binding	 and	 amino	 acid	

metabolism,	as	well	as	KEGG	pathways	for	'sulfur	metabolism'	and	'glycine,	serine	

and	threonine	metabolism'	(adj.	p-values	<	0.05),	indicating	these	functions	show	

the	 most	 divergence	 in	 requirements	 between	 the	 human	 and	 animal-adapted	

strains.		

	

Corresponding	 feature	 coordinates	 from	 the	M.	 tuberculosis	 ncRNA	 annotations	

were	used	with	the	TRANSIT	resampling	method.	Analysis	was	restricted	to	features	

that	contained	3	or	more	 'TA'	sites,	 for	a	 total	of	157.	There	were	no	statistically	

significant	log2	fold	differences	between	the	species.	
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Table	3.3.	Orthologous	genes	showing	statistically	significant	log2	fold-difference	between	M.	tuberculosis	and	M.	bovis	insertions	using	the	TRANSIT	resampling	method	(padj	<	
0.05).	Genes	with	positive	log2	fold-differences	(green)	are	more	important	for	M.	tuberculosis	survival	relative	to	M.	bovis	and	genes	showing	a	negative	log2	fold-difference	
(red)	are	more	important	for	survival	in	M.	bovis	relative	to	M.	tuberculosis.	

	
	

Mtb Orf Name Mbovis Orf Mtb call Mbovis call snps Product Description TA sites log2 FD Adj p-value Functional Category
Rv2454c korB Mb2481c GD NE N Identical 2-oxoglutarate oxidoreductase subunit KorB 15 7.99 0.0000 intermediary metabolism and respiration
Rv3579c rlmB Mb3610c NE GA Y Identical 23S rRNA (guanosine(2251)-2'-O)-methyltransferase 12 7.09 0.0429 intermediary metabolism and respiration
Rv1828 Mb1859 ES NE N Identical HTH-type transcriptional regulator 14 7.02 0.0060 conserved hypotheticals
Rv0812 Mb0835 NE NE Y Variable 4-amino-4-deoxychorismate lyase 17 5.89 0.0000 intermediary metabolism and respiration
Rv0337c aspC Mb0344c GD NE N Identical aspartate aminotransferase 22 5.88 0.0000 intermediary metabolism and respiration
Rv0467 icl1 Mb0476 NE GA N Identical isocitrate lyase 18 5.43 0.0026 intermediary metabolism and respiration
Rv1832 gcvB Mb1863 ES GD Y Variable glycine dehydrogenase 57 4.19 0.0000 intermediary metabolism and respiration
Rv2455c korA Mb2482c GD NE N Identical 2-oxoglutarate oxidoreductase subunit KorA 37 3.9 0.0000 intermediary metabolism and respiration
Rv1239c corA Mb1271c NE NE Y Variable Mg and Co transport transmembrane protein CorA 25 3.66 0.0153 cell wall and cell processes
Rv3497c mce4C Mb3527c NE GA N Identical Mce family protein Mce4C 18 3.11 0.0060 virulence/ detoxification/ adaptation
Rv0485 Mb0495 NE GA N Identical transcriptional regulator 23 2.53 0.0225 regulatory proteins
Rv2940c mas Mb2965c NE GA Y Identical multifunctional mycocerosic acid synthase 82 2.28 0.0000 lipid metabolism
Rv0642c mmaA4 Mb0661c NE GA Y Variable hydroxymycolate synthase MmaA4 18 2.22 0.0225 lipid metabolism
Rv0643c mmaA3 Mb0662c NE GA N Identical methoxy mycolic acid synthase MmaA3 22 2.2 0.0308 lipid metabolism
Rv1638 uvrA Mb1664 NE NE N Identical excinuclease ABC subunit UvrA 39 -2.17 0.0268 information pathways
Rv1006 Mb1033 NE NE Y Variable hypothetical protein 41 -2.28 0.0209 conserved hypotheticals
Rv0016c pbpA Mb0016c NE NE N Identical penicillin-binding protein PbpA 37 -2.58 0.0143 cell wall and cell processes
Rv1937 Mb1972 NE NE Y Identical oxygenase 48 -2.69 0.0225 intermediary metabolism and respiration
Rv2942 mmpL7 Mb2967 NE NE Y Identical transmembrane transport protein MmpL7 43 -2.85 0.0000 cell wall and cell processes
Rv3158 nuoN Mb3182 NE NE Y Identical NADH-quinone oxidoreductase subunit N 32 -3.31 0.0000 intermediary metabolism and respiration
Rv3156 nuoL Mb3180 NE NE Y Variable NADH-quinone oxidoreductase subunit L 35 -3.39 0.0060 intermediary metabolism and respiration
Rv2945c lppX Mb2970c NE NE N Identical lipoprotein LppX 10 -3.56 0.0163 cell wall and cell processes
Rv1270c lprA Mb1301c NE NE Y Variable lipoprotein LprA 11 -3.59 0.0473 cell wall and cell processes
Rv3682 ponA2 Mb3707 NE GD N Identical bifunctional transglycosylase/transpeptidase 37 -4.1 0.0094 cell wall and cell processes
Rv3859c gltB Mb3889c GD ES Y Variable glutamate synthase large subunit 80 -4.22 0.0000 intermediary metabolism and respiration
Rv2400c subI Mb2422c NE ES N Identical sulfate ABC transporter substrate-binding lipoprotein 19 -5.45 0.0187 cell wall and cell processes
Rv3490 otsA Mb3520 NE ES Y Variable trehalose-phosphate synthase 30 -5.69 0.0060 virulence/ detoxification/ adaptation
Rv1286 Mb1317 NE ES Y Variable adenylyl-sulfate kinase 34 -6.19 0.0000 intermediary metabolism and respiration
Rv3680 Mb3705 NE GD N Identical anion transporter ATPase 20 -6.22 0.0026 cell wall and cell processes
Rv0455c Mb0463c NE ES N Identical hypothetical protein 11 -6.53 0.0492 conserved hypotheticals
Rv2222c glnA2 Mb2246c NE GD N Identical glutamine synthetase 20 -7.39 0.0000 intermediary metabolism and respiration
Rv0244c fadE5 Mb0250c NE ES Y Variable acyl-CoA dehydrogenase 23 -7.49 0.0000 lipid metabolism
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Figure	3.8.	Volcano	plot	showing	genes	with	statistically	significant	(padj	<	0.05)	log2	fold-difference	in	
M.	tuberculosis	vs	M.	bovis	mean	insertion	counts	in	blue	determined	with	TRANSIT	resampling.	Red	
bars	indicate	log2	fold-difference	of	+/-	2	(4-fold	difference).	Genes	to	the	left	of	0	are	more	required	for		
M.	bovis	survival	and	genes	to	the	right	are	more	required	for	M.	tuberculosis	survival..	

	

3.6	DISCUSSION	

3.6.1	Insertions	in	identical	metabolism	and	respiration	genes	show	different	

fitness	effects	in	M.	bovis	versus	M.	tuberculosis	

14	orthologous	genes	showed	a	statistically	significant	higher	mean	insertion	count	

in	the	M.	bovis	library,	indicating	these	are	less	important	for	in	vitro	survival	in	M.	

bovis	than	in	M.	tuberculosis	(Table	3.3).	This	result	is	in	contrast	to	the	large	number	

of	GA	calls	for	M.	bovis	versus	M.	tuberculosis	using	the	HMM	method	(115	vs	1).	Half	

of	 these	 genes	 are	 involved	 in	 'intermediary	 metabolism	 and	 respiration'.	 For	

example,	 despite	 having	 identical	 protein	 products	 in	 both	 species,	 aspC	

(Mb0344c/Rv0337c)	 (aspartate	 aminotransferase)	 and	 the	 korAB	 operon	

(Mb2482-1c/Rv2455-4c)	 (2-oxoglutarate	 oxidoreductase	 subunits)	 are	 predicted	

to	 be	 less	 important	 for	 survival	 of	 M.	 bovis	 than	 for	 M.	 tuberculosis.	 Another	
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example,	Icl1,	isocitrate	lyase,	is	an	enzyme	involved	in	the	assimilation	of	fatty	acids	

through	 the	 glyoxylate	 shunt	 and	 is	 identical	 in	 both	 species.	 In	 previous	 M.	

tuberculosis	 studies,	 icl1	 (Rv0467)	 showed	 conditionally-dependent	 essentiality	

based	on	carbon	source	(Dejesus	et	al.,	2017;	Griffin	et	al.,	2011;	Minato	et	al.,	2019;	

Serafini	 et	 al.,	 2019).	 It	 has	 also	 been	 observed	 that	 Icl1	 is	 expressed	 at	 a	

constitutively	 lower	 level	 in	M.	 bovis	 and	Mycobacterium	 bovis	 BCG	 than	 in	M.	

tuberculosis	(Lee	et	al.,	2018;	Malone	et	al.,	2018).	In	this	study,	this	gene	was	not	

predicted	to	be	essential	for	either	species	(and	was	predicted	GA	in	M.	bovis),	but	

M.	 bovis	 icl1	 contained	 significantly	 more	 insertions	 in	 the	 gene	 versus	 M.	

tuberculosis,	perhaps	indicating	an	advantage	to	deactivating	the	gene	in	M.	bovis.		

	

A	 potential	 HTH-type,	 MerR-family,	 transcriptional-regulator	 gene	

(Mb1859/Rv1828),	 appears	 dispensable	 in	 M.	 bovis	 in	 comparison	 with	 M.	

tuberculosis,	 with	 a	 higher	mean	 number	 of	 insertions	 in	 the	M.	 bovis	 gene.	 The	

orthologs	 are	 identical	 in	 gene	 sequence	 and	protein	product.	 	Rv1828	has	been	

shown	to	both	activate	and	repress	gene	expression	at	specific	promoter	sequences	

in	M.	tuberculosis	and	may	also	be	implicated	in	metabolism/respiration	functions.	

Rv1828	binds	its	own	promoter	ahead	of	garA	(Rv1827),	a	gene	linked	to	regulation	

of	the	TCA-cycle	and	glutamate	synthesis	(Singh	et	al.,	2018).			

	

Several	genes	involved	in	nitrogen	metabolism	and	sulfate	assimilation	were	found	

to	have	a	greater	requirement		in	M.	bovis	than	in	M.	tuberculosis,	showing	significant	

decreases	in	mean	number	of	insertions	in	M.	bovis	versus	M.	tuberculosis	(Table	3.3).	

L-glutamine	synthesis	from	L-glutamate	and	ammonia	is	important	for	formation	of	

the	peptidoglycan	 layer	of	 the	cell	wall	 in	pathogenic	mycobacteria	 (Shaku	et	al.,	

2023)	and	for	nitrogen	assimilation	(Harth	et	al.,	1994;	Tripathi	et	al.,	2013;	Viljoen	

et	al.,	2013).	GlnA2	 (Mb2246c/Rv2222c)	 is	a	 'possible	glutamine	synthetase'	 and	

codes	for	identical	protein	products	in	both	genomes	but	appears	to	be	more	crucial	

for	survival	of	M.	bovis.	The	secreted	paralog,	glnA1,	is	essential	for	both	species	and	

recognised	as	a	virulence	factor	involved	in	host-pathogen	response	(Harth	et	al.,	

1994;	Parveen	et	al.,	2023).	The	gene	for	the	large	subunit	of	glutamine	oxoglutarate	

aminotransferase,	gltB	(Mb3889c/Rv3859c),	has	fewer	mean	insertions	in	M.	bovis	

than	M.	 tuberculosis.	This	enzyme	 is	 responsible	 for	converting	L-glutamine	 to	L-

glutamate	 and	 differs	 between	 the	 species	 by	 a	 single	 amino	 acid	 substitution	
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(glutamic	acid	to	the	amide	in	M.	bovis)	at	position	550.	The	small	subunit,	gltD	also	

had	decreased	mean	number	of	insertions	in	M.	bovis,	but	this	difference	was	not	

statistically	 significant	 (possibly	 because	 the	 small	 subunit	 has	 only	 1/4	 of	 the	

number	of	'TA'	sites	as	the	large	subunit).	GltB	contains	an	iron-sulfur	cluster,	and	

two	genes	 involved	 in	 the	sulfate	assimilation	pathway,	cysN	 (Rv1286/	Mb1317)	

and	subI	(Rv2400c/Mb2422c),	appear	 to	be	more	required	 in	M.	bovis	 than	 in	M.	

tuberculosis.	 CysN	 has	 a	 V/L	 amino	 acid	 substitution	 at	 residue	 245,	 but	 SubI	 is	

identical	 in	 both	 species.	 It	 may	 be	 fruitful	 to	 explore	 whether	 the	 observed	

difference	in	 in	vitro	requirements	for	these	genes	 in	M.	bovis	 indicate	a	different	

priority	 for	 regulating	 nitrogen	 assimilation	 (Tripathi	 et	 al.,	 2013;	 Viljoen	 et	 al.,	

2013).			

	

3.6.2	Differences	 in	requirements	 for	cell	wall-associated	genes	may	reflect	

species-specific	cell-wall	lipid	repertoires	

The	cell	walls	of	 the	MTBC	have	distinct	 lipid	 repertoires	 that	most	 likely	 reflect	

adaptation	to	host	immune	systems,	including	differential	production	of	sulfolipids	

(SL),	 diacyltrehaloses	 (DAT)	 and	 polyacyltrehaloses	 (PAT),	 and	 	 phthiocerol	

dimycocerosates	 (PDIM)	 (Malone	 et	 al.,	 2018;	 Malone	 &	 Gordon,	 2017).	 The	

differences	in	the	essentiality	of	related	genes	between	the	species	may	have	some	

relation	to	differences	in	the	composition	of	the	cell	walls	which	may	relate	to	host-

specific	 interactions.	 Insertions	 in	 several	 genes	 associated	 with	 synthesis	 and	

catabolism	 of	 lipids	 were	 overrepresented	 in	M.	 bovis	 relative	 to	M.	 tuberculosis,	

indicating	these	genes	are	more	dispensable	for	survival	of	M.	bovis.	The	genes	mas,	

mce4C,	mmaA3	and	mmaA4	are	involved	with	synthesis	of	lipids	present	in	the	cell	

walls.	All	of	 these	genes	produce	 identical	protein	products	 in	 the	 two	species.	A	

gene	 shown	 to	be	 involved	 in	peptidoglycan	biosynthesis,	Rv0812/Mb0835,	 also	

had	significantly	higher	mean	insertion	count	in	M.	bovis	(Black	et	al.,	2021)	with	the	

M.	bovis	protein	product	having	a	single	amino	acid	substitution	M/I	at	position	145.		

	

Several	of	the	genes	showing	significantly	lower	mean	insertion	counts	in	M.	bovis	

relative	 to	M.	 tuberculosis,	and	 therefore	more	 required	 for	 in	 vitro	 survival,	 are	

associated	with	 cell	wall	 lipid	 synthesis	 in	 the	MTBC.	 For	 instance,	 insertions	 in	

fadE5	 (Rv0244c/	 Mb0205c),	 an	 acyl-CoA	 dehydrogenase	 involved	 in	 lipid	

metabolism	induced	a	severe	fitness	cost	in	M.	bovis	relative	to	M.	tuberculosis.		This	
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acyl-CoA	 dehydrogenase	 appears	 to	 be	 involved	 in	 two	 processes	 in	 the	

mycobacterial	 cell:	 catabolism	 of	 fatty	 acids	 for	 use	 as	 a	 carbon	 source	 and	

processing	fatty	acids	to	feed	into	cell	wall	lipid	biosynthesis.	Disruption	of	fadE5	

causes	increased	susceptibility	to	antibiotics	in	M.	tuberculosis,	presumably	due	to	

membrane	disruption	(Chen	et	al.,	2020),	however,	SNPs	have	been	recorded	from	

hyper-virulent	strains	that	increase	drug	resistance	(Bellerose	et	al.,	2020;	Rajwani	

et	al.,	2022).	The	M.	bovis	gene,	Mb0205c,	has	2	SNPs	relative	to	M.	tuberculosis:	a	

K/R	substitution	at	residue	394	and	an	E/A	at	479	(Brenner	&	Sreevatsan,	2023).	In	

other	tn-seq	studies,	fadE5	was	predicted	to	be	ES	for	M.	tuberculosis	on	cholesterol	

and	in	rich	media	(Griffin	et	al.,	2011;	Minato	et	al.,	2019).	

	

Three	 genes	 related	 to	 peptidoglycan	 biogenesis	 in	 the	 cell	wall	were	 also	more	

necessary	 for	M.	 bovis	 survival	 relative	 to	M.	 tuberculosis.	 These	 genes	 include:	

ponA2	(Rv2490/Mb3707),	coding	for	a	bifunctional	enzyme	(and	penicillin-binding	

protein)	which	can	both	polymerise	the	glycan	strands	and	cross-link	the	strands	

together	(Kieser	et	al.,	2015)	which	is	identical	in	DNA	and	peptide	sequence	in	M.	

tuberculosis	 and	 M.	 bovis.	 Previous	 studies	 have	 shown	 this	 gene	 to	 been	

conditionally-essential	 for	M.	 tuberculosis	 in	 rich	media	 (Minato	et	al.,	2019)	and	

required	for	mouse	infection	(Vandal	et	al.,	2009)	but	insertions	were	advantageous	

for	 survival	 in	 the	 saturated	M.	 tuberculosis	 in	 vitro	 tn-seq	 study	 (Dejesus	 et	 al.,	

2017).	 In	a	 tn-seq	 study	 in	∆ponA1	 (a	 redundant,	but	non-identical	 enzyme)	and	

∆ponA2	 backgrounds,	 otsA	 (Rv3490/Mb3520),	 alpha-trehalose-phosphate	

synthase,	 was	 found	 to	 be	 essential	 in	 both	 deletion	 backgrounds	 (Kieser	 et	 al.,	

2015).	There	is	a	V/L	substitution	at	position	334	in	M.	bovis	otsA,	and	in	this	study,	

this	 gene	 had	 fewer	 insertions	 (and	 more	 importance	 for	 survival)	 in	M.	 bovis	

relative	 to	 M.	 tuberculosis.	 Finally,	 the	 penicillin-binding	 protein	 (PBP),	 pbpA	

(Rv0016c/Mb0016c)	is	less	important	for	M.	bovis	survival.	It	is	involved	in	cross-

linking	 peptidoglycan	 strands,	 contributing	 to	 membrane	 shape	 and	 rigidity	

(Birhanu	et	al.,	2019).	

	

3.6.3	Other	membrane-associated	genes	important	for	in	vitro	survival	in	M.	

bovis	

Rv3680/Mb3705	 is	 part	 of	 a	 two-gene	 operon	 of	 ATP-ases	 linked	 to	 protection	

against	nitric	oxide	and	glycerol	toxicity	in	M.	tuberculosis	(Whitaker	et	al.,	2020).	
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These	genes	are	identical	in	both	genomes	but	showed	a	severe	growth	penalty	in	

M.	bovis	compared	to	M.	tuberculosis.	Whitaker	et	al	found	an	interaction	with	the	M.	

tuberculosis	ortholog	of	this	gene	and	glpK,	a	glycerol	kinase	involved	in	the	first	step	

of	 glycerol	 metabolism;	 increased	 susceptibility	 of	 a	 ∆rv3679-3680	 mutant	 to	

glycerol	toxicity	was	reversed	with	mutation	of	glpK,	(Whitaker	et	al.,	2020).	In	M.	

bovis,	 glpK	 is	 annotated	 as	 two	 overlapping	 transcripts	 (Mb3721c/glpKa	 and	

Mb3722c/glpKb)	 with	 a	 frameshift	 mutation	 in	M.bovis	 resulting	 in	 a	 truncated	

peptide	product.	Subsequent	to	this	analysis,	genomic	sequencing	of	the	lab	strain	

of	M.	bovis	AF2122/97	used	to	make	these	transposon	libraries	was	shown	to	have	

a	mutation	that	corrects	the	frameshift.	M.	bovis	is	unable	to	utilise	carbohydrates	

such	as	glycerol	as	carbon	sources	due	to	another	mutation	in	pykA	which	codes	for	

the	enzyme	in	the	final	stage	of	glycolysis	(Keating	et	al.,	2005).	Perhaps	an	active	

glycerol	 kinase	 with	 an	 inactive	 pykA	means	 this	 lab	 strain	 of	M.	 bovis	 is	 more	

vulnerable	to	glycerol	 toxicity	 from	phosphorylated	 intermediates	and,	 therefore,	

more	reliant	on	intact	Mb3705/Rv3680	than	M.	tuberculosis.	

	

Siderophores,	 such	 as	mycobactin,	 are	 secreted	 by	 the	 bacteria	 to	 scavenge	 iron	

from	the	host	in	iron-poor	environments,	like	that	found	inside	of	host	macrophages.	

Rv0455c/Mb0463c	 has	 been	 shown	 to	 be	 required	 for	 siderophore	 secretion	

through	the	MmpL4	and	MmpL5	efflux	pumps	in	M.	tuberculosis	(Zhang	et	al.,	2022).	

It	 is	 identical	 in	 sequence	 in	M.	 tuberculosis	 and	M.	bovis,	however,	 in	 this	 study,	

insertions	in	this	gene	caused	a	more	severe	impact	on	fitness	in	M.	bovis	versus	M.	

tuberculosis,	which	is	in	agreement	with	other	studies	that	found	the	gene	to	be	non-

essential	for	M.	tuberculosis	and	essential	for	M.	bovis	 in	vitro	(Butler	et	al.,	2020;	

Dejesus	et	al.,	2017).	In	M.	tuberculosis,	it	has	been	found	to	be	an	essential	gene	for	

survival	in	mice	and	low-iron	conditions	(Zhang	et	al.,	2022)	and	in	a	comparative	

tn-seq	study	using	different	iron	sources,	there	was	an	increased	requirement	for	

the	gene	in	high	mycobactin	concentrations	versus	heme	(Zhang	et	al.,	2020).	The	

media	used	in	this	study	includes	defibrinated	sheep	blood	and	foetal	bovine	serum	

which	contain	heme,	in	addition	to	the	iron-containing	Middlebrook	7H11	media.	As	

M.	 bovis	 is	 not	 able	 to	 utilise	 heme	 as	 an	 iron	 source	 due	 to	 a	 deletion	 in	ppe37	

(Tullius	et	al.,	2019),	it	therefore	has	a	stronger	reliance	on	siderophore	secretion	

for	scavenging	iron	than	M.	tuberculosis.	
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3.6.4	Comparing	orthologous	genes	with	different	numbers	of	'TA'	sites	

422	additional	gene	pairs	are	considered	orthologous	between	the	two	strains	but	

do	not	have	 the	same	number	of	 'TA'	sites,	due	 to	gene	 fusions	or	deletions,	and	

therefore	 application	 of	 the	 quantitative	 resampling	 method	 would	 not	 be	

appropriate.	Despite	the	nucleotide	differences,	90%	of	these	pairs	have	the	same	

prediction	of	essentiality	with	only	44	pairs	with	different	essentiality	predictions.	

The	PE/PPE	genes	have	variable	numbers	of	proline-glutamate	repeats	that	have	

been	shown	to	differ	between	orthologs	in	clinical	isolates,	especially	the	PE_PGRS	

family	 (Fishbein	 et	 al.,	 2015),	meaning	 orthologs	will	 have	 different	 lengths	 and	

number	 of	 'TA'	 sites.	 This	 mostly	 uncharacterised	 family	 of	 genes	 are	 generally	

associated	with	the	outer	cell	envelope	and	some	are	involved	in	forming	porin-like	

complexes	 for	 import	 of	 nutrients	 (Mitra	 et	 al.,	 2017;Wang	 et	 al.,	 2020).	 Three	

PE/PPE	genes	were	found	to	be	more	required	in	M.	bovis	than	in	M.	tuberculosis:	

PE_PGRS13,	PE_PGRS54,	and	PPE50	(Rv3135).	Three	others,	PPE_47,	PE_PGRS55	

and	PE_PGRS57,	were	predicted	to	be	ES	in	M.	tuberculosis	and	NE	in	M.	bovis.		

	

3.6.5	Comparing	results	from	HMM	and	Resampling	Methods	

There	are	biological	reasons	relating	to	culture	conditions,	such	as	the	number	of	

divisions	before	harvesting	mutants5,	and	media	composition	that	can	cause	shifting	

essentiality	 status	 and	 make	 direct	 comparisons	 between	 datasets	 difficult6	

(Mahmutovic	et	al.,	2020;	Minato	et	al.,	2019).	This	study	attempts	to	address	these	

challenges	by	standardising	the	culture	conditions	and	comparing	tn-seq	libraries	

selected	 on	 identical	 culture	 media.	 However,	 differences	 in	 the	 saturation	 and	

stochastic	distribution	of	insertions	in	the	creation	and	sequencing	of	the	different	

libraries	will	lead	to	some	type-1	(falsely	predicting	a	gene	is	essential)	and	type-2	

(predicting	 a	 gene	 is	 non-essential,	when	 it	 truly	 is	 essential)	 errors	 in	 the	 calls,	

despite	the	sophistication	of	the	HMM	algorithm.	Direct	comparison	of	the	predicted	

essentiality	 calls	 from	 two	 different	 tn-seq	 analyses	 may	 risk	 compounding	 the	

errors	and	confounding	the	conclusions.	Resampling	is	based	entirely	on	indicated	

	
5	Any	apparent	difference	in	doubling	time	between	libraries	was	not	recorded	in	this	experiment	
but	could	be	used	to	estimate	any	differences	in	the	net	division	rate	between	the	mutant	libraries	
which	could	affect	the	survival	of	mutants	where	insertions	have	only	a	moderate	effect	on	fitness	
(Mahmutovic	et	al.,	2020).	
	
6	Interestingly,	the	14	different	M.	tuberculosis	libraries	consolidated	to	create	a	'saturated'	dataset	
in	DeJesus	et	al	were	not	all	grown	on	the	same	media	(Dejesus	et	al.,	2017).	
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genome	 coordinate	 boundaries,	 and	 normalises	 the	mean	 insertion	 counts	 for	 a	

specified	 genomic	 region	 only,	 before	 determining	 if	 there	 is	 a	 statistically	

significant	difference	in	the	insertion	distributions	between	two	datasets.	For	short	

genetic	 features,	 such	 as	 ncRNA,	 the	 reshuffling	 of	 insertions	 among	 a	 limited	

number	of	'TA'	sites	limits	its	utility	for	generating	p-values.	In	general,	it	is	more	

conservative	 than	 comparing	differences	 in	 essentiality	 calls,	 but	 it	 can	highlight	

differences	 in	 distributions	 between	 genes	 that	 have	 the	 same	 essentiality	

prediction	 and	 can	 quantify	 the	 statistical	 significance	 of	 this	 difference.	 This	

information	 can	 also	 be	 used	 to	 add	 another	 layer	 of	 interpretation	 when	

considering	 those	 genes	 which	 also	 have	 different	 essentiality	 predictions	 with	

HMM.		

	

For	 example,	 the	 gene	wag31	 (Rv2145/Mb2169)	 was	 shown	 to	 be	 required	 for	

normal	 cell	morphology	 in	M.	 tuberculosis	 (Kang	 et	 al.,	 2008).	 In	 this	 study,	 it	 is	

predicted	to	be	NE	in	M.	tuberculosis	but	ES	in	M.	bovis;	however,	resampling	analysis	

based	on	the	wag31	gene	boundaries	shows	no	difference	in	the	means	between	the	

orthologs	(A3.1	Supplemental	Tables:	Ch3_Supp_Table_1).	Previous	tn-seq	studies	

present	disparate	results:	wag31	has	been	shown	to	be	ES	in	several	M.	tuberculosis	

studies	 (Dejesus	 et	 al.,	 2017;	 Griffin	 et	 al.,	 2011;	 Minato	 et	 al.,	 2019)	 and	 was	

predicted	to	be	NE	in	M.	bovis	(Butler	et	al.,	2020).	A	closer	look	at	the	insertions	in	

the	two	datasets	analysed	here	reveal	that	wag31	has	no	insertions	beyond	the	first	

possible	 'TA'	 site	 in	 both	M.	 tuberculosis	 and	M.	 bovis	 (Figure	 3.9).	 Due	 to	 low	

numbers	of	insertions	in	the	adjacent	genes,	and	in	the	first	and	last	'TA'	sites	within	

wag31,	 the	 HMM	 probability	 model	 makes	 a	 conservative	 calculation	 that	 the	

probability	of	the	next	'TA'	site	in	wag31	changing	state	from	NE	to	ES	is	very	low	in	

the	M.	tuberculosis	dataset	(as	the	lower	number	of	insertions	could	be	sparse	due	

to	stochastic	factors	rather	than	impairment	of	survival).	Conversely,	in	M.	bovis,	the	

higher	number	of	insertions	present	in	Rv2144c	and	in	the	first	'TA'	site	of	wag31,	

makes	the	probability	of	the	state	changing	from	GA	to	ES	at	the	next	insertion	site	

much	higher.	This	adjustment	to	different	saturation	levels	is	by	design	in	order	to	

prevent	 high	 numbers	 of	 false	 positives	 in	 unsaturated	 datasets	 (DeJesus	 et	 al.,	

2015)	but	in	this	case,	may	result	in	a	false	negative	call.		The	final	word	is	perhaps	

the	phenotypic	analysis	of	CRISPRi	strains	with	knocked-down	expression	of	wag31	
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which	showed	equally	severe	growth	defects	 in	both	M.	tuberculosis	and	M.	bovis	

(Gibson	et	al.,	2021).	

	

	
Figure	3.9.	The	normalised	insertion	counts	for	wag31	are	similar	in	the	M.	bovis	and	M.	tuberculosis	
libraries	though	the	essentiality	calls	differ.	Equivalent	insertion	sites	for	the	positions	relative	to	the	
two	genes	in	the	two	genomes	plotted	on	x-axis.	

	

3.6.6	Limitations	of	the	study	

There	are	several	points	at	which	a	bottleneck	effect	can	influence	the	diversity	of	

the	insertion	library,	such	as	random	sampling	at	several	stages	during	the	culturing	

and	sequencing	steps.	In	addition,	depending	on	the	birth/death	rate	of	a	population	

and	the	relative	fitness	of	the	other	mutants	in	a	population,	over	time,	mutants	with	

relatively	 mild	 growth	 defects	 can	 become	 outcompeted	 in	 the	 population	 and	

disappear	 from	 the	mutant	 pool	 altogether--and	 thus	 be	 predicted	 as	 'essential'	

(DeJesus	&	Ioerger,	2013;	Mahmutovic	et	al.,	2020).	The	resulting	reduction	in	the	

saturation	 of	 the	 library	 can	 lead	 to	 false	 positives,	 especially	 when	 comparing	

libraries	 grown	 in	 different	 culture	 conditions	 which	 can	 directly	 affect	 the	

birth/death	rates	of	a	population	and	the	time	it	takes	to	reach	an	equivalent	CFU.	

These	 considerations	 can	 be	 accommodated	 by	 considering	 time	 spent	 at	 log-

growth,	 number	 of	 replication	 cycles	 and	 establishing	 an	 excess	 of	 mutants	 per	
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insertion	 site	 (Chao	 &	 Vogel,	 2016;	Mahmutovic	 et	 al.,	 2020;	 van	 Opijnen	 et	 al.,	

2009).	In	this	study,	the	gene	requirements	for	two	different	members	of	the	MTBC	

are	directly	compared,	but	there	are	differences	in	media	preferences	and	growth	

rates	between	the	species,	evident	in	the	differences	in	number	of	colonies	used	to	

make	 the	 libraries.	 These	 samples	 likely	 have	 differences	 in	 the	 amount	 of	 time	

spent	in	log-growth	stage	and	this	may	exaggerate	more	subtle	effects.	

	

3.7	CONCLUSIONS	

In	this	chapter	transposon	insertion	sequencing	libraries	made	from	the	reference	

strains	 of	 animal-adapted	 (M.	 bovis,	 AF2122/97)	 and	 human-adapted	 (M.	

tuberculosis,	H37Rv)	members	of	the	MTBC	were	used	to	determine	the	differences	

in	 gene	 requirements	 between	 the	 species.	 Comparing	 the	 total	 number	 of	

orthologous	genes	predicted	as	'essential'	or	'growth	defect'	in	either	species	makes	

apparent	 that	 both	 genomes	 contain	 genes	 that,	 when	 mutated,	 have	 greater	

impacts	on	one	species	or	the	other.	These	uniquely-essential	genes	are	interesting	

because	 they	 indicate	 adaptations	 to	 a	 specific	 host	 and	 can	provide	 clues	 about	

host-pathogen	 interactions.	 The	 immune	 systems	 of	 human	 and	 animal	 hosts	

present	 different	 challenges	 to	mycobacterial	 pathogens	 and	 adaptation	 to	 these	

differences	are	reflected	in	the	relative	importance	of	homologous	gene	products	on	

survival,	even	in	identical	culture	conditions.	Though	these	genes	may	be	genetically	

indistinguishable,	their	function	and	impact	may	be	altered	by	deletions	or	SNPs	in	

other	genes	in	their	protein-protein	interaction	networks.	Furthermore,	differences	

in	post-transcriptional	regulation	of	protein	expression	may	play	an	unknown	role	

in	modifying	the	activity	of	the	final	protein	product.		

	

Genes	 involved	 in	 amino	 acid	 metabolism	 and	 sulfur	 assimilation	 were	 more	

required	in	M.	bovis	which	also	showed	a	stronger	reliance	on	siderophore	secretion	

for	iron	scavenging.	Differences	in	the	requirements	for	various	genes	involved	in	

lipid	degradation	and	synthesis	reflect	the	necessity	of	dispensing	with	potentially	

toxic	 intermediates	 formed	by	utilisation	of	different	 carbon	sources.	 	As	well	 as	

genes	 for	 metabolic	 functions	 that	 are	 more	 or	 less	 important	 in	 the	 different	

genomes,	 there	 are	many	possible	 candidates	 for	 further	 study,	 especially	 in	 the	

different	requirements	for	genes	involved	in	nitrogen	assimilation	(gltBD,	glnA2).	
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These	genes	have	potential	importance	in	the	response	to	oxidative	and	acid	stress,	

which	is	an	important	factor	in	host-pathogen	interactions.	Further	work	comparing	

M.	tuberculosis	and	M.	bovis	libraries	in	similar	stress	conditions	may	help	to	expand	

our	understanding	of	the	ways	these	species	have	adjusted	to	their	host	niche.	
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Chapter	4: Using	 transposon	 insertion	
sequencing	to	identify	the	gene	requirements	
for	 adjustment	 to	 redox	 stress	 in	
Mycobacterium	bovis	
	

4.1	ABSTRACT	

Oxidative	 stress	 is	 used	 by	 the	 host	 immune	 system	 to	 restrict	 the	 growth	 of	

pathogenic	mycobacteria	such	as	Mycobacterium	bovis,	an	animal-adapted	member	

of	the	MTBC	which	incurs	serious	economic	costs	in	the	UK	and	is	responsible	for	

zoonotic	tuberculosis	in	countries	with	high	TB	burdens.	To	discover	which	genes	

are	essential	 for	survival	of	M.	bovis	 in	conditions	of	oxidative	stress,	 transposon	

insertion	 sequencing	 libraries	 were	 grown	 both	 in	 the	 presence	 and	 absence	 of	

menadione,	 a	menaquinone	analogue	known	 to	generate	 reactive	oxygen	species	

(ROS)	in	bacterial	cells.	The	libraries	were	well-saturated,	with	saturation	levels	of	

63%	 and	 53%	 for	 the	 untreated	 and	 treated	 libraries,	 respectively.	 Quantitative	

statistical	methods	identified	18	genes	with	statistically	significant	differences	in	the	

mean	insertion	counts	between	the	conditions,	 including	several	oxidoreductases	

which	 have	 a	 role	 in	 combating	 ROS	 generation	 in	 diverse	 reactions.	 Cell-wall	

associated	 proteins,	 and	 those	 involved	 in	 cell	 wall	 integrity,	 had	 increased	

requirements	in	the	menadione	treated	library.	

	

4.2	AIMS	

• To	 identify	 genes	 that	 are	 conditionally	 essential	 for	M.	 bovis	 growth	 in	

oxidative	stress	

• Implement	 an	 improved	 primer	 strategy	 in	 tn-seq	 sequencing	 library	

creation	that	can	identify	PCR	duplicates	with	barcodes	

• Create	data	pipeline	and	custom	scripts	to	process	tn-seq	reads	and	remove	

PCR	duplicates	before	analysis	
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4.3	INTRODUCTION	

Pathogenic	 mycobacteria	 have	 evolved	 to	 withstand	 host	 immune	 responses	 to	

infection	by	triggering	pathways	to	counteract,	and	in	some	cases,	exploit,	the	effects	

of	the	host	immune	system	and	survive	in	a	hostile	environment.	Upon	infection	by	

mycobacteria,	host	immune	cells	engulf	the	invaders	and	attempt	to	limit	growth	by	

restricting	nutrients,	lowering	pH,	increasing	levels	of	toxic	metals	and	increasing	

redox	 stress.	 The	 ability	 of	 the	 bacteria	 to	 survive	 and	 disseminate	 in	 the	 host	

depends	on	flexibly	adjusting	its	utilisation	of	specific	gene	pathways	and	protein	

products	in	order	to	respond	to	changing	environmental	conditions.	For	example,	

M.	tuberculosis	must	respond	metabolically	to	changes	in	carbon	sources	in	order	to	

maintain	 redox	 homeostasis	 (Pacl	 et	 al.,	 2018;	 Pawełczyk	 et	 al.,	 2021);	 and	

necessary	 metals	 and	 cofactors,	 such	 as	 iron,	 must	 be	 scavenged	 from	 the	 host	

environment	 in	 restricted	 conditions	 (Zhang	 et	 al.,	 2020),	 while	 simultaneously	

upregulating	efflux	pumps	to	avoid	toxic	levels	of	copper	and	zinc	(Neyrolles	et	al.,	

2015).		

	

Global	phenotypic	analysis,	such	as	with	transposon	insertion	sequencing	(tn-seq),	

has	been	used	to	identify	genes	that	are	required	for	growth	by	bacteria	in	culture	

and	 infection	 settings	 (See	 Introduction,	 Chapter	 3).	 The	 creation	 of	 transposon	

insertion	sequencing	libraries	allows	the	evaluation	of	the	fitness	cost	of	inactivating	

gene	insertions	throughout	the	entire	genome.	By	manipulating	the	conditions	for	

bacterial	survival	by	altering	the	culture	conditions	of	the	tn-seq	library	to	create	a	

selective	pressure,	 it	 is	 possible	 to	 identify	 genes	 that	 are	 essential	 in	 a	 relevant	

physiological	or	pathological	context	(Figure	4.1),	for	example,	with	M.	tuberculosis	

in	media	that	includes	cholesterol	(Griffin	et	al.,	2011),		in	rich	versus	minimal	media	

(Minato	 et	 al.,	 2019)	 and	 for	 M.	 smegmatis	 in	 low-iron	 (Dragset	 et	 al.,	 2019).	

Passaging	tn-seq	libraries	through	macrophages	(Rengarajan	et	al.,	2005)	or	using	

them	to	infect	mammalian	hosts	(Gibson	et	al.,	2022;	Mendum	et	al.,	2019;	Smith,	

C.M.	et	al.,	2022)	can	uncover	the	virulence	factors	required	for	infection.	
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Figure	4.1.	Transposon	insertion	sequencing	analysis	(tn-seq)	can	be	used	with	selective	pressures	to	
identify	genes	that	are	more,	or	less,	essential	for	survival	under	the	selective	condition.	A)	Creation	of	
tn-seq	libraries	and	selection	on	plates	or	in	an	infection	model	B)	Using	high-throughput	sequencing	
to	identify	genes	with	fewer	insertions	in	condition	B	than	condition	A.	From	(Chao	et	al.,	2016),	figure	
1.	Reproduced	with	permission	from	Springer	Nature.	

	

This	direct	phenotypic	analysis	differs	 from	transcriptomic	and	proteomic	assays	

that	measure	a	transient	shift	in	gene	and	protein	expression	in	response	to	a	change	

in	 the	 extracellular	 environment.	 Transcriptomic	 responses	 to	 stress	 conditions	

have	been	studied	extensively	for	the	MTBC	and	have	revealed	several	large	gene	

regulons	under	 the	 control	 of	 transcriptional	 regulators,	 such	 as	DosR,	KstR	 and	

PhoP	(Baker	et	al.,	2014;	Gonzalo-Asensio	et	al.,	2008;	Kendall	et	al.,	2010;	Rustad	

et	al.,	2008,	2014).	However,	differential	expression	shows	minimal	correlation	with	

gene	 requirements	 and	 essentiality	 (Carey	 et	 al.,	 2018;	 Rengarajan	 et	 al.,	 2005).	

Genes	may	be	constitutively	active,	and	though	their	expression	levels	may	not	be	

changed	in	a	particular	stress	condition,	they	may	nevertheless	be	essential	and/or	

regulated	post-transcriptionally.	Conversely,	a	gene	that	is	differentially	expressed	

in	certain	conditions	may	be	redundant	and	not	necessarily	essential	for	survival.	In	

unrestricted	 growth	 conditions,	 it	 has	 been	 found	 that	 approximately	 13%	of	M.	
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bovis	genes	are	essential	(Chapter	3),	however,	additional	genes	will	be	required	for	

growth	in	more	challenging	conditions.		

	

A	bacterial	cell	must	maintain	'redox	homeostasis'	in	order	to	use	the	energy	from	

catabolising	 carbon	 sources	 to	 synthesise	 nucleic	 acids	 and	 proteins.	 This	 state	

requires	an	environment	where	oxidizing	and	reducing	reactions	are	balanced	by	

coupled	 reactions	between	electron	 acceptor/donor	molecules	which	 respond	 to	

the	reduction	potential	of	the	cell,	such	as	NAD+/NADH.	The	host	immune	system	

creates	redox	stress	for	the	invading	mycobacteria	through	changes	in	intracellular	

pH,	 carbon	 sources,	 nitrogen	 intermediates,	 metal	 and	 cofactor	 availability	 and	

oxygen	levels.	These	must	be	detected	and	controlled	by	the	bacteria	by	multiple	

mechanisms	 including	 regulating	 energy	 metabolism,	 the	 composition	 of	 the	

membrane	and	secretion	systems.	

	

	
Figure	4.2.	Chemical	structures	of	menaquinone	and	menaquinone	analogue,	menadione.		

Menadione	is	a	menaquinone	analogue	that	has	been	shown	to	have	antimicrobial	

properties	 in	high	concentrations	(Schlievert	et	al.,	2013)(Figure	4.2).	Menadione	

generates	reactive	oxygen	species	(ROS)	as	it	is	reduced	in	a	single-electron	reaction	

to	semiquinone	and	the	subsequent	oxidisation	releases	a	superoxide	anion	(Singh	

&	Husain,	2018;	Yao	et	al.,	2021).	An	excess	of	ROS	can	lead	to	molecular	damage	of	

proteins,	 DNA	 and	 lipids	 in	 the	 cell.	 However,	 as	 the	 endogenous	 analogue,	

menaquinone,	is	not	antimicrobial	in	excess,	and	menadione	has	been	shown	to	be	

toxic	 for	both	aerobic	and	anaerobic	bacteria,	 it	 is	possible	 there	 is	an	additional	

mechanism	for	interference	with	microbial	survival,	perhaps	interference	with	cell	

envelope	or	membrane	integrity	(Schlievert	et	al.,	2013).		
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In	this	study,	a	sub-antimicrobial	concentration	of	menadione	was	used	to	create	

oxidative	stress	on	the	plates	used	for	selecting	viable	tn-seq	mutants.	Quantitative	

analysis	was	used	to	determine	any	change	in	the	insertion	frequency	within	genes	

between	the	two	conditions	to	provide	insight	on	which	genes	are	essential	for	M.	

bovis	to	maintain	redox	balance	when	faced	with	oxidative	stress.	The	resampling	

method	from	TRANSIT	(DeJesus	et	al.,	2015)	was	used	to	determine	differences	in	

the	mean	log2	fold-changes	of	insertions	in	genes	between	the	menadione-treated	

and	untreated	conditions	(described	in	Chapter	3).	Other	methods	have	been	used	

to	 determine	 if	 there	 are	 differences	 in	 the	 insertion	 distributions	within	 genes,	

including	 the	 Mann-Whitney	 U-test	 (Santa	 Maria	 et	 al.,	 2014)	 and	 zero-inflated	

normal	 binomial	 regression	 methods	 (Subramaniyam	 et	 al.,	 2019).	 The	 Mann-

Whitney	 U-test	 is	 a	 non-parametric	 ranked-based	 test	 that	 compares	 the	

distribution	of	the	ranked	reads	within	an	ORF	between	two	independent	samples	

(menadione-treated	 and	 untreated)	 and	 determines	 if	 the	 distributions	 are	

significantly	different.	If	two	samples	do	not	differ,	the	ranked	insertion	reads	will	

be	randomly	distributed,	however,	if	they	are	different,	they	will	cluster	at	each	end	

of	the	ranking.	It	is	meant	to	be	less	sensitive	to	outliers	but	loses	power	with	small	

sample	sizes	(such	as	with	small	genes	with	few	insertion	sites).	The	zero-inflation	

normal	 binomial	 regression	model	 is	 especially	 useful	when	 comparing	multiple	

conditions	but	has	been	shown	to	be	of	similar	effectiveness	as	resampling	with	a	

simple	pairwise	comparison	(Subramaniyam	et	al.,	2019).	

	

In	order	to	apply	quantitative	models	to	determine	essentiality,	the	distribution	of	

the	 sequenced	 reads	 at	 insertion	 sites	 is	 assumed	 to	 approximate	 a	 geometric	

distribution,	 where	 sites	 with	 a	 large	 number	 of	 insertions	 are	 relatively	 rare	

(DeJesus	&	Ioerger,	2013).	Large	numbers	of	PCR	duplicates,	which	do	not	represent	

independent	 insertion	 mutants,	 can	 skew	 the	 distribution	 and	 invalidate	 this	

assumption,	 requiring	 more	 extensive	 normalisation	 and	 potentially	 biasing	 the	

output	(Alkam	et	al.,	2021;	Chao	et	al.,	2016;	DeJesus	&	Ioerger,	2015).	In	previous	

tn-seq	work	in	Chapter	3,	there	was	evidence	of	significant	PCR	duplication,	despite	

restricting	the	number	of	PCR	cycles.	To	assess	the	extent	of	this	duplication,	and	its	

impact	on	the	distribution	of	insertions,	an	enhanced	primer	strategy	was	used	that	

allowed	the	identification	of	the	PCR	duplicates	before	analysis,	based	on	a	strategy	

used	by	Dr.	A.	Smith	in	the	lab	of	Dr.	G.	Stewart		(Smith,	2017;	Smith	et	al.,	2020).	
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This	new	strategy	required	the	creation	of	a	new	data	pipeline,	including	scripts	to	

identify	and	remove	duplicates.	

	

In	this	chapter,	the	effect	of	oxidative	stress	on	the	gene	requirements	of	M.	bovis	

was	assayed	by	selection	of	a	tn-seq	library	on	menadione.	Sequencing	reads	were	

reduced	to	unique	template	reads,	eliminating	PCR	duplicates,	by	utilising	molecular	

barcodes	 in	 the	adapters.	Custom	bioinformatics	scripts	were	written	 to	create	a	

pipeline	for	processing	the	sequencing	reads,	including	removing	PCR	duplicates.	

	

4.4	MATERIALS	AND	METHODS	

4.4.1	Transposon	Library	Construction	

Two	independent	transposon	insertion	libraries	were	created	by	members	of	the	

lab	 of	 Sharon	Kendall	 at	 the	 RVC	 for	M.	 bovis,	 by	 transduction	with	MycoMarT7	

phage,	as	before	(Chapter	3,	(Gibson	et	al.,	2021)).	The	pelleted	cells	were	washed	

with	PBS-Tween80TM,	resuspended	in	10	mL	PBS-Tween80TM	and	split	into	two	5mL	

aliquots.	 These	 were	 plated	 onto	 7H11	 plates	 +	 10%	 OADC	 +	 Tween80TM	 +	

Kanamycin	(20	µg/mL)	+	fetal	calf	serum	+	DMSO	and	+/-	50	µM	menadione	(10	

plates	for	each	condition).	Two	replicate	samples	of	genomic	DNA	were	extracted	

from	each	of	the	two	independent	libraries	in	each	condition	(8	samples	in	total)	

using	bead-beating	and	enzymatic	lysis	as	in	(Gibson	et	al.,	2021)	and	were	used	by	

the	author	for	sequencing	library	creation.	

	

4.4.2	Sequencing	adapter	and	primer	design	

Custom	adapters	(Table	4.1)	were	designed	that	included	the	5'	Illumina	flow-cell	

attachment	P7	sequence,	followed	by	a	8-nucleotide	random	molecular	barcode	and	

the	Read	2	Illumina	sequencing	primer,	as	indicated	in	previous	work	by	(Mendum	

et	al.,	2019;	Smith,	2017;	Smith	et	al.,	2020).	Adapter2	 terminates	with	a	 trailing	

thymine	nucleotide	to	create	a	sticky	end	to	anneal	to	A-tailed	DNA	(Figure	4.3A).	

Adapter1	has	a	3'	modification	to	prevent	extension.	The	random	barcode	will	be	

captured	in	the	i7	index	read	generated	by	the	sequencer	(Figure	4.3B)	and	can	be	

used	to	reduce	the	reads	to	unique	template	counts	in	order	to	eliminate	the	effect	

of	any	'jackpot'	PCR	amplification	events.	
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Table	4.1.	Oligonucleotides	used	in	this	chapter.	Blue	bases	are	IlluminaTM	read	flow-cell	attachment	
sequence.	Purple	bases	represent	random	bases	for	PCR	template	barcoding.	Red	bases	are	the	sample	
index	sequence.	Green	bases	are	the	IlluminaTM	sequencing	primers.	

	

Adapters
Name Full adapter sequence Len

Adapter1 GATCGGAAGAGCACAC (5'Phos, 3'ddC) 32
Adapter2 CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 66

gDNA-junction enrichment/flowcell-binding PCR primers
Name Full Primer sequence Len
P7 primer CAAGCAGAAGACGGCATACG 20

P5_A
AATGATACGGCGACCACCGAGATCTACACATCACGTTACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCT
AGAGACCGGGGACTTATCAGC 95

P5_B
AATGATACGGCGACCACCGAGATCTACACCGATGTTTACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTC
TAGAGACCGGGGACTTATCAGC 96

P5_C
AATGATACGGCGACCACCGAGATCTACACTTAGGCATACACTCTTTCCCTACACGACGCTCTTCCGATCTGATA
GTCTAGAGACCGGGGACTTATCAGC 99

P5_D
AATGATACGGCGACCACCGAGATCTACACTGACCACTACACTCTTTCCCTACACGACGCTCTTCCGATCTTATC
TAGTCTAGAGACCGGGGACTTATCAGC 101

P5_E
AATGATACGGCGACCACCGAGATCTACACACAGTGGTACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCT
AGAGACCGGGGACTTATCAGC 95

P5_F
AATGATACGGCGACCACCGAGATCTACACGCCAATGTACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTC
TAGAGACCGGGGACTTATCAGC 96

P5_G
AATGATACGGCGACCACCGAGATCTACACCAGATCTGACACTCTTTCCCTACACGACGCTCTTCCGATCTGATA
GTCTAGAGACCGGGGACTTATCAGC 99

P5_H
AATGATACGGCGACCACCGAGATCTACACACTTGATGACACTCTTTCCCTACACGACGCTCTTCCGATCTTATC
TAGTCTAGAGACCGGGGACTTATCAGC 101

P5_I
AATGATACGGCGACCACCGAGATCTACACGATCAGCGACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCT
AGAGACCGGGGACTTATCAGC 95

P5_J
AATGATACGGCGACCACCGAGATCTACACTAGCTTGTACACTCTTTCCCTACACGACGCTCTTCCGATCTGATA
GTCTAGAGACCGGGGACTTATCAGC 99

PCR Primers
Name Primer sequence Len

KAPA_P1 AATGATACGGCGACCACCGA 20
KAPA_P2 CAAGCAGAAGACGGCATACGA 21
adapter_screen F CAAGCAGAAGACGGCATA 18
adapter_screen R GTGTGCTCTTCCGATCT 17
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Figure	4.3.	Strategy	for	tn-seq	primer	design	based	on	(Smith,	2017).	A)	P5	PCR	primers	(P5_A-J)	include	
an	8-bp	index	sequence	to	allow	for	de-multiplexing	of	samples,	as	well	as	the	flow-cell	attachment	and	
Read	1	 sequencing	primer	and	 is	 complementary	 to	 the	 transposon	 sequence.	A	 spacer	 of	 0-6	 bp	 is	
incorporated	to	ensure	signal	heterogeneity	during	the	calibration	rounds	of	Illumina	sequencing.	The	
P7	PCR	primer	is	complementary	to	the	long	adapter	(adapter2).	Adapter2	includes	an	8-nt	random	
oligonucleotide	barcode,	as	well	as	the	P7	flow	cell	attachment	and	Read	2	sequencing	primer.	The	PCR	
primers	 are	designed	 to	 amplify	 only	 gDNA	 fragments	 that	 contain	an	adapter	 and	 the	 transposon	
sequence.	Figure	inspired	by	Fig.1	in	(Long	et	al.,	2015).	B)	Diagram	of	dual-indexed	sequencing	reads	
generated	by	IlluminaTM	paired-end	sequencing	method.	The	i5	index	read	is	used	for	de-multiplexing.	
The	i7	index	read	will	contain	a	random	8nt	barcode.	Figure	reproduced	with	permission	from	Genewiz	
(https://web.genewiz.com/seq-only-faq).	

	

Custom	 PCR	 primers	 were	 designed	 for	 the	 amplification	 and	 enrichment	 of	

transposon-gDNA	 junctions	 (P5_A-J,	 P7	 primer,	 Table	 4.1).	 The	 P5	 PCR	 primers	

(Figure	4.3A)	contain	the	P5	IlluminaTM	 flow-cell	binding	sequence,	followed	by	a	

library-specific	8-nucleotide	index	sequence,	the	Read	1	sequencing	primer	and	a	

transposon-specific	sequence.	The	P7	primer	is	complementary	to	the	IlluminaTM	P7	

flow-cell	binding	region	in	the	adapters.	PCR	with	these	primers	will	amplify	only	

those	 fragments	 of	 ligated	 DNA	 that	 include	 both	 the	 transposon	 and	 adapter	

sequences	 and	 will	 incorporate	 the	 P5	 flow-cell	 binding	 and	 Read	 1	 primer	

IlluminaTM	sequences.	The	i5	index	read	is	used	by	the	sequencing	service	provider	

GTCTAGAGACCGGGGACTTATCAGCTGTTA-gDNA-TCTAGCCTTCTCGTGTGCAGACTTGAGGTCAGTGNNNNNNNNTAGAGCATACGGCAGAAGACGAAC

AATGATACGGCGACCACCGAGATCTACACXXXXXXXXACACTCTTTCCCTACACGACGCTCTTCCGATCT*GTCTAGAGACCGGGGACTTATCAGCTGTTA-gDNA

Read 1

flow cell attachment                                  index                      Read1 sequencing primer                     transposon-specific seq

PCR primers P5_A-J

flow cell attachment  

PCR P7 primer

Read 2

random
barcode

Read2 sequencing primer

Adapter2

Adapter1

* ‘spacer’ incorporated to ensure signal heterogeneity during Illumina sequencing

transposon specific seq

A

B
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(Genewiz/Azenta)	 to	 de-multiplex	 the	 pooled	 libraries.	 The	 i7	 index	 read	 will	

contain	the	molecular	barcode	for	each	template	sequenced.	

	

4.4.3	Sequencing	Library	Preparation	

Library	preparation	for	IlluminaTM	sequencing	was	undertaken	by	the	author	as	a	

guest	 in	 the	 lab	of	Dr.	Brendan	Wren	at	 the	London	School	of	Tropical	Medicine	

under	 the	 supervision	 of	 Dr.	 Ian	 Passmore.	 Library	 preparation	 was	 based	 on	

previous	work	by	this	lab	(Chapter	3)	(Gibson	et	al.,	2021;	Gibson	et	al.,	2022)	with	

alterations	in	the	primer	strategy	to	identify	PCR	duplicates.		

	

4.4.3.1	Fragmentation	and	repair	of	gDNA	samples	

Concentrations	of	individual	gDNA	library	extractions	were	assessed	using	QubitTM	

fluorometer.	2	µg	of	each	gDNA	library	sample	was	added	to	nuclease-free	ddH2O	to	

a	total	volume	of	50	µL	and	sonicated	in	a	Covaris	M220	Focused	Ultrasonicator	in	

order	 to	 fragment	 the	 gDNA	 to	 550	 bp	 target	 fragment	 size,	 using	 the	 following	

settings:		
	 Peak	incident	power	=	75W	

	 Duty	factor	=	10%	

	 200	cycles/burst	

	 treatment	time	=	40s		

Sonicated	gDNA	was	transferred	to	PCR	tube	for	one-step	blunt	end	repair	and	A-

tailing	using	the	NEB	Next	End	Prep	kit	(#E7645S).	DNA	was	transferred	to	a	PCR	

tube	and	the	following	reagents	were	added	and	mixed	with	repeated	pipetting:	
	 Enzyme	Prep	mix	 3	µL	

	 Reaction	Buffer	 	 7µL	

	 fragmented	DNA		 50µL	

	 	 	 	 _____	

	 final	volume	 	 60	µL	

	

Tubes	were	spun	and	incubated	in	thermocycler	for	60	min	at	20˚C,	30	min	at	65˚C	

and	held	at	4˚C.	A-tailed	DNA	was	column-purified	with	Monarch	PCR/DNA	Clean-

up	kit	(#T1030C)	was	used	according	to	manufacturer	protocol	except	with	an	extra	

1-minute	spin	and	3-minute	evaporation	step	to	ensure	all	ethanol	had	evaporated.	

DNA	 was	 eluted	 in	 25µL	 nuclease-free	 ddH2O	 and	 concentration	 assayed	 by	

fluorometer.	

	



 117 

4.4.3.2	Adapter	ligation	

Adapter1	 and	 adapter2	 were	 added	 in	 equimolar	 concentrations	 to	 a	 final	

concentration	of	10	µM	in	100µL	nuclease-free	H2O,	incubated	at	95˚C	for	7	min	in	a	

thermocycler	and	then	allowed	to	cool	to	RT	over	2	hours	to	anneal	and	stored	at	

4˚C.	300	ng	of	A-tailed	gDNA	is	added	to	PCR	tubes	with	30	µL	NEBNext	Ligation	Mix,	

1	µL	Ligation	Enhancer,	4	µL	10µM	annealed	adapters	and	nuclease-free	water	up	

to	93.5	µL.	The	mix	was	pipetted	thoroughly,	and	tubes	were	spun	before	incubation	

for	 1	 hour	 in	 thermocycler	 at	 20˚C.	 DNA	 was	 column	 purified	 as	 before	 and	

quantified	 with	 fluorometer.	 Adapter-screening	 PCR	 was	 performed	 on	 1:10	

dilutions	of	the	ligated	DNA	(approximately	1-2ng)	to	confirm	adapter	ligation,	with	

A-tailed,	 non-ligated	 DNA	 as	 a	 negative	 control	 for	 each	 sample.	 Using	 primers	

complementary	to	the	adapter	sequences	(adapter_screen	F/R),	PCR	was	performed	

with	Q5	High-fidelity	 (NEB	 kit	 #E055L)	 and	 ligation	 confirmed	with	 agarose	 gel	

electrophoresis	(Figure	4.4).	PCR	cycles	were	as	follows:	98˚C	8m;	30	cycles	of	98˚C	

20s,	61˚C	20s,	72˚C	30s;	72˚C	8m;	hold	4˚C.	

	

	
Figure	 4.4.	 Adapter-ligation	 screen	 using	 adapter_screen	 F/R	 primers.	 In	 adapter-ligated	 samples	
(bottom	half	of	gel),	amplified	smear	visible	at	around	550bp.	0.8%	agarose,	100V	for	30m.	

	

4.4.3.3	Transposon-junction	enrichment	

PCR	reactions	with	Phusion	High	Fidelity	DNA	Polymerase	were	optimised	for	DNA	

concentration,	 primer	 concentration,	 buffer	 composition	 and	 annealing	
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temperature.	 	 Final	 conditions	 used	 for	 transposon	 junction	 enrichment	were	 as	

follows:	
	 	 	 	 Volume	 	 Final	Concentration	

5X	Phusion	HF	buffer	 	 10	µL	 	 	 1X	

10	mM	dNTPs	 	 	 1	µL	 	 	 200	nM	

5	µM	P7	primer	 	 	 2	µL	 	 	 200	nM	

5	µM	P5	primer	(A-J)	 	 2	µL	 	 	 200	nM	

Phusion		 	 	 0.3	µL	 	 	 	

ligated	gDNA	sample	 	 3	µL	 	 	 70-75	ng	 	

nuclease-free	dH2O	to	50	µL	

	

Thermocycler	program:		

98˚C	3m;	

4	cycles:	98˚C	20s,	70˚C	20s,	72˚C	1m;	

20	cycles:	98˚C	20s,	62˚C	20s,	72˚C	1m,	72˚C	3m;	

4˚C	hold	

	

Three	samples	 (B1,	C1,	 and	D2)	had	suboptimal	number	of	 transposon	 junctions	

(<0.2	nmol	estimated	with	qPCR)	and	the	amplification	step	was	repeated	using	the	

remainder	of	the	ligated	DNA	for	these	three	samples	under	the	same	PCR	cycling	

conditions.	The	amount	of	DNA	in	the	reactions	was	increased	to	~150-200ng.	This	

marginally	increased	the	yield	for	sample	C1	but	gave	lower	yields	for	B1	and	D2.		

	

4.4.3.4	Purification	and	library	quantification	

PCR	 products	 were	 bead-purified	 using	 Agencourt	 AMPureXP	 PCR	 Purification	

protocol	with	some	modifications.	Beads	were	added	at	1.6x	PCR	reaction	volume	

and	incubated	for	5	minutes	off	of	the	magnetic	plate.	Incubated	2	minutes	back	on	

magnetic	stand	and	supernatant	cleared	and	discarded.	The	beads	were	washed	3	

times	with	fresh	70%	ethanol	to	remove	all	ethanol	and	air-dried	for	1	minute	before	

the	plate	was	removed	from	magnetic	stand	and	the	DNA	eluted	for	3	minutes	with	

either	23	µL	or	30	µL	nuclease-free	H2O.	The	eluate	was	removed	to	new	tubes	and	

quantified	with	QubitTM	fluorometer.		

	

qRT-PCR	 library	quantification	was	performed	with	 serial	dilutions	of	1:100	and	

1:1000	of	 the	bead-purified	amplified	 libraries	and	KAPA	primers	 (KAPA_P1	and	

KAPA_P2)	which	detect	the	Illumina	flow-cell	binding	sequences	(and	therefore	only	

those	molecules	with	 transposon	 insertions	as	P5	primer	was	 complementary	 to	
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transposon	sequence).	The	PowerUpTM	SYBR	Green	(#A25741)	system	was	used	

in	an	ABI	7500	Real-Time	PCR	System	with	standard	cycling	mode	with	NEBNext	

library	quantification	standards	of	100pM-0.001pM	(#E7642S).	The	reactions	with	

the	highest	yield	of	amplified	transposon	junctions	were	pooled	in	relative	amounts	

to	achieve	an	approximation	of	equimolar	concentration	but	samples	B1,	C1	and	D2	

remained	 underrepresented	 in	 the	 pool.	 A	 further	 round	 of	 Ampure	 bead	

purification	was	performed	to	concentrate	the	pooled	sample,	with	elution	in	20µL	

of	nuclease-free	H2O	followed	by	QubitTM	fluorometer	quantification	and	qRT-PCR	

library	quantification.	The	pooled	concentration	was	estimated	at	between	14-36	

nM.		

	

4.4.4	Sequencing	and	read	processing	

Paired-end	sequencing	was	performed	on	 the	pooled	 libraries	using	 the	 Illumina	

Nova-Seq	platform.	The	samples	were	demultiplexed	by	 the	sequencing	provider	

according	to	the	index	sequence	in	the	P5	primer.	Three	fastq	files	were	delivered	

per	sample	which	included	the	Read1,	Read2	and	i7	index	reads.	Only	the	forward	

read	from	each	pair	was	retained	(Read	1)	and	the	second	read	is	discarded	as	it	

often	does	not	include	the	insertion	site	and	is	unnecessary	for	accurate	mapping.	

Quality	checks	were	performed	to	assess	read	quality	using	bash	scripts	and	fastQC	

(Andrews,	2010).	

	

The	sequencing	reads	were	processed	with	a	custom	pipeline	utilising	Snakemake	

(Mölder	et	al.,	2021)	and	scripts	written	in	Bash	and	Python.	Briefly,	the	pipeline	is	

as	follows	(Figure	4.5):	after	trimming	with	fastp	(Chen	et	al.,	2018),	the	molecular	

barcode	 is	 extracted	 from	 the	 i7	 index	 reads	 and	 added	 to	 the	 header	 of	 the	

corresponding	Read1	reads.	The	reads	are	then	searched	for	the	20	nucleotide-long	

transposon	 sequence	 tag	 starting	within	 the	 first	 22	 nucleotides,	 and	 those	 that	

contain	this	sequence	are	retained	and	transposon	tag	removed	(Figure	4.6).	The	

remaining	portion	of	the	read	(the	gDNA	fragment)	is	mapped	using	BWA-mem	(Li,		

2013)	 for	 single-end	reads	 to	 the	M.	bovis	 genome	(AF2122/97,	  NCBI	Accession	

Number	LT708304.1).	Successfully	mapped	reads	are	de-duplicated	by	removing	

reads	with	identical	molecular	barcodes	and	mapped	start	coordinate.	The	number	

of	 reads	 mapping	 to	 each	 'TA'	 dinucleotide	 in	 the	 genome	 is	 quantified	 and	 an	
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insertion	file	(in	wig	format)	is	generated	for	each	sample.	All	scripts	for	tn-seq	read	

processing	are	available	on	Github	(https://github.com/jenjane118/tnseq_pro).	

	
Figure	4.5.	Flowchart	of	read	processing	pipeline.	Process	starts	with	de-multiplexed	fastq	files	and	ends	
with	wig	 files	 that	 include	 count	 of	 unique	 template	 reads	 per	 'TA'	 dinucleotide.	 Code	 available	 at	
https://github.com/jenjane118/tnseq_pro.	

	

	

Figure	4.6.	Representative	paired-end	sequencing	reads	after	adapter	trimming.	Underlined	bases	are	
part	of	the	transposon	sequence	that	is	trimmed	off	from	Read1	during	processing.	Blue	bases	indicate	
'TGTTA'	sequence	that	indicates	insertion	site.	Read	1	is	'forward'	read	and	will	contain	transposon	tag	
(~25-30	bp	ending	with	'TGTTA')	followed	by	gDNA	fragment.	Read	2	is	'reverse'	read	and	will	include	
gDNA,	sometimes	followed	by	transposon	sequence,	and	is	not	used	in	this	analysis.	

	

4.4.5	Data	analysis	

In	order	to	apply	the	trimmed-total-reads	(TTR)	normalisation	used	with	TRANSIT,	

the	histograms	of	 the	 insertions	should	resemble	a	geometric	distribution.	These	
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were	 generated	 for	 each	 sample	 using	 R	 before	 proceeding	 with	 data	 analysis	

(Appendix	A4.1).		Skew	and	kurtosis	were	tested	with	moments	R	package.	TRANSIT	

'HMM'	was	run	on	each	condition	summing	the	insertion	counts	for	the	replicates	

and	 using	 TTR	 normalisation	 and	 default	 settings.	 Prior	 to	 this,	 6605	 'non-

permissive'	sites	were	removed	based	on	a	sequence	motif	identified	by	(Dejesus	et	

al.,	 2017)	which	 appears	 non-permissive	 for	himar1	 transposon	 insertions	 using	

custom	scripts.	TRANSIT	 'resampling'	was	run	on	original	 insertion	files	(without	

removing	 non-permissive	 sites)	 to	 compare	 fold-change	 between	 the	 conditions	

using	the	following	parameters:	TTR	normalisation,	winsorization	(to	reduce	effect	

of	 outliers),	 pseudocount	 =	 5	 (to	 reduce	 effect	 of	 high	 log2-fold	 changes),	 and	

100000	permutations	(to	resolve	p-values).	

	

Gene	set	enrichment	analysis	(GSEA)	(Mootha	et	al.,	2003;	Subramanian	et	al.,	2005)	

was	performed	using	the	clusterProfiler	R	package	to	discover	whether	genes	with	

similar	 log2	 fold-changes	 after	 treatment	were	 enriched	 for	 any	COG	 (clusters	 of	

orthologous	genes),	GO	(gene	ontology)	terms	or	KEGG	pathways	(Ashburner	et	al.,	

2000;	Galperin	et	al.,	2021;	Kanehisa	et	al.,	2022).	There	were	no	direct	COG	or	GO	

associations	 available	 for	M.	 bovis	 so	 the	 orthologous	M.	 tuberculosis	 loci	 were	

retrieved	from	the	DAVID	web	service	as	described	in	Chapter	3	(D.	W.	Huang	et	al.,	

2009b,	2009a;	Jiao	et	al.,	2012).	KEGG	associations	for	M.	bovis	were	downloaded	

using	 the	 KEGG	 API	 (https://www.genome.jp/kegg/rest/keggapi.html).	 Analysis	

was	performed	using	two	different	methods:	with	the	signed-log-p-value	(SLPV,	the	

log2	fold-change	multiplied	by	the	log	of	the	p-value)	and	with	the	log2	fold-change,	

and	results	were	compiled.	

	

Data	handling	and	plots	were	generated	 in	R	using	dplyr	and	ggplot2	 (Wickham,	

2016;	Wickham	et	al.,	2022).	All	scripts	are	available	at:	

https://github.com/jenjane118/tnseq_pro	

https://github.com/jenjane118/thesis_work/tree/main/Chapter_4.	
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4.5	RESULTS	

4.5.1	Sequencing	of	independent	libraries	and	technical	replicates	

The	 sequenced	 libraries	 produced	 between	 3.3-64.8M	 raw	 reads	 each	 for	 each	

sample,	with	an	average	read	length	of	151	base	pairs.	All	samples	had	more	than	

96%	of	reads	with	the	correct	transposon	tag	and	mapping	percentage	of	greater	

than	82%.	Samples	had	between	2.6-16.1%	duplicates	(Table	4.2).	Histograms	of	the	

insertion	 frequencies	 of	 all	 samples	 resembled	 a	 geometric	 distribution	 and	

distributions	were	free	of	skew	(Figure	4.7).	

	
Figure	 4.7.	 Distribution	 histograms	 and	 quantile-quantile	 plots	 from	 representative	 samples	 with	
similar	insertion	densities.	Distributions	resemble	a	geometric	distribution	
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Table	4.2.	Sequencing	and	processing	statistics.	Tagged	reads	are	reads	that	contained	the	transposon	
insertion	 indicated	 by	 'TGGTA'	 tag.	 Unique	 reads	 have	 a	 unique	 barcode	 and	 mapping	 coordinate	
combination.	Non-zero	mean	is	the	mean	of	reads	at	'TA'	dinucleotide	sites	with	at	least	one	insertion.	

	
	

Correlation	between	technical	replicates,	using	the	mean	of	insertions	calculated	for	

each	gene,	ranged	from	0.7-0.96	(Spearman's	rank	correlation)	(Figure	4.8).	Lower	

levels	of	 technical	replicate	correlation	are	 likely	a	result	of	sampling	effects	 that	

could	occur	either	when	scraping	and	homogenizing	the	cells	from	the	library	plates	

to	 extract	 gDNA,	 or	 when	 pipetting	 a	 sample	 of	 the	 total	 gDNA	 for	 sequencing.	

Correlation	between	independent	experiments/libraries	is	not	expected	to	be	high	

as	 each	 library	 represents	 an	 independent	 subset	 of	 all	 possible	 insertions	 and	

dependent	on	 the	efficiency	of	 transduction.	Library	2	 showed	better	 correlation	

between	technical	replicates	versus	library	1.	

	

Sample Menadione Total	Reads
Tagged	
Reads

Mapped	
Reads

Unique	
Reads

Unique	
TAs	hit

Insertion	
Density

Non-zero	
mean

A1 Treated 64796903 99% 62078208 84% 30384 41% 1704.5
A2 Treated 27327693 95% 23315608 91% 14864 20% 1414.2
B1 Untreated 3312969 97% 2894890 91% 12614 17% 206.7
B2 Untreated 59668345 98% 54511011 93% 35024 48% 1433.4
C1 Treated 5240906 96% 4170196 97% 23713 32% 168.7
C2 Treated 14854011 97% 12320144 95% 15555 21% 745.5
D1 Untreated 46601908 99% 44185634 92% 35024 48% 1151.3
D2 Untreated 5057770 97% 4276826 97% 25385 35% 162.9
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Figure	 4.8.	 There	 is	 a	 higher	 degree	 of	 correlation	 between	 technical	 replicates	 (A	 and	C,	 B	 and	D,	
bracketed	 on	 top	 of	 plot)	 than	 between	 independent	 libraries	 (1	 and	 2).	 Top	 =	 Treated,	 bottom	 =	
Untreated.	 Degree	 of	 correlation	 determined	 comparing	 the	mean	 insertion	 counts	 per	 gene	 using	
Spearman's	correlation	coefficient.	All	p-values	<	10e-39.	Visualised	with	Corrplot	package	in	R.	

	

There	was	good	correlation	between	the	total	number	of	reads	and	the	number	of	

duplicates	per	 sample7	 (r2	 =	0.93,	p-value	=	0.002,	 Spearman's	 rank	 correlation)	

which	 shows	 that	 the	 number	 of	 PCR	duplicates	 is	 roughly	 proportional	 to	 total	

reads	(Figure	4.9A).	The	relationship	between	the	number	of	unique	TA	insertions	

('Unique	 TAs	 Hit'	 in	 Table	 4.2	 and	 Figure	 4.9B)	 and	 number	 of	 unique	 (de-

duplicated)	reads	was	well-correlated	in	the	untreated	condition	(r2	=	0.95,	p-value	

=	0.05,	Spearman's	 rank	correlation)	where	more	 reads	 led	 to	a	higher	 insertion	

density,	but	not	correlated	in	the	menadione-treated,	where	increasing	the	number	

of	reads	had	minimal	positive	effect	on	the	number	of	insertions.		

	
7	A1,	which	had	the	greatest	number	of	reads	mapped	(>62M)	and	proportion	of	duplicate	reads	(>	
16%),	had	suboptimal	amount	of	ligated	DNA	in	the	transposon	junction	amplification	reactions	
(~25ng	vs	75-100ng	for	other	samples).	After	PCR	amplification,	sample	A1	had	the	highest	
concentration	of	amplified	transposon	junctions	(~2	nmol	based	on	qPCR).	
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Figure	4.9.	Read	correlation	plots.	A)	The	number	of	duplicate	reads	is	correlated	to	the	number	of	total	
reads	(r2	=	0.93,	p-value=	0.002).	B)	Unique	TAs	hit	(insertion	density)	is	positively	correlated	to	number	
of	template	reads	for	untreated	samples	(red	line,	r2	=	0.95,	p-value=	0.05)	but	not	for	treated	samples.	
Spearman's	rank	correlation	test.
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4.5.2	Calculation	of	the	insertion	density	of	menadione-treated	and	untreated	

samples	

Summing	all	insertions	across	datasets,	the	control	samples	had	a	total	of	3823	of	

4200	genes	 (91%)	with	at	 least	 five	 reads	mapped	 to	 insertions	within	 the	gene	

while	 the	 treated	 samples	 had	 2.7%	 fewer	 genes	with	 at	 least	 five	 reads	 (3720	

genes).	The	saturation,	or	insertion	density,	of	the	individual	samples	ranged	from	

17%	to	nearly	48%	(Table	4.2).	Cumulative	insertion	density,	found	by	counting	the	

number	of	unique	sites	among	all	replicates,	is	63%	for	the	untreated	and	53%	for	

treated	samples,	showing	 less	diversity	of	 insertion	sites	with	treatment8	 (Figure	

4.10).	This	could	be	due	to	biological	effects,	as	more	genes	are	essential	for	survival	

in	a	stress	condition	and	insertions	are	less	tolerated,	or	a	technical	bottleneck	at	

some	stage	in	the	process	where	the	sample	size	did	not	accurately	represent	the	

full	range	of	mutants	(M.	C.	Chao	et	al.,	2016;	Mahmutovic	et	al.,	2020).		Genetic	drift	

due	to	menadione	treatment	is	less	likely,	as	previous	work	in	the	lab	had	shown	no	

growth	inhibition	with	50	µM	menadione	(unpublished	results,	Kendall	lab).		

	

	
Figure	4.10.	Barplots	showing	insertion	density	(number	of	unique	'TA'	sites	hit	/	total	'TA'	sites)	and	
the	cumulative	insertion	density	for	each	condition	using	the	union	of	the	unique	sites.	(A)	Untreated	
samples	have	a	cumulative	insertion	density	of	63%.	(B)	Menadione	treated	samples	have	a	cumulative	
insertion	density	of	53%.	

	
8	3829	'TA'	sites	had	insertions	exclusively	in	the	treated	condition	compared	to	11,000	'TA'	sites	
with	insertions	only	in	the	untreated	condition	(nearly	3	times	as	many).	
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4.5.3	Determination	of	conditional	essentiality	with	menadione	treatment	

To	make	a	quantitative	determination	of	which	genes	have	increased	or	decreased	

importance	 for	M.	 bovis	 survival	 in	menadione,	 the	TRANSIT	 resampling	method	

(DeJesus	et	al.,	2015)	was	used	to	indicate	a	change	in	the	tolerance	of	insertions	in	

a	particular	gene	(A4.1	Supplemental	Tables:	Ch4_Supp_Table_1).	This	is	measured	

using	 a	 log2	 fold-change	 in	 the	 mean	 number	 of	 insertions	 within	 a	 gene	 after	

treatment.	 Statistical	 significance	 is	 established	 using	 a	 permutation	 test	 on	 the	

distribution	 of	 reads	 along	 'TA'	 insertion	 sites	 within	 the	 gene	 boundaries	 to	

calculate	a	p-value	(as	before,	see	Chapter	3).	18	protein-coding	genes	were	found	

to	have	log2	fold-changes	in	menadione	treatment	that	met	the	adjusted	p-value	cut-

off	(<0.05),	(Figure	4.11,	Table	4.3).	Two	of	the	statistically	significant	gene	hits	had	

positive	 log2	 fold-changes,	 indicating	 that	 these	genes	had	more	 insertions	 in	 the	

treated	condition,	 implying	that	inactivation	of	these	genes	was	advantageous	for	

survival	in	menadione.	The	remaining	16	genes	had	fewer	insertions	sequenced	in	

the	menadione-treated	 samples	 than	 in	 the	untreated--implying	 that	 inactivation	

leads	to	a	survival	defect.	GSEA	analysis	(Mootha	et	al.,	2003;	Subramanian	et	al.,	

2005)	was	applied	to	the	ranked	log2	fold-changes	to	identify	any	gene	groups	that	

together	had	a	small,	but	statistically	significant	difference	in	insertions	between	the	

two	conditions.	GO,	COG	and	KEGG	associations	with	M.	bovis	genes	were	queried	

but	no	highly	ranked	significant	associations	were	discovered.	



 128 

	
Figure	4.11.	Volcano	plot	of	 resampling	 results	 comparing	menadione	 treated	and	untreated	 tn-seq	
datasets.	Genes	with	statistically	significant	(padj	<	0.05)	log2	fold-changes	are	in	blue	and	labelled.	Red	
bars	indicate	log2	fold-difference	of	+/-	2	(4-fold	difference).	P-values	corrected	for	multiple	testing	with	
BH	method	(Benjamini	&	Hochberg,	1995).	
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Table	4.3.	Resampling	results	for	genes	with	statistically	significant	log2	fold-changes	(padj	<	0.05).	Genes	
with	negative	log2	fold-changes	(in	red)	have	a	lower	mean	insertion	count	in	the	treated	condition	and	
therefore	are	more	required	for	survival	than	in	untreated.	Genes	with	a	positive	log2	fold-change	(in	
green)	have	a	greater	mean	insertion	count	in	the	treated	condition,	i.e.	mutations	may	give	a	selective	
advantage	in	treated	condition.	

Locus M.tb	
ortholog

Functional	
Category Name Description TA	sites Mean	

Untreated
Mean	
Treated

log2	Fold-
change

Adj.	p-
value

MB0177 Rv0171

virulence, 
detoxification, 
adaptation mce1C

MCE-FAMILY PROTEIN 
MCE1C 24 96.30 2.80 -3.70 0.00

MB0367c Rv0360c
conserved 
hypotheticals NA conserved protein 8 217.10 24.50 -2.91 0.05

MB0411 Rv0404 lipid metabolism fadD30

fatty-acid-amp ligase 
fadd30 (fatty-acid-amp 
synthetase) (fatty-acid-
amp synthase) 85 37.70 6.60 -1.88 0.05

MB0576c Rv0561c

intermediary 
metabolism and 
respiration NA

POSSIBLE 
OXIDOREDUCTASE 17 139.30 12.50 -3.05 0.04

MB0986 Rv0961
cell wall and cell 
processes NA

PROBABLE INTEGRAL 
MEMBRANE PROTEIN 5 41.10 1.70 -2.78 0.05

MB1217c Rv1185c lipid metabolism fadD21

probable fatty-acid-amp 
ligase fadd21 (fatty-acid-
amp synthetase) (fatty-
acid-amp synthase) 30 94.30 2.10 -3.82 0.01

MB1363 Rv1328

intermediary 
metabolism and 
respiration glgP

PROBABLE GLYCOGEN 
PHOSPHORYLASE GLGP 42 63.50 210.30 1.65 0.05

MB1383 Rv1348
cell wall and cell 
processes irta

iron-regulated 
transporter irta 34 6.30 0.10 -1.15 0.02

MB1552 Rv1525

virulence, 
detoxification, 
adaptation wbbL2

POSSIBLE RHAMNOSYL 
TRANSFERASE WBBL2 20 64.60 0.40 -3.68 0.00

MB1819 Rv1791 PE/PPE PE19 pe family protein pe19 6 106.20 2.60 -3.87 0.05

MB1944c Rv1909c regulatory proteins furA
Ferric uptake regulation 
protein FurA (fur) 9 352.30 63.10 -2.39 0.05

MB2202c Rv2180c
cell wall and cell 
processes NA

Probable conserved 
integral membrane 
protein 11 354.60 62.10 -2.42 0.05

MB2497 Rv2470

intermediary 
metabolism and 
respiration glbO

globin (oxygen-binding 
protein) glbo 9 217.30 30.10 -2.66 0.05

MB2636c Rv2604c

intermediary 
metabolism and 
respiration snop

probable glutamine 
amidotransferase snop 3 248.30 0.30 -5.57 0.02

MB2849c Rv2825c
conserved 
hypotheticals NA

CONSERVED 
HYPOTHETICAL PROTEIN 4 97.90 0.30 -4.28 0.02

MB3080c Rv3054c
conserved 
hypotheticals NA

NADPH:quinone 
oxidoreductase 6 143.30 1561.50 3.40 0.03

MB3496 Rv3467
insertion seqs and 
phages NA

13E12 repeat family 
protein 14 192.50 52.70 -1.78 0.05

MB3767c Rv3741c

intermediary 
metabolism and 
respiration NA

POSSIBLE 
OXIDOREDUCTASE 7 223.80 12.20 -3.74 0.05
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4.6	DISCUSSION	

4.6.1	 Menadione	 treated	 libraries	 have	 increased	 requirements	 for	 genes	

involved	in	cell	wall	integrity	

Menadione	 has	 been	 observed	 to	 cause	 oxidative	 stress	 in	 bacteria	 and	 fungus	

through	 an	 excess	 of	 reactive	 oxidative	 species	 (ROS)	 and	 is	 bactericidal	 at	 high	

concentrations	(Castro	et	al.,	2008;	Negri	et	al.,	2023;	Schlievert	et	al.,	2013;	Singh	&	

Husain,	2018;	Yao	et	al.,	2021).	It	is	also	hypothesised	to	interfere	with	membrane	

permeability	 (Schlievert	 et	 al.,	 2013).	 The	 results	 here	 indicate	 several	 genes	

associated	 with	 cell-wall	 integrity	 had	 an	 increased	 requirement	 for	 survival	 in	

menadione-treated	 culture	 (Table	 4.3).	 For	 example,	 the	 glycoprotein	 mce1C	

(Mb0177/Rv0171)	 is	a	subunit	of	 the	Mce1	complex	that	manages	mycobacterial	

response	 to	 stress	 by	 translocating	 lipids	 through	 the	 cell	 wall	 envelope	 and	

maintaining	the	mycolic	outer	membrane	(Chen	et	al.,	2023;	Forrellad	et	al.,	2014;	

Klepp	et	al.,	2022).	It	is	interesting	that	insertions	in	the	other	subunits	of	the	Mce1	

complex	 were	 not	 as	 disadvantageous,	 given	 they	 together	 form	 an	 elongated	

transporter	for	lipids	(Chen	et	al.,	2023).	In	fact,	insertions	in	subunit	mce1B	were	

more	frequent	in	the	menadione	treated	samples	(log2	fold-change	=	2.13)	but	this	

change	was	not	statistically	significant.		

	

There	was	an	 increased	 requirement	 for	Mb1819/Rv1791/pe19,	which	has	been	

implicated	in	membrane	permeability,	possibly	by	forming	'porin'	complexes	along	

with	PPE51,	which	appear	to	be	required	for	the	synthesis	of	the	waxy	phthiocerol	

dimycocerosate	(PDIM)	layer	in	the	cell	wall	(Wang	et	al.,	2020).	This	gene	has	been	

shown	 to	 have	 a	 role	 in	 adapting	 to	 oxidative	 stress	 in	M.	 tuberculosis,	 where,	

paradoxically,	 overexpression	of	pe19	 led	 to	higher	 sensitivity	 to	membrane	 and	

oxidative	stress	(Ramakrishnan	et	al.,	2016).	In	M.	bovis,	it	was	found	to	be	required	

for	virulence	in	a	bovine	infection	tn-seq	study	(Gibson	et	al.,	2022).		

	

Genes	 involved	 in	 cell-wall	 architecture	 showed	 different	 requirements	 with	

menadione	 treatment.	 Mb1552/Rv1525/wbbL2	 is	 involved	 in	 the	 insertion	 of	

rhammnosyl	residues	in	the	cell	wall	which	is	integrative	to	its	architecture	(Deng	

et	al.,	2014;	Grzegorzewicz	et	al.,	2008).	Insertions	in	Mb1363/Rv1328,	which	codes	

for	 a	 glycogen	 phosphorylase,	 GlgP,	 were	 more	 frequent	 in	 menadione-treated	
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samples,	 indicating	 mutations	 in	 this	 gene	 are	 advantageous	 for	 survival	 in	

menadione.	 The	 GlgP	 enzyme	 degrades	 a-glucan,	 which	 is	 the	 most	 abundant	

polysaccharide	composing	the	outer	capsule	of	the	cell	wall	(Kalscheuer	et	al.,	2019;	

Sambou	et	al.,	2008).	

	

4.6.2	The	requirement	for	oxidoreductases	with	menadione	treatment	varies	

Insertions	 in	 a	 NADPH:quinone	 oxidoreductase	 gene,	 Mb3080c/Rv3054c,	 were	

advantageous	to	survival	in	menadione	compared	to	the	untreated	condition.	In	the	

fungal	 species	 Aspergillus	 nidulans,	 it	 was	 shown	 that	 a	 NADPH	 reductase	 was	

necessary	for	ROS	generation	by	menadione.	(Yao	et	al.,	2021).	Quinones,	such	as	

menadione,	can	be	reduced	by	NADPH:quinone	oxidoreductases	to	hydroquinone	

which	 are	 then	 auto-oxidized,	 releasing	 two	 superoxide	molecules	 (Figure	 4.12)	

(Singh	 &	 Husain,	 2018).	 Inactivation	 of	 this	 pathway	 may	 reduce	 levels	 of	

superoxide	generation.	Interestingly,	in	a	saturated	M.	tuberculosis	tn-seq	study,	the	

identical	ortholog	was	found	to	have	a	growth	advantage	when	disrupted	(Dejesus	

et	al.,	2017).	In	the	in	vitro	tn-seq	study	performed	by	this	lab	comparing	essentiality	

in	M.	tuberculosis	and	M.	bovis	(Chapter	3),	the	orthologs	were	both	found	to	be	non-

essential	 in	 normal	 in	 vitro	 growth	 conditions,	 in	 agreement	 with	 other	 M.	

tuberculosis	 (Griffin	 et	 al.,	 2011)	 and	M.	 bovis	 studies	 (Butler	 et	 al.,	 2020).	 The	

discrepant	 results	 could	 be	 a	 result	 of	 differences	 in	 growth	 media	 or	 library	

saturation.	

	
Figure	4.12.	Redox	cycling	of	quinones.	From	Scheme	1,	(S.	K.	Singh	&	Husain,	2018),	reproduced	with	
permission	from	John	Wiley	and	Sons.	
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In	contrast,	insertions	in	two	other	proposed	oxidoreductases	Mb0576c/Rv0561c	

and	 Mb3767c/Rv3741c	 caused	 an	 increased	 fitness	 cost	 in	 menadione-treated	

samples.	Rv0561c/menJ	catalyses	the	reduction	of	the	menaquinone	side	chain	and	

deletions	of	menJ	in	M.	tuberculosis	and	M.	smegmatis	lead	to	significant	disruption	

of	 the	electron	transport	chain	and	loss	of	virulence	(Upadhyay	et	al.,	2015).	The	

gene	has	been	 shown	 to	be	 required	 for	M.	 tuberculosis	survival	 in	macrophages	

(Rengarajan	 et	 al.,	 2005)	 and	 in	 mouse	 infection	 (Bellerose	 et	 al.,	 2020).	

Menaquinone	reduction	may	contribute	to	redox	balance	in	the	cell	and	insertions	

that	disrupt	this	gene	in	M.	bovis	may	increase	the	bacteria's	sensitivity	to	oxidative	

stress.		

	

Increased	requirement	for	some	of	the	known	pathways	for	combating	excess	ROS	

were	 not	 observed	 with	 menadione	 treatment,	 most	 notably,	 the	 redox	 buffer	

NADPH-dependent	mycothiol	reductase,	mtr	(Mb2880/Rv2855).	This	gene	reduces	

the	 mycothiol	 disulfide	 (MSSM)	 back	 to	 mycothiol	 (MSH)	 to	 maintain	 redox	

homeostasis	(Pacl	et	al.,	2018).	There	was	a	reduction	in	the	number	of	insertions	in	

this	gene	in	the	treated	samples	(log2	fold-change	=	-1.66)	but	it	was	not	statistically	

significant.	 The	 gene	 includes	 two	 conserved	 domains,	 a	 N-terminal	 cofactor-

binding/pyridine	 nucleotide-disulphide	 oxidoreductase	 domain	 and	 a	 C-terminal	

dimerisation	 domain	

(https://www.ebi.ac.uk/interpro/protein/UniProt/P9WHH3/)	(Mistry	et	al.,	2021;	

Paysan-Lafosse	et	al.,	2023).	Looking	more	closely	at	the	locations	of	insertions	by	

domain,	 it	 would	 appear	 that	 insertions	 in	 the	 N-terminal	 domain	 were	 more	

deleterious	 for	 survival	 in	 menadione	 but	 tolerated	 in	 the	 dimerisation	 domain	

(Figure	4.13).	Repeating	resampling	using	domain	regions	instead	of	the	entire	ORF	

showed	 the	 N-terminal	 domain	 (residues	 4-316)	 had	 a	 log2	 fold-change	 of	 -3.63	

(decrease	in	tolerated	insertions	with	menadione	treatment)	while	the	dimerisation	

domain	(residues	345-454)	had	an	increase	in	insertions	(+2.81	log2	fold-change).	

Neither	change	was	statistically	significant,	but	nevertheless	indicates	a	difference	

in	the	domains	that	may	be	meaningful.	TRANSIT	HMM	analysis	of	essentiality	found	

the	gene	was	non-essential	in	the	untreated	library	but	was	essential	in	the	treated	

library	 (A4.1	 Supplemental	 Tables:	 Ch4_Supp_Table_1)	 and	 repeating	 this	 for	

domain-specific	regions	indicated	the	cofactor	domain	was	essential	in	the	treated	

while	 the	 dimerisation	 domain	 was	 non-essential.	 In	 the	 untreated	 library,	 the	
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cofactor	 binding	 domain	 was	 non-essential	 but	 insertions	 in	 the	 dimerisation	

domain	 caused	 a	 growth	 defect.	 MSH	 is	 necessary	 to	 resist	 oxidative	 stress	 in	

mycobacteria,	but	menadione	has	also	been	shown	to	be	a	'subversive	substrate'	for	

mtr,	 generating	 ROS	 in	 a	 similar	 reaction	 to	 NADPH:quinone	 reductases	 (Figure	

4.12)	(Mahapatra	et	al.,	2007).	Perhaps	there	 is	an	advantage	to	cofactor	binding	

without	reduction	in	the	presence	of	menadione.	It	is	possible	that	the	domains	of	

this	enzyme	may	have	independent	functions	depending	on	the	redox	state	of	the	

cell	which	would	be	an	interesting	avenue	to	explore	further.	

	

	
Figure	4.13.		Relative	position	and	quantity	of	normalised	transposon	insertions	in	the	known	domains	
of	mtr	(Mb2880).	Insertions	are	more	frequent	in	cofactor	binding	domain	in	the	untreated	condition	
(log2	fold-change	-3.63.	padj	=	0.13)	and	in	the	dimerisation	domain	in	the	treated	condition	(log2	fold-
change	+2.81,	padj=0.50).	Each	circle	represents	a	possible	'TA'	insertion	site.	

	

Another	 reductase,	 Rv2466c,	 a	 mycothiol-dependent	 nitroreductase,	 has	 been	

found	to	partially	protect	M.	tuberculosis	from	menadione	stress	(Negri	et	al.,	2018).	

A	transposon	mutant	of	the	M.	bovis	ortholog	(Mb2493)	did	not	show	any	difference	

versus	 wild	 type	 in	 menadione	 sensitivity	 at	 concentrations	 of	 100-500	 µM	

(unpublished	results	 from	Kendall	 laboratory).	 In	 this	 study,	 there	was	a	modest	

difference	in	mean	insertions	in	Mb2493c	with	50	µM	menadione	treatment	(log2	

fold-change	-1.13),	however,	this	was	not	statistically	significant.	

	

4.6.3	Oxidative	stress	response	genes	required	for	survival	in	menadione	

Mb1944c/Rv1909c/furA	codes	for	a	transcriptional	regulator	that	is	regulated	by	

RbpA	in	response	to	oxidative	stress	(Hu	et	al.,	2016).	It	is	transcribed	with	katG,	
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which	codes	for	a	hydrogen	peroxide	scavenger	(Zahrt	et	al.,	2001).	In	this	study,	

insertions	in	furA	were	detrimental	to	fitness	in	menadione	but	were	tolerated	in	

katG	 in	 both	 the	 treated	 and	 untreated	 conditions.	 furA	has	 also	 been	 shown	 to	

autoregulate	in	response	to	oxidative	stress,	and	may	be	involved	in	regulation	of	

other	genes	in	the	oxidative	stress	response	pathway	(Xin	et	al.,	2023;	Sala	et	al.,	

2003).		

	

Regulation	 of	 fatty	 acid	 metabolism	 is	 another	 mechanism	 mycobacteria	 use	 to	

maintain	 redox	 homeostasis.	 Mutations	 in	 fatty	 acid	 synthases	

Mb1217c/Rv1185c/fadD21	and	Mb0411/Rv0404/fadD30	were	less	tolerated	in	the	

menadione-treated	samples.	fadD21	has	been	shown	to	be	positively	regulated	by	

PhoP,	a	transcription	factor	activated	by	redox	stress	(Cimino	et	al.,	2012).		

	

Mutations	 in	 a	 well-conserved	 oxygen-binding	 truncated	 hemoglobin,	

Mb2497/Rv2470/glbO	were	deleterious	to	survival	in	menadione.	It	associates	with	

cell	membrane	lipids	and	is	thought	to	scavenge	O2,	supporting	survival	in	hypoxia	

(C.	Liu	et	al.,	2004;	Pawaria	et	al.,	2007).	glbO	promoter	constructs	were	upregulated	

in	 oxidative	 stress	 and	 in	 metal-induced	 hypoxia	 in	 M.	 smegmatis	 and	 M.	

tuberculosis,	and	in	M.	tuberculosis	 infected	macrophages,	 indicating	the	molecule	

may	be	involved	in	detoxifying	ROS	(Pawaria	et	al.,	2008).	This	gene	was	markedly	

attenuated	in	a	M.	bovis	tn-seq	infection	study,	but	the	changes	were	not	found	to	be	

statistically	significant	(Gibson	et	al.,	2022).	

	

Insertions	 in	Mb1383/Rv1348/irtA	were	 less	 tolerated	 in	 the	menadione	 treated	

samples.	 IrtA	 is	 one	 subunit	 of	 a	 membrane-bound,	 iron-regulated	 siderophore	

importer.	The	other	subunit,	irtB,	did	not	show	a	statistically	significant	difference	

in	number	of	insertions	in	either	condition	with	very	few	insertions	sequenced	in	

either	library	(A4.1	Supplemental	Tables:	Ch4_SuppTable1).	The	two	components	

are	 similar	 in	 their	 transmembrane	 and	 ABC	 transporter	 domains	 and	 are	 both	

required	 for	normal	 iron	uptake	 in	mycobacteria	but	 irtA	contains	an	N-terminal	

siderophore	 interaction	 domain	 that	 reduces	 the	 imported	 siderophores	

(mycobactin	and	carboxymycobactin)	through	a	FAD-binding	domain	(Ryndak	et	al.,	

2010).	 Insertions	 in	 the	 first	 half	 of	 the	 peptide,	 including	 the	 siderophore	

interaction	domain,	were	not	 tolerated	 in	either	 treated	or	untreated	 conditions,	
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however,	in	the	ABC	transporter	region,	insertions	were	tolerated	in	the	untreated	

condition	 but	 not	 in	 the	 presence	 of	 menadione	 (Figure	 4.14).	 To	 confirm	 this,	

resampling	was	repeated	using	the	ABC	transporter	domain	coordinates	instead	of	

the	entire	ORF.	This	region	alone	(residues	293-843)	tolerated	fewer	insertions	in	

the	 treated	 condition	 (log2	 fold-change	=	 -1.49,	 padj	 =	 0.04)	while	 the	N-terminal	

portion	 (residues	 1-267)	 had	 no	 insertions	 sequenced	 in	 either	 condition.	

Regulation	of	iron	levels	in	the	cell	is	critical	for	survival	in	oxidative	stress	as	free	

iron	 can	 cause	 an	 increase	 in	 ROS	 (Rodriguez	 et	 al.,	 2002).	 In	 a	 previous	 study	

comparing	M.	 bovis	 and	M.	 tuberculosis	 tn-seq	 libraries	 in	 unrestricted	 in	 vitro	

growth,	 irtA	was	found	to	be	non-essential	for	M.	bovis,	but	the	identical	ortholog	

was	 found	 to	 be	 essential	 in	M.	 tuberculosis	 (Chapter	 3)	 which	 may	 suggest	 a	

difference	 in	 the	 sensitivity	 to	 oxidative	 stress	 or	 iron	 assimilation	 between	 the	

animal	and	human-adapted	lineages.	

	

	
Figure	4.14.	Relative	position	and	quantity	of	normalised	transposon	insertions	in	the	known	domains	
of	Mb1383,	irtA.	Insertions	in	N-terminal	domains	of	the	peptide	(including	the	FAD	binding	domain)	
were	 not	 tolerated	 in	 either	 condition,	 however,	 in	 the	 treated	 condition,	 insertions	 in	 the	 ABC	
transporter	domain	were	more	deleterious	to	survival	(log2	fold-change	=	-1.49,	padj	=	0.04).	Each	circle	
represents	a	possible	'TA'	insertion	site.	
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4.6.4	Limitations	of	the	study	and	further	work	

All	transposon	insertion	sequencing	assays	will	be	limited	by	the	insertion	density	

of	the	libraries,	i.e.	the	number	of	insertions	at	every	possible	non-essential	'TA'	site.	

By	making	two	independent	libraries,	this	study	increased	the	insertion	density	to	

63%	in	the	untreated	condition,	which	is	somewhat	short	of	the	83%	reached	by	

aggregating	14	different	 libraries	 in	 (Dejesus	et	al.,	2017)	but	close	 to	 the	69.6%	

reached	for	a	single	library	by	(Patil	et	al.,	2021).	I	assume	the	10%	loss	of	diversity	

in	 unique	 sites	 in	 the	 menadione	 treated	 condition	 is	 a	 result	 of	 an	 increased	

requirement	for	certain	genes	and	gene	regions	in	the	face	of	oxidative	stress	but	

cannot	rule	out	technical	factors.		

	

'Domain'-level	tn-seq	analysis	has	been	investigated	by	several	groups,	based	on	a	

sliding	window	that	looks	for	genomic	regions	within	an	annotated	gene	that	have	

fewer	than	expected	insertions	(Dejesus	et	al.,	2017;	Patil	et	al.,	2021;	Y.	J.	Zhang	et	

al.,	2012).	However,	these	studies	do	not	consider	the	protein	domain	annotations	

available	from	sources	such	as	the	Interpro	or	PFAM	databases	(Blum	et	al.,	2020;	

Mistry	et	al.,	2021;	Paysan-Lafosse	et	al.,	2023).	Work	has	begun	 in	our	group	to	

incorporate	 protein	 domain	 annotations	 and	 streamline	 the	 analysis	 and	

visualisation	 of	 tn-seq	 results	 to	 improve	 the	 granularity	 of	 the	 analysis.	 Re-

analysing	 this	data	with	 resampling	using	 corresponding	annotations	 for	protein	

domains,	instead	of	the	entire	ORF,	may	uncover	more	examples	of	domain-specific	

requirements	and	expose	proteins	that	may	'moonlight'	with	additional	functions	in	

different	environmental	conditions.	

	

To	complement	the	tn-seq	results	presented	here,	differential	expression	analysis	

of	 menadione	 treated	 and	 untreated	M.	 bovis	with	 RNA-seq	 would	 be	 useful	 to	

evaluate	 transcriptomic	 responses	 to	oxidative	 stress	 among	 the	essential	 genes.	

Phenotyping	deletion	mutants	of	some	of	the	less	characterised	protein	candidates	

discussed	 here	 would	 be	 fruitful,	 especially	 to	 unravel	 the	 interplay	 between	

membrane	integrity	and	oxidative	stress.	Four	uncharacterised	conserved	proteins	

were	more	required	in	the	menadione	treated	libraries,	two	of	these	are	predicted	

integral	membrane	proteins	(Mb0986/Rv0961	and	Mb2202c/Rv2180)	and	two	are	

conserved	hypothetical	proteins	(Mb2849c/Rv2825c	and	Mb0367c/Rv0360c).	The	
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results	presented	here	indicate	that	they	likely	have	a	role	in	maintenance	of	redox	

homeostasis	and/or	membrane	integrity.		

	

4.7	CONCLUSIONS	

In	this	study	a	transposon	insertion	sequencing	library	was	constructed	and	grown	

with	and	without	menadione,	a	menaquinone	analogue	that	causes	oxidative	stress.	

An	 improved	sequencing	 strategy	was	 successful	 in	allowing	 the	 removal	of	PCR	

duplicates,	which	 can	 skew	 the	 distribution	 of	 reads.	Mutants	with	 insertions	 in	

genes	crucial	 to	adapting	to	oxidative	stress	were	 less	represented	 in	the	mutant	

pool,	and	with	next-generation	sequencing,	16	genes	were	identified	by	the	decrease	

in	 the	 number	 reads	 mapped	 within	 the	 gene	 coordinates	 compared	 to	 the	

untreated	library	pool.	Two	genes	(glgP,	Mb3080c)	that	had	more	insertions	in	the	

treated	condition	are	presumed	to	be	less	essential,	and	mutations	in	these	genes	

provide	 a	 survival	 advantage.	 Genes	 that	 known	 to	 be	 involved	 in	 membrane	

integrity	(mceC1,	wbbL2,	PE19)	were	shown	to	have	an	 increased	requirement	 in	

menadione,	 hinting	 that	 menadione	 may	 have	 direct	 effects	 on	 the	 membrane.	

Several	enzymes	 involved	 in	electron	 transfer	 (oxidoreductases)	were	differently	

required	with	menadione	treatment,	as	well	as	several	genes	known	to	be	involved	

in	redox	balance	such	as	fatty	acid	ligases	fadD21	and	fadD30,	furA	and	the	truncated	

hemoglobin,	glbO.	Protein	domain	level	analysis	of	the	iron-regulated	transporter,	

irtA,	suggests	that	the	N-terminal	cofactor-binding	domain	may	be	essential	in	both	

treated	 and	 untreated	 conditions	while	 the	 ABC-transporter	 domain	 is	 essential	

only	with	menadione-generated	oxidative	stress.	
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Chapter	5: Exploring	 the	 regulation	 of	 phoR	
expression	by	antisense	RNA	
	

5.1	ABSTRACT	

Host	specificity	in	the	MTBC	may	involve	different	post-transcriptional	regulation	

and	use	of	antisense	and	other	non-coding	 transcripts.	Antisense	 transcription	 is	

pervasive	 in	 the	MTBC	 and	 has	 been	 shown	 to	 be	 active	 in	 post-transcriptional	

regulation	of	protein	expression.	An	antisense	transcript	found	opposite	the	phoR	

gene	 in	Mycobacterium	 tuberculosis	was	 identified	 using	 computational	methods	

with	 publicly-available	 RNA-seq	 data	 which	 is	 highly	 expressed	 in	 acid	 and	

stationary	growth	conditions.	The	PhoR	sensor-kinase	is	part	of	a	two-component	

system	 that	 controls	 the	 cell	 response	 to	 acid	 stress	 by	 activating	 the	 PhoP	

transcription	factor.	The	system	is	essential	for	virulence	in	both	M.	tuberculosis	and	

M.	 bovis	 despite	 a	 potentially	 deleterious	 SNP	 in	M.	 bovis	phoR.	 Using	 a	 CRISPR-

interference	system	to	create	a	M.	tuberculosis	strain	with	inhibited	expression	of	

the	 phoR-antisense,	 the	 effects	 of	 this	 inhibition	 on	 the	 transcriptome	 were	

evaluated.	 Silencing	 the	 antisense	 by	 95%	 resulted	 in	 a	 50%	 reduction	 in	 phoR	

expression	but	none	of	 the	genes	 related	 to	 the	PhoP	regulon	were	differentially	

expressed.	The	antisense	transcript	may	be	involved	in	regulating	the	translation	

and	stability	of	phoR	mRNA.	

	

5.2	AIMS	

• Validate	the	transcription	of	a	predicted	antisense	RNA,	as_phoR,	expressed	

opposite	the	phoR	gene	in	M.	tuberculosis	using	RT-qPCR	

• Silence	the	expression	of	the	as_phoR	transcript	using	CRISPRi	in	exponential	

growth	conditions		

• Use	 RNA-seq	 to	 evaluate	 transcriptome-wide	 changes	 in	 gene	 expression	

with	as_phoR	silencing	
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5.3	INTRODUCTION	

5.3.1	Antisense	RNA	and	bacterial	gene	expression	

With	the	advent	of	genome-wide	microarray	and	strand-specific	RNA-seq	strategies,	

researchers	 began	 to	 observe	 an	 abundance	 of	 antisense	 transcription	 in	 the	

Mycobacterium	tuberculosis	complex	(MTBC)	and	 its	 increase	 in	stress	conditions	

(Arnvig	et	al.,	2011;	Dinan	et	al.,	2014;	Golby	et	al.,	2013;	Miotto	et	al.,	2012;	Pellin	

et	 al.,	 2012).	 Antisense	 transcripts	 are	 transcribed	 opposite	 coding	 genes,	 non-

coding	RNA	and	other	annotated	gene	elements	and	are	thought	to	act	 locally	on	

adjacent	gene	targets	(see	Chapter	2).	Recent	studies	have	confirmed	that	50%	of	

coding	 genes	 in	 M.	 tuberculosis	 have	 been	 found	 to	 have	 an	 antisense	 TSS	

overlapping	 the	 coding	 region	 (Ju	 et	 al.,	 2024).	 Lineage-specific	 differences	 in	

antisense	 expression	 have	 been	 reported	 between	M.	 tuberculosis	 and	M.	 bovis,	

which	may	 account	 for	 host-specific	 differences	 in	 gene	 essentiality	 and	 protein	

expression	 (Golby	 et	 al.,	 2013;	 Malone	 et	 al.,	 2018).	 However,	 to	 date,	 most	

characterisation	of	non-coding	RNA	in	the	MTBC	has	focussed	on	the	role	of	sRNA--

short,	 structured	 RNA	 transcripts	 that	 are	 thought	 to	 bind	 and	 regulate	 distant	

mRNA	 transcripts.	 Potentially,	 this	 was	 fuelled	 by	 a	 bias	 from	 model	 bacterial	

systems	where	chaperone	proteins,	not	expressed	in	Mycobacteria,	moderate	RNA-

RNA	interactions	and	make	it	easier	to	 identify	and	characterise	them.	The	sheer	

pervasiveness	of	antisense	transcription	across	the	bacterial	genome	has	also	been	

a	 hurdle	 to	 functional	 characterisation	 and	 has	 led	 to	 debates	 of	 its	 biological	

relevance	in	the	MTBC	and	in	other	bacteria	(Adams	et	al.,	2020;	Dinan	et	al.,	2014;	

Georg	&	Hess,	2018;	Lloréns-Rico	et	al.,	2016;	Lybecker	et	al.,	2014).		

	

Despite	 these	 challenges,	 an	 increasing	 number	 of	 bacterial	 antisense	 RNA	 have	

been	characterised	and	found	to	regulate	gene	and	protein	expression.	Regulation	

of	transcripts	via	antisense	transcripts	can	function	through	several	mechanisms,	

reviewed	in	(Georg	&	Hess,	2018;	Lejars	et	al.,	2019;	Sesto	et	al.,	2013),	(Figure	5.1).	

Transcriptional	 regulation	 by	 antisense	 RNA	 can	 involve	 transcriptional	

interference,	including	competition	for	bi-directional	promoters	and	transcriptional	

termination	(Ju	et	al.,	2019;	Lybecker	et	al.,	2014;	Warman	et	al.,	2021)	and	post-

transcriptional	 mechanisms,	 such	 as	 obstructing	 regulatory	 binding	 sites	 for	

ribosomes	and	sRNAs,	or	by	creating	or	masking	RNase	sites	(Aiso	et	al.,	2014;	Lei	

et	 al.,	 2018;	Lejars	et	 al.,	 2022;	Morra	et	 al.,	 2023).	Antisense	 transcripts	 located	
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internal	to	genes	can	function	to	isolate	or	'decouple'	the	transcription	or	translation	

of	individual	genes	in	an	operon	(Dawson	et	al.,	2022;	DeLoughery	et	al.,	2018).	

	
Figure	5.1.	Models	of	regulation	by	antisense	RNAs	in	bacteria.	Arrows	show	direction	of	transcription.	
Figure	adapted	from	Figure	1,	(Georg	&	Hess,	2018)	and	created	with	BioRender.com.	

	

5.3.2	The	PhoPR	two-component	system	

This	 chapter	 investigates	 an	 antisense	 RNA	 expressed	 on	 the	 non-coding	 strand	

opposite	PhoR,	part	of	 an	 important	 two-component	 system	(TCS)	and	virulence	

factor	of	the	MTBC.	PhoPR	is	a	well-studied	two-component	system	of	the	MTBC	that	

is	 involved	 in	 response	 to	 acid	 stress,	 hypoxia	 and	other	 stress	 conditions.	Two-

component	systems	include	a	sensor	kinase,	which	responds	to	an	environmental	

stimulus	 or	 condition,	 and	 an	 effector	 molecule	 which	 acts	 as	 a	 transcriptional	
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regulator	 on	 a	 host	 of	 downstream	 gene	 targets.	 There	 are	 12	 known	 TCS	 in	

pathogenic	mycobacteria	 and	 these	 are	 implicated	 in	 various	 virulence	 systems.	

There	is	evidence	for	'cross-talk'	between	the	sensors	and	transcriptional	regulators	

of	the	different	TCSs	and	heterodimers	of	transcriptional	regulators	from	different	

systems	(Agrawal	et	al.,	2015;	Stupar	et	al.,	2022;	Vashist	et	al.,	2018).	

	

The	PhoR	sensor	kinase	component	is	a	homodimeric	transmembrane	protein	with	

an	 N-terminal	 extra-cytoplasmic	 sensing	 domain,	 a	 histidine	 kinase	 domain,	

dimerisation	domain,	and	cytoplasmic	ATP-binding	and	catalytic	domains	(Figure	

5.2).	The	N-terminal	sensory	domain	is	composed	of	an	external	loop	of	about	120	

residues	flanked	by	2	transmembrane	helices.	The	sensor	domain	is	stimulated	by	

an	external	signal	and	undergoes	a	conformational	change,	transferring	the	signal	

through	 the	membrane	 and	 activating	 the	 cytosolic	 flexible	 dimerisation/kinase	

domain.		A	conserved	histidine	is	autophosphorylated,	which	in	turn	phosphorylates	

the	 regulatory	 transcription	 factor,	 PhoP.	 The	 exact	 sensor	 stimulus	 for	 PhoR	 is	

unknown,	though	the	system	has	been	shown	to	be	responsive	to	changes	in	redox	

potential	 including	 acid	 stress	 in	 both	M.	 tuberculosis	 (PhoPRMtb)	 and	M.	 bovis	

(PhoPRMb)(Baker	 et	 al.,	 2014;	Bansal	 et	 al.,	 2017;	 Feng	 et	 al.,	 2018;	García	 et	 al.,	

2021;	Goar	et	al.,	2022)	and	hypoxia	in	PhoPRMtb	(Singh	et	al.,	2020).		

	

PhoRMb	contains	a	SNP,	relative	to	PhoRMtb,	that	has	been	linked	to	lower	virulence	

in	macrophage	and	mouse	infection	models	(Gonzalo-Asensio	et	al.,	2014)	(Figure	

5.2).	However,	survival	of	M.	bovis	in	bovine	macrophages	is	dependent	on	PhoPMb	

(García	et	al.,	2018)	and	a	tn-seq	study	of	M.	bovis	survival	in	the	bovine	host,	showed	

that	 inactivating	 transposon	 insertions	were	 attenuating	 in	 both	phoP	 and	phoR	

(log2	fold-change	<	-7.1	for	both	genes)	(Gibson	et	al.,	2022).	
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Figure	5.2.	Alphafold	prediction	of	monomer	of	PhoRMtb	with	predicted	domains	(InterPro/UniProtKB	
P71815_MYCTU)	(Blum	et	al.,	2020;	Jumper	et	al.,	2021;	Meng	et	al.,	2023;	Paysan-Lafosse	et	al.,	2023;	
Varadi	 et	al.,	 2022;	Xing	et	al.,	 2017).	Legend	 reflects	Alphafold	per-residue	model	 confidence	 score	
(pLDDT).	The	M.	bovis	 SNP	at	 codon	71	 (G	 to	 I)	 is	 indicated	by	magenta	balls.	 Figure	 created	with	
ChimeraX	(Meng	et	al.,	2023).	

	

PhoPMtb	 activates	a	 large	gene	regulon	by	binding	of	 the	C-terminal	DNA-binding	

domain	to	upstream	promoter	regions	(Figure	5.3).	Phosphorylation	of	PhoPMtb	by	

PhoR	increases	binding	strength,	but	not	specificity,	and	is	not	strictly	necessary	for	

binding	 to	 target	 genes	 (He	&	Wang,	2014;	Xing	et	 al.,	 2017).	Over	30	genes	 are	

directly	regulated	by	PhoPMtb	through	binding,	but	knockouts	have	shown	up	to	2%	

of	the	genome	differentially	expressed	in	∆phoPMtb	mutants,	with	lipid	metabolism,	

central	carbon	metabolism	and	PE/PPE/PE_PGRS	genes	overrepresented	(Cimino	

et	al.,	2012;	Goar	et	al.,	2022;	He	&	Wang,	2014;	Ryndak	et	al.,	2008;	Solans	et	al.,	

2014;	Walters	et	al.,	2006).	Regulators	involved	in	stress-response	and	regulation	of	

redox	homeostasis	such	as	transcription	factors,	WhiB3	and	DosR,	and	alternative	

sigma	 factors,	 SigE	 and	 SigH,	 are	 targets	 of	 PhoPMtb	 and	 they	 regulate	 many	

downstream	 targets	 (Figure	5.3).	PhoPRMtb	 knockout	mutants	have	 cell	 envelope	

defects	and	are	more	sensitive	to	oxidative	stress	and	low	pH	(Bansal	et	al.,	2017;	

Goar	et	al.,	2022;	Khan	et	al.,	2024;	Walters	et	al.,	2006).	In	M.	bovis,	PhoPMb	has	been	
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shown	to	regulate	genes	involved	in	ammonia	production	in	response	to	acidic	pH	

(García	et	al.,	2018,	2021).	

	

	
Figure	5.3.	Several	 transcriptional	regulators	 involved	 in	acid	and	stress	responses	are	regulated	by	
PhoP.	Figure	adapted	from	(Baker	et	al.,	2019;	Bansal	et	al.,	2017;	Dechow	et	al.,	2021;	Feng	et	al.,	2018;	
Khan	et	al.,	2024)	and	created	with	BioRender.com.	

	

5.3.3	An	antisense	RNA	transcribed	opposite	phoR	

Previous	work	 (Chapter	2)	 identified	an	expressed	antisense	RNA	 transcript	 (as-

phoR)	 opposite	 the	 coding	 gene	 for	 phoR	 in	M.	 tuberculosis.	 This	 transcript	was	

upregulated	 in	 certain	 conditions,	 including	 stationary	 growth	 and	 low	 pH	 and	

coexpressed	with	 PE/PPE	 genes,	 recognised	 as	 virulence	 factors	 (De	Maio	 et	 al.,	

2020;	Wang	et	al.,	2020).	Transcription	of	as-phoR	begins	within	the	phoR	ORF	and	

overlaps	the	location	of	the	SNP	in	PhoRMb.	The	existence	of	this	antisense	transcript,	

expressed	differentially	across	many	culture	conditions,	hints	at	a	more	complex	

regulation	 of	 the	 gene	 operon	 than	 has	 been	 explored	 in	 the	 literature.	 As-phoR	

could	be	 involved	 in	 regulating	phoR	expression	 and	perhaps	plays	 a	 role	 in	 the	

independent	 regulation	 of	 genes	 in	 the	 phoPR	 operon	 (Figure	 5.1,	 'intra-operon	

antisense')	through	transcriptional	 interference	or	post-transcriptional	pathways,	

such	as	 regulating	 transcript	 stability.	 Furthermore,	 expression	of	 as-phoR	 could	

differ	 between	 M.	 tuberculosis	 and	 M.	 bovis	 and	 contribute	 to	 lineage-specific	

differences	 in	 the	 regulation	 of	 lipid	 biosynthesis	 and	 transport.	 I	 propose	 to	

investigate	how	as-phoR,	 specifically,	may	be	 involved	 in	 transcriptional	or	post-
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transcriptional	 gene	 regulation	 of	 the	 PhoPR	 TCS	 in	 M.	 tuberculosis	 and,	 more	

generally,	gain	insight	on	the	role	of	antisense	regulation	in	the	MTBC.	

	

5.3.4	CRISPR	inhibition	as	a	strategy	to	silence	antisense	RNA	

CRISPR	 inhibition	 is	 a	 technique	 that	 harnesses	 the	 technology	 of	 CRISPR	 gene	

editing	to	silence	expression	of	a	targeted	RNA	transcript	by	directing	a	catalytically-

inactive	Cas9	enzyme	(dCas9)	to	a	sequence-specific	region	of	the	genome	where	it	

sterically	hinders	the	transcription	of	the	targeted	gene	region	(Figure	5.4).	It	has	

been	shown	to	be	positively	dependent	on	the	specific	strand	targeted	and	by	the	

position	of	the	targeted	sequence	within	the	transcript,	and	has	been	successfully	

applied	to	silence	genes	in	M.	tuberculosis	(Choudhary	et	al.,	2015;	Qi	et	al.,	2013;	

Rock	et	al.,	2017;	Singh	et	al.,	2016).		It	is	therefore	theoretically	possible	to	silence	

an	antisense	transcript	independently	of	the	sense	expression;	however,	it	has	not	

yet	 been	 widely	 used	 to	 silence	 bacterial	 antisense	 RNA.	 In	 this	 study,	 CRISPRi	

strains	were	created	that	target	as-phoR,	an	antisense	transcript	located	opposite	

the	5'	end	of	phoR	to	establish	the	feasibility	of	this	approach	and	to	evaluate	the	

transcriptomic	 effects	 of	 antisense-phoR	 silencing	 on	 the	 M.	 tuberculosis	

transcriptome.		

	

	
Figure	5.4.	Schematic	diagram	of	CRISPR-interference	system.	dCas9	and	the	sgRNA	are	expressed	from	
Tet-inducible	 promoters	 and	 bind	 due	 to	 a	 dCas9	 'handle'	 on	 the	 sgRNA,	 forming	 the	 sgRNA:dCas9	
complex.	The	 complex	binds	at	 the	programmed	 sequence	on	 the	non-template	 strand	of	 the	 target	
transcript,	sterically	inhibiting	target	transcription.	A	PAM	(proto-spacer	adjacent	motif)	is	required	
for	dCas9	binding.	Figure	from	(Rock	et	al.,	2017).	Reproduced	with	permission	from	Springer	Nature.	
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5.4	MATERIALS	AND	METHODS	

5.4.1	RT-qPCR	

RT-qPCR	was	 used	 to	 quantify	 expression	 of	 as-phoR	 in	M.	 tuberculosis.	 100	 ng	

DNase	 I	 (Invitrogen)	 treated	 RNA	 was	 reverse	 transcribed	 with	 Superscript	 III	

(Invitrogen)	with	 300	 ng/µL	 random	 primers	 and	 10	mM	 dNTPs	 to	 13	 µL	 total	

volume.	 RNA	 samples	 were	 denatured	 at	 65˚C	 for	 5m	 followed	 by	 decreasing	

temperature	to	4˚C	in	the	thermocycler.	After	brief	centrifugation,	5X	RT	buffer,	1	

µL	0.1M	DTT,	1	µL	RNaseOUT	(Thermo	Fisher	Scientific)	and	1	µL	Superscript	III	

were	added	to	sample	tubes	(in	addition	to	-RT	control	with	no	Superscript	III).	After	

careful	mixing	with	 pipette,	 reactions	were	 incubated	 at	 25˚C	 for	 5m	 for	 primer	

annealing,	followed	by	first	strand	synthesis	at	55˚C	for	50m	and	70˚C	for	15m	to	

terminate	the	reaction.		

	

Serial	 dilutions	 of	M.	 tuberculosis	 gDNA	were	 used	with	 primers	 to	 as-phoR	 and	

housekeeping	gene	(sigA)	to	create	a	standard	curve	of	103	to	107	copies.	Reactions	

included	 1µL	 gDNA	 standard	 or	 cDNA	 sample	 and	 0.3	 µM	 forward	 and	 reverse	

primers	with	PowerUp	SYBR	Green	Master	Mix	(Thermo	Fisher	Scientific)	in	20	µL	

total	volume.	RT-qPCR	was	run	using	a	BioRad	CFX96	Maestro	analyser	at	50	°C	for	

2m,	95	°C	for	2m,	followed	by	40	cycles:	95°C	for	15s,	60˚C	for	15s,	72˚C	for	1m	and	

85°C	 for	 5s.	 Melt	 curve	 analysis	 was	 carried	 out	 after	 each	 run	 (65˚C	 –	 95˚C	 in	

increments	of	0.5˚C,	5s	each	cycle).	PCRs	were	run	in	duplicate	or	triplicate	for	each	

sample	 and	gDNA	dilution.	Direct	 quantification	was	made	using	 gDNA	 standard	

curves	 for	 each	 primer	 pair	 and	 relative	 quantification	 as	 a	 proportion	 of	 the	

housekeeping	gene,	sigA.	

	

5.4.2	Design	of	sgRNAs	to	target	antisense-phoR	

Small	guide	RNAs	(sgRNAs)	were	designed	to	target	the	non-template	DNA	strand	

as	 close	 as	 possible	 to	 the	 transcriptional	 start	 site	 of	 the	 antisense	 transcript	

according	to	published	protocols	(Larson	et	al.,	2013).	The	sgRNAs	are	designed	by	

searching	the	5'	end	of	the	antisense	transcript	for	the	typical	proto-spacer	adjacent	

motifs	 (PAM	 site)	 specific	 for	 the	 Streptococcus	 pyogenes	 (SPy)	 CRISPR	 system	

(Singh	et	al.,	2016)	(in	this	case	'CCN')	in	the	sequence	of	the	antisense	transcript	(5'	

to	3')	and	including	the	following	20-25	nucleotides.	The	final	12	nucleotides	of	the	

reverse-complement	 of	 this	 target	 sequence	 (plus	 two	 nucleotides	 of	 the	 PAM	
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sequence)	 make	 up	 the	 seed	 region	 which	 is	 primarily	 responsible	 for	 target	

specificity.	This	sequence,	plus	the	terminal	two	nucleotides	of	the	PAM	sequence	

was	used	with	BLAST	(Sayers	et	al.,	2022)	to	identify	any	possible	off-target	hits	in	

both	sense	and	antisense	strands	of	the	M.	tuberculosis		genome	proximal	to	the	PAM	

site.	Any	sgRNAs	with	full-length	hits	other	than	the	target	transcript	are	not	taken	

forward.	The	full	length	transcribed	sgRNA	plus	the	dCas9	handle	and	terminator	

sequence	are	used	for	secondary	structure	predictions	using	M-fold	(Zuker,	2003)	

to	 rule	out	misfolding	of	 the	handle	hairpin	 and	 formation	of	 loops	 in	 the	 target	

sequence.	Finally,	the	sequence	of	the	sgRNA	was	checked	to	make	sure	there	are	no	

BbsI	 restriction	 enzyme	 sites	which	 are	 necessary	 for	 cloning	 into	 the	 pRH2521	

plasmid.	 3	 sgRNAs	 (sgASrna1,	 sgASrna2,	 sgASrna3)	 were	 taken	 forward,	 and	

forward	 and	 reverse	 oligos	 were	 synthesised	 including	 4	 added	 nucleotides	 for	

ligation	at	BbsI	site	in	pRH2521	(Table	5.1).	

	
Table	5.1.	List	of	oligonucleotides	used	in	this	study	

RT-qPCR Oligonucleotides   

Target Forward Primer Reverse Primer 

sigA CCTACGCTACGTGGTGGATT  TGGATTTCCAGCACCTTCTC  

asrna GGCTGATCACCCGAACGTAGA CTGGACTTGTGGCCTCGGGG 

phoR TTCGAGGAAGGCTGCCCC GATCCCCGAGGCCACAAGTC 

pRH2502-dCas9 AAGAAGTACAGCATCGGCCTGG  TTCTTGCGCCGCGTGTATCG  

pRH2521-sgRNA AATATTGGATCGTCGGCACC TTGGAGAAGCAGCTGAAGTG 

CRISPRi silencing sgRNA oligos (underlined bases added for ligation)  

Target Forward Primer Reverse Primer 

sgASrna1 GGGATCAACGACAACACTGCCATAC AAACGTATGGCAGTGTTGTCGTTGA 

sgASrna2 GGGACCCCGACGGCCAGAGCTATA AAACTATAGCTCTGGCCGTCGGGG 

sgASrna3 GGGAGTTCGGGTGATCAGCCCCGA AAACTCGGGGCTGATCACCCGAAC 
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5.4.3	Cloning	of	sgRNAs	into	pRH2521	plasmid	

The	synthesised	oligo	pairs	were	annealed	at	95˚C	for	5m	and	allowed	to	return	to	

RT	 on	 the	 bench.	 Annealed	 primers	 were	 phosphorylated	 with	 T4	 PNK	 (New	

England	Biolabs)	in	10X	reaction	buffer	A	and	10mM	ATP	in	final	volume	of	20	µL	

with	incubations	at	37˚	for	20m	and	75˚C	for	10m.	1	µg	pRH2521	(Table	5.2,	Figure	

5.5)	was	digested	with	2	units	BbsI	(New	England	Biolabs)	+	10X	buffer	G	in	20	µL	

total	volume	at	37˚C	for	4h	followed	by	enzyme	inactivation	at	65˚C	for	20m,	and	put	

on	ice.	Annealed	and	phosphorylated	oligos	were	ligated	at	16˚C	overnight	into	BbsI	

digested	 pRH2521.	 A	 ratio	 of	 1:1	 oligo:plasmid	 DNA	 was	 used	 in	 the	 ligation	

reactions:	 100ng	 BbsI-digested	 pRH2521	 +	 25pmol	 annealed/phosphorylated	

oligonucleotides	 +	 10X	 ligation	 buffer	 and	 5units	 T4	 DNA	 ligase	 (New	 England	

Biolabs).	The	ligation	mixtures	were	transformed	into	E.	coli	DH5a	competent	cells	

(Table	5.2)	by	heat	shock	at	43˚C	for	30s	followed	by	incubation	on	ice	for	5m.	Cells	

were	recovered	in	950µL	warm	LB	broth	and	incubated	in	orbital	shaker	at	37˚C	

with	 200	 rpm	 shaking	 for	 1h.	 Successful	 transformants	 were	 selected	 on	

hygromycin-containing	LB	plates	(200	µg/mL).	Multiple	colonies	from	each	ligation	

were	picked	and	grown	in	10mL	liquid	LB	+	200	µg/mL	hygromycin.	Plasmid	DNA	

was	purified	with	Monarch	Plasmid	Miniprep	kit	(New	England	Biolabs)	and	sent	

for	sequencing	with	the	corresponding	forward	sgRNA	primer	to	confirm	presence	

of	 insert.	 Positive	 clones	 were	 used	 to	 re-transform	 DH5a	 competent	 cells	 for	

creation	of	glycerol	stocks	for	long-term	storage	at	-80˚C.		

	 	



 148 

Table	5.2.	List	of	bacterial	strains	and	plasmids	used	in	this	study.	

STRAINS	 GENOTYPE	 SOURCE	

E.Coli	DH5⍺	 SupE44	 1lacU169	 (lacZ1M15)	 hsdR17	

recA1	endA1	gyrA96	thi-1	relA1	

New	England	Biolabs	

MtbdCas9	 M.tuberculosis	 H37Rv	 with	 integrative	

plasmid	 containing	 dCas9SPy(pRH2502),	

kanR	

Gibson	et	al,	2021	

MtbdCas9_ctrl	 M.tuberculosis	H37Rv	with	pRH2502	and	

sgRNA	 -ve	 control	 plasmid	 (pRH2521),	

kanR,	hygR	

Gibson	et	al,	2021	

MtbdCas9_sgRNA1	 M.tuberculosis	H37Rv	with	pRH2502	and	

sgRNA-containing	 plasmid	 (pASphoR_1),	

kanR,	hygR	

this	study	

MtbdCas9_sgRNA2	 M.tuberculosis	H37Rv	with	pRH2502	and	

sgRNA-containing	plasmid,	 (pASphoR_2),	

kanR,	hygR	

this	study	

MtbdCas9_sgRNA3	 M.tuberculosis	H37Rv	with	pRH2502	and	

sgRNA-containing	 plasmid,	 (pASpho_3),	

kanR,	hygR	

this	study	

PLASMIDS	 		 		

pRH2502	 Integrative	plasmid	derived	from	pTC-0X-

1L,	expressing	dCas9SPy	from	an	inducible	

tetRO	promoter	(uv15tetO),	kanR	

pRH2502	 was	 a	 gift	 from	

Robert	 Husson	 (Addgene	

plasmid	#	84379)	

pRH2521	 Non-integrative	 plasmid	 derived	 from	

pTE-10M-0X,	 expression	 sgRNA	 from	

inducible	 tetRO	 promoter	 (Pmyc1tetO),	

hygR	

Singh	et	al,	2016	

pASphoR_1	 pRH2521	with	sgRNA	ASrna1,	hygR	 this	study	

pASphoR_2	 pRH2521	with	sgRNA	ASrna2,	hygR	 this	study	

pASphoR_3	 pRH2521	with	sgRNA	ASrna3,	hygR	 this	study	
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Figure	5.5.	CRISPRi	two-plasmid	system	(A.	K.	Singh	et	al.,	2016)	used	in	this	study	involves	two	plasmids:	
A)	integrative	plasmid	(pRH2502)	which	expresses	dCas9Spy,	and	B)	episomal	plasmid	(pRH2521)	which	
expresses	the	sgRNA	scaffold,	both	from	Tet-inducible	promoters.	Figure	made	with	Biorender.com	
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5.4.4	Transformation	into	M.	tuberculosis	and	Induction	of	CRISPRi	system	

All	work	in	the	containment	level	3	(CL-3)	laboratory	was	performed	by	members	

of	the	Kendall	lab.	Plasmids	pASphoR_1-3	and	pRH2521	were	transformed	into	M.	

tuberculosis	strain,	Mtbdcas9,	with	electroporation.	Recovered	cells	were	plated	onto	

large	(140mm)	Middlebrook	7H11	agar	plates	supplemented	with	hygromycin	and	

kanamycin	and	incubated	for	5-6	weeks	at	37˚C.	Single	colonies	were	selected	and	

streaked	on	to	7H11	agar	plates	with	antibiotics	and	incubated	at	37˚C	for	4	weeks.	

	

For	 colony	 PCR,	 15	 µL	 of	 heat-killed,	 clarified	 cell	 lysate	 from	 each	 transformed	

strain	 (MtbdCas9_sgRNA1-3,	Mtbdcas9_ctrl)	 was	 used	 immediately	 in	 PCR	 reactions	

with	 10	 µM	 primers:	 pRH2502-dCas9	 for	 the	 integrated	 pRH2502	 plasmid	 and	

pRH2521-sgRNA	for	the	non-integrating	pRH2521	plasmid.	OneTaqâ	2X	master	mix	

(New	England	Biolab)	was	used	for	PCR:	94˚C	for	1m;	followed	by	30	cycles	of:	94˚C	

for	30s,	55˚C	for	1m,	68˚C	for	1m;	followed	by	final	extension	of	68˚C	for	5m.	PCR	

products	were	 visualised	 on	0.8%	agarose	 gel	with	 1:10000	dilution	 SYBR-SAFE	

(Thermo	 Fisher	 Scientific)	 and	 Quickloadâ	 Purple	 DNA	 100	 bp	 Ladder	 (New	

England	Biolab).	

	

For	 initial	 CRISPRi	 strain	 evaluation,	 PCR-confirmed	 colonies	 from	 each	 strain	

(Table	5.2)	were	grown	in	CL-3	laboratory	conditions	by	members	of	the	Kendall	lab	

to	OD	0.5	in	10mL	cultures	in	Middlebrook	7H9-ADC	broth	supplemented	with	0.2%	

glycerol,	 0.05%	 Tween	 80	 and	 hygromycin,	 in	 490	 cm2	 Corning	 Roller	 Bottles	

(Sigma	Aldrich)	rolling	at	2rpm	at	37˚C.	The	cultures	were	divided,	and	the	'ATc+ve'	

group	 was	 treated	 with	 200	 ng/mL	 anhydrotetracycline	 (ATc)	 for	 24	 hours	 to	

induce	 expression	 of	 dCas9	 and	 the	 sgRNA	 from	 the	 Tet-responsive	 promoters	

(Figure	5.6).	Initial	experiments	were	performed	in	duplicate.	After	initial	RT-qPCR	

analysis,	 the	 engineered	 strain	 with	 the	 largest	 apparent	 knockdown	 of	 the	

antisense	 transcript,	 MtbdCas9_sgRNA2,	 was	 taken	 forward	 and	 the	 experiment	

repeated	in	triplicate	with	30	mL	cultures.	
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Figure	5.6.	Design	of	CRISPR-inhibition	experiment.	Parallel	 cultures	of	 sgRNA-containing	 (sgRNA+)	
and	 control	 plasmid	 without	 the	 sgRNA	 insert	 (sgRNA-)	 are	 grown	 and	 one	 set	 is	 treated	 with	
anhydrotetracycline	(ATc)	to	induce	transcription	of	dCas9	and	the	sgRNA	(if	present)	from	the	Tet-
activated	promoters	in	both	plasmids.	Figure	made	with	BioRender.com	

	

5.4.5	RNA	extraction	and	sequencing	

RNA	extraction	was	performed	in	the	CL3	lab	by	members	of	Sharon	Kendall's	group	

at	RVC	according	to	established	protocols	(Rustad	et	al.,	2009).		

	

Extracted	nucleic	 acids	were	 then	purified	with	RNeasyâ	columns	 (New	England	

Biolabs)	 according	 to	manufacturer	 instructions,	 and	 400ng	 of	 each	 sample	was	

DNase	treated	with	1	u	DNaseI	(Invitrogen)	and	10X	buffer	in	20µL	total	volume	at	

37˚C	for	30m.	1	µL	25	mM	EDTA	was	added	to	each	sample	and	heated	for	10m	at	

65˚C	to	inactivate	the	enzyme.	RNA	was	quantified	using	QubitTM	fluorometer	and	

DeNovixTM	spectrophotometer.	2-6	µg	RNA	from	each	sample	was	sent	for	paired-

end	 sequencing	on	an	 Illumina	NovaSeq	platform.	Between	74-148M	reads	were	

sequenced	per	sample	with	mean	read	quality	score	>	38	and	length	of	150	bp.	
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5.4.6	Quantification	and	Data	Analysis	

Reads	 were	 downloaded	 from	 sequencing	 provider	 server	 and	 quality	 control	

checked	 for	 read	 length	 and	 appropriate	 headers.	 Remaining	 adapters	 were	

trimmed	and	reads	 filtered	 for	quality	with	 fastp	 (Chen	et	al.,	2018).	Reads	were	

mapped	 to	 the	M.	 tuberculosis	H37Rv	 genome	 (AL123456.3)	 using	bwa-mem	 (Li	

2013)	for	paired-end	reads	with	default	parameters.	Unmapped	reads	(102K-160K	

per	sample)	were	mapped	to	the	episomal	pRH2502	plasmid	sequence	with	>	97%	

mapped	 reads.	 Mapped	 reads	 with	 length	 20-21	 bp	 and	mapping	 to	 location	 of	

sgRNA	target	sequence	were	generated	from	sequencing	of	the	expressed	sgRNA	on	

the	episomal	pASphoR_2	and	were	therefore	removed	from	further	analysis	using	

bash	scripts	with	samtools	(Danecek	et	al.,	2021).	Base	coverage	files	were	created	

for	each	sample	using	deepTools	bamCoverage	(Ramírez	et	al.,	2016),	normalising	

with	RPKM	and	a	bin	size	of	10bp.	DeepTools	coverageBed	was	used	 to	calculate	

strand-specific,	mean	base-pair	read	coverage	for	select	transcripts	(phoP,	phoR,	as-

phoR)	 and	 create	 bedgraph	 files	 for	 ATc-treated	 and	 untreated	MtbdCas9_sgRNA2	

RNA-seq	samples.	

	

Reads	mapping	 to	 protein-coding	 and	 non-coding	 annotations	 in	M.	 tuberculosis	

H37Rv	(using	custom	annotation	 file	 including	predicted	ncRNA	from	Chapter	2)	

were	quantified	using	count_features	from	the	baerhunter	R-package	(Ozuna	et	al.,	

2019).	This	generates	a	'counts	matrix'	of	raw	read	counts	per	feature.	

	

The	counts	matrix	was	used	with	DESeq2	(Love	et	al.,	2014)	and	sva	(Leek	et	al.,	

2012)	to	test	for	surrogate	variables.	Data	was	explored	using	DESeq2	and	PCAtools	

(Blighe	 &	 Lun	 2024),	with	 and	without	 rRNA	 transcripts	 included	 in	 the	 counts	

matrix,	to	identify	batch	effects.	Batch	correction	was	made	using	limma	(Ritchie	et	

al.,	 2015).	 Differential	 expression	 analysis	 was	 performed	 with	 DESeq2	 using	 a	

model	design	 that	 incorporated	 the	batch	effect	 (experiment)	and	 looked	 for	 the	

interaction	between	the	ATc	treatment	and	empty	vs	sgRNA-containing	plasmid	(~	

1	 +	 experiment	 +	 plasmid	 +	 treatment	 +	 treatment:plasmid).	 Log2	 fold	 changes	

depending	 on	 contrasting	 conditions	 (experiment,	 treatment,	 plasmid)	 were	

generated	 and	 assigned	 significance	 values	 (adj.	 p-values	 corrected	 for	 multiple	

testing	with	Benjamini-Hochsberg	method	(Benjamini	&	Hochberg,	1995).	Gene	set	

enrichment	 was	 performed	 using	 GSEA,	 gseKEGG	 and	 gseMKEGG	 from	 the	
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clusterProfiler	package	(G.	Yu	et	al.,	2012)	with	the	ranked	log2	fold-changes	from	

the	relevant	DESeq2	contrast	results.	

	

5.4.7	RNA	structure	and	binding	prediction	

RNA	 secondary	 structure	 prediction	 of	 as-phoR	 was	 performed	 with	 RNAfold	

(Gruber	 et	 al.,	 2007).	 Prediction	 of	 RNA	 interactions	 with	 antisense	 and	

differentially-expressed	mRNA	targets	was	performed	with	IntaRNA	(Mann	et	al.,	

2017)	with	minimum	seed	sequence	set	to	6.	TargetRNA3	(Tjaden,	2023)	was	used	

with	the	as-phoR	sequence	to	scan	for	potential	mRNA	targets	in	the	genome.	

	

5.4.8	Analysis	of	publicly	available	RNA-seq	datasets	

Publicly	available	RNA-seq	datasets	were	downloaded	from	SRA	and	processed	as	

in	Materials	and	Methods,	Chapter	2.	Mapped	reads	were	visualised	using	Artemis	

(Carver	et	al.,	2012)	and	IGV	(Robinson	et	al.,	2011)	genome	browsers.	For	M.	bovis	

or	M.	smegmatis	datasets,	fastq	reads	were	mapped	to	the	appropriate	genome:	M.	

bovis,	 AF2122/97	 (Accession:	 LT708304.1),	 M.	 smegmatis	 MC2	 155	 (Accession:	

CP000480.1)	 using	 bwa-mem	 with	 paired-end	 reads	 and	 default	 parameters	 (Li	

2013).	Differential	expression	analysis	of	as-phoR	 in	∆sigE	(Baruzzo	et	al.,	2023)	

was	performed	with	DESeq2	using	a	model	design	that	looked	for	the	interaction	

between	low	and	high	phosphate	conditions	and	∆sigE	mutant	versus	wild-type	(~	

1	+	 condition	+	genotype	+	 condition:genotype).	 Log2	fold	 changes	depending	on	

contrasting	 conditions	 were	 generated	 and	 assigned	 significance	 values	 (adj.	 p-

values	corrected	for	multiple	testing	with	Benjamini-Hochsberg	method	(Benjamini	

&	Hochberg,	1995).	

	

All	 scripts	 for	 bioinformatics	 analysis	 are	 available	 at	

https://github.com/jenjane118/thesis_work/tree/main/Chapter_5.	 Data	 analysis	

and	wrangling	was	performed	with	dplyr		(Wickham	et	al.,	2022)	in	R.	Plots	made	

with	ggplot2	(Wickham,	2016),	unless	otherwise	indicated.	

	



 154 

5.5	RESULTS	

5.5.1	 An	 antisense	 transcript	 opposite	 phoR	 gene	 is	 predicted	 from	 M.	

tuberculosis	RNA-seq	data	

Computational	 predictions	 of	 non-coding	 RNA	 from	 RNA-seq	 data	 (Chapter	 2)	

identified	 an	 antisense	 transcript	 (ncRv0757c,	 putative_sRNA:m852286_852683,	

'as-phoR')	transcribed	opposite	the	5'	end	of	the	sensor	kinase	component	member	

of	 the	 PhoPR	 two-component	 system	 (Figure	 5.7).	WGCNA	 analysis	 (Chapter	 2)	

indicated	as-phoR	is	a	well-connected	hub	in	a	co-expression	module	enriched	for	

sRNAs	 and	 PE/PPE	 genes	 ('darkturquoise'),	 while	 the	 phoR	 and	 phoP	 genes	 are	

clustered	 in	different	modules.	PE/PPE	genes	are	virulence	 factors	 thought	 to	be	

involved	 in	host-pathogen	 interactions	 in	mycobacteria	and	to	regulate	 transport	

across	the	outer	membrane	(Babu	Sait	et	al.,	2022;	Boradia	et	al.,	2022;	Damen	et	al.,	

2022;	Dechow	et	al.,	2021).	The	module	had	a	weakly	negative	correlation	with	the	

low	iron	condition	(bicor=-0.37,	padj	=	0.03)	and	was	slightly	better	correlated	with	

stationary	growth	(bicor=0.43,	padj=0.007)	(Chapter	2,	Figure	2.3).			

	

The	antisense	overlaps	what	is	predicted	to	be	a	signal	peptide	and	extra-cellular	

sensing	 domain	 of	 the	 PhoR	 protein	 (Figure	 5.7),	 as	 well	 as	 the	 44	 nucleotide	

intergenic	region	between	phoP	and	phoR.	The	 intergenic	region	contains	a	short	

open	 reading	 frame	 (sORF)	 and	 ribosome	 profiling	 studies	 have	 shown	 it	 to	 be	

translated	 (Sawyer	et	al.,	2021;	Smith	et	al.,	2022)	 (Figure	5.7).	Within	 the	 sORF	

there	are	located	putative	RNaseE	cleavage	sites	(852193,	852199)	predicted	from	

RNA-seq	data	using	a	differential	ligation	strategy	which	maps	all	5'	transcript	ends	

in	treated	libraries	with	removed	5'	triphosphates	versus	untreated	libraries	(Zhou	

et	al.,	2023).	
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Figure	 5.7.	 Diagram	 showing	 the	 orientation	 and	 length	 of	 as-phoR	 transcript	 relative	 to	 phoPR	
polycistronic	operon.	The	antisense	overlaps	the	region	coding	for	the	predicted	extra-cytoplasmic	and	
signal	peptide	domains	of	phoR	and	intergenic	region	between	phoP	and	phoR,	as	well	as	the	M.	bovis	
phoR	G/I	SNP	at	codon	71.	Close-up	of	the	intergenic	region	shows	a	translated	sORF	of	18	nucleotides	
(852348-852365)	that	is	in	the	same	reading	frame	as	phoR	and	overlaps	the	stop	codon	of	phoP	('atga'	
in	green).	Putative	RNaseE	cleavage	sites	are	predicted	within	 the	sORF	at	coordinates	852193	and	
852199	(in	bold)	(Zhou	et	al.,	2023).	TSS	coordinates,	left	to	right:	851548,	851607,	852061,	852612,	
852683,	 852936	 (Cortes	 et	 al.,	 2013;	 Ju	 et	 al.,	 2024;	 Shell	 et	 al.,	 2015).	 Figure	 created	 with	
BioRender.com.	
	

The	antisense	 transcript	has	a	 reported	TSS	within	 the	 first	10	nucleotides	of	 its	

predicted	start	(Cortes	et	al.,	2013;	Ju	et	al.,	2024;	Shell	et	al.,	2015)	and	overlaps	the	

known	SNP	found	in	M.	bovis	(and	other	animal-adapted	lineages)	(Figure	5.8).	This	

SNP	 is	 located	 approximately	4	nucleotides	upstream	 from	an	 alternative	TSS	 in	

phoR	(Cortes	et	al.,	2013;	Ju	et	al.,	2024),	detected	in	exponential	growth	conditions,	

which	is	71	nucleotides	downstream	from	the	start	of	as-phoR.	A	motif	similar	to	the	

SigE	 promoter	motif	 (GGAAC-T/C-N17-18-GTT)	 appears	within	 the	 upstream	 35	

nucleotides	of	as-phoR (Newton-Foot	&	Gey	van	Pittius,	2013;	Song	et	al.,	2008).	

SigE	has	been	found	to	interact	with	PhoP	and	maintains	redox	and	pH	homeostasis	

as	part	of	a	stress-response	system	in	M.	tuberculosis	(Bansal	et	al.,	2017;	Baruzzo	et	

al.,	2023;	Goar	et	al.,	2022).	However,	 re-analysis	of	M.	 tuberculosis	H37Rv	∆sigE	

strain	versus	wild-type	RNA-seq	data	(Baruzzo	et	al.,	2023),	including	non-coding	

RNA	annotations	(from	Chapter	2),	did	not	show	differential	expression	of	as-phoR,	

phoR	or	phoP	transcripts	in	the	conditions	tested. 
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Figure	5.8.	Sequence	of	phoR	(blue)	and	as-phoR	(green)	in	region	852525-852758	(M.	tuberculosis	
H37Rv,	AL123456.3).	Transcriptional	start	sites	marked	with	arrows	(as-phoR	TSS:	852683,	phoR	alt-
TSS:	852617)(Cortes	 et	al.,	 2013;	 Ju	 et	al.,	 2024;	Shell	 et	al.,	 2015).	The	M.	bovis	G/I	 SNP	 (852606-
852608)	is	outlined	in	black	box.	Positions	of	sgRNAs	are	underlined:	sgRNA1	=	dotted,	sgRNA2	=	solid	
green,	sgRNA3	=	dashed.	Potential	SigE	promoter	motif	indicated	in	bold.	

	

5.5.2	 Antisense-phoR	 is	 expressed	 in	 multiple	 RNA-seq	 datasets,	 including	

from	M.	bovis	

The	antisense-phoR	transcript	was	expressed	in	all	conditions	in	the	M.	tuberculosis	

RNA-seq	datasets	analysed	in	Chapter	2,	with	increased	expression	in	certain	stress	

conditions	(Figure	5.9).	This	transcript	was	also	observed	in	M.	bovis	(AF2122/97)	

RNA-seq	datasets	(PRJNA390669,	PRJNA774648)	in	stationary	and	rolling	cultures	

but	was	not	observed	 to	be	expressed	 in	RNA-seq	data	(PRJNA820116)	 from	the	

non-pathogenic,	fast-growing	strain,	M.	smegmatis,	MC2-155.		

	

 
...AGCCGGATCGATCGGGTGTTGCTCGAGGAAGCCCAAATCTGGGCGCAGATCACGCTG 
...TCGGCCTAGCTAGCCCACAACGAGCTCCTTCGGGTTTAGACCCGCGTCTAGTGCGAC 
 
 
CCCTTGGCGCCGGACCCCTACCCTGGTCATAACCCCGATCGGCCGCCGTCGAGGTTCTAC 
GGGAACCGCGGCCTGGGGATGGGACCAGTATTGGGGCTAGCCGGCGGCAGCTCCAAGATG 
 
 
GTTCGGGTGATCAGCCCCGACGGCCAGAGCTATACGGCACTCAACGACAACACTGCCATA 
CAAGCCCACTAGTCGGGGCTGCCGGTCTCGATATGCCGTGAGTTGCTGTTGTGACGGTAT 
 
 
CCGGCGGTGCCCGCCAACAATGATGTCGGCCGGCACCCGACGACGCTGCCATCGATC... 
GGCCGCCACGGGCGGTTGTTACTACAGCCGGCCGTGGGCTGCTGCGACGGTAGCTAGCCG 
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Figure	 5.9.	 Boxplots	 showing	 relative	 expression	 levels	 of	 as-phoR	 across	multiple	 conditions	 using	
normalised	counts	from	publicly	available	RNA-seq	data	(SRA	datasets:	PRJEB65014_3,	PRJNA278760,	
PRJNA327080,	 PRJNA390669,	 see	 Materials	 and	Methods,	 Chapter	 2).	 Solid	 line	 represents	 median	
expression	across	1	to	3	replicates	depending	on	condition.	

	

5.5.3	Transcripts	in	region	of	antisense-phoR	are	detected	at	similar	levels	to	

housekeeping	gene,	sigA,	in	exponential	growth	conditions	

In	order	to	validate	the	prediction	and	to	measure	the	levels	of	expression,	RT-qPCR	

was	used	(Materials	and	Methods)	to	compare	levels	of	the	as-phoR	transcript	with	

sigA,	 a	 common	 housekeeping	 gene	 in	 total	 RNA	 from	 exponentially-growing	M.	

tuberculosis.	 As-phoR	was	 expressed	 at	 similar	 abundance	 to	 sigA	 (Figure	 5.10).	

However,	as	random	primers	were	used	to	generate	the	reverse-transcribed	cDNA	

library	 used	 in	 the	 PCR	 reactions,	 the	 detected	 transcripts	 could	 originate	 from	

either	strand	and	could	include	both	sense	and	antisense	expression.	
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Figure	5.10.	RT-qPCR	with	primers	specific	to	as-phoR	and	sigA	(Table	5.1)	indicates	expression	in	the	
region	of	the	5'	end	of	as-phoR	is	comparable	to	sigA	in	M.	tuberculosis	total	RNA.	Each	point	represents	
the	mean	of	two	technical	replicates	of	qPCR	from	independent	RNA	samples	(biological	replicate).	Copy	
number	 calculated	 using	 absolute	 quantification	 against	 gDNA	 standard	 curves	 (Materials	 and	
Methods).	

	

5.5.4	Antisense-phoR	is	silenced	using	CRISPRi		

In	order	to	determine	how	as-phoR	might	impact	the	M.	tuberculosis	transcriptome,	

and	 the	 PhoPR	 regulon	 specifically,	 we	 utilised	 a	 CRISPR	 inhibition	 system	 to	

knockdown	 its	 expression	 in	 exponentially-growing	 cultures	 of	 M.	 tuberculosis	

(Materials	 and	 Methods).	 Before	 RNA	 extraction,	 colony	 PCR	 was	 performed	 to	

confirm	that	each	transformed	strain	(Table	5.2)	included	both	the	integrated	and	

autonomous	plasmids	(Figure	5.11).	
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Figure	 5.11.	 Colony	 PCR	 (Materials	 and	Methods,	 4.5.4)	was	 used	 to	 confirm	 retention	 of	 episomal	
pRH2521	and	integrated	pRH2502	plasmids	from	plated	colonies	of	transformed	strains	(Table	5.2).	
Top	row	shows	522bp	fragment	expected	with	primers	pRH2521-sgRNA	and	bottom	row,	the	224	bp	
fragment	from	pRH2502-dCas9	primers	(Table	5.1).	Left-hand	side	arrows	show	DNA	ladder	bands	at	
1517,	1000,	and	500	bp.	Positive	control	with	plasmid	DNA	and	negative	control	with	no	DNA.	

	

Initial	PCA	of	the	samples	indicated	that	the	samples	were	clustering	by	biological	

replicate	 with	 PC1	 highly	 correlated	 to	 replicate	 experiment	 (Figure	 5.12A).	

Surrogate	variable	analysis	identified	a	variable	that	correlated	well	to	the	replicate	

number;	and	after	batch	correction,	PC1	was	most	strongly	correlated	to	treatment	

with	ATc	(Figure	5.12B).	The	surrogate	variable	was	controlled	by	incorporating	an	

additional	factor	('experiment')	into	the	design	of	the	DESeq2	model	(Materials	and	

Methods).	

	

522 bp

224 bp

pRH2521-
sgRNA

pRH2502-
dCas9

+       -
controls
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Figure	5.12.	PCA	plots	before	and	after	batch	correction	with	Limma	(A)	PCA	shows	samples	clustering	
by	 replicate	 ('experiment').	 (B)	 Samples	 after	 batch	 correction	 no	 longer	 cluster	 by	 experimental	
replicate	 ('experiment').	 PC1	 shows	 clustering	 by	 ATc	 treatment	 ('treatment').	 Samples	 labelled	 by	
plasmid:	sgRNA	or	empty	vector	control.	Plots	made	with	ggplot2	(Wickham,	2016).	

	

Differential	expression	analysis	using	DESeq2	(Love	et	al.,	2014)	was	applied	across	

all	 RNA-seq	 samples	 (Materials	 and	 Methods)(A5.1	 Supplemental	 Tables:	

Ch5_Supp_Table_1).	DCas9	expression	was	shown	to	be	induced	by	ATc	(log2	fold-

change	=	4.8	 in	MtbdCas9_ctrl	 and	4.9	 in	MtbdCas9_sgRNA2,	padj	<	0.0001).	Using	an	

interaction	term	in	the	linear	model	to	reflect	the	differential	effect	of	ATc	treatment	
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on	 the	MtbdCas9_sgRNA2	 versus	MtbdCas9_ctrl	 strains,	 there	were	 19	 differentially	

expressed	 transcripts	 (Figure	 5.13):	 5	 downregulated	 transcripts	 (including	 as-

phoR)	and	14	upregulated	transcripts.	As-phoR	expression	was	inhibited	by	95%	

(log2	fold-change	=	-4.214).		

	

	
Figure	 5.13.	 Volcano	 plot	 showing	 differentially	 expressed	 transcripts	 with	 knock-down	 of	 as-phoR	
expression.	Blue	points	represent	statistically	significant	log2	fold	changes	(padj	<	0.05);	red	lines	indicate	
log2	fold	changes	greater	or	less	than	0.5;	triangles	indicate	points	with	padj	<	1030.	

	

5.5.5	Antisense	silencing	impacts	phoR	expression	

Unexpectedly,	 expression	 of	 phoR	 (Rv0758)	 was	 downregulated	 with	 antisense	

inhibition	by	approximately	50%	(Figure	5.13,	Figure	5.14).	To	better	visualise	the	

relative	 effects	 of	 antisense	 silencing	 on	 gene	 expression	 across	 the	 relevant	

genomic	 region,	 the	 ratio	 of	 mean	 per-base-pair	 read	 coverage	 in	 ATc-treated	

MtbdCas9_sgRNA2,	versus	untreated,	was	calculated	for	each	transcript	and	plotted	

against	genomic	coordinates	(Figure	5.15).	The	plot	shows	that	read	coverage	of	as-

phoR	is	lower	in	the	ATc-treated	strain	from	the	very	start	of	the	transcript,	which	

can	be	explained	by	a	transcriptional	'pause'	by	the	RNA	polymerase	as	it	collides	

with	the	dCas9	(Qi	et	al.,	2013).	Coverage	gradually	returns	to	the	level	of	untreated	

with	increasing	distance	from	the	target	site.	At	the	5'	end	of	phoR,	coverage	very	
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closely	mirrors	the	decreased	coverage	of	as-phoR	at	the	overlapping	coordinates,	

and	the	non-overlapping	second-half	of	the	transcript	has	less	coverage	than	ATc-

untreated	levels.	The	decrease	in	phoR	coverage	occurs	from	the	very	start	of	phoR	

transcription,	 260	 bp	 upstream	 from	 where	 the	 sgRNA:dcas9	 complex	 is	 bound	

(Figure	5.14,	Figure	5.15,	Figure	5.16),	however,	it	is	possible	that	the	decrease	in	

phoR	expression	 is	 due	 to	 the	 large	 sgRNA:dcas9	 complex	 blocking	 transcription	

elongation	from	both	directions.	

	

	
Figure	5.14.	Read	coverage	from	forward	strand	mapped	to	phoR	annotations	(representative	sample).	
In	silenced	strain	(Mtbdcas9_sgRNA2),	coverage	drops-off	at	approximately	852,600,	close	to	location	of	
M.	bovis	SNP	and	first	alternative	TSS.	Read	coverage	normalised	by	RPKM	(Materials	and	Methods).	
Coverage	visualised	with	IGV	(Robinson	et	al.,	2011).		Figure	made	with	BioRender.com.	
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Figure	5.15.	The	 log10	 ratio	of	mean	base	pair	read	coverage	of	ATc-treated	(induced)	vs.	untreated	
MtbdCas9_sgRNA2	is	plotted	for	each	transcript	(phoP=green,	as-phoR=coral,	phoR=blue)	 in	region	of	
852000-853500	(see	Materials	and	Methods).	Dashed	line	is	location	of	predicted	RNaseE	cleavage	site	
(Zhou	et	al.,	2023).	Dotted	 line	 is	TSS	 for	as-phoR.	Light	blue	bar	 is	 location	of	20nt	 sgRNA2	target	
sequence.	

	
Figure	5.16.	The	orientation	of	the	sgRNA:	dcas9	complex	relative	to	direction	of	transcription.	In	this	
experiment,	 the	sgRNA	 is	directed	to	 the	start	of	as-phoR	by	a	sequence	complementary	 to	 the	non-
template	strand	of	the	antisense	transcript	(i.e.,	antisense	to	phoR).	This	places	dcas9	upstream	of	the	
sgRNA	base-pairing	sequence	in	relation	to	as-phoR.	The	transcription	elongation	complex	is	thought	
to	 collide	 with	 the	 dcas9	 complex,	 thus	 inhibiting	 elongation	 of	 as-phoR.	 Transcription	 of	 phoR	 is	
initiated	from	the	opposite	strand	(sense),	and	the	sgRNA:dcas9	complex	is	bound	260	bp	downstream	
from	the	start	of	the	phoR	transcript.	In	this	case,	sgRNA	binding	to	target	sequence	may	be	disrupted	
by	the	RNAP	helicase	before	collision	(Qi	et	al.,	2013).	Created	with	BioRender.com	and	based	on	(Qi	et	
al.,	2013;	Rock	et	al.,	2017).	
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5.5.6	 Protein-coding	 genes	 associated	 with	 the	 cell	 membrane	 were	

differentially	expressed	with	antisense-silencing	

Eight	protein-coding	genes	were	upregulated	(log2	fold-change	>	0.5)	with	antisense	

silencing	(Table	5.3).	These	include	an	ATP-binding	cassette	glutamine	transporter,	

and	 the	 related	 genes	 in	 the	 operon,	 (Rv0072-Rv0075)	 and	both	 subunits	 of	 the	

membrane-associated	 Respiratory	 Complex	 I:	 NADH	 oxidoreductase,	 nuoNM	

(Rv3157-58).	Genes	Rv0073,	Rv0074	and	Rv0075,	nuoN	and	nuoM	are	hubs	in	the	

same	co-expression	network	module	('pink')	which	 is	enriched	for	 the	 functional	

category,	 'information	pathways'	 (out	of	148	total	hub	genes	 in	 the	module,	A2.1	

Supplemental	Tables:	Ch2_Supp_Table_4).	Two	further	transcripts	had	statistically-

significant	 log2	 fold	 changes	 of	 >	 0.5	 (Rv1230c	 and	 Rv0143c)	 and	 are	 both	

membrane-associated	proteins.	Rv1230c,	UniProtKB	ID:	O86313_MYCTU,	contains	

a	transglycosylase	SLT-2	domain	and	may	be	involved	in	peptidoglycan	catabolism.	

Rv0143c,	UniProtKB	 ID:	P96820_MYCTU,	 is	 a	probable	voltage-gated	Cl-	 channel.	

(Paysan-Lafosse	 et	 al.,	 2023).	All	 of	 these	upregulated	protein-coding	 transcripts	

showed	 downregulation	 in	 the	 ATc-treated	 Mtbdcas9_ctrl,	 versus	 levels	 equal	 to	

untreated	samples	in	ATc-treated	Mtbdcas9_sgRNA2.	(Figure	5.17).	All	6	differentially	

expressed	UTRs	were	adjacent	to	the	differentially	expressed	coding	gene	and	were	

similarly	 upregulated	 (Table	 5.3).	 Rv0314c,	 a	 gene	 for	 a	 possible	 membrane-

associated	protein	with	a	domain	of	unknown	function	was	the	only	protein-coding	

gene,	other	than	phoR,	downregulated	with	antisense	silencing.	None	of	the	genes	of	

the	PhoP	regulon	were	differentially	expressed,	as	defined	by	(Cimino	et	al.,	2012;	

Solans	et	al.,	2014)(A5.1	Supplemental	Tables:	Ch5_Supp_Table_1).	

	

It	 is	possible	 that	 the	 antisense	 transcript	 is	 acting	as	 an	 independent	 sRNA	and	

binding	 mRNA	 of	 these	 differentially	 expressed	 genes	 directly.	 To	 explore	 this	

possibility,	 firstly,	 the	 secondary	 structure	 of	 the	 predicted	 as-phoR	 transcript	

(using	 the	 most	 highly	 expressed	 region,	 bases	 1-144)	 was	 predicted	 with	 the	

RNAfold	web	server	(Gruber	et	al.,	2008).	A	 long	stem-loop	 is	predicted	by	base-

pairing	probabilities,	but	there	is	no	obvious	seed	region	for	target	binding	(Figure	

5.18).	The	as-phoR	sequence	was	then	used	with	targetRNA3	(Tjaden,	2023)	to	find	

potential	 target	 mRNA	 binding	 partners	 in	 the	 M.	 tuberculosis	 transcriptome.	

TargetRNA3	is	a	machine-learning	tool	trained	on	known	sRNA-mRNA	interactions,	

of	 which	 there	 are	 very	 few	 in	 M.	 tuberculosis.	 The	 only	 hits	 were	 phoR,	 and	
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Rv2521/bcp,	which	was	not	one	of	the	differentially	expressed	genes	and	likely	a	

false	positive.		A	more	focused	approach	was	tried	with	the	as-phoR	sequence	and	

sequences	of	the	differentially	expressed	protein-coding	genes	as	input	for	IntaRNA	

to	 predict	 RNA-RNA	 interactions	 based	 on	 folding	 and	 hybridization	 energies	

(Materials	 and	Methods	5.4.7)	 (Mann	et	 al.,	 2017).	 Several	 plausible	 interactions	

with	negative	free	energies	were	predicted	with	the	differentially	expressed	genes,	

however,	 no	 clear	 seed	 region	 of	 as-phoR	 emerged	 (A5.1	 Supplemental	 Tables:	

Ch5_Supp_Table_2).		

	
Table	 5.3.	Differentially-expressed	 genes	 resulting	 from	 the	 interaction	 between	ATc	 treatment	 and	
MtbdCas9_ctrl	versus	MtbdCas9_sgRNA	with	padj	<	0.05.	See	Materials	and	Methods,	5.4.6.	WGCNA	module	
refers	to	co-expression	network	module	to	which	the	transcript	was	assigned	in	Chapter	2;	*	indicates	a	
hub	transcript	with	a	high	module	connectivity	score.	

	
	

LOCUS NAME

log2 
FOLD-

CHANGE
ADJ               

P-VALUE FUNCTIONAL CATEGORY
WGCNA 
MODULE PRODUCT

Rv0072 1.296 2.49E-22 cell wall and cell processes tan*
glutamine 

transporter

Rv0073 1.985 2.82E-76 cell wall and cell processes pink*
glutamine 

transporter

putative_UTR:p82669_82747
UTR Rv0073-
Rv0074 2.066 1.31E-40 non-coding RNA pink* between Rv0073-74

Rv0074 1.706 2.19E-76 conserved hypotheticals pink*
conserved 

hypothetical

Rv0075 1.407 4.09E-61
intermediary metabolism and 

respiration pink*
prob 

aminotransferase

putative_UTR:p85169_85508
3' UTR 
Rv0075 0.667 1.42E-06 non-coding RNA skyblue*

overlaps Rv0076c 
(head-to-head)

putative_UTR:m168648_168703
3' UTR 
Rv0143c 0.826 5.56E-06 non-coding RNA brown overlaps Rv0142

Rv0143c 1.083 2.19E-34 cell wall and cell processes brown
membrane protein 

(possible Cl- channel)

putative_UTR:m382621_382878
3' UTR 
Rv0314c -0.479 6.66E-04 non-coding RNA midnightblue

Rv0314c -0.524 4.50E-02 cell wall and cell processes darkgreen membrane protein

Rv0634c 0.280 2.57E-02
virulence, detoxification, 

adaptation black
Possible glyoxalase II 
(hydroxyacylglutathi

putative_sRNA:m852286_852683 as_phoR -4.214 4.95E-144 non-coding RNA darkturquoise* antisense to phoR

Rv0758 phoR -1.135 3.50E-28 regulatory proteins lightgreen* sensor kinase

putative_sRNA:m1073103_1073304
antisense 
Rv0959 -0.782 3.31E-03 non-coding RNA yellow*

Rv1230c 0.854 2.62E-18 cell wall and cell processes darkgreen
prob membrane 

protein

putative_sRNA:p1766474_1766851
antisense 
Rv1562 (treZ ) 0.999 2.38E-05 non-coding RNA red

Rv3157 nuoM 0.532 7.10E-08
intermediary metabolism and 

respiration pink*
NADH-ubiquinone 
oxidoreductase 

Rv3158 nuoN 0.567 7.88E-11
intermediary metabolism and 

respiration pink*
NADH-ubiquinone 
oxidoreductase 

putative_UTR:p3527386_3527468 3'UTR Rv3158 0.638 2.88E-04 non-coding RNA pink*
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Figure	 5.17.	 Plot	 of	 normalised	 counts	 versus	 strain	 for	 A)	 nuoMN	 (Rv3157	 and	 Rv3158)	 and	 B)	
glutamine	transport	operon,	Rv0073-Rv0075.	Bar	represents	median	of	normalised	counts	from	three	
independent	biological	replicates.	

	

	

	
Figure	5.18.	Secondary	structure	of	as-phoR	as	predicted	by	RNAFold	(Gruber	et	al.,	2007).	Base-pairing	
probabilities	scaled	0-1,	with	red	representing	the	highest	confidence	interactions	
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5.5.7	 Two	 antisense	 transcripts	 are	 differentially	 expressed	 with	 as-phoR	

silencing	

An	antisense	transcript	(putative_sRNA:p1766474_1766851)	coding	opposite	treZ	

(Rv1562)	was	 also	 upregulated,	 however,	 unlike	 the	 upregulated	 protein-coding	

genes,	this	transcript	was	not	downregulated	in	the	ATc-treated	MtbdCas9_ctrl	strain	

(Figure	 5.19A).	 TreZ	 is	 involved	 in	 trehalose	 synthesis--a	 disaccharide	 used	 for	

carbon	storage,	 incorporated	 into	phospholipids	and	 involved	 in	maintaining	 the	

mycolic	 acid	 cell	 wall	 in	 M.	 tuberculosis.	 (Kalscheuer	 &	 Koliwer-Brandl,	 2014).	

Antisense	transcription	begins	opposite	a	region	in	the	second	half	of	the	gene	with	

a	 TSS	 recorded	 at	 1766472	 (Figure	 5.20A).	 An	 antisense	 transcript	

(putative_sRNA:m1073103_1073304)	complementary	to	the	5'	end	of	Rv0959	was	

downregulated	 with	 as-phoR	 silencing	 (Figure	 5.19B).	 Transcription	 of	 this	

antisense	initiates	at	a	predicted	TSS	(1073304)	from	within	the	54	bp	intergenic	

region	between	Rv0959	and	Rv0959A	(vapB9)	from	what	could	be	a	bi-directional	

promoter	 (Figure	 5.20B).	 Rv0959	 is	 an	 uncharacterised	 protein	 thought	 to	 be	

associated	with	the	cell	membrane	(Mawuenyega	et	al.,	2005)	and	homologous	to	

the	 transcriptional	 repressor	 of	 a	 nitrate	 reductase	 operon	 in	 Corynebacterium	

glutanicum,	ArnR	(Huang	et	al.,	2015).	VapB9	is	the	antitoxin	member	of	a	proposed	

toxin-antitoxin	system	(Ramage	et	al.,	2009).		
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Figure	 5.19.	 Plots	 of	 normalised	 counts	 versus	 strain	 for	 A)	 antisense-treZ	
(putative_sRNA:p1766474_1766851)	and	B)	antisense-Rv0959	 (putative_sRNA:m1073103_1073304).	
Bar	represents	median	counts	for	three	independent	biological	replicates.	
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Figure	 5.20.	 Schematic	 of	 the	 relative	 position	 and	 lengths	 of	 differentially	 expressed	 antisense	
transcripts.	 A)	 putative_sRNA:p1766474_176685	 is	 coded	 opposite	 treZ	 with	 a	 TSS	 at	 1766472.	 B)	
putative_sRNA:m1073103_1073304	('as')	is	initiated	in	intergenic	region	between	3'	end	of	Rv0959	and	
5'	end	of	vapB9	(Rv0959A)	(TSS	at	1073304).	There	are	overlapping	-10	promoter	sequences	(TAYgAT)	
for	the	antisense	and	vapB9	(Newton-Foot	&	Gey	van	Pittius,	2013).	Figures	made	with	BioRender.com	

	

5.5.8	ATc	treatment	results	in	differentially	expressed	genes	in	both	control	

and	sgRNA	expressing	strains	

420	statistically	significant	differences	 (padj	<	0.05)	were	observed	between	ATc-

treated	and	untreated	MtbdCas9_ctrl	and	343	significant	changes	between	the	ATc-

treated	 and	 untreated	 MtbdCas9_sgRNA2	 (Figure	 5.21,	 A5.1	 Supplemental	 Tables:	

Ch5_Supp_Table_3).	This	 indicates	between	5-6%	of	 the	 transcripts	evaluated	(in	

total,	7059	transcripts,	 including	predicted	UTR	regions	and	antisense	RNAs)	are	

differentially	 expressed	 in	 response	 to	 ATc	 treatment	 alone,	 in	 either	 plasmid	

context.	 The	 protein	 coding	 genes	 changed	 were	 enriched	 for	 KEGG	 pathways:	

"Biosynthesis	 of	 secondary	 metabolites",	 "Microbial	 metabolism	 in	 diverse	

environments",	 and	 "Biosynthesis	 of	 cofactors"	 (Kanehisa	 et	 al.,	 2022).	 Gene	 Set	

Enrichment	Analysis	(Subramanian	et	al.,	2005)	of	ranked	 log2	 fold-changes	with	

ATc	treatment	in	MtbdCas9_sgRNA2	and	MtbdCas9_ctrl	showed	higher	ranked	changes	

were	 enriched	 for	 genes	 from	 pathways:	 "ABC	 transporters",	 "Oxidative	

phosphorylation"	and	"Homologous	recombination".	Contrasting	MtbdCas9_sgRNA2	

versus	 MtbdCas9_ctrl	 in	 the	 ATc-treated	 condition,	 there	 were	 29	 differentially	

expressed	 genes	 (A5.1	 Supplemental	 Tables:	 Ch5_Supp_Table_3).	 There	were	 no	
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statistically	 significant	 differentially	 expressed	 genes	 between	 untreated	

MtbdCas9_sgRNA2	and	MtbdCas9_ctrl	samples.		

	

	
Figure	 5.21.	 Number	 of	 differentially	 expressed	 genes	 with	 ATc	 treatment	 in	 MtbdCas9_sgRNA2	 and	
MtbdCas9_ctrl	 strains.	padj	<	0.05.	175	genes	were	differentially	expressed	with	ATc	 treatment	 in	both	
strains.	

	

5.6	DISCUSSION	

The	 aims	 of	 this	 chapter	 were	 to	 verify	 expression	 of	 a	 predicted	 antisense	

transcript	that	overlaps	the	5'	coding	region	of	phoR,	to	silence	expression	of	this	

transcript	using	CRISPRi	and	 to	evaluate	 the	differentially	expressed	genes	using	

RNA-seq.	 Expression	 of	 as-phoR	 in	 exponentially	 growing	 M.	 tuberculosis	 was	

successfully	silenced	using	a	CRISPRi	system.	RNA-seq	analysis	revealed	that,	with	

silencing	 of	 as-phoR,	 10	 protein-coding	 genes	 and	 two	 additional	 antisense	

transcripts	 were	 differentially	 expressed	 (|log2	 fold-change|	 >	 0.5,	 padj	 <	 0.05),	

including	 the	downregulation	of	phoR	expression.	 Surprisingly,	 considering	phoR	

expression	 was	 downregulated	 by	 50%,	 none	 of	 the	 known	 genes	 of	 the	 PhoP	

regulon	were	differentially	expressed.		

	

5.6.1	As-phoR	silencing	reduces	expression	of	phoR	

Upon	as-phoR	silencing,	 there	was	a	decrease	 in	phoR	expression	 that	correlated	

well	with	as-phoR	expression	across	the	same	region	of	the	genome.	It	is	important	

to	 consider	 that	 measurement	 of	 RNA	 transcript	 abundance	 by	 RNA-seq	 is	 a	
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'snapshot'	 of	 the	 relative	 abundances	 of	 various	 transcripts	 in	 the	 cells	 at	 a	

particular	moment	in	time	and	therefore,	related	to	both	the	transcription	level	of	a	

particular	gene	and	to	the	stability	of	the	mRNA	transcript.	The	pattern	observed	

here	 could	 be	 interpreted	 to	 be	 a	 result	 of	 as-phoR	 regulation	 of	 phoR	 mRNA	

stability:	in	absence	of	the	antisense,	there	is	a	decrease	in	stable	phoR	transcripts	

and/or	more	rapid	degradation	of	the	mRNA.		

	

Binding	 of	 antisense	 transcripts	 to	 a	 mRNA	 can	 influence	 its	 vulnerability	 to	

cleavage	 by	 endoribonucleases.	 RNaseIII	 typically	 targets	 double-stranded	 RNA	

molecules,	 and	 widespread	 antisense	 transcription	 has	 been	 proposed	 as	 a	

mechanism	for	fine-tuning	mRNA	transcript	levels	by	binding	to	sense	transcripts	

and	 creating	 double-stranded	 templates	 (Dawson	 et	 al.,	 2022;	 Lasa	 et	 al.,	 2011;	

Lybecker	 et	 al.,	 2014;	 Ruiz	 de	 los	 Mozos	 et	 al.,	 2013).	 In	 a	 recent	 study	 in	

Mycobacteria,	 an	 antisense	 RNA	 was	 found	 to	 decrease	 transcript	 stability	 and	

protein	expression,	presumably	by	blocking	access	to	the	ribosome	binding	site	(Li	

et	al.,	2022).	Antisense	expression	was	also	responsible	for	differential	expression	

of	 genes	 in	 a	 novel	 toxin-antitoxin	 bicistron	 in	M.	 tuberculosis,	 where	 antisense	

binding	creates	a	double-stranded	RNA	molecule	which	is	specifically	targeted	by	

RNaseIII	 (with	 decreased	 antisense	 expression	 leading	 to	 inversely	 proportional	

increase	in	sense	abundance)	(Dawson	et	al.,	2022).		

	

In	 the	work	presented	here,	a	decrease	 in	as-phoR	expression	appears	 to	 lead	 to	

decreased	mRNA	stability,	rather	than	the	increase	one	would	expect	if	phoR	mRNA	

half-life	 was	 being	 regulated	 by	 RNaseIII.	 If	 this	 interpretation	 of	 the	 results	 is	

correct,	 it	would	be	a	novel	mechanism	of	antisense	regulation	in	M.	tuberculosis.	

However,	in	other	prokaryotes	there	are	several	documented	examples	of	antisense	

stabilisation	of	mRNA.	For	example,	in	E.	coli,	overexpression	of	an	antisense	RNA,	

ArrS,	was	found	to	stabilise	processed	isoforms	of	gadE	mRNA	(Aiso	et	al.,	2014).	

ArrS	was	 strongly	 induced	 in	 stationary	 and	 acid	 pH	 conditions,	 similarly	 to	 as-

phoR.	In	Listeria	monocytogenes,	UTRs	from	two	different	mRNAs	bind	and	create	a	

more	stable,	double-stranded	chimera	that	resists	5'-3'	exoribonuclease	digestion	

by	RNase	J1	(Ignatov	et	al.,	2020).	In	cyanobacteria,	 	an	antisense	was	found	that	

stabilised	the	sense	mRNA	by	occluding	a	RNaseE	cleavage	site	(Sakurai	et	al.,	2012).	
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There	 remains	 the	 possibility	 that	 the	 sgRNA:dcas9	 complex	 is	 interfering	 with	

transcription	of	both	the	targeted	antisense	transcript	and	phoR	on	the	sense	strand.	

Strand-specificity	of	the	inhibition	of	transcriptional	elongation	is	well-documented	

both	 in	 E.	 coli	 (Qi	 et	 al.,	 2013)	 and	 mycobacteria,	 where	 sgRNAs	 targeting	 the	

template	strand	of	a	gene	target	were	ineffective	at	silencing	the	target	transcript	

(Choudhary	et	al.,	2015;	Li	et	al.,	2022;	Singh	et	al.,	2016).	However,	Howe	et	al.	

found	that,	at	certain	eukaryotic	gene	loci,	CRISPRi	was	not	strand-specific,	causing	

transcriptional	changes	in	both	the	sense	and	antisense	directions	due	to	chromatin	

interactions	(Howe	et	al.,	2017).	As	a	decrease	in	phoR	read	coverage	was	observed	

beginning	260	bp	upstream	of	where	the	sgRNA:dCas9	complex	was	bound,	steric	

hindrance	 of	 phoR	 transcription	 is	 not	 supported.	 To	 completely	 rule	 out	 this	

possibility	 of	 steric	 interference,	 or	 more	 profound	 chromatin	 changes,	 control	

sgRNAs	targeting	the	sense	strand	opposite	the	antisense	sgRNA	(i.e.	targeting	the	

template	strand	of	as-phoR)	could	be	tested.		

	

5.6.2	 The	 intergenic	 region	 between	 phoP	 and	 phoR	 may	 be	 involved	 in	

translational	regulation	of	phoR	

The	transcription	and	translation	of	phoR	may	involve	several	post-transcriptional	

regulatory	 elements	 that	 may	 allow	 for	 fine-tuning	 and	 more	 judicious	 protein	

production.	 Recent	 studies	 have	 implicated	 the	 translation	 of	 sORFs	 found	 in	 5'	

leaders	 of	M.	 tuberculosis	 coding	 transcripts	 in	 regulation	 of	 translation	 of	 the	

downstream	 gene	 (Kipkorir	 et	 al.,	 2024).	 A	 careful	 examination	 of	 the	 phoPR	

transcriptional	unit	and	the	44	bp	intergenic	region	found	between	the	two	genes	

revealed	a	short	open	reading	frame	(sORF)	of	18	codons	confirmed	to	be	translated	

with	ribosomal	profiling	(Figure	5.22)	(Sawyer	et	al.,	2021;	Smith	et	al.,	2022).	This	

sORF	 is	 initiated	at	 an	overlapping	 stop/start	 codon	at	 the	end	of	phoP	 	with	 an	

'AUGA'	pattern	which	is	characteristic	of	the	termination/re-initiation	mechanism	

('TeRe')	described	previously	in	other	bacteria	and	in	mycobacterial	riboswitches	

(D’Halluin	et	al.,	2023;	Huber	et	al.,	2019;	Kipkorir	et	al.,	2024)	(Figure	5.23).	The	

sORF	is	in	the	same	reading	frame	as	downstream	phoR.	Possibly	the	translation	of	

the	sORF	initiates	at	the	overlapping	stop/start	codon	and	facilitates	handover	of	

the	ribosomes	to	the	TIS	of	phoR	such	as	proposed	by	(D’Halluin	et	al.,	2023).		
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Figure	5.22.	There	is	a	sORF	predicted	between	phoP	and	phoR	that	is	actively	translated.	Screenshot	
from	https://mtb.wadsworth.org	which	presents	ribosomal	profiling	data	(Ribo-seq	and	Ribo-RET)	and	
sORF	predictions	from	(Smith	et	al.,	2022).		

	

	
Figure	5.23.	Close	up	of	intergenic	region	between	phoP	and	phoR.	Coding	sequences	in	cyan,	antisense	
in	rose,	sORF	is	in	green	with	'AUGA'	stop/start	codon	in	green	box.	Possible	purine-rich	Shine-Dalgarno	
in	blue	box.	Predicted	cleavage	sites	indicated	by	scissors	(Zhou	et	al.,	2023).	Sequences	visualised	with	
Artemis	genome	browser.	

	

Within	the	sORF	are	reported	potential	RNaseE	cleavage	sites	(Figure	5.23)	(Zhou	

et	 al.,	 2023).	 Unlike	 RNaseIII	 which	 targets	 double-stranded	 RNA,	 RNaseE	

preferentially	cleaves	at	single	stranded	regions	of	RNA,	often	between	the	genes	of	

polycistronic	 transcripts,	 and	 is	 crucial	 for	 mRNA	 degradation	 in	 mycobacteria	

(Zhou	et	al.,	2023),	as	well	as	in	E.	coli	and	Bacillus	subtilis	(DeLoughery	et	al.,	2018;	

Trinquier	et	al.,	2020).	These	cleavage	sites	can	be	masked	by	ribosomes	or	by	non-

coding	RNA	binding	to	nascent	transcripts	(Durand	et	al.,	2015;	Zhou	et	al.,	2023).	

Cleavage	in	the	single-stranded	intergenic	region	between	the	two	transcripts	could	

impact	mRNA	stability	of	either	transcript	and	may	be	a	mechanism	to	regulate	the	

stoichiometry	 of	 transcript	 expression	 (DeLoughery	 et	 al.,	 2018;	Trinquier	 et	 al.,	

2020).	
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Active	translation	appears	to	promote	transcriptional	elongation	in	M.	tuberculosis.	

In	E.	coli,	translated	mRNAs	are	recognised	to	be	more	stable	as	ribosomes	can	block	

or	mask	RNase	 cleavage	 sites,	 or	 interfere	with	RNase	 scanning	 (Iost	&	Dreyfus,	

1995;	 Richards	 &	 Belasco,	 2019);	 and	 the	 different	 mRNA	 secondary	 structure	

conformations	can	change	the	availability	of	translational	initiation	sites	and	RNase	

cleavage	sites	(Richards	&	Belasco,	2019;	Trinquier	et	al.,	2020).	In	M.	tuberculosis,	

Ju,	 et	 al.	 (Ju	 et	 al.,	 2024),	 demonstrated	 that	 the	 RNA	 Polymerase	 complex	 is	

relatively	inefficient	compared	to	E.	coli,	and	is	prone	to	stalling	200-500	bp	from	

the	TSS,	unless	the	transcript	is	being	translated.	Antisense	transcripts,	which	are	

not	 typically	 translated,	 were	 observed	 to	 have	 even	 steeper	 drop-off	 of	

transcription	 than	 the	 coding	 transcripts.	However,	 these	 incomplete	 transcripts	

were	determined	to	be	a	result	of	the	inefficient	sigma	factor	in	the	Mycobacterial	

RNA	polymerase	complex,	rather	than	RNase	degradation	(Ju	et	al.,	2024).	

	

Potentially,	the	translation	efficiency	of	a	transcript	can	be	influenced	by	the	folding	

of	the	nascent	mRNA	transcript,	which	may	block	ribosome	binding	to	translation	

initiation	 sites	 (TIS).	 As-phoR	binding	 could	 alter	 the	 secondary	 structure	 of	 the	

nascent	phoR	mRNA	(including	the	sORF)	and	allow	access	to	the	TIS,	resulting	in	

increased	 mRNA	 stability.	 Further	 work	 to	 investigate	 the	 RNA	 folding	 of	 the	

polycistronic	 transcript	 could	be	done	using	 in-line	probing,	which	evaluates	 the	

relative	rate	of	spontaneous	cleavage	of	the	RNA	backbone.	This	rate	is	highest	in	

single-stranded	 regions	 of	 a	 RNA	molecule	 versus	 structured,	more	 constrained,	

regions	which	are	resistant	to	cleavage	(Regulski	&	Breaker,	2008),	and	could	be	

leveraged	to	predict	secondary	structure	of	the	intergenic	region	between	phoP	and	

phoR.		The	region	could	be	probed	with	increasing	concentrations	of	as-phoR,	using	

a	similar	strategy	as	probing	riboswitch	structure	with	ligands	(Kipkorir	et	al.,	2024;	

Regulski	&	Breaker,	2008).	

	

5.6.3	Decrease	in	phoR	expression	does	not	impact	genes	of	the	PhoP	regulon	

in	exponential	growth	

In	spite	of	the	decrease	in	phoR	expression,	silencing	of	the	as-phoR	transcription	

had	no	apparent	 effect	 on	expression	of	phoP	 or	 on	 the	other	 genes	of	 the	PhoP	

regulon	 (Cimino	 et	 al.,	 2012;	 Gonzalo-Asensio	 et	 al.,	 2008).	 Other	 genes	 were	

differentially	expressed	in	the	silenced	strain	that	have	not	previously	been	linked	
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to	 the	 PhoP	 regulon,	 and	 it	 is	 unclear	 whether	 these	 effects	 are	 due	 to	 the	

downregulation	of	phoR	or	by	the	abolition	of	direct	interactions	with	the	antisense.	

Off-target	interactions	of	the	sgRNA	were	ruled	out	by		following	up	on	all	BLAST	

hits	 of	 the	 target	 sequence	plus	 two	nucleotides	 of	 the	PAM	 sequence	 that	were	

greater	or	equal	to	9	bp,	to	confirm	that	none	of	the	potential	off-target	hits	were	

differentially	expressed	(Cui	et	al.,	2018;	Larson	et	al.,	2013).		

	

This	study	showed	rather	modest	log2	fold-changes	with	inhibition	of	the	antisense.	

This	 was	 not	 unexpected	 in	 exponential	 growth	 conditions	 where	 neither	 the	

antisense	 or	 the	 phoPR	 operon	 are	 strongly	 expressed,	 and	 we	 have	 included	 a	

relatively	 low	 (+/-	0.5)	 log2	 fold-change	 cut-off	 to	 evaluate	 subtle	 changes	 in	 the	

transcriptome.	 Genes	 related	 to	 a	 proposed	 glutamine	 transport	 operon	 were	

downregulated	 upon	 ATc	 treatment	 in	 the	 control	 strain	 (Mtbdcas9_ctrl)	 and	

unaffected	 by	 ATc	 treatment	 in	 the	 antisense-silenced	 strain	 (Mtbdcas9_sgRNA2).	

Glutamine	is	an	essential	component	of	the	cell	wall	of	pathogenic	mycobacteria	and	

necessary	 for	nitrogen	assimilation	and	adaptation	to	 low	pH	(Harth	et	al.,	1994;	

Parveen	 et	 al.,	 2023;	 Tripathi	 et	 al.,	 2013).	 The	 respiratory	 Complex	 I	 NADH	

dehydrogenase	system	(nuoNM),	which	is	regulated	to	maintain	redox	homeostasis	

in	response	to	stress	(Liang	et	al.,	2023),	and	two	other	membrane-associated	genes	

were	similarly	affected	by	ATc	treatment	and	antisense	silencing.		

	

It	is	possible	that	these	genes	are	downregulated	in	response	to	stress	associated	

with	the	undirected	Spy	dCas9	 in	Mtbdcas9_ctrl,	which	may	have	more	toxic	effects	

than	 the	 sgRNA-bound	 complex	 in	 Mtbdcas9_sgRNA2	 (Rock	 et	 al.,	 2017).	

Alternatively,	ATc	itself	could	potentially	cause	membrane	stress	as	the	molecules	

diffuse	through	and	interact	with	the	cell	membrane	(Ehrt	et	al.,	2005;	Oliva	et	al.,	

1992).	However,	the	strains	tested	here	did	not	differ	in	viability	after	24	hours,	and	

toxic	effects	on	growth	of	CRISPRi	strains,	with	and	without	the	sgRNA	insert,	have	

not	previously	been	observed	in	this	lab	with	ATc	concentrations	of	50-200	ng/mL	

(Faulkner,	 2021),	 in	 agreement	 with	 other	 published	 results	 (Choudhary	 et	 al.,	

2015;	Singh	et	al.,	2016).	The	low	constitutive	expression	of	phoPR	in	exponential	

growth	and	the	subtle	effects	of	silencing	the	target,	may	mean	these	changes	are	

more	 obvious	 than	 in	 systems	 where	 silencing	 causes	 a	 more	 impressive	

transcriptomic	response.	It	is	also	possible	that	these	changes	have	been	previously	
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undetected	with	the	more	routinely	used	RT-qPCR	assessment	with	specific	genes	

of	interest.	If	the	experiment	is	repeated	in	a	condition	where	the	phoPR	regulon	is	

induced,	such	as	low	pH,	hypoxia	or	oxidative	stress,	there	may	be	a	more	profound	

effect	 on	 the	 PhoP	 regulon;	 and	 if	 these	 are	 background	 effects	 rather	 than	

significant	interactions,	they	might	become	less	obvious.	

	

5.6.4	Further	Work	

There	is	much	to	do	to	further	characterise	the	role	of	as-phoR	in	M.	tuberculosis.	

Firstly,	 it	 would	 be	 prudent	 to	 confirm	 the	 strand-specific	 CRISPR-mediated	

inhibition	 of	 transcription	 in	 M.	 tuberculosis	 by	 creating	 strains	 with	 sgRNAs	

targeting	the	strand	opposite	the	sgRNA	used	for	targeting	as-phoR.	These	would	

target	 the	 phoR	 sense	 strand	 about	 260	 bp	 downstream	 from	 its	 start.	 sgRNAs	

targeting	 regions	 far	 from	 the	 TSS	 of	 a	 gene	 have	 been	 shown	 to	 be	 inefficient	

inhibitors	 of	 transcription,	 so	 no	 effect	 on	 sense	 transcription,	 or	 antisense	

transcription,	would	be	expected.		

	

Repeating	the	experiment	in	conditions,	such	as	low	pH	or	hypoxia,	which	induce	

the	 phoPR	 system	 and	 increased	 level	 of	 as-phoR	 expression,	 may	 give	 a	 more	

biologically	relevant	context	in	which	to	test	the	inhibition	of	as-phoR.	Mapping	the	

3'	 end	 of	 the	 transcript	 using	 3'RACE	 (Arnvig	 &	 Young,	 2009)	 would	 be	 a	

prerequisite	first	step	to	identifying	a	functional	transcript,	and	should	be	repeated	

in	 relevant	 conditions	 to	 identify	 any	 conditionally-processed	 transcripts.	

Complementing	 the	 CRISPRi	 strategy	 described	 here	 with	 an	 experiment	

overexpressing	the	antisense	with	an	exogenous	plasmid	could	be	insightful	(Li	et	

al.,	2022).	Another	orthogonal	approach	to	confirm	as-phoR's	direct	effect	on	phoR	

expression	might	 be	 to	 overexpress	 a	 synthetic	 sequence	 complementary	 to	 as-

phoR	with	a	tet-responsive	promoter	which	could	act	as	a	sponge	and	reduce	the	

ability	of	 as-phoR	 to	 interact	with	phoR	 (Sakurai	 et	 al.,	 2012)	and	measure	phoR	

transcript	 abundance	 with	 RT-qPCR	 with	 primers	 outside	 the	 as-phoR-

complementary	region.	Future	RT-qPCR	experiments	should	use	custom	primers	to	

generate	 strand-specific	 cDNA	 and	 accurately	 measure	 sense	 versus	 antisense	

expression.	 Proteomics	 assays,	 such	 as	 MS-SWATH,	 with	 the	 CRISPRi	 and	

overexpressed	strains	could	be	used	to	determine	any	differences	in	the	expression	

of	protein	products	with	antisense	expression.	Half-lives	of	phoR	mRNA	and	as-phoR	
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could	 be	 directly	 measured	 by	 treating	 with	 rifampicin	 to	 block	 de	 novo	 RNA	

synthesis	 (Moores	 et	 al.,	 2017).	 	 As	 mentioned	 earlier,	 it	 would	 be	 useful	 to	

understand	the	secondary	structure	of	the	phoR	intergenic	leader	by	analysing	the	

cleavage	pattern	with	and	without	as-phoR	RNA	(Kipkorir	et	al.,	2024).		

	

Finally,	 antisense	 transcription	 is	 pervasive	 in	M.	 tuberculosis,	 and	 in	 Chapter	 2,	

RNA-seq-based	 prediction	 methods	 identified	 over	 1100	 antisense	 transcripts.	

Some	of	these	transcripts	overlap	5'	UTRs	or	inter-cistronic	UTRs	that	may	contain	

sORFs	as	regulatory	features.	For	example,	a	short	transcript	that	may	be	part	of	the	

5'	UTR	of	Rv0756c,	is	antisense	to	the	5'	end	of	phoP	and	has	a	TSS	at	851736	(Shell	

et	 al.,	 2015)	 (Figure	 5.24).	Within	 the	 5'	 UTR	 of	phoP	 is	 a	 51bp	 predicted	 sORF	

(Sawyer	et	al.,	2021;	Smith	et	al.,	2022).	Translation	of	this	sORF	may	regulate	phoP	

expression	 in	 certain	 conditions	by	 inhibiting	 translation,	 as	 in	other	 cases	 in	M.	

tuberculosis	(Kipkorir	et	al.,	2024),	though	it	lacks	an	overlapping	stop/start	codon	

with	 the	 downstream	 phoP	 ORF.	 It	 would	 be	 interesting	 to	 do	 a	 genome-wide	

investigation	of	antisense	transcripts	that	overlap	predicted	sORFs	in	5'	and	inter-

cistronic	UTRs	to	look	for	functional	enrichments	or	other	ways	of	characterising	

these	transcripts	and	the	genes	they	may	regulate.	

	

	
Figure	5.24.	Translation	of	a	sORF	found	in	5'	leader	of	phoP	may	be	regulated	by	antisense	transcript.	
Figure	made	with	BioRender.com.	

	

5.7	CONCLUSIONS	

In	this	chapter,	the	expression	of	a	non-coding	antisense	transcript,	antisense-phoR,	

was	verified	opposite	the	membrane-bound	kinase	member	of	an	important	two-

component	system	in	M.	tuberculosis,	PhoPR.	Expression	was	successfully	inhibited	
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in	 exponentially-growing	 culture	 using	 a	 CRISPR-inhibition	 system.	 Differential	

expression	 analysis	 of	 the	 CRISPRi	 strains	with	 untreated	 controls	 revealed	 that	

many	 stress	 response	 genes	 were	 disregulated	 in	 the	 ATc-treated	 strains,	 but	

several	 genes	 were	 returned	 to	 untreated	 levels	 of	 expression	 upon	 antisense	

silencing.	 These	 included	 genes	 involved	 in	 nitrogen	 assimilation	 and	 redox	

homeostasis,	but	no	known	members	of	the	PhoP	regulon.		

	

Unexpectedly,	expression	of	the	phoR	transcript	was	downregulated	by	50%.	This	

could	be	caused	by	steric	inhibition	or	chromatin	interference	by	the	sgRNA:dCas9	

complex	 or	 have	 a	 biologically	 relevant	 cause,	 such	 as	 stabilisation	 of	 the	 phoR	

mRNA	by	the	antisense.	As	translation	and	mRNA	stability	are	intrinsically	linked	in	

mycobacteria,	 antisense-phoR	 could	 potentially	 impact	 the	 translation,	 and	

therefore	stability,	of	phoR	by	binding	and	stabilising	mRNA	secondary	structure	

and	enhancing	translation	of	a	sORF	within	the	5'	leader.	Translation	of	the	sORF	

may	 impact	 access	 to	 a	 cleavage	 site	 and/or	 by	 facilitating	 phoR	 translation	 by	

improving	the	availability	of	the	phoR	TIS.	Dissecting	the	role	of	antisense	RNA	in	

this	 well-studied	 system	 will	 be	 useful	 for	 understanding	 the	 role	 of	 pervasive	

antisense	transcription	in	the	MTBC.	
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Chapter	6:	Conclusion	
	

The	host-adapted	species	of	 the	Mycobacterium	tuberculosis	 complex	have	nearly	

identical	genomes	but	have	adapted	to	specific	host	niches.	Phylogenomic	research	

has	identified	large	gene	losses	and	the	acquisition	of	virulence	gene	groups	such	as	

toxin/antitoxin	 systems	 and	 genes	 involved	 in	 regulation	 of	 lipid	metabolism	 as	

important	steps	in	the	evolution	from	free-living	bacteria	to	a	pathogenic	lifestyle	

(Sapriel	et	al.,	2019).	More	 limited	gene	 losses	have	 led	 to	divergence	within	 the	

MTBC	as	the	pathogens	exploited	particular	host	niches	(Brites	et	al.,	2018;	Gagneux,	

2018).	However,	 the	 limited	genetic	differences	within	 the	 complex	may	provide	

enough	diversity	 to	 support	 a	 highly	 flexible	 system	of	 post-transcriptional	 gene	

regulation	that	has	allowed	mycobacteria	to	adapt	and	respond	to	highly	variable	

host	extracellular	and	 intracellular	environments.	 In	this	 thesis,	 this	possibility	 is	

probed	 using	whole	 genome	 assays	 including	 transcriptomic	 analysis	 and	 global	

phenotypic	assays.	

	

6.1	Exploring	beyond	the	protein-coding	genome	

In	Chapter	2,	a	collection	of	M.	tuberculosis	 transcriptomic	data	 in	15	different	 in	

vitro	culture	conditions	are	searched	for	expressed	transcripts	outside	the	known	

protein	 coding	 annotation	 that	 could	 represent	 non-coding	 regulators	 or	

unannotated	 short	 peptides.	 The	 abundance	 and	 conditional	 expression	 of	 these	

'extra-annotated'	 transcripts,	 including	 nearly	 1200	 mostly	 ignored	 antisense	

transcripts	 and	 over	 1700	 untranslated	 regions	 within	 mRNAs,	 indicates	 huge	

potential	for	regulatory	control	that	extends	far	beyond	the	limited	number	of	short	

intergenic	 non-coding	 RNA	 and	 riboswitches	 that	 have	 been	 explored	 to	 date.	

Ribosome	profiling	studies	have	indicated	hundreds	of	unannotated	short	ORFs	in	

the	UTRs	of	coding	genes	that	are	uncharacterised	but	may	be	involved	in	regulating	

the	 transcription	 or	 translation	 of	 downstream	 genes.	 It	 is	 hard	 to	 see	 how	 a	

complete	understanding	of	gene	regulation	 in	 the	MTBC	can	 ignore	 the	potential	

role	 of	 these	 transcripts.	 To	 hint	 at	 the	 functional	 pathways	 involving	 these	

transcripts,	the	principle	of	'guilt	by	association'	was	applied	through	the	creation	

of	a	network	that	clustered	both	annotated	and	unannotated	expressed	transcripts	

by	 their	 co-expression	 across	 the	 range	 of	 tested	 culture	 conditions.	Within	 the	
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resulting	modules,	non-coding	transcripts	were	among	the	best-connected	nodes,	

indicating	their	transcription	is	likely	to	be	co-regulated	with	the	highly	connected	

protein	coding	genes.	Proof	of	concept	was	supported	by	individual	modules	that	

include	a	large	proportion	of	genes	from	known	regulons,	such	as	KstR	and	DosR.	

The	network	 is	a	resource	 for	mycobacterial	researchers	 to	 find	potential	ncRNA	

actors	 in	gene	pathways.	To	facilitate	the	exploration	of	modules,	a	web-app	was	

created	 which	 allows	 users	 to	 find	 ncRNA	 associated	 with	 particular	 modules,	

transcripts	or	genomic	coordinates.	

	

6.2	Back	to	the	basics:	discovering	what	is	essential	in	the	MTBC	

Determining	 the	 basic	 gene	 requirements	 for	 a	 cell	 to	 survive	 in	 a	 particular	

environmental	context	began	with	efforts	to	determine	the	'minimal'	genome	and	

the	development	of	global	transposon	mutagenesis	(Hutchison	et	al.,	1999).	Tn-seq	

experiments	 in	 M.	 tuberculosis	 and	 other	 bacteria	 demonstrated	 that	 the	

'essentiality'	of	genes	was	subject	to	the	conditions	in	which	the	cell	was	exposed	to.	

Differences	 in	 nutrient	 availability,	 extracellular	 pH,	 oxygen	 levels,	 metal	

concentrations	and	drug	treatments	each	produce	a	different	set	of	'essential'	genes.	

The	particular	ecological	niche	created	by	the	host	immune	system	and	inhabited	by	

the	members	of	the	MTBC	will	be	different	for	the	human	versus	animal-adapted	

species,	 and	 consequently,	 the	 set	 of	 essential	 genes	 may	 also	 be	 different.	 In	

Chapter	3,	parallel	tn-seq	libraries	from	human-adapted	M.	tuberculosis	and	animal-

adapted	M.	bovis	were	analysed	to	identify	differences	in	the	gene	requirements	for	

in	vitro	exponential	growth	between	the	species.	Tn-seq	assays	are	always	subject	

to	 stochastic	 factors	 related	 to	 the	 limited	number	of	 insertion	 sites	 in	 any	 gene	

region,	 the	number	and	representation	of	unique	clones	sequenced	and	technical	

bottlenecks.	There	are	several	statistical	methods	to	identify	truly	essential	genes	

versus	genes	that	may	appear	essential	because	the	mutants	are	not	represented	in	

the	sample	sequenced	(either	because	they	have	a	mild	growth	defect	or	because	of	

chance)	but	comparing	the	results	of	different	tn-seq	libraries	created	in	different	

bacterial	species	is	not	straightforward.		

	

The	analysis	 in	this	chapter	presented	two	different	approaches	to	identify	genes	

that	 are	more	 required	 in	 either	M.	 tuberculosis	or	M.	 bovis.	 The	 TRANSIT	HMM	
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method	 was	 used	 for	 each	 library	 independently	 to	 determine	 the	 essentiality	

probability	 for	 each	 site	 depending	 on	 the	 essentiality	 of	 the	 adjacent	 sites.	 The	

results	were	then	compared	for	orthologous	genes	in	the	two	species.	A	quantitative	

statistical	approach,	TRANSIT	resampling,	was	also	used	to	determine	if	there	was	

any	 statistically	 significant	 difference	 in	 the	 mean	 number	 of	 reads	 within	 the	

specified	 gene	 region.	 The	 results	 of	 both	 methods	 indicated	 a	 number	 of	

orthologous	genes	that	code	for	identical	proteins	are	differently	required	between	

the	 two	 species,	 especially	 those	 related	 to	 intermediary	 metabolism,	 lipid	

metabolism	 and	 cell	 wall	 processes.	 One	 intriguing	 candidate	 for	 further	

characterisation	is	a	potential	transcriptional	regulator,	Mb1859/Rv1828,	which	is	

identical	in	both	genomes,	however,	only	appears	to	be	essential	for	growth	in	M.	

tuberculosis	and	may	be	involved	in	nitrogen	metabolism.	In	addition,	15	non-coding	

RNA	 transcripts	 were	 found	 to	 have	 different	 essentiality	 calls	 with	 the	 HMM	

method.		

	

In	Chapter	4,	the	requirements	for	M.	bovis	survival	were	extended	to	investigate	

genes	essential	to	survive	conditions	of	oxidative	stress–a	condition	the	pathogen	

will	encounter	within	the	phagosomes	of	mammalian	macrophages.	Parallel	tn-seq	

libraries	 grown	 with	 and	 without	 menadione	 were	 compared	 using	 TRANSIT	

resampling.	 18	 genes	 were	 identified	 that	 were	 conditionally-essential	 in	 the	

menadione	treated	library.	These	included	genes	involved	in	the	electron	transport	

chain,	lipid	metabolism	and	those	associated	with	membrane	integrity.	Two	genes	

that	were	only	conditionally	essential	for	M.	bovis	in	menadione	were	required	for	

normal	in	vitro	growth	in	M.	tuberculosis	(Chapter	3).	FadD30,	a	potential	fatty	acid	

ligase	(Mb0411/Rv0404)	was	found	to	cause	a	growth	defect	for	M.	tuberculosis	in	

vitro	 growth	 and	 tolerated	 fewer	 insertions	 than	 the	 ortholog	 in	M.	 bovis.	 Iron	

transport	regulator,	irtA,	showed	a	difference	in	essentiality	between	the	human	and	

animal-adapted	strains,	as	well,	with	M.	bovis	more	tolerant	of	 insertions	than	M.	

tuberculosis.	Regulating	iron	levels	is	crucial	for	maintaining	redox	homeostasis	and	

differences	in	the	regulation	of	iron	transport	may	be	related	to	known	variations	in	

utilisation	of	heme	between	the	strains.	
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6.3	Making	'antisense'	of	the	PhoPR	two-component	system	

Chapter	 5	 uses	 a	 more	 focussed	 approach,	 targeting	 an	 antisense	 transcript,	

identified	in	Chapter	2,	that	is	transcribed	on	the	opposite	strand	of	an	important	

two-component	gene	regulatory	system	acting	at	the	host-pathogen	interface.	Using	

tn-seq	 studies	 in	 mammalian	 hosts,	 the	 PhoPR	 system	 has	 been	 identified	 as	 a	

requirement	for	virulence	in	both	M.	tuberculosis	and	in	M.	bovis	(Gibson	et	al.,	2022;	

Smith,	C.M.	et	al.,	2022),	despite	a	SNP	in	M.	bovis	that	causes	lower	virulence	when	

transferred	 to	 M.	 tuberculosis	 (Gonzalo-Asensio	 et	 al.,	 2014).	 Using	 a	 CRISPRi	

approach,	this	transcript,	as-phoR,	was	silenced	in	M.	tuberculosis	and	RNA-seq	was	

used	to	identify	differentially	expressed	genes.	The	abundance	of	phoR	mRNA	was	

downregulated	in	the	silenced	strains,	indicating	either	that	the	antisense	impacts	

phoR	abundance,	or	that	the	CRISPRi	system	interferes	with	transcription	on	both	

strands.	More	experiments	are	required	to	rule	out	the	latter	scenario,	but	a	model	

where	an	antisense	RNA	stabilises	the	phoR	mRNA	should	be	investigated	further.	

The	presence	of	a	sORF	and	regulatory	sequences	in	the	UTR	between	the	phoP	and	

phoR	 gene	 that	 may	 influence	 the	 translation	 of	 phoR	 is	 intriguing.	 If	 antisense	

regulation	 is	 essential	 to	 this	 system	 in	 M.	 tuberculosis,	 there	 may	 be	 similar	

examples	 elsewhere	 in	 the	 genome.	 This	 kind	 of	 post-transcriptional	 regulation	

could	 be	 useful	 for	 rapid	 detection	 and	 'fine-tuning'	 in	 the	 face	 of	 changing	

intracellular	conditions.		

	

6.4	Non-coding	RNA	in	host-adapted	gene	systems	

Members	of	 the	MTBC	have	evolved	 to	 infect	a	broad	range	of	hosts,	despite	 the	

narrow	differences	in	the	various	host-adapted	genomes.	Pathogenic	mycobacteria	

have	evolved	 from	free-living	species	 to	 intracellular	pathogens	and	 then	 further	

adapted	to	survive	and	spread	among	specific	mammalian	hosts	(Gagneux,	2018;	

Sapriel	 et	 al.,	 2019).	Phylogenomics	 can	 identify	 gene	deletions,	 acquisitions	 and	

mutations	that	indicate	host	leaps	among	the	phyla,	but	when	it	comes	to	comparing	

the	highly	similar	members	of	the	MTBC,	'the	devil	is	in	the	details'–such	as	the	little	

more	than	2000	SNPs	that	differentiate	the	reference	strains	of	M.	tuberculosis	and	

M.	bovis	 (Bigi	et	al.,	2016;	Garnier	et	al.,	2003).	A	 limited	number	of	comparative	

transcriptomic	 studies	 between	 different	 strains	 and	 species	 within	 the	 MTBC	

indicate	differences	in	gene	expression	and	regulation,	including	the	use	of	different	
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transcriptional	start	sites	and	antisense	transcription	resulting	from	SNPs	(Chiner-

Oms	et	al.,	2019;	Dinan	et	al.,	2014;	Golby	et	al.,	2007,	2013);	but	the	 function	of	

these	differently	expressed	non-coding	transcripts	remains	unclear.		

	

The	tn-seq	work	presented	in	this	thesis	has	also	demonstrated	a	difference	in	the	

required	genes	for	unrestricted	growth	between	human-adapted	M.	tuberculosis	and	

the	 animal-adapted	M.	 bovis.	 Tn-seq	 studies	 in	 culture	 conditions	 that	 replicate	

intracellular	 challenges,	 such	 as	 presented	 here	 with	M.	 bovis	 oxidative	 stress,	

indicate	 that	 the	 essential	 set	 of	 genes	 is	 also	 flexible	depending	on	 the	 external	

conditions.	 Constitutive	 gene	 expression	 means	 that	 the	 correlation	 between	

essentiality	and	transcription	is	not	robust	but	differently	required	genes	may	be	

regulated	 post-transcriptionally.	 Non-coding	 RNA	 may	 be	 involved	 in	 adapting	

protein	 expression	 to	 respond	 to	 the	 unique	 microenvironment	 created	 by	 the	

specific	 host	 immune	 system.	 Transcriptomic	 and	 proteomic	 studies	 have	

highlighted	differences	 that	 indicate	 the	PhoPR	 system	may	 respond	 to	different	

signals	and	regulate	different	genes,	including	non-coding	RNA	(García	et	al.,	2021;	

Malone	et	al.,	2018;	Solans	et	al.,	2014).	Therefore,	this	important	virulence	system,	

differing	in	genomic	sequence,	expression,	and	phenotype	between	the	human	and	

animal-adapted	 lineages,	 is	 an	 attractive	 system	 to	 examine	 the	 function	 of	

antisense	regulation	and	its	possible	implications	for	host-specific	regulation.		
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S2 Quartile-quartile plots of geometric distribution against M. tb replicate distributions

Mtb_22 Mtb_23
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