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Abstract 
Design and Discovery of Novel Bacterial Nanocompartment Proteins Using Deep Learning 
Tools 

Naail Kashif-Khan 

Encapsulins are prokaryotic protein-based organelles. These icosahedral protein 

compartments display diverse natural functions, including mineral storage and stress 

responses. Encapsulins also have applications in synthetic biology, drug delivery, vaccines, 

and metabolic engineering. There are over 6000 known encapsulins, but only a small sample 

have been characterised experimentally. The work presented probes the limits of current 

knowledge of encapsulins via two avenues of interrogation: 

(1) A dataset of over 1000 novel encapsulin candidates is presented, discovered from 

metagenomics data using bioinformatics and deep learning tools. These novel encapsulins 

may display new structural features or biological functions. Three of these novel encapsulin 

candidates were recombinantly expressed in E. coli and one of the recombinant proteins was 

purified for biophysical characterisation. 

(2) Deep learning tools for protein structure prediction and design were applied to 

encapsulin proteins, to design putative encapsulins with promising physicochemical 

properties. A computational pipeline was used to select 48 encapsulin candidates from 

thousands of initial designs. The resulting recombinant proteins were investigated 

experimentally using laboratory automation techniques. One chimeric variant of an 

encapsulin from Quasibacillus thermotolerans was characterised biophysically. 

Overall, this work presents an account of the opportunities for the discovery or design of 

self-assembling protein particles and offers a synopsis of the challenges this task presents.  
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Chapter 1: Introduction 

1.1 Organelles and Compartmentalisation in Biology 

The physical separation of biological matter from the surrounding environment is a 

defining property of all known life on Earth. Within living cells, the presence of specialised 

compartments with defined functions is also universal and observed across all domains of 

life [1]. Separating different areas of the cell creates distinct chemical environments 

adapted to different functions, such as energy metabolism, storage and regulation of 

genetic material, or disposal of waste products. Separation of these processes in space also 

allows them to be regulated in a more complex manner. Such specialised compartments or 

structures are known as organelles, and can either be delineated by lipid membranes [2] or 

other biological macromolecules like proteins [3]. In this work “organelle” is defined as any 

subcellular compartment.  

1.1.1 Compartmentalisation in Eukaryotes 

Eukaryotic cells display a complex level of compartmentalisation compared to the other 

domains of life, with multiple highly organised membrane-bound organelles. The nucleus is 

a double membrane-bound organelle responsible for storing and regulating the genetic 

material of a cell [4]. The presence of a nucleus is often stated as the key difference between 

eukaryotes and simpler prokaryotes, which lack such a defined compartment for their 

genetic material. Continuous with the nuclear membrane is the Endoplasmic Reticulum 

(ER), a large network of membrane compartments where protein folding and post-

translational modification take place [5]. 

In addition to a nucleus, eukaryotes are also the only known organisms to possess 

mitochondria and chloroplasts – membrane bound organelles with their own genome, 

which are responsible for energy metabolism and photosynthesis respectively [6]. Crucially, 

these organelles are referred to as “endosymbiotic” organelles and are thought to have 

originated from free-living prokaryotes that were likely internalised, domesticated and 

repurposed by an ancestral host cell [7]. Indeed, it is thought that the origin of eukaryotes 

directly corresponds with the emergence of the mitochondrion, since all known eukaryotes 

have mitochondria, either currently or at some point in evolutionary history [8]. 
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1.1.2 Compartmentalisation in Prokaryotes 

Traditionally, it was thought that only eukaryotes possess membrane-bound organelles [9], 

however recent evidence has firmly disproven this rule. Ammonia-oxidizing bacteria make 

use of membranous organelles known as annamoxosomes for energy metabolism [10], 

whilst photosynthetic prokaryotes use specialised membranes known as thylakoid 

membranes for light harvesting and electron transport [11]. Some bacteria can align 

themselves with the Earth’s magnetic field lines using a membranous organelle called a 

magnetosome [12], while some nitrogen fixing bacteria display intricate, stack-like 

cytoplasmic membrane structures under nitrogen-fixing conditions [13]. These examples 

have thoroughly disproved the idea that membrane-bound organelles are unique to 

eukaryotes. Prokaryotes also make use of proteinaceous organelles to compartmentalise 

cellular processes. The enzyme lumazine synthase assembles into an icosahedral 

compartment in bacteria and archaea [14], whilst bacterial ferritins and bacterioferritins 

form spherical protein capsules used for cytoplasmic storage of iron [15]. 

1.2 Encapsulins 

Encapsulins are a class of icosahedral protein-based organelle found across both bacterial 

and archaeal phyla. These protein compartments encapsulate so-called “cargo” proteins in 

a specific manner (Figure 1.2.1). Packaging is dependent on a “cargo loading peptide” (CLP) 

present in the specific cargo protein(s) of any given encapsulin compartment [16]. 

Encapsulins have many natural functions, including bulk storage of iron [17], oxidative 

stress resistance [18], and sulphur metabolism [19]. A large-scale computational search 

published in 2021 revealed over 6000 known encapsulin sequences with a multitude of 

different cargo types, including ferritin-like proteins for iron storage, dye-decolourizing 

peroxidases, cysteine desulfurases, hydrogenases, and xylose kinases [20].  
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Figure 1.2.1:  Encapsulin Cargo Loading 
Encapsulins are icosahedral protein shells that package molecular cargo in a specific manner. 
Encapsulin proteins shown in cyan, with cargo proteins shown in orange. A C-terminal loading 
peptide present in the cargo protein recognizes a region in the encapsulin monomer (both shown in 
purple). Simultaneous expression of both proteins results in formation of assembled capsids loaded 
with functional cargo, in this case a mineralization protein for storage of iron. Encapsulins and cargo 
proteins shown are from Quasibacillus thermotolerans (PDB codes for encapsulin and cargo are 6NJ8 
and 6N63 respectively). Loaded cargo density is not representative of actual atomic structure and is 
for schematic purposes only (adapted from [17]). The cargo loading peptide was not modelled in the 
atomic resolution structure and is shown for diagrammatic purposes only. 

That published work also categorised extant encapsulins into 4 different families based on 

function and operon layout. Family 1 contains “classical” encapsulins, whose cargo proteins 

are found upstream of the encapsulin coding sequence and targeted to the shell via a C-

terminal CLP in almost all cases [1]. However, some family 1 systems have cargo proteins 

which are directly fused to the termini of the encapsulin protein. Cargo proteins 

encapsulated in these systems are typically dye-decolourizing (DyP) type peroxidases, or 

iron-binding proteins from the ferritin or rubrethyrin family, and are involved in oxidative 

stress response and iron storage respectively [21, 22]. 

Family 2 encapsulins display more diverse operon types, with some containing multiple 

encapsulin proteins, or fusions of the encapsulin monomer with a cyclic NMP-binding 

domain. These systems make use of a longer, disordered targeting domain in the cargo 

protein N-terminus for encapsulation [20]. Family 2 cargo proteins belong to one of four 
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enzyme families – cysteine desulfurase, xylulose kinase, polyprenyl transferase, or terpene 

cyclases. Encapsulins containing cysteine desulfurase enzymes have been shown to 

sequester elemental sulphur [19, 23], and those that encapsulate terpene cyclase enzymes 

have been demonstrated to be involved in the synthesis pathways of natural products such 

as the soil odorant molecule 2-methylisoborneol [24]. The biological function of xylulose 

kinase and polyprenyl transferase encapsulins is currently unknown. 

Family 3 encapsulins are known as “natural product encapsulins” due to their presence 

within large gene clusters associated with the synthesis of bioactive natural secondary 

metabolites (see Section 1.4) [20, 25]. Finally, family 4 contains “A-domain” encapsulins, 

so-called because of their truncated nature, containing only a single domain found in full-

length encapsulins (see next section for more details). These encapsulins are mostly found 

in archaea and are around 30% of the length of a canonical encapsulin monomer [26].  

1.2.1 Encapsulin Structure 

Encapsulin compartments are all complexes of a single protein monomer. As seen in Figure 

1.2.2, encapsulins share the same fold as the HK97 bacteriophage major capsid protein [27], 

suggesting that the two share a common ancestor. This fold is formed of three domains: 

axial and proximal domains (“A” and “P” domains) and an extended loop known as the “E” 

loop. 

Encapsulin monomers assemble into an icosahedral, symmetrical compartment. As shown 

in Figure 1.2.1, encapsulin shells can form different icosahedral arrangements. An 

encapsulin shell can be assigned a triangulation number (T-number) based on shape and 

number of subunits. T-number classification was originally used to classify viruses based on 

the number of “structural units” that make up an icosahedral face [28], however it also 

applies to encapsulins which are themselves virus-derived icosahedral capsids.  



 11 

 

Figure 1.2.2:  Structure and Assembly of Encapsulin Microcompartments 
a) A structural alignment of Thermotoga maritima encapsulin (orange) with phage HK97 major 
capsid protein (cyan) shows that the two share a conserved fold and domain architecture. Proximal 
and axial (P- and A-domains) are connected by an extended loop (E-loop). b) Encapsulin 
compartments all form symmetrical icosahedral shells, with different triangulation numbers (T-
numbers). T=1 capsids such as that of Thermotoga maritima (orange) are only formed of pentameric 
encapsulin assemblies (red). Higher T-number also shells use hexameric assemblies (blue), such as 
the T=3 encapsulin from Myxococcus xanthus (purple) or the T=4 encapsulin of Q. thermotolerans 
(cyan). PDB accessions: 7MU1 (T. maritima), 7S21 (M. xanthus), 6NJ8 (Q. thermotolerans), 1OHG 
(HK97).  

The number of subunits in an encapsulin shell is equal to the T number multiplied by 60, 

and as such the surface area and volume of an encapsulin shell increases with T number. 

Crucially, T=1 encapsulins are only formed of pentamers, whereas T=3 and T=4 capsids 

contain pentamers and hexamers, despite still only using one protein monomer to form the 

shell. Capsids with a T-number higher than 1 are known as “pseudo-symmetrical” because 

their subunits are not all identical – the monomers that form hexamer and pentamer units 

are in different conformations. T number can also vary under different conditions - the M. 

xanthus encapsulin has always been considered a T=3 capsid, however recent crystal 

structures show that it can also form a T=1 capsid in the absence of any cargo proteins [22]. 

The precise sequence and structural elements that mediate capsid assembly and geometry 

are still largely unknown. Experimentally determined encapsulin structures typically show 

the most variation in the E-Loop region (Figure 1.2.3), suggesting that this region may be a 
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determinant of capsid geometry. Indeed, the angle of the E-loop does appear to be related 

to T-number, with T=1 encapsulins generally showing a different conformation to higher T-

number capsids. However, the S. elongatus encapsulin is an exception to this rule, showing a 

T=1 geometry but with an E-loop angle resembling higher T-number capsids.  

 

Figure 1.2.3:  Encapsulin Monomers with Different T-Numbers 
E-loop regions highlighted in red. In general, T=1 encapsulins show a characteristic conformation 
with the E-loop angled out away from the P and A domains. However, higher T number encapsulins 
(as well as the HK97 phage capsid protein) show a different conformation with the E-loop lying more 
parallel with the body of the encapsulin. However, the S. elongatus encapsulin exhibits T=1 
geometry but with the E-loop parallel to the body as in T=3,4, and 7 proteins. 

However, recent work has highlighted the importance of other structural regions in 

encapsulin assembly. In the M. xanthus T=3 encapsulin protein, mutations in a flexible loop 

at the tip of the A-domain result in so-called “symmetry reduction” of the capsid shell; 

instead of a major T=3 and a minor T=1 population of particles as seen in the wild-type, 

loop mutants now show a major T=1 and a new, minor population of particles with 

tetrahedral symmetry [29]. Another recent study on the M. xanthus encapsulin showed that 

insertion of a short peptide from the SARS-CoV2 spike protein into the encapsulin 

monomer can disrupt icosahedral assembly. In this case, the majority of assembled particles 

belong to several different classes of non-icosahedral cage, with only minority populations 

of T=1 and T=3 icosahedral shells observed [30]. Interestingly, this effect is seen when the 

peptide is inserted either in the E-Loop, or in a flexible loop in the P-domain spine helix. 
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Taken together, the findings from these two studies suggest that there are multiple 

symmetry- or assembly-determining regions in the M. xanthus encapsulin monomer. 

T=1 capsids are formed only of pentameric units, whereas higher T-number shells contain 

both hexameric and pentameric units. As shown in Figure 1.2.4, the hexamer takes on a 

flatter shape whilst the pentamer displays a steep pyramid-like shape. In icosahedral 

capsids, the T-number corresponds to the number of non-equivalent monomers in the shell. 

For example, T=1 encapsulins only contain a single identical protein subunit, which 

assembles into pentameric complexes that form the icosahedral shell. However, T=3 

encapsulins contain three different monomer conformations – one that forms the pentamer 

and two that form the hexameric unit [22]. Interestingly, as shown in Figure 1.2.4, there are 

only minor conformational differences between these three different non-equivalent 

subunits in the T=3 encapsulin shell. 

T=1, 3, and 4 are the only native, icosahedral encapsulin geometries that have been 

observed so far (not counting the engineered non-icosahedral M. xanthus variants described 

previously). This is in stark contrast to phage capsid proteins, which share a similar fold but 

exhibit far greater diversity in T-number [31]. There are over 6000 known encapsulin 

sequences, but less than 20 of these sequences have been described at atomic resolution 

with experimental structural biology methods [17, 19, 22, 32–39]. Given this small sample 

size, there may be a wealth of unexplored structural and functional diversity present in 

natural encapsulins. 
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Figure 1.2.4:  Comparison of Pentamer and Hexamer Units in M. xanthus T=3 Encapsulin. 
a) Surface depiction of the hexameric (left) and pentameric (right) units that form the M. xanthus 
encapsulin shell (PDB 7S2T), coloured by non-equivalent subunits – red for pentamer, and 
blue/purple for the two different monomers that make up the hexamer. As shown, the hexamer 
takes on a flatter shape compared to the pentamer, whose outer surfaces make a shallower angle 
against the base of the structure. b) Comparison of the three different non-equivalent units. There 
are only minor conformational differences between the three, mainly found in the β sheet region of 
the P-domain. This region is formed of broken β strands in the pentamer, but longer strands in the 
“hexamer 1” monomer, and shorter strands in the “hexamer 2” form. Note that this structure was 
solved by cryoEM at 3.45 Å resolution. 
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1.2.2 Encapsulin Evolution 

Encapsulins show structural and sequence homology with HK97-fold bacteriophage major 

capsid proteins (hereafter referred to as MCPs), implying that the two families share a 

common ancestor [40]. Phylogenetic and structural comparisons show that encapsulins 

form a monophyletic clade, whereas MCPs are more diverse [33]. These comparisons also 

showed that encapsulin proteins are more closely related to each other than to MCPs 

(ignoring the truncated family 4 sequences). Bacterial and archaeal encapsulins are more 

closely related to each other than to MCPs, indicating ancestral horizontal gene transfer 

between these two kingdoms [26]. This might indicate that encapsulins appeared in bacteria 

before archaea, since horizontal gene transfer occurs more often from bacteria to archaea 

than vice versa [41]. However, this is simply speculation and has not been confirmed in the 

literature. 

It is currently unclear whether encapsulins or MCPs diverged first from their shared 

ancestor, and thus whether the HK97 fold originated in a cellular host or a virus. Andreas 

and Giessen [26] argue that encapsulins evolved via bacterial domestication of an ancestral 

phage MCP. Indeed, MCPs are primarily found in tailed dsDNA phages of the order 

Caudovirales, which infect a broader range of prokaryotic hosts than those containing 

encapsulin proteins [40]. This might suggest a broad viral origin of the HK97 fold before 

divergence of encapsulin function in a narrower set of prokaryotes. However, there is also 

some evidence to suggest that the HK97 fold may have originated in encapsulins before 

being co-opted by viruses. Encapsulins are found in some archaeal phyla (such as 

Crenarchaeota) which are not known to be colonised by Caudovirales phages [42]. From a 

structural perspective, encapsulin shells also appear more primitive than their complex 

phage capsid counterparts. All known experimental encapsulin structures are either T=1, 

T=3, or T=4, whereas phage capsids can reach T-numbers up to T= 52 [43]. Phage capsids 

also have a more complex assembly pathway then encapsulins, involving scaffolding 

proteins or insertion domains, proteases and chemical crosslinking, and multiple 

intermediate structures before the mature shell is formed [44].  

This gap in complexity is best illustrated with an example. As shown in Figure 1.2.5, the 

bacteriophage HK97 T=7 MCP shows similar structural features with the Synechococcus 

elongatus encapsulin. The two share a similar E-loop conformation and have their N-termini 
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facing the outside of the shell, in contrast with all other encapsulin structures. However, the 

encapsulin only forms a T=1 shell and self-assembles with no scaffolding proteins, where 

the phage HK97 MCP forms a larger T=7 capsid and requires a scaffolding domain and a 

protease to form a mature capsid [45]. Despite their structural similarities, the gap in 

assembly complexity implies that phage MCPs might have evolved from and expanded upon 

their more primitive encapsulin counterparts. 

 

Figure 1.2.5:  Structural Complexity of HK97-type Phage Capsids and Encapsulins 
a) Monomer structures of the Bacteriophage HK97 MCP (orange) and Synechococcus elongatus 
(cyan). As well as sharing the same overall fold, the two structures also share a similar E-loop angle 
(highlighted in red) and both expose the N-terminal arm (shown in purple) to the outside of the 
shell, which is uniquely seen in this encapsulin structure. b) Comparison between fully assembled 
shell geometries, with HK97 pentamers highlighted in red for contrast. Scales depicted here are only 
approximate. Despite sharing structural features in the monomer, the HK97 MCP assembles into a 
large T=7 capsid, whereas the S. elongatus encapsulin forms a much smaller T=1 shell. PDB 
accessions 1OHG (HK97) and 6X8M (S. elongatus).   

These two pieces of evidence point to a cellular, possibly prokaryotic origin of encapsulins 

before the divergence and increase in complexity of HK97-type MCPs. This aligns well with 

a wider evolutionary theory that points to a cellular origin of many viral proteins, which 

may potentially include MCPs [26, 42, 46]. However, it must be stressed that currently, the 

overall evolutionary history of encapsulins and MCPs is poorly understood, and there is no 

widely accepted theory as to which came first. 
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1.3 Biotechnology Applications of Encapsulins 

Encapsulins have many potential applications in synthetic biology, biotechnology, and 

biomedicine. Engineering these compartments to allow packaging and delivery of DNA or 

RNA may be a route towards novel gene therapies and vaccines [47]. The encapsulin surface 

may also serve as a functional site for antigen display in protein-based vaccines [48]. 

Indeed, encapsulin nanoparticles displaying the SARS-CoV-2 spike protein have recently 

been shown to induce immunogenic responses in animal models [49]. DNA loading into 

encapsulins may also serve as a new type of genotype-phenotype linkage for use in directed 

evolution experiments. Directed evolution has previously been used to repurpose a bacterial 

enzyme into an RNA capsule [50]. In this work, the packaging ability of an RNA capsule 

library was selected against by testing their ability to protect their own mRNA molecules 

from nuclease degradation. A similar approach could be used for encapsulins, selecting for 

function by subjecting mutants to nuclease treatment. 

Heterologous loading of non-natural protein cargos has been previously demonstrated with 

encapsulins [34] and could have interesting applications for metabolic engineering, for 

example in the isolation of difficult enzymatic reactions producing toxic intermediates in 

microbial cell factories. Encapsulins are highly tolerant to extremes in temperature and pH, 

and can be reversibly disassembled and reassembled with cargo loading in vitro [51] – these 

properties could be exploited for drug or vaccine delivery, as has already been shown in 

proof-of-concept studies [52]. Encapsulins have also been fused with metal-binding 

domains for use as imaging agents in correlative electron microscopy [53]. 

1.4 Biosynthetic Gene Clusters and Secondary Metabolites 

Biosynthetic gene clusters (BGCs) are groups of genes found in close proximity, which 

encode a biosynthetic pathway whose product is a specialised metabolite [54]. These 

specialised metabolites are described as “secondary metabolites” or “natural products” - 

small molecules which are not essential for an organism’s survival, but which convey an 

evolutionary benefit in a competitive environment [55]. Secondary metabolites are 

ubiquitous and produced by prokaryotes, fungi and other eukaryotic microbes, and plants, 

however this work will focus specifically on microbial BGCs, mainly in prokaryotes, and 

their secondary metabolite products.  
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Antibiotics and antimicrobials are perhaps the most well-known class of secondary 

metabolite produced by BGCs, however these gene clusters produce molecules that are 

implicated in a wide range of biological processes, including symbiosis, host-microbe 

interactions, and immunity [56]. The biotechnology and pharmaceutical industries have 

historically shown great interest in secondary metabolites, for use as antibiotics and 

therapeutics, pesticides, dyes, flavourings, and cosmetics [57–59]. Traditionally, these 

molecules were discovered in microbiological experiments. For example, penicillin (perhaps 

the most important secondary product of the 20th century) was serendipitously discovered 

when Penicillium mould was observed to inhibit the growth of Staphylococcus bacteria on 

agar plates [60]. Similarly, the cephalosporin class of antibiotics was first discovered when 

the growth of Salmonella typhi was seen to be inhibited by Cephalosporium fungi on agar 

plates [61]. 

Secondary metabolites are frequently discovered using so-called bioactivity assays, where 

model organisms are exposed to crude extracts of plants or microbes and screened for a 

desired phenotype [62]. For example, the prolific anticancer drug paclitaxel was discovered 

when cancer cell lines were systematically exposed to extracts of the bark of the Taxus 

brevifolia tree [63]. The psychedelic drug lysergic acid diethylamide (LSD) was discovered in 

an unconventional variation on this technique, when the synthetic chemist Albert Hofmann 

was accidentally exposed to a derivative of an alkaloid extracted from ergot fungal species 

grown on rye [64].  

The mid-20th century was a productive period in natural product discovery, with the 1950s 

and 1960s sometimes referred to as the “golden age” of antibiotics, when most antibiotics in 

use today were first discovered [65]. Following this period, many major pharmaceutical 

companies set up extensive natural product discovery programs, targeting infectious 

diseases and cancer. However, by the 1990s and early 2000s, many of these companies had 

closed their discovery programs, believing that the results of such discovery campaigns 

mostly recapitulated known compounds, and that any new compounds discovered were too 

difficult to synthesize de novo [66]. Despite this downturn in commercial interest, the early 

2000s also heralded a new era for natural product discovery in the genomic age. In 

particular, full genome sequences for bacteria of the genus Streptomyces revealed a plethora 

of potential BGCs and their associated natural products [67]. This new “genome mining” 
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approach promised a much more systematic way of discovering natural products by 

examining clusters of genes involved in their biosynthesis.  

Indeed, the fields of BGC and secondary metabolite discovery have only continued to grow 

since the early 2000s, for several reasons. The advent of faster, cheaper genome sequencing 

technology has resulted in the near-exponential growth of genomic databases [68], and thus 

more raw data from which to discover new BGCs and products. Of particular interest in this 

study is the growth in metagenomics databases (see Section 1.5.3) which may represent a 

particularly rich and diverse source of new BGCs. In line with the increasing amounts of 

data available, computer hardware has become exponentially faster and cheaper over recent 

decades [69], and new bioinformatics tools for discovering BGCs and their products have 

been released [70]. In particular, the proliferation of deep learning (see Section 1.5.2) has 

produced advances in tools not only for general protein bioinformatics, but also for BGC 

prediction [71]. Finally, BGCs are becoming easier to study experimentally due to the falling 

costs of DNA synthesis, and the development of modern DNA assembly protocols [72], high 

throughput screening and automation techniques [73], and cell-free protein synthesis [74]. 

1.4.1 Encapsulins and Biosynthetic Gene Clusters 

As mentioned previously, Family 3 encapsulin proteins are associated with predicted BGCs 

[26]. Whilst none of these BGCs have been experimentally investigated, they are predicted 

to encode a diverse range of putative enzymes. Several enzyme families commonly appear 

in these putative gene clusters, chief among which are short-chain 

dehydrogenase/reductase (SDR) and sulfotransferase enzymes. Sulfotransferases are known 

to catalyse the conjugation of sulphate groups to a wide range of secondary metabolites 

[75], and as such the co-occurrence of these two enzyme families suggests that these BGCs 

may produce sulphur-containing compounds. Some of these putative encapsulin BGCs 

contain amino group carrier proteins (AmCPs), which are involved in the biosynthesis of 

lysine and arginine in bacteria, but can also be found in Streptomyces BGCs producing non-

proteinogenic amino acid secondary metabolites [76]. Other encapsulin-associated putative 

BGCs contain polyketide synthases (PKS), which are large multifunctional enzymes or 

enzyme complexes involved in the synthesis of complex natural products containing long 

polyketide acyl chains [77]. Lastly, a subset of these putative encapsulin BGCs are found to 

contain non-ribosomal peptide synthetases (NRPS), another group of large, modular 
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enzyme complexes responsible for producing modified peptides in a stepwise “assembly 

line”-like fashion [78].  

This summary of encapsulin-associated BGC function is deliberately broad, since none of 

these gene clusters have been experimentally investigated in any detail, and as such there is 

almost no evidence of function or product formation for these BGCs. Only one single 

encapsulin-containing BGC (from Myxococcus sp. MCy10608) has been studied 

experimentally [79]. Functional annotations show this BGC to contain an NRPS enzyme, and 

mass spectrometry revealed its products to be a mixture of chlorinated peptide products 

known as chloromyxamides. Whilst this study did describe the structure of the final BGC 

product, no experiments on its biosynthetic pathway could be performed, owing to the 

difficulty of genetic manipulation in the Myxococcus host. Isotope labelling studies showed 

that the chloromyxamide products are derived from glutamic acid, but more precise 

evidence of enzymes in the biosynthetic pathway and the reactions they catalyse is yet to be 

presented. 

The exact role of encapsulin proteins in these BGCs is unclear, however Andreas and 

Giessen [26] speculate that these BGCs contain specifically encapsulated cargos, due to the 

presence of large disordered regions in these proteins. It is suggested that encapsulation 

may aid enzyme catalysis, through the sequestration of reactive pathway intermediates. 

This concept of sequestering unstable or volatile intermediates is employed by bacterial 

microcompartments (BMCs), another type of icosahedral proteinaceous organelle [80]. This 

hypothesis of specific encapsulation of BGC enzymes is plausible, but currently lacks 

supporting experimental evidence. On the other hand, it is entirely possible that BGC-

associated encapsulins do not encapsulate enzymes at all. Andreas and Giessen also 

describe unique Family 3 encapsulins with a putative C-terminal transmembrane domain 

[26]. This could implicate encapsulins in transport or membrane localization roles in these 

BGCs. In summary, encapsulin-associated BGCs are currently vastly understudied, and there 

is much scope for wet lab characterisation and investigation of these gene clusters and their 

products.  
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1.5 Computational Techniques 

1.5.1 Machine Learning 

Machine Learning (ML) is a broad area of computer science whose primary focus is on 

recognizing patterns in large, complex datasets [81]. Traditionally, a programmer will solve 

a problem by manually devising the rules and logic which govern the solution space for that 

problem [82]. In contrast, machine learning aims to forego manual rules, and instead learn 

them directly from the dataset. This process is called training, whereby a mathematical 

model is presented with many input examples which are used to optimise its parameters 

and infer patterns from the data [83]. The term “machine learning” is used interchangeably 

with Artificial Intelligence (AI) although the consensus in the field is that ML is a subfield of 

AI research [82]. 

The field has its origins in the 1950s, starting with Alan Turing’s seminal paper Computing 

Machinery and Intelligence where he pondered the question: “Can machines think?” [84]. In 

this paper Turing formulated his famous “Turing test” whereby a machine can pass the test 

if it can convince an observer that it is human. The actual term “machine learning” is widely 

believed to have been coined in 1959 by Arthur Samuel, a researcher at IBM who stated that 

“a computer can be programmed so that it will learn to play a better game of checkers than 

can be played by the person who wrote the program” [85]. A year earlier, Frank Rosenblatt 

published a paper detailing the “Perceptron” – an analogue computer designed to detect 

visual stimuli modelled after the human brain [86].  

The Perceptron was the earliest example of what is referred to today as a neural network – 

and indeed the term “multi-layer perceptron” is still regularly used to describe modern 

neural networks [87]. A neural network can be thought of as a nested mathematical 

function, with fully connected layers of nodes or “neurons” (Figure 1.5.1). Signals propagate 

through the network via weighted connections and activations [88]. During training, the 

weights of all the neurons in the network are optimised to minimise a cost function over the 

training data, using a process known as backpropagation [89].   



 22 

 

 

Figure 1.5.1:  Artificial Neural Networks 

a) A neural network is made up of an input layer, one or more hidden layers, and an output layer. 

This toy network takes two inputs, has one hidden layer with three nodes, and gives a single output. 

Layers are fully connected, and connections have weights which are randomly initialised. b) Here 

there are two input values, and 9 weights, which are parameters of the model. The value of any 

given node in the network is calculated as the weighted sum of all inputs it receives, transformed by 

a nonlinear “activation function” f. c) In training, the difference between prediction and true values 

for given inputs is calculated using a loss function. A process known as backpropagation is used to 

adjust the weights such that the loss function is minimised over all training data. 
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Work on the theory and applications of these primitive neural networks continued 

throughout the 1960s, however the field saw major funding cuts towards the end of the 

decade, heralding the approach of the first so-called “AI winter” [90]. This slowing of 

progress has been attributed to several factors. It has been suggested that early AI 

researchers severely underestimated the difficulty of the problems they were trying to solve 

(self-driving vehicles, translation and speech recognition, and similar) [90]. Early ML 

models were aimed at solving scaled-down “toy problems”, and it was widely believed that 

once these were solved, working up to more difficult real-world problems would be trivial. 

However, discoveries in computational complexity theory soon revealed the true difficulty 

of these problems. Around this time, severe limitations were also discovered in the 

underlying ML models being studied – it was demonstrated that simple neural networks 

such as the Perceptron are only capable of approximating linear functions, and as such 

these simple models are not suitable for even the simplest of non-linear problems (which 

are overwhelmingly common) [91]. 

Following the first AI winter of the late 1960s and 1970s, there was a revival of interest in AI 

and ML during the 1980s, with a narrower focus on so-called “expert systems”, where ML 

models were developed to solve domain-specific problems [90]. This is in contrast with the 

more general work of the 1960s, where broad methods were developed and applied to many 

different problems. Many fundamental discoveries in ML were made in the 1980s which are 

still widely used today, including the training of neural networks with backpropagation [89] 

and the first convolutional neural network [92]. However, the true power of these new tools 

was only fully realised from the late 1990s onwards, as computers became faster, storage 

became cheaper, and lots more data became available to train models on [90]. 

An important distinction within ML is supervised versus unsupervised learning. In 

supervised learning, a model is trained on data that has known labels – for example, 

training a model to classify images of cats and dogs typically requires a large training set of 

known images of cats and dogs [93]. In contrast, unsupervised learning is employed where 

the data has no known labels or “ground truth” values – in this case the goal is not to 

correctly predict an output value for a given input, but instead to uncover patterns within 

data and/or cluster similar examples together. This approach has been widely used in 

recommendation systems on the web and on social media platforms [94]. 
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1.5.2 Deep Learning 

Deep Learning (DL) is a subfield of ML whose focus is learning meaningful representations 

from very complex datasets, using a layered approach as shown in Figure 1.5.2. DL models 

typically have many parameters, in the order of millions or even billions [40].  A big recent 

breakthrough in deep learning was the discovery of the Transformer architecture (Figure 

1.5.3a), a specialised type of neural network which uses a mechanism known as “self-

attention” to assign weights to different parts of the input and learn long-range 

interactions in different data types [95]. Transformers have since achieved state-of-the-art 

performance in many different tasks, including image recognition [96] and language 

modelling and text generation [97]. DL models can also be applied to the problem of 

generating new synthetic data, such as life-like photographs of faces [98] or newspaper 

articles that read exactly like natural text written by a human [99]. Large language models 

have received unprecedented mainstream interest with the release of ChatGPT, a deep 

learning model from OpenAI based on the Transformer, which achieves remarkable 

 

Figure 1.5.2:  Deep Learning Models 

Deep Learning models are neural networks made up of many layers – this is known as the “depth” of 

a model. This toy example shows a neural network which takes an input image, passes it through the 

layers of the model, and outputs the probability of the image containing a cat. Earlier layers learn 

more coarse-grained features of the input data, and the deeper layers gradually learn increasingly 

fine details and features [93]. Here earlier layers learn simpler features like blocks of colour and 

edges, while later layers interpret complex patterns of edges and colours. 
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performance in question answering and text generation in a conversational, human-like 

style [100].   

The field of generative DL (models that produce new text, images, etcetera) has vastly 

benefitted from the discovery of the Transformer, as well as a more recent innovation 

known as the diffusion model (Figure 1.5.3b). Diffusion models are generative DL models 

that are trained on input data (usually images) with different amounts of random noise 

added. Given a set of noisy images and their noise-free counterparts, the model is trained to 

denoise the images, but can then be used to generate new images from random noise [101]. 

The input noise can be parameterised and modified to produce controllable output images. 

These powerful diffusion models have been combined with large language models to 

produce incredibly performant generative DL models such as Stable Diffusion [102] and 

DALLE-2 [103]. These models can produce lifelike images and convincing artwork given a 

text-based prompt as input, and have sparked fierce debate around the ethics of AI-

generated artwork [104].      

DL models are near-ubiquitous in the technology industry, due to their ability to learn 

useful patterns and representations from complex data which are otherwise intractable by 

simple computational tools. These models are used in smartphone cameras for image 

processing [105], language processing for voice assistants such as Apple’s Siri [106], object 

detection in surveillance cameras [107], automatic spam detection and filtering in email 

[108], and improving online search engine results [109], amongst countless other examples. 
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Figure 1.5.3: Generative Deep Learning Models 

a) Transformer models use self-attention to assign weights to different parts of the input text and 

decipher long-range dependencies. They are trained to predict words that are removed (“masked”) 

from the input. After pre-training they can be used to generate text in response to prompts or 

questions, classify sentences and analyse sentiments, and translate between different languages. b) 

Diffusion models are trained on images with varying amounts of gaussian noise added. In training 

the model predicts a denoised image from a noisier one. At inference time these models can be used 

to generate images from noise “freely” or can be combined with language models to generate 

images when given an input prompt in text. 
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1.5.2.1 Limitations of Deep Learning Models 

Whilst DL models have transformed science and technology, they are not without their 

drawbacks. Since these models use deep neural networks with many millions or billions of 

parameters, they require huge amounts of training data accordingly. Large language models 

are often trained on hundreds of gigabytes of text [110], requiring substantial compute 

resources and incurring significant monetary and energy cost [111]. Indeed, it is estimated 

that the entire process of developing and training a large language model produces more 

CO2 emissions than the average American citizen produces in two years [112]. The vast 

financial resources and infrastructure needed to train state-of-the-art models has led to a 

loss of transparency and democracy in the field, as only a handful of companies can afford 

to produce them [113].  

DL approaches also suffer from a lack of interpretability. In contrast with simple 

mathematical models such as linear regression, DL models are often treated as “black 

boxes” where it is difficult to understand how or why the model has arrived at a particular 

output for any given input [114]. This may cause unpredictable faults in safety-critical 

scenarios where the decisions that a DL model makes could impact human lives, such as 

self-driving vehicles [115] or biomedicine [116–118]. As such, explainable AI (XAI) and 

interpretability of DL models is a rapidly growing field of inquiry [119]. Furthermore, DL 

models are fundamentally limited by the quality and biases of the data they are trained on. 

Larger models demand more and more training data, which is more difficult to filter and 

curate. This is particularly noticeable in generative DL models which are frequently shown 

to display racial and political biases [120, 121]. 

Finally, in the wider context of AI research, there is considerable scepticism surrounding DL 

models and their evaluation. DL models are typically trained on large datasets and 

evaluated on task-specific benchmarks; for example a language model may be tested on 

question-answering, logical reasoning, or translation [122], whilst image generation models 

are evaluated on object segmentation or “recognition in context” benchmarks [123]. This 

focus on strictly defined tasks and datasets can sometimes lead researchers to chase 

incremental improvements in benchmark scores, at substantial cost in terms of money, 

time, and carbon emissions, in exchange for negligible improvements in “real world” 

performance. This is an example of Goodhart’s Law, where a metric “ceases to be a good 
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measure” when it is used as a target [124]. To this end, there is some uncertainty among AI 

experts as to whether endless scaling of DL models will lead to an artificial general 

intelligence [125, 126].        

1.5.2.2 Deep Learning in Protein Science 

Traditionally, bioinformaticians have used empirically derived statistical models to 

understand protein sequence data. For example, simple evolutionary models like the Jones-

Taylor-Thornton model are derived from natural sequence data and used in phylogenetic 

tree inference [127]. Protein functional annotation is often done by comparing a sequence 

with homologs of known function [128]. Protein structure prediction classically relied on 

homologs with known structure [129], and proteins are classified into families using 

multiple sequence alignments (MSAs) calculated using pre-determined scoring matrices 

[130] or Hidden Markov Models (HMMs) [131]. However, DL models are incredibly well 

suited to bioinformatics problems – there is an abundance of sequence data available in 

databases such as UniProt [132], as well as structure data in the Protein Data Bank [133]. As 

such, the application of DL models to protein data has been a rapidly growing field of 

research in recent years. 

The release of the AlphaFold2 protein structure prediction model was arguably the greatest 

recent advance in this field (Figure 1.5.4, top), and indeed one of the biggest breakthroughs 

in protein science and bioinformatics in recent decades. This model achieves state-of-the-

art accuracy in protein structure prediction from sequence data, by incorporating many 

cutting-edge DL innovations such as the Transformer architecture, self-attention, and 

learning from several different data modalities (sequences, structures, and multiple 

sequence alignments) [134]. This model represents a huge paradigm shift for structural 

biology. While this work was being completed, AlphaFold3 was released, building on the 

success of its predecessor and now allowing the prediction of protein/nucleic acid and 

protein/small molecule complexes [135]. However, the source code and model weights are 

not yet available for AlphaFold3 at the time of this work, and the model is only available as 

a limited-access web server, so only AlphaFold2 is discussed and used here. 
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Figure 1.5.4:  Deep Learning Models in Protein Science 

Deepmind’s AlphaFold2 (top) uses a Transformer model to learn evolutionary information from 

MSAs, which can be used to predict protein structures from sequences with near-experimental 

accuracy [134]. Protein language models such as ESM from Meta AI (bottom) use Transformers on 

sequences only, to generate meaningful vector representations of protein sequences [136]. These 

can then be used as inputs to “head” models to predict protein structure [137], mutational activity, 

and functional annotations [138]. 

Large Transformer models have also been trained on protein sequence databases in a 

manner analogous to the large language models used in Natural Language Processing (NLP) 

[136, 139]. These models have been shown to learn meaningful representations of protein 

sequences (Figure 1.5.4, bottom) which can be used for residue-residue contact prediction 

[140, 141] as well as prediction of mutational effects on protein function [142]. The state-of-

the-art in large protein language models shows that these models follow similar scaling 

laws to human language models, and that learned representations continue to improve with 

more training data, as models reach billions of parameters [137]. This culminates in ESM-2, 

a 15 billion parameter model whose representations capture rich structural and 

evolutionary information about proteins from their sequence alone. These representations 

contain enough information to be used as input to a protein folding model, ESMFold. 

ESMFold can attain near-atomic accuracy in some cases, and whilst not as accurate overall 

as AlphaFold2, it has the crucial advantage of predicting structure from a single sequence 

input only. This avoids the need to generate MSAs, making prediction much faster and more 
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accurate for proteins with few or no known homologs, such as those observed in 

metagenomics databases.  

Similarly to AlphaFold3, an updated ESM3 protein language model was released as this work 

was finalised [143]. This new model is trained simultaneously on protein sequence, 

structure, and function information and promises vast improvements in performance. The 

number of model parameters and the amount of training data were both scaled by orders of 

magnitude compared to the largest ESM-2 model, and synthetically generated protein 

sequences and structure predictions were used in training. However, as with AlphaFold3, 

the source code and model weights were not released for the largest ESM3 model, which is 

only available via a limited-access API. As such, and as with AlphaFold3, only ESM-2 is 

discussed and used as part of this work.  

Breakthroughs in DL models for protein science have revolutionised bioinformatics by 

vastly increasing the amount of publicly available structure data. The European 

Bioinformatics Institute provide a publicly available database of AlphaFold2 predicted 

structures covering the UniProt KB sequence database as well as selected model organism 

proteomes [144]. Similarly, Meta AI provide ESM Atlas, a database of predicted structures 

from the MGnify protein database, a dataset of protein sequences from metagenomics 

studies. Whilst the Protein Data Bank has only just reached 200,000 structures [145], the 

AF2 DB contains over 200 million [144], and the ESM Atlas contains over 600 million [137]. 

In addition to structure databases, DL approaches are also used for protein functional 

annotation in sequence databases [138]. 

1.5.2.3 In Silico Protein Design and Sequence Generation 

The rational design of synthetic protein sequences has been studied for decades [146] and 

has many potentially useful outcomes. The ability to engineer proteins with desired 

structure or function de novo may allow the production of enzymes with increased stability, 

activity, or even novel chemistries [147]. It could be used to produce novel antibodies and 

biologic drugs with affinity against a specific target for use in therapeutic applications [148], 

or even develop new biomaterials [149]. Additionally, advances in protein design may also 

help answer a more fundamental scientific question, namely the mysterious relationship 

between protein sequence and structure, a problem which has puzzled scientists for over 60 

years [150].  
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Up until very recently, there were two main approaches to tackle the protein design problem 

computationally, shown in Figure 1.5.5. Sequence-based approaches use evolutionary 

information from MSAs and HMMs to generate novel sequences [151]. However, they 

completely ignore protein structure data, instead using sequence as a proxy for structure. 

This not only ignores the wealth of information encoded in the three-dimensional structure 

of a protein, but it can also be confounded by the so-called “twilight zone” [152]. Proteins 

with less than 30% sequence identity can share the same fold (they are in the “twilight 

zone”) [153], whereas a single residue mutation can be enough to completely destabilise a 

protein and remove function [154].  

In contrast, structural methods (such as the widely used Rosetta package) use physics-based 

force fields, scoring functions, and energy functions to assess the stability of a given protein 

sequence or structure. This also allows generation of novel sequences predicted to fit within 

this protein structure, a process known as fixed-backbone design [155]. Generally, methods 

 

Figure 1.5.5:  Traditional Approaches to Protein Design 
Sequence-based methods a) build a multiple sequence alignment (MSA) from an input sequence, by 
searching genetic databases. MSAs are used to infer evolutionary information, such as which 
positions are diverse, partially, or fully conserved (shown in red, green, and purple respectively). A 
mathematical model such as a Potts model can be inferred from the MSA, and the parameters of 
this model sampled to output sequences. Structure-based methods such as Rosetta’s fixbb b) take 
an input backbone and use energy minimisation to produce a relaxed low-energy version of this 
backbone. This uses force fields and energy/scoring functions to find optimal rotamer combinations. 
These rotamer combinations can be used to produce new sequences.  
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like Rosetta have been used with some success in the past [156], however these bespoke 

physics-based simulations are very computationally expensive – some Rosetta protocols 

can take hours or even days to run [157]. Packages like Rosetta can also be difficult to learn 

and use, especially for non-experts.   

1.5.2.4 Deep Learning for Protein Design 

Protein design is yet another example of a domain where DL models can be applied 

successfully, involving complex relationships and patterns in protein sequence and 

structure data, but with an abundance of such data available today. Indeed various DL 

model architectures have been applied to protein design, including Recurrent Neural 

Networks (RNNs) [158] and Convolutional Neural Networks CNNs [159]. Generative 

Adversarial Networks (GANs) and Variational Autoencoders (VAEs) are two popular DL 

model architectures for generating text and images, and these have also been applied to 

protein design [160, 161]. Graph representations of protein structures have also been used 

to train deep neural networks for controllable fixed-backbone design [162].   

More recently, the Transformer architecture has been used to generate new protein 

sequences, in fixed-backbone design [163] and in a controllable manner using keywords 

[164]. Diffusion models have also been applied to protein design. By training a diffusion 

model to reconstruct protein structures with noise added to the atomic coordinates, a deep 

learning model can learn to “hallucinate” new protein structures de novo in a controllable 

manner. These new backbones can then be used as input to a fixed-backbone design model 

to produce sequences predicted to fold into the desired structure. To this end, several 

groups have applied diffusion models to different protein design problems [165–168]. 

Crucially, many studies on DL models for protein design omit any experimental 

characterisation of their generated protein sequences. This is a big problem since most in 

silico sequence scoring or model evaluation metrics are imperfect and do not truly reflect 

the utility of protein design models. Models are often evaluated based on their ability to 

recreate natural sequences, by measuring percentage identity of generated sequences 

compared to held-out natural sequences [169]. Given the previously explained “twilight 

zone” problem in protein sequences, identity or similarity to known sequences is a poor 

metric for assessing protein sequence generation. A designed sequence could feasibly have 

very low identity to any known natural sequence but still exhibit the desired structure and 
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function. Conversely, a designed sequence could differ by only a few residues from a wild-

type protein, and yet fail to express or fold properly. 

However, several recent landmark studies have presented DL methods for protein design 

where sequences were expressed and characterised experimentally. Salesforce Research 

trained a Transformer language model called Progen to generate protein sequences in a 

controllable manner using keywords [164]. They present functional assay data for designed 

lysozyme sequences and claim to have obtained the first crystal structure of an AI-

generated protein. This work breaks new ground for protein design using DL, and its novelty 

and impact is not to be understated, however lysozyme sequences represent low-hanging 

fruit for protein scientists. Lysozymes are a good proof-of-concept because they are 

monomeric and easily crystallisable but have few (if any) interesting applications in the real 

world. Shin et al train a CNN to generate protein sequences and validate their model by 

experimentally screening a library of nanobodies [170]. This proof-of-concept is closer to a 

real application of protein design, but again only involves small, monomeric design. More 

recently, Verkuil and colleagues have adapted the ESM-2 protein language model to 

generate sequences in fixed backbone design [171] and experimentally validate 79 protein 

designs for 6 different targets using size-exclusion chromatography. This work presents an 

alternate angle on protein design using models trained on sequences only, however it only 

considers small monomeric proteins and so suffers from similar limitations as the above 

methods. 

In contrast, Dauparas and coworkers present ProteinMPNN, a graph neural network for 

fixed-backbone protein design [162]. They design sequences for several monomeric and 

homo-oligomeric protein backbones and characterise their designs using size-exclusion 

chromatography, circular dichroism, X-ray crystallography, and negative-stain cryoEM. 

ProteinMPNN was also shown to be able to “rescue” insoluble protein designs from other 

methods. Later work from the same group presented RFDiffusion, a deep diffusion model 

capable of hallucinating protein structures in an unconditional manner or based on a given 

topology, oligomeric symmetry, or motif [165]. ProteinMPNN was then used to generate 

sequences for various monomeric and oligomeric backbones, and the resulting designs 

experimentally verified by size-exclusion chromatography and negative stain cryoEM.  
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More recently, Ingraham and colleagues have presented Chroma, a set of deep learning 

models for de novo design of protein backbones and sequences [172]. Their system jointly 

models structure and sequence, using a diffusion model to generate backbones and a graph 

neural network to design sequences for these backbones. Design can be constrained using a 

variety of inputs, including symmetry, secondary structure, domain labels from Pfam or 

CATH, and even text captions using natural language prompts. Notably, the authors 

screened 310 protein designs experimentally, and demonstrate that Chroma designs are 

soluble and well folded. Designs were validated using CD spectroscopy and two designs were 

crystallised and solved structures indicate close agreement with the design templates.  

When taken together, the findings from Progen, ESM-2, ProteinMPNN, RFDiffusion, and 

Chroma represent a step change in de novo protein design, showing the utility of DL models 

for a variety of protein design tasks with real experimental evidence. However, as with all 

scientific claims, the experimental validation of DL models for protein design must be 

viewed with some scepticism. The models described above were all tested on arbitrary sets 

of proteins (lysozymes, nanobodies, and various de novo designed backbones) which may 

have been carefully chosen to optimise model performance. Since DL models suffer from 

poor interpretability, it is impossible to predict a priori how well these models will 

generalize to more difficult protein design targets which may have more interesting 

biotechnology or therapeutic applications. The authors of these models provide cursory 

data on the success rate of their designs – usually the total number of proteins expressed 

experimentally, along with how many of these proteins were soluble or showed the desired 

properties. Again, it is easy to manipulate these figures to make models appear more 

performant; it is unknown how many failed designs were tested outside of those presented 

in publications. Studies define success differently depending on the designed target; 

ProteinMPNN and RFDiffusion were evaluated based on the number of soluble designs, 

whereas Progen was evaluated based on protein expression level and solubility as well as 

enzymatic function. Given that different models are tested on different protein targets, it is 

impossible to compare their quoted success rates. Lastly, publications give no indication of 

how straightforward the in silico design process is, in terms of how many different model 

settings need to be tweaked and optimised before designs are chosen for experimental 

characterisation. 
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1.5.3 Metagenomics 

Metagenomics is broadly defined as the study of microbial communities using genomic 

sequencing technology [173]. Traditionally, microorganisms are studied by isolating them 

from their natural environment, culturing them in the laboratory, and then sequencing and 

assembling their genomes (Figure 1.5.6a). This approach has a fundamental limitation - it 

can only be applied to organisms that can be easily cultured; and yet this set of culturable 

organisms is thought to be a tiny fraction of the microbial diversity seen on Earth [174]. In 

contrast, metagenomics approaches focus on analysing all nucleic acids purified directly 

from environmental samples (Figure 1.5.6b), regardless of their species of origin. 

Metagenomic samples can be taken from any environment, and thus the approach can shed 

light on microbial communities from diverse and often extreme locations, including soil, 

oceans, thermal springs, Antarctic ice, host-associated biomes such as human and animal 

digestive systems, and engineered biomes like wastewater treatment plants and laboratories 

[175]. 

 

Figure 1.5.6:  Metagenomics Versus Genome Sequencing 

a) In single genome sequencing, the microbe of interest is isolated from an environmental sample 

and cultured in the laboratory under standardised growth conditions. Its genomic DNA can then be 

purified and prepared for whole genome sequencing. In contrast, b) metagenomics studies involve 

isolation of all DNA from the environmental sample before sequencing. This gives a broader picture 

of the microbial ecosystem but requires more involved data processing. 

Experimental methods used in metagenomics studies can be grouped into two main classes. 

In marker gene methods, specific genomic regions are amplified and sequenced to reveal 
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the species composition and diversity in a given sample [176]. For example, the 16S and 18S 

ribosomal RNA and internal transcribed spacer (ITS) regions are often used to identify 

prokaryotes and fungi present in a given sample [177]. Alternatively, whole genome shotgun 

(WGS) approaches aim to sequence all DNA in a sample and assemble short raw reads into 

longer contiguous sequences (contigs). These contigs can be analysed to provide taxonomic 

and functional information about the organisms and genes present in a sample, including 

enrichment for certain protein functional annotations or pathways [178]. WGS methods can 

reveal more information across wider taxonomic groups than marker gene analyses and are 

free from bias that is introduced when amplifying marker genes – in a mixed population of 

organisms, marker genes from some organisms may be overrepresented when amplified. 

However, WGS also requires better quality sequencing data with a higher read count, is 

more computationally expensive, and requires much more involved data processing [179].  

The growth of metagenomics as a field has resulted in an explosion of interest in 

microbiomes – the population of microorganisms that live inside or on the surface of the 

human body or other animals. This so-called “microbiome revolution” [180] has revealed 

that these microbial communities have a profound effect on human development, health, 

and in disease. WGS and marker gene experiments (and their accompanying computational 

data analysis steps) can reveal population-level information about the microbiome of the 

human digestive system, skin, and circulatory system – over different time courses, under 

different environmental conditions [181], after different drug treatments [182], or in certain 

disease states [183]. However, these experiments produce huge amounts of sequencing data 

which must be processed using complicated, computationally intensive metagenomic 

pipelines [184].         

The rapid development of the metagenomics field has led to the continual growth of 

publicly available databases specializing in metagenomic data. Perhaps the most well-

known metagenomics database is MGnify, which is run by the European Bioinformatics 

Institute and provides easy public access to thousands of metagenomics studies, including 

raw data, sample and analysis information, and assembled genomes [185]. Of particular 

interest for this study is the availability of large metagenomic protein sequence database 

such as the Big Fantastic Database [134] and the MGnify Protein Database [185]. Proteins in 
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these databases are often referred to as biological “dark matter” since many show remote 

homology to experimentally characterised or functionally annotated proteins [186].  

It has been hypothesised that this “dark matter” consists of proteins with novel functions, 

from new evolutionary families (or distantly related to known families), and containing 

undiscovered structural features [137, 187]. This wealth of proteins which explore uncharted 

sequence space has powered the deep learning revolution in protein science, providing the 

necessary training data for large, data-hungry deep learning models such as AlphaFold2 

[134], ESMFold [137], and protein language models such as ESM2 [137] and Progen2 [188]. 

Metagenomic protein databases such as BFD and MGnify represent a goldmine of novel 

proteins which may have exciting uses in synthetic biology and biotechnology. However, 

this novelty is both a blessing and a curse; the remote or non-existent homology displayed 

by these proteins makes it difficult to predict their function and structure using traditional 

bioinformatics methods. Additionally, metagenomics studies usually do not produce fully 

assembled genomes, meaning that the genomic context surrounding any given protein is 

limited to the length of its contig, which can sometimes be barely longer than the protein 

itself.  

This means that the organism of origin for a metagenomic protein cannot be easily 

determined, nor its surrounding genes. Despite these challenges, deep learning models have 

emerged as a viable alternative to classical bioinformatics tools for annotating 

metagenomic protein function [138], predicting structure [137], and finding biosynthetic 

gene clusters from metagenomics contigs [71].   

1.6 Experimental Techniques 

1.6.1 Protein Preparation for Biophysical Studies 

1.6.1.1 Recombinant Protein Expression 

Experimental structural biology and biophysics methods require abundant and pure, 

homogenous protein [189]. Traditionally, proteins were isolated and crystallised from 

natural sources, for example the red blood cells of humans or animals. [190]. However, 

advances in the field of molecular biology in the last quarter of the 20th century gave 

scientists the ability to manipulate any DNA sequence and introduce it into a model 

organism, such as the bacterium Escherichia coli [191]. This represented a paradigm shift in 
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the field of structural biology, since any natural protein could now be expressed and 

purified in the laboratory using a well-characterised model organism. The choice of model 

organism depends on the properties of the protein being studied – E. coli is generally 

considered a “workhorse” of recombinant protein science, since it is fast-growing and easy 

to work with in the laboratory.  

E. coli is suitable for recombinant expression of many bacterial and viral proteins, however 

it is naturally unable to perform many post-translational modifications present in 

eukaryotic proteins, such as glycosylation [192]. As such, recombinant expression of 

eukaryotic proteins is often most successful when performed in yeasts such as 

Saccharomyces cerevisiae, Schizosaccharomyces pombe, or Hansenula polymorpha, in 

filamentous fungi such as Komagataella phaffii, or in mammalian or insect cell cultures. 

However, sometimes bacterial proteins are also more stable and soluble when expressed in 

eukaryotic cells than in E. coli. This is seen in the case of the S. elongatus T1 encapsulin 

which is insoluble when expressed in E. coli but soluble when expressed from K. phaffi cells 

(Frank Lab unpublished data). The work presented here will focus solely on E. coli protein 

expression. 

The maturity of genetic engineering and synthetic biology have led to a wealth of strategies 

for recombinant gene expression in E. coli. There are many options for controlling the 

expression level of a recombinant protein, at the DNA, RNA, and amino acid level, making 

recombinant expression tuneable in line with the characteristics of the target molecule. 

This is critical since protein expression experiments often involve a three-way trade-off 

between achieving a high expression level, minimising any adverse effects on E. coli growth 

and physiology from toxicity effects, and solubility and correct folding of the target protein. 

While heterologous genes can be stably inserted into the bacterial chromosome [193], the 

most common method of introducing foreign genes is via plasmids – circular, double-

stranded DNA elements that replicate independently of the bacterial genome [194]. Plasmid 

replication is regulated by a region known as the origin of replication, which controls the 

copy number – the average number of plasmid molecules present in each E. coli cell [195]. 

The choice of a different plasmid origin can be used to tune protein expression levels. 

Plasmids also encode antibiotic resistance genes, which allow for selection of cells 

harbouring the plasmid of interest and removal of any “background” cells without it. 
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Expression levels and timing can also be controlled using gene regulatory elements. On a 

plasmid, the gene of interest is flanked by an upstream promoter and ribosome binding site 

(RBS). These elements facilitate the transcription initiation and translation of the gene 

respectively. Different promoter and RBS sequences have different “strengths” and can be 

used to fine tune protein expression. In addition, some promoter sequences are “inducible” 

and only allow the target gene to be transcribed when an external signal is present [196]. 

The de-facto standard in many structural biology labs is to use the T7 promoter system 

(Figure 1.6.1). The recombinant protein is not transcribed until IPTG is added to the culture, 

allowing tight control of the timing of protein expression. This decoupling of cell growth 

and protein expression allows activation of protein production at the optimal point in the 

bacterial growth curve, which in E. coli is usually the mid-logarithmic phase of growth when 

protein translation is maximal [197].  

 

 

Figure 1.6.1:  The T7 Promoter System for Inducible Protein Expression 
An E. coli strain is used containing a chromosomal prophage encoding the phage T7 RNA 
polymerase. This gene is driven by a lac promoter inducible by the small molecule Isopropyl ß-D-1-
thiogalactopyranoside (IPTG). The protein of interest is introduced to this strain on a plasmid, and 
the gene encoding this protein driven by a T7 promoter, which is not recognised by the wild-type 
polymerases. a) In the absence of IPTG, the T7 RNAP is not expressed, and neither is the protein of 
interest. However, when IPTG is added b) transcription and translation of the T7 RNAP can proceed, 
which drives expression of the recombinant protein. 



 40 

The sequence of the recombinant protein itself is another variable in a protein expression 

experiment. The genetic code contains inbuilt redundancy, with some amino acids encoded 

by 2-6 different “synonymous” codons. However, different organisms use different 

synonymous codons in protein coding genes – this is known as codon bias [198]. When 

expressing recombinant genes in E. coli, the codons in the native DNA sequence are often 

swapped for codons that are more preferentially used in E. coli. This process is known as 

“codon optimisation” and has been shown to improve expression of genes from different 

organisms [199]. Mutants of the wild-type protein sequence can also be made to study 

function and biological mechanism, and fusion proteins added to the C- or N-terminus to 

improve solubility, activity, or add new functions [200]. In protein crystallography, 

truncations of the wild-type protein are often used, since the presence of disordered or 

flexible regions at the termini of a protein can reduce the likelihood of obtaining well-

diffracting crystals [201]. Lastly, so-called “affinity tags” can be added to the termini of the 

protein (or sometimes internally) to aid in purification, as explained below [202]. 

1.6.1.2 Protein Purification 

Once a recombinant protein of interest has been successfully expressed to a high level in E. 

coli, it must be recovered and purified for further studies, as shown in Figure 1.6.2. Before 

purification, lysed cells are separated into soluble and insoluble fractions by centrifugation 

or filtration, and these fractions analysed by SDS-PAGE. If the protein of choice is in the 

soluble fraction, then this can immediately be used for downstream purification, however if 

the protein is insoluble then conditions and buffers may need optimisation. In some cases 

insoluble protein in E. coli can form aggregates known as “inclusion bodies”, which can be 

solubilised and used for downstream purification thereafter [203].  

Several different chromatography methods are used for protein purification in structural 

biology, the most common of which is affinity chromatography. In this method, an “affinity 

tag” is added to the C- or N-terminus of the protein-coding region in the expression 

plasmid. When the protein is expressed, this affinity tag is capable of specific binding to a 

ligand incorporated into a solid matrix on a chromatography column [204]. A commonly 

used affinity tag is the poly-histidine tag, usually a run of 6 consecutive histidine residues 

conferring specific adsorption to nickel ions on a chromatography column. The cell lysate is 

passed over the affinity column, where the His-tagged recombinant protein binds 
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specifically to the column. Contaminants either do not bind at all or bind weakly in a non-

specific manner and can be washed away. Finally, the protein of interest can be eluted from 

the column using a high concentration of imidazole (typically 0.5 M [204]). Other 

chromatography methods are also used instead of or in combination with affinity 

chromatography. These include ion-exchange chromatography which separates proteins 

based on their isoelectric point [201] and hydrophobic interaction chromatography, which 

separates based on the hydrophobicity of proteins [205].  

 

Figure 1.6.2:  Purifying Recombinant Proteins from E. coli 
a) Following a protein expression experiment, E. coli cell pellets containing the protein of interest 
are obtained. These cells must be resuspended in a suitable buffer and lysed. Lysis can be carried out 
mechanically using a sonicator or a homogeniser, or chemically using lysozyme or similar chemical 
lysis buffers [107]. This crude lysate is centrifuged, and supernatant filtered to recover clarified, 
soluble lysate. b) Protein purification from clarified lysates usually begins with an initial purification 
step of affinity chromatography or ion-exchange chromatography. One or more of these initial steps 
are used to remove bulk contaminants before size exclusion chromatography is used as a final 
“polishing” step. 
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Following initial chromatography steps, proteins are often subjected to a final “polishing” 

step to ensure a high degree of purity for crystallography. This is typically size exclusion 

chromatography (SEC), sometimes known as gel filtration. Here, protein samples are passed 

through a column containing a porous gel matrix, which separates proteins by their 

hydrodynamic volume (a proxy for molecular weight). Larger proteins will tend to be 

“excluded” from the pores and pass quicker through the column, whereas smaller species 

will pass through the pores more slowly [206]. Some very large species may not fit through 

the pores at all and elute very early in the “void volume”. As such, SEC can be used to 

separate proteins based on their size and is commonly used as a final chromatographic step 

in a protein purification experiment, to yield a highly pure sample for crystallography. The 

shape of SEC absorbance peaks can also give some indication of the homogeneity of a 

sample. 

1.7 Aims of this Study 

This study has two main aims pertaining to encapsulins. The first is to discover new 

encapsulin systems from metagenomics databases. These databases have grown rapidly in 

size over recent years and are thought to be a rich source of novel proteins with interesting 

structural and functional properties. Concurrent advances in deep learning methods for 

protein structure and function prediction can be applied to these large, challenging datasets 

to shed light on new areas of protein sequence space. This may result in the discovery of 

new encapsulins with novel structural or physical features, or new cargo protein types. 

These findings may improve understanding of the biology and evolution of protein-based 

organelles, or perhaps even viral proteins overall. Any new encapsulins discovered may also 

have properties amenable to biotechnology or therapeutic applications.  

The second aim of this work is to re-design an existing encapsulin protein to increase its 

solubility and expression yield. These properties are of great importance in industrial 

biotechnology applications. Multiple deep learning models and methods are used to 

generate encapsulin sequences at scale in silico. The resulting sequences are scored and 

evaluated using a variety of different computational techniques, to better understand the 

behaviour of these models on an industrially relevant “real world” use case. Successful 

designs are screened experimentally in a high-throughput manner using liquid handling 

robots and automation techniques, and stable candidates characterised further using 
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biophysical and structural biology techniques. The utility of this aspect of the work is 

twofold; it will aid in understanding the behaviours and limitations of deep learning models 

for protein design, as well as potentially generate novel encapsulin proteins with desirable 

properties for biotechnology and synthetic biology. 

A final, secondary aim of this study is to investigate the effect of the E-loop region on 

encapsulin expression and assembly.  

1.7.1 Previous work 

There are several previous studies focused on encapsulin discovery using well-established 

bioinformatics methods [18, 19, 26, 207, 208]. However, this work purposefully ignored 

proteins from metagenomic databases, thus neglecting a potentially valuable source of data. 

These studies also took place before widespread availability of deep learning tools for 

protein structure and function prediction [134, 138]. To date, no encapsulin bioinformatics 

study has leveraged metagenomics databases, protein structure and function prediction 

tools, and biosynthetic gene cluster prediction methods on a large scale. 

Whilst there are countless studies on protein design in the literature, particularly in the age 

of deep learning, precious few of these works show any kind of laboratory validation of their 

designs. However, there are several examples in the literature of de novo design of 

symmetrical protein oligomers, with experimental validation. Deep learning tools have been 

used to design tetrahedral protein nanoparticles [162] as well as small (≈15 nm diameter) 

icosahedral protein assemblies [165], and in both cases successful designs were expressed, 

purified, and validated by cryoEM. However, these nanoparticles are of a different size and 

shape to encapsulins. 

Bale et al report in silico design of larger 24-40 nm icosahedral capsids which are closer in 

scale to encapsulins [156], but with different assembly properties. These capsids were 

formed from two different protein monomers assembling into 120-subunit shells as 

confirmed by small-angle X-ray scattering, negative stain electron microscopy, and crystal 

structures. However, this work was done before the advent of deep learning techniques for 

protein design, and as such made use of a complicated manual design procedure. This 

process involved retrieving and filtering hundreds of protein structures from the PDB, as 
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well as protein-protein docking, and manual interface design using the Rosetta software 

package. 

More recently, Lutz and colleagues [209] demonstrated de novo design of 60-subunit 

icosahedral capsids using reinforcement learning, a type of machine learning technique, 

and validated their method with two cryoEM structures of 10 and 13 nm capsids 

respectively, as well as some proof-of-concept work in displaying antigens on the surface of 

these capsids for potential vaccine design. Whilst this work is very impressive, these designs 

are much smaller than encapsulin nanocompartments, and the reinforcement learning 

method used to design the novel protein backbones isn’t strictly a deep learning technique. 

Whilst deep learning tools were used to design sequences for these backbones, the design 

process still relied on manually derived scoring methods and screens, using scoring 

functions adapted from tools like RPXDock [210], a symmetric protein-protein docking 

package. 

A previous study in the literature has also demonstrated re-design of existing proteins for 

increased function, solubility, and yield, using ProteinMPNN, a deep learning method for 

protein design [211]. Multiple protein designs were experimentally confirmed to show 

higher soluble yield and function following expression in E. coli, purification, functional 

assays, and X-ray crystallography. Whilst these aims align closely to the goals of this study, 

there are still some key differences and limitations between this previous work and the 

present study. For one, the ProteinMPNN paper focused on two relatively small, single 

subunit proteins; a tobacco etch virus (TEV) protease, and myoglobin. These will obviously 

present different design challenges compared to large, symmetrical encapsulin assemblies. 

A central theme of the ProteinMPNN paper was the trade-off between increasing soluble 

protein yield and preserving protein function. Again, the dynamics of this trade-off are 

likely to be different in a self-assembling protein complex compared to an enzyme or 

cofactor-binding protein. Lastly, this work only investigated ProteinMPNN as a design tool, 

whereas this work aims to characterise several different deep learning tools. 

The present work, in contrast, aims to perform re-design of encapsulin nanocompartments 

using deep learning methods. This may result in the discovery of an optimal “pipeline” for 

protein design and in silico validation which is much more approachable by non-expert 
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protein designers compared to conventional tools. Whilst the literature offers many 

examples of deep learning-based protein design, no previous work has characterised and 

compared multiple deep learning models on the same design problem and included 

experimental results. This work aims to achieve this goal by testing deep learning tools of 

different architectures that are trained on diverse datasets, and then experimentally 

validate design quality.   
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Chapter 2: Materials and Methods 

2.1 Metagenomic Encapsulin Discovery 
This section describes methods pertaining to experiments described in detail in Chapter 3. 

While the focus in this section is on providing a comprehensive overview of the 

methodological approach, the reader is encouraged to refer to Chapter 3 for detailed 

exposition of how methods were used in experiments, along with supporting figures (to aid 

comprehension, a schematic workflow diagram is shown in Figure 3.2.1). 

2.1.1 Database Searches 

To discover novel encapsulin sequences, a combined sequence annotation and structure-

based search approach was used. The 2022/05 release of the MGnify Protein Database [185] 

was filtered to recover all accessions with Pfam annotations from clan CL0373 (phage coat), 

which contains all HK97 fold-associated Pfam families. These annotations are generated 

using a convolutional deep neural network tool instead of the traditional Hidden Markov 

Model (HMM) method used by Pfam [212], which has been demonstrated to assign function 

more accurately in cases where sequence homology is remote or non-existent [213]. In 

tandem, structure searches were performed against the 2023/02 release of ESM Atlas [137] 

using experimentally solved structures of the T=1 encapsulin from T. maritima, the T=3 

encapsulin from M. xanthus, the T=4 encapsulin from Q. thermotolerans, and the T=1 

encapsulin from S. elongatus (PDB codes 7MU1, 7S2T, 6NJ8, and 6X8M respectively). ESM 

Atlas structures with pTM scores of 0.7 and higher were downloaded using aria2c, and 

structure searches were performed using Foldseek [214] with the “easy search” workflow 

and a minimum coverage of 0.5. Structure database search was carried out on 

VM.Standard.E4.Flex cloud instance with 64 cores and 1024 GB of RAM (Oracle Cloud). 

2.1.2 Removing Phage-Associated Sequence Contamination 

Genomic contigs for each search hit were retrieved using a combination of text-based 

filtering using bash, and API calls using Python. To retrieve contigs for each search hit, an 

MGYC contig accession was obtained from the MGnify Protein Database for each search hit. 

For each MGYC accession, a corresponding European Nucleotide Archive analysis accession 

(ERZ) and MGnify contig name was also retrieved from the MGnify Protein Database. Lastly, 

a MGnify analysis accession (MGYA) was obtained for each ERZ accession using the MGnify 

API. This API was also used to obtain protein coding sequences (CDS) for each search hit, 
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using the hit’s respective ERZ and MGYA accession and contig name. Any search hit with 

missing MGYC accession contig CDS was removed from the dataset. Lastly, any search hit 

with contigs under 25 kilobases in length or containing fewer than 10 protein sequences was 

also removed from the dataset – this is to ensure that every search hit has enough genomic 

context available to confidently filter out phage-associated proteins and provide functional 

information for encapsulin hits. 

As in previous work [26], a custom mmseqs2 database [215] was prepared from two phage 

proteome datasets: one containing all proteins from Bacteriophage HK97, and one 

containing proteins from a broader set of prokaryotic tailed dsDNA viruses (UniProt 

proteome accessions UP000002576 and UP000391682 respectively). This database was 

searched using candidate contig protein sequences as query; searches were performed using 

mmseqs2 with the iterative search function, a starting sensitivity of 4, a final sensitivity of 

7, and 5 sensitivity steps (all further searches in this study used these parameters unless 

otherwise stated). Any search hits whose contigs contained mmseqs2 hits against these two 

phage proteomes were removed from the dataset. Additionally, every contig protein’s Pfam 

annotations were retrieved from the MGnify Protein Database. These annotations were 

screened against a manually curated set of 279 phage-associated Pfam families, and any 

search hits whose contigs contained these proteins were removed from the dataset.  

Finally, to ascertain maximum sequence identity with proteins in conventional databases, 

putative encapsulin hits were searched against the UniRef90 database (downloaded 2023-

03-30) [216] using mmseqs2 with previously mentioned parameters, and “--max-accept” set 

to 1. UniRef90 database search was carried out on a VM.Standard.E4.Flex cloud instance 

with 64 cores and 1024 GB of RAM (Oracle Cloud). The taxonomy ID of each encapsulin 

candidate was used to retrieve its taxonomic lineage using the UniProt API, and 2 

encapsulin sequences showing >95% identity to UniRef90 sequences from the superkingdom 

“viruses” were removed from the dataset. 

2.1.3 Encapsulin Structure Prediction and Analysis 

Where available, encapsulin search hit structure predictions were retrieved from ESM Atlas 

using the public API. However, most candidate sequences had no available structure 

prediction data. For these candidates, structure prediction was carried out using ESMFold 

[137] in Google Colaboratory [217] with a chunk size of 64 for sequences larger than 700 
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amino acids, and 128 for sequences smaller than 700 amino acids. Structures for putative 

encapsulins longer than 900 amino acids were not predicted due to computational 

constraints, and any structure predictions with a mean  predicted local distance difference 

test (pLDDT) value under 70% were removed from the dataset. 

Confident predicted structures were analysed using DALI [218] to compute all-against-all 

pairwise Z-scores. Experimentally solved structures for four well-characterised encapsulin 

proteins were also included, from T. maritima, M. xanthus, Q. thermotolerans, and S. 

elongatus (PDB codes 7MU1, 7S2T, 6NJ8, and 6X8M respectively). The similarity matrix 

was manually inspected, and a set of 130 structures showing extremely low similarity to all 

others were removed and manually assigned to their own dissimilar cluster. The remaining 

matrix was used as input for hierarchical clustering with complete linkage using the 

scipy.cluster.hierarchy package [219]. The protein sequences within each cluster were then 

clustered at 80% sequence identity cutoff using mmseqs2 to reduce redundancy and 

facilitate easier manual inspection [215] and predicted structures for each cluster were 

visually inspected using PyMOL [220]. All plots were created and inspected using the Plotly 

package in Python [221]. 

Representative sequences from each cluster of ESMFold predicted structures were also 

predicted using AlphaFold2 [134]. This was done to demonstrate that structure prediction 

with ESMFold is comparable and does not lead to exclusion of encapsulin structures due to 

inferior performance. Structures were predicted with AlphaFold2 v2.3.0 using default MSA 

settings, and a maximum template cutoff date of 1st December 2023. For structure clusters 

with fewer than 15 sequences (after mmseqs2 clustering at 80% identity), all sequences were 

predicted. In the case of larger structure clusters, a single representative sequence was 

chosen based on the lowest mean DALI Z-Score to every other member of the cluster. 

2.1.4 Encapsulin Cargo Protein Annotation 

Initially, all contig protein Pfam annotations were manually inspected to assign encapsulin 

cargo type and biological function. Two sets of Pfam annotations were considered in this 

study: Pfam family annotations from the MGnify Protein Database which are generated 

using ProtENN, a deep learning tool based on convolutional neural networks [138], and 

more conventional HMM-based Pfam assignments generated using HMMScan as part of 

DeepBGC [71]. A comprehensive set of cargo types has been previously published [26], 
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however this work did not assign every cargo type a Pfam family or set of Pfam families. For 

this current study, the known cargo Pfam families were enriched with further manually 

curated Pfam families which were used to annotate some family 1, 2, and 4 encapsulin cargo 

proteins. However, since most putative encapsulins still had no family or cargo protein 

assigned, a more involved strategy was needed. 

Additional Family 1 cargo proteins were identified by searching an mmseqs2 database 

containing all contig proteins, using as query the family 1 cargo loading peptide (CLP) 

consensus sequences and secondary cargo CLP sequences from [18]. mmseqs2 search 

parameters were optimised for short query sequences by using the PAM30 Matrix, an E-

value cutoff of 200,000, and setting “spaced-kmer-mode” to 0.  

Additional Family 2 cysteine desulfurase (CyD) cargo proteins were identified using the 

same search parameters with a conserved motif (LARLANEFFS) found in the disordered N-

terminal domain (NTD) of CyD from the S. elongatus family 2 encapsulin system [19]. 

Further Family 2 cargo proteins were discovered using Hidden Markov Model (HMM)-based 

searches. For the four known cargo types (cysteine desulfurase, xylulose kinase, polyprenyl 

transferase, and terpene cyclase) sequence accessions from [26] were collected and 

sequences retrieved from UniProt [216]. MSAs for each cargo type were built using Clustal 

Omega with default parameters [130], and HMMs produced from these MSAs using the 

hmmbuild utility from HMMer with default settings [131]. The hmmsearch utility from 

HMMer was used to search these profile HMMs against all putative cargo proteins and any 

hits with E-value less than 1 were reported. 

Further cargo annotations were carried out using sequence similarity by searching all 

putative cargo proteins against the NCBI non-redundant protein database [222] using 

mmseqs2 with the previously mentioned parameters and --max-accept set to 30. NCBI non-

redundant database search was carried out on a VM.Standard.E4.Flex cloud instance with 64 

cores and 1024 GB of RAM (Oracle Cloud). 

2.1.5 Biosynthetic Gene Cluster Prediction 

BGCs were predicted from encapsulin-containing metagenomic contigs using two different 

approaches. The antiSMASH 6.1.1 package [70] was used to predict BGCs from contigs with 

the following settings: Prodigal was used as the genefinding tool, ClusterBLAST was used 
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with the general, subclusters, and knownclusters settings, active site finder was enabled, 

and the pfam2go and clusterhmmer options were enabled. antiSMASH outputs in HTML 

format were parsed using the Beautifulsoup4 package in Python [223]. In parallel, DeepBGC 

[71] was also used to predict BGCs, using Prodigal in metagenomic mode for gene finding, 

the “deepbgc” detector, and classifiers “product_class” and “product_activity”. Predicted 

clusters were filtered to remove any clusters ending more than 10 kb upstream of the 

putative encapsulin gene or beginning more than 10 kb downstream of the gene. 

2.2 In silico Encapsulin Design 
Similarly to Section 2.1, this section describes methods used in experiments from Chapter 4. 

Again, the reader is encouraged to refer to Chapter 4 for detailed exposition of how methods 

were used in experiments, along with supporting figures. A schematic workflow diagram is 

presented in Chapter 5, Figure 5.2.1. 

Unless otherwise stated, analyses in this section were run on BM.GPU.A10.4 cloud machines 

with 64 CPU cores, 1024 GB of RAM, and 4x Nvidia A10 GPUs with 24 GB VRAM each 

(Oracle Cloud). Experimental logs and notes along with accompanying plots and code 

snippets are publicly available at 

https://github.com/naailkhan28/bioinformatics_lab_notebook . 

2.2.1 Structure Prediction Benchmarking 

The performance of three different structure prediction methods (AlphaFold2, ESMFold, 

OmegaFold) was benchmarked across a representative set of experimentally solved protein 

structures containing the HK97-fold (see main text for details). AlphaFold2 [134] v2.3.2 was 

installed using the non-Docker method documented at 

https://github.com/kalininalab/alphafold_non_docker and predictions were run using 

default settings, with the max template cut-off date set to 1st January 2023. ESMFold [137] 

and OmegaFold [224] were installed using instructions from their respective GitHub repos, 

and predictions run with default settings. Note that the “—model 2” setting for OmegaFold 

was not used, since this drastically increased GPU memory usage. TM-Scores were measured 

against the template using TMalign [225] and mean pLDDT values were calculated from the 

B-factors in the PDB file. All code, scripts, protein sequences and structures, predicted 

structures, and analysis notebooks are publicly available at 

https://github.com/naailkhan28/hk97_structure_prediction_benchmarking . 

https://github.com/naailkhan28/bioinformatics_lab_notebook
https://github.com/kalininalab/alphafold_non_docker
https://github.com/naailkhan28/hk97_structure_prediction_benchmarking
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2.2.2 Inverse Folding Methods 

Inverse folding experiments were carried out using ESM-IF [163] or ProteinMPNN [162]. 

Models were installed and run according to the authors’ instructions on GitHub. The 

sampling temperature value for sequence generation was varied according to the 

experiment (see text for details). The standard “vanilla” ProteinMPNN model weights were 

used as opposed to the “soluble” model weights (model trained only on soluble proteins), 

since these “soluble” weights didn’t significantly alter the quality of generated sequences. 

The ProteinMPNN model trained with 0.2 Å noise was used in all experiments. No masking 

was used for either model. 

2.2.3 Markov-Chain Monte Carlo Methods 

MCMC protein design was carried out using either the “Protein Programming Language” 

model described in [226] or the “ProteinLM” method from [171]. The number of Monte Carlo 

iterations for each model was varied based on the experiment (see text). ProteinLM was 

used with default parameters and random seed set to 0. Protein Programming Language 

design was carried out using the default energy constraints for fixed backbone design, 

namely pLDDT, pTM, surface hydrophobicity, CRMSD, and DRMSD. Scripts were based on 

examples available in the ESM GitHub repo [227]. Documentation and code for Monte Carlo 

design testing is available at https://github.com/naailkhan28/monte_carlo_design . 

2.2.4 ESM-2 Protein Language Models 

2.2.4.1 Fine-Tuning 

PLMs were fine-tuned on a representative dataset of HK97-fold sequences. UniRef 

accessions for ≈55,000 sequences with Pfam annotations from clan CL0373 (phage-coat) 

were obtained from the InterPro database [228] and downloaded from UniProt (accessed 

April 18th 2023). Sequences were clustered at 30% identity using mmseqs2 [215] and split 

into train, validation, and test sets (75%, 15%, and 10% of sequences respectively). Splits 

were made randomly, but constructed such that the training and validation sets contained 

no sequences sharing more than 30% identity with any solved HK97 fold protein structure. 

This is to allow proper evaluation of fine-tuned models on these experimentally validated 

sequences. Sequences were truncated to a maximum length of 768 residues during fine-

tuning due to memory constraints. 

https://github.com/naailkhan28/monte_carlo_design
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ESM-2 models were trained using the HuggingFace Transformers library in Python [229] on 

the masked language modelling task. All model parameters were trained during fine-tuning, 

with no frozen layers or parameters. Models were fine-tuned using cross entropy loss and 

the Adamw [230] optimiser with parameters as follows: 1 = 0.9, 2 = 0.99, =10-8. 

Hyperparameter sweeps were also carried out to determine the optimal learning rate, 

weight decay, and number of epochs; hyperparameter sweeps and monitoring of training 

runs was carried out using the Weights & Biases library [231]. The final ESM-2 650M fine-

tuning run was carried out for 10 epochs, with learning rate of 10-5 and weight decay of 0.05. 

Models were fine-tuned on the training set only, with the validation set used to monitor 

overfitting.  

2.2.4.2 Model Evaluation 

Both existing pre-trained and fine-tuned ESM-2 models were evaluated on the unseen test 

set. Perplexity was calculated on this test set by taking the exponential of the cross-entropy 

loss calculated over all sequences. Models were also evaluated on contact prediction, using 

the HK97-fold structure dataset described in Table 4.1. Contact prediction was carried out 

using the contact prediction head for each ESM-2 model, and accuracy reported as the 

P@L5 metric as in [137]. 

2.2.4.3 Sequence Generation 

Protein sequences were generated using ESM-2 models via an iterative masking procedure 

as in [232]. In brief, the input template sequence has a fraction of its residues replaced with 

mask tokens. At each of these masked positions, the language model produces a probability 

distribution over all 20 amino acids. This probability distribution is then sampled from, and 

the mask token replaced with a sampled residue. The fraction of residues replaced with 

mask tokens varies depending on the experiment. Notably, and unlike [232], for a given 

masking fraction, the number of residues masked is not fixed, but is chosen from a binomial 

distribution where n is equal to the length of the sequence and p is equal to the desired 

masking fraction. 

The masked sequence is provided as input to the PLM and likelihoods calculated for all 20 

amino acids at a randomly chosen masked position. These likelihoods are converted to 

probabilities (i.e., scaled between 0 and 1 and to sum to 1) using the “torch.softmax” 

function in PyTorch. In the first instance, a residue is sampled from this probability 
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distribution using the “torch.multinomial” function from PyTorch, with a temperature of 1 

(i.e., no scaling of the probability distribution). In sampling experiments, alternative 

sampling methods such as top-k sampling and nucleus sampling are used, as described in 

[233]. Multinomial sampling was also used with temperature values other than 1. Here, the 

likelihoods are divided by the temperature value before being passed as input to the softmax 

function. 

2.2.5 Ankh Protein Language Models 

2.2.5.1 Sequence Generation 

With the Ankh family of PLMs, two different generation schemes were tested: masked 

language modelling (MLM) and autoregressive generation. MLM generation is analogous to 

the strategy outlined in Section 2.2.4.3, where an input sequence is randomly masked and 

“filled in” with new residues according to the probability distribution of a PLM. In 

autoregressive generation, however, mask tokens are added from the end (i.e., the C-

terminus) of a protein sequence. This can be thought of as truncating a protein sequence 

and then replacing the truncated residues with mask tokens. In both cases, sequences were 

generated using multinomial sampling with the “model.generate()” function in the 

HuggingFace Transformers library in Python  [229]. The following parameters were used for 

model.generate(): “repetition_penalty” was set to 3.0, “temperature” was set to 0.3, and 

“no_repeat_ngram_size” was set to 3, to avoid repeats of more than 3 amino acids. Since this 

model generates sequences with no fixed length, the minimum and maximum length of 

generated sequences was set to the same length as the template sequence to constrain the 

length of generated protein sequences. 

2.2.5.2 Fine-Tuning 

Ankh PLMs were fine-tuned on the same dataset described in Section 2.2.4.1 and using the 

same optimiser and settings but using the causal language modelling task instead of masked 

language modelling. During causal language modelling, sequences are split into chunks, and 

in training these chunks are presented to the model which is tasked with correctly 

predicting the next residue. The length of these chunks is defined in the context length 

parameter. Hyperparameter sweeps were used to determine the optimal context length, as 

well as learning rate, weight decay, batch size, and number of epochs as before. Final Ankh 

Base and Large fine-tuning runs were carried out for 20 epochs, with learning rate of 10-3, 
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weight decay of 0.1, context length of 20, and batch sizes of 64 and 24 for the Base and 

Large models respectively. Models were fine-tuned on the training set only, with the 

validation set used to monitor overfitting. 

2.2.6 Evaluation of Designed Sequences 

Designed protein sequences were evaluated using several different methods. Structures 

were predicted using ESMFold [137] as described in Section 2.2.1. For experimental 

candidates, structures were also predicted using AlphaFold2 [134] with single sequences 

(ssAF2) as described in [211]. Here, AlphaFold2 is used as described in Section 2.2.1, but 

instead of using the default MSA generation pipeline, a Python script is used to make a 

“dummy” MSA containing only the template sequence. Prediction is run with the max 

template cutoff set to the date when analysis was run (meaning that all templates can be 

used for prediction). 

To ascertain maximum sequence identity with proteins in conventional databases, designed 

protein sequences were searched against the UniRef90 database (downloaded 2023-03-30) 

[216] using mmseqs2 with the iterative search function, a starting sensitivity of 4, a final 

sensitivity of 7, and 5 sensitivity steps, and “--max-accept” set to 1. Solubility of designed 

protein sequences was predicted with NetSolP [234] using the “distilled” model, and both 

solubility and usability predictions were used.  

2.3 Experimental Characterisation of Encapsulin Candidates 

2.3.1 E. coli Cultivation and Microbiology 

2.3.1.1 Strains, Growth Media, and Antibiotics 

All in vivo experiments in this work were carried out in E. coli. The E. coli strains used are 

shown in Table 2.1. 

Liquid growth media are detailed in  

Table 2.2. Solid growth medium was made from Miller’s LB-agar powder (Sigma Aldrich) 

dissolved in distilled water at 37 g/L. The solution was autoclaved, allowed to cool to ~50 °C, 

and poured into sterile petri dishes (25 ml agar per plate). Solid and liquid growth media 

were supplemented with 25 µg/ml chloramphenicol, from 25 mg/ml stocks kept at -20 °C. 

Antibiotics stocks were made up in 100% ethanol and filter sterilised using a 0.2 µm filter 

(Sartorius). 
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Table 2.1:  E. coli Strains Used in This Work 

T7 Express cells were used for recombinant protein expression. This strain contains a chromosomal 

prophage encoding the T7 polymerase, driven by an IPTG-inducible promoter, for inducible protein 

expression (as explained in Section 1.6.1.1). DH5 cells are deficient in the endonuclease endA1 and 

the recombinase recA1, making them well-suited for cloning and preparation of pure plasmid DNA. 

Strain Name Genotype Source Usage 

T7 Express fhuA2 lacZ::T7 gene1 [lon] ompT 
gal sulA11 R(mcr-73::miniTn10--
TetS)2 [dcm] R(zgb-210::Tn10--
TetS) endA1 Δ(mcrC-mrr)114::IS10 

New England 
Biolabs 

Protein 
Production 

DH5 fhuA2Δ(argF-lacZ)U169 phoA 
glnV44 Φ80Δ(lacZ)M15 gyrA96 
recA1 relA1 endA1 thi-1 hsdR17 

New England 
Biolabs 

DNA Assembly 
and Plasmid 
Preparation 

 

Table 2.2:  Liquid Growth Media 
LB and TB media were supplied as powders (Sigma Aldrich), dissolved in distilled water (at 20 g/L and 
47.6 g/L), and autoclaved. SOC medium components supplied by Sigma Aldrich. To prepare SOC 
medium, all components except glucose are dissolved in distilled water and autoclaved. Separately, 
a 200 mM glucose solution is prepared in distilled water and filter sterilised. Immediately before use, 
the stock solution is added to a final concentration of 20 mM glucose. 

LB Terrific Broth (TB) Super-Optimal Broth with 
Catabolite Repression (SOC) 

10 g/L tryptone 
5 g/L yeast extract 
10 g/L NaCl 

20 g/L tryptone 
24 g/L yeast extract 
4 ml/L glycerol 
0.017 M KH2PO4 
0.072 M K2HPO4  

20 g/L tryptone 
5 g/L yeast extract 
10 mM NaCl 
2.5 mM KCl 
10 mM MgCl2 
10 mM MgSO4 

20 mM glucose 
2.3.1.2 Bacterial Transformation 

Transformations were carried out using commercial competent cell kits (New England 

Biolabs) in strains listed in Table 2.1. Competent cells were stored at -80 °C and allowed to 

thaw on ice for 5 minutes before use. 10 ng of plasmid DNA was added, and cells allowed to 

incubate for 30 minutes on ice, before a 60 second heat shock at 42 °C in a water bath. After 

a further 5 minutes incubation on ice, 1 ml of liquid SOC medium was added, and cells 

incubated at 37 °C for 60 minutes at 220 rpm shaking. After incubation, 135 µl of cells were 

added to a freshly poured agar plate and spread using sterile L-shaped spreaders. Plates 

were incubated at 37 °C overnight before further use.     
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2.3.2 DNA Assembly and Molecular Biology 

2.3.2.1 Polymerase Chain Reaction (PCR) 

Primers for PCR reactions were designed using Benchling [235] and the NEB melting 

temperature calculator [236]. PCR reactions were carried out using the Q5 proofreading 

polymerase (NEB) according to the manufacturer’s protocol. Reactions were run in 50 µl 

volume, using the manufacturer’s recommended buffer, with 500 nM forward and reverse 

primers, 200 µM dNTPs, and 1-25ng of template DNA. Optionally, 1M betaine and 3-5% 

DMSO were used as additives for difficult reactions. Standard cycling parameters were used 

as follows: 98°C for 30s initial denaturation, followed by 35 cycles of: 98 °C 10s denaturation, 

30s annealing, and 72°C extension time, ending with a 72°C final extension for 2 minutes. 

Annealing temperature is primer-dependent, and an extension time of 30 seconds per 1000bp 

of template was used. PCR products were analysed using agarose gel electrophoresis (see 

Section 0) and purified using a Qiaquick PCR Purification Kit (Qiagen) following the 

manufacturer’s instructions.  

2.3.2.2 Site-Directed Mutagenesis 

For site-directed mutagenesis of purified plasmid samples, primer design and PCR was carried 

out as in Section 2.3.2.1. Mutagenesis reaction mixtures (KLD mixes) contained kinase, ligase, 

and DpnI as described in Table 2.3. 

Table 2.3:  Reaction Mixture Components for Site Directed Mutagenesis 
Mixtures assembled at room temperature. Purity and presence of the desired dsDNA product from 
PCR products was established by agarose gel electrophoresis prior to running mutagenesis reactions. 
ddH2O = double-distilled milliQ pure water. 

Component Volume 
PCR Product 1 µl 
T4 Polynucleotide Kinase 1 µl 
T4 DNA Ligase 1 µl 
DpnI 1 µl 
T4 Ligase Buffer 1 µl 
ddH2O 5 µl 

Mixtures were incubated at room temperature for 1 hour and transformed into E. coli DH5 

(see section 2.3.1.2) for preparation of pure plasmid DNA (see section 2.3.2.5). 

2.3.2.3 Gibson Assembly 

Gibson assembly reactions were performed using a homemade reaction mix. The buffer and 

master mix recipe are shown in Table 2.4.  



 57 

Table 2.4:  Buffer and Master Mix Components for Gibson Assembly 
All mixtures were made in distilled water, pH adjusted with 6M HCl and stored at 4 ˚C. 5X Isothermal 
Reaction Buffer was made up to volume of 6ml and stored in 500 μl aliquots, and Master Mix stored 
in 50 μl aliquots. ddH2O = double-distilled milliQ pure water. 

Buffer Name Components 
5X Isothermal Reaction Buffer 0.5 M Tris-HCl pH 7.5 

50 mM MgCl2 
1 mM dNTP Mix 
50 mM DTT 
25 % w/v PEG-8000 
5 mM NAD 

Master Mix 320 μl 5X Isothermal Reaction Buffer 
0.64 μl T5 Exonuclease 
20 μl Phusion DNA Polymerase 
160 μl Taq Ligase 
700 μl ddH2O 

DNA fragments containing homologous 20 bp overhangs were obtained by gene synthesis 

(IDT) or purified from PCR. Fragments were added to 15 μl of Master Mix. In the case of vector 

assembly, fragments were added in a 3:1 molar ratio of insert to vector backbone 

(corresponding to 60 fmol insert and 20 fmol vector), otherwise fragments were added in an 

equimolar ratio (50 fmol each). Reactions were made up to 20 μl volume with distilled water 

and incubated at 50 °C for 60 minutes in a thermocycler. 15 μl of the reaction mixture was 

transformed into E. coli DH5 (see section 2.3.1.2) for preparation of pure plasmid DNA (see 

section 2.3.2.5). 

2.3.2.4 Golden Gate Assembly 

DNA fragments were assembled with Golden Gate assembly using Type-IIS restriction 

enzymes. Reaction mixture components are shown in Table 2.5. 

Table 2.5:  Golden Gate Reaction Mixture Components 
Mixtures are assembled on ice and adjusted to 20 μl final volume with distilled water. ddH2O = 
double-distilled milliQ pure water. 

Component Amount 
BsaI 1 μl 
T4 Ligase 1 μl  
10X T4 Ligase Buffer 2 μl 
Vector DNA 20 fmol 
Insert DNA 60 fmol 
ddH2O To 20 μl 

Purified plasmid DNA containing the necessary BsaI sites was obtained by miniprep (see 

section 2.3.2.5). Insert DNA fragments with matching BsaI restriction sites were obtained by 



 58 

gene synthesis (IDT) or from PCR purification. Reactions were incubated in a thermocycler 

with the following program: 30x cycles of 37 °C for 5 minutes and 16 °C for 5 minutes, 

followed by a final heat denaturation step of 65 °C for 20 minutes. 15 μl of the reaction 

mixture was transformed into E. coli DH5 (see section 2.3.1.2) for preparation of pure 

plasmid DNA (see section 2.3.2.5). 

2.3.2.5 Plasmid DNA Preparation 

6 ml of LB broth (including antibiotics) in a 30 ml Sterilin tube was inoculated with a colony 

from a freshly grown agar plate of E. coli DH5 transformants. Cells were harvested by 

centrifugation at 4000xg for 15 minutes at 4 °C, supernatant discarded, and cell pellets stored 

at -20 °C. Plasmid DNA was purified from cell pellets using a Monarch® Plasmid Miniprep Kit 

(NEB) following the manufacturer’s instructions. Pure plasmid DNA was eluted in 35 μl 

ddH2O and verified using restriction digest (section 2.3.2.6) and Sanger sequencing (section 

2.3.2.8). 

2.3.2.6 Diagnostic Restriction Digests 

Purified, assembled plasmids were verified by restriction digest. Reaction mixture 

components are shown in Table 2.6. 

Table 2.6:  Restriction Digest Reaction Components 
Mixtures are adjusted to 20 μl final volume with distilled water. ddH2O = double-distilled milliQ pure 
water. 

Component Amount 
Restriction Enzyme(s) 1 μl each 
Reaction Buffer (NEB CutSmart/Buffer 2.1/3.1) 2 μl  
Plasmid DNA 500 ng 
ddH2O To 20 μl 

Reactions were incubated at 37 °C for 60 minutes and visualised with agarose gel 

electrophoresis (see section 2.3.2.7) 

2.3.2.7 Agarose Gel Electrophoresis 

1% agarose gels were prepared by adding 0.7g agarose to 70 ml Tris borate EDTA (TBE) buffer 

– 0.13 M Tris pH 7.6, 45 mM boric acid, 2.5 mM EDTA. The mixture was microwaved at 50% 

power for approximately 2 minutes until all the agarose was dissolved, and then incubated in 

a 37 °C water bath to cool. Once cool enough to handle, 7 μl of 10,000X GelRed® Nucleic Acid 

Gel Stain (Thermo Fisher) was added to the agarose solution and the mixture poured into a 

mould to solidify. Nucleic acid samples were supplemented with 1X OrangeG loading dye 
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(Melford) from a 10X stock before loading onto agarose gels. Gels were run at 120 V for 60 

minutes.  

2.3.2.8 Sanger Sequencing 

Purified plasmid DNA samples were sent for Sanger sequencing using the TubeSeq Supreme 

service (Eurofins Genomics). Samples were prepared according to the service provider’s 

guidelines and sequenced using the standard T7 forward primer (sequence 

TAATACGACTCACTATAGGG) and a custom reverse primer (GAGAGCGTTCACCGA) covering 

the sequence region between the T7 promoter and rrnB T1 terminator. 

2.3.3 Protein Expression 

2.3.3.1 Small-Scale Protein Expression 

6 ml of LB broth (including antibiotics and 2% w/v glucose) in a 30 ml Sterilin tube was 

inoculated with a colony from a freshly grown agar plate of E. coli transformants. This 

culture was incubated at 37 °C with 220 rpm shaking until reaching exponential phase, as 

measured by optical density at 600 nm reaching 0.6-0.9. The culture was then induced with 

1 mM IPTG (from a filter sterilised 1M stock in distilled water). Induced cultures were grown 

at 18 °C or 25 °C overnight, or 37 °C for 3 hours, with 220 rpm shaking. Cells were harvested 

by centrifugation at 4000xg for 15 minutes at 4 °C, supernatant discarded, and cell pellets 

stored at -20 °C. 

 

2.3.3.2 Large-Scale Protein Expression 

8 ml of LB broth (including antibiotics and 2% w/v glucose) was added to 2x30 ml Sterilin 

tubes. Each tube was inoculated with a colony picked from a freshly grown agar plate of E. 

coli transformants and resuspended in distilled water (each tube was inoculated with the 

same colony). Cultures were incubated at 37 °C with 220 rpm shaking overnight. These 

overnight cultures were used to inoculate 4x2.5 l flasks each containing 400 ml TB broth 

(including antibiotics). Each flask was inoculated with 4 ml of overnight culture and 

incubated at 37 °C, 220 rpm shaking. Flasks were incubated until reaching exponential 

phase, as measured by optical density at 600 nm reaching 0.6-0.9. Cultures were then 

induced with 1 mM IPTG (from a filter sterilised 1M stock in distilled water). Induced 

cultures were grown at 25 °C with 220 rpm shaking overnight. Cell pellets were harvested 

and stored as described in Section 2.3.3.1.   
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2.3.3.3 Cell Lysate Preparation 

E. coli cell pellets were resuspended to a fixed final OD, calculated using the equation: 

𝐹𝑖𝑛𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 =  𝐶𝑢𝑙𝑡𝑢𝑟𝑒 𝑂𝐷600  ×   
𝐶𝑢𝑙𝑡𝑢𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙)

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑂𝐷600
 

Small-scale cell resuspensions were prepared at a final OD of 10, and large-scale cell 

resuspensions were prepared to final OD of 80. Large-scale cell resuspensions were also 

supplemented with 1 EDTA-free protease inhibitor tablet (Roche) per 30 ml. Resuspended 

cells were lysed by sonication at 100% amplitude and 10 second on/off pulses for 5 minutes. 

The lysate was centrifuged at 16,000xg for 30 minutes at 4 °C and the supernatant decanted. 

Large-scale samples were filtered using a 0.45 µm filter (Sartorius) before chromatography.    

2.3.4 Protein Purification 

All samples were kept on ice or stored at 4 °C during preparation. Chromatography was 

carried out using ÄKTA FPLC systems with the UNICORN 5.31 software, or on the benchtop 

with gravity flow columns. All columns were supplied by GE Healthcare. Buffers used for 

purification are outlined in Table 2.7. 

Table 2.7:  Buffers Used for Protein Purification 
All buffers were made in distilled water, pH adjusted with 6M HCl, filtered using a 0.22 µm filter 
(Sartorius), and stored at 4 ˚C. 

Buffer Name Components 
Lysis Buffer 50 mM Tris pH 8.0 

150 mM NaCl 
Elution Buffer 50 mM Tris pH 8.0 

150 mM NaCl 
50 mM Biotin 

2.3.4.1 Affinity Chromatography 

Cell lysates were loaded onto Streptactin XT columns equilibrated in Lysis Buffer. In FPLC, 

the column was washed with further Lysis Buffer until the UV reading reached a stable 

baseline (≈3-4 column volumes). Elution was performed over 12 column volumes with 

Elution Buffer and 1ml fractions collected. In gravity flow, columns were washed with 5 

column volumes lysis buffer, and then fractions eluted over 3 column volumes of Elution 

Buffer. Eluted fractions were analysed by SDS-PAGE, and all fractions containing target 

protein were pooled and concentrated using a Vivaspin-20 10 kDa MWCO concentrator 

(Sartorius). 
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2.3.4.2 Size Exclusion Chromatography 

Pooled and concentrated fractions from affinity chromatography were injected onto gel 

filtration columns equilibrated in Lysis Buffer. Columns used were either a Superdex 200 

Increase 10/300 GL or a Superose 6 Increase 10/300 GL. Columns were washed at 1 ml/min 

with Lysis Buffer. As previously, eluted fractions corresponding to the peak UV absorption 

were analysed by SDS-PAGE, and fractions containing the target protein were pooled and 

concentrated. 

2.3.5 Protein Analysis and Quantification 

2.3.5.1 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Protein samples were denatured at 95 °C for 10 minutes in 1x Bolt™ lithium dodecyl 

sulphate buffer with Bolt™ reducing agent (Invitrogen). Samples were briefly centrifuged at 

>13,000xg for a few seconds and mixed by pipetting, before 16 µl was loaded onto Bolt™ 4-

12% Bis-Tris Plus gels (Invitrogen). Gels were run at 200V for 23 minutes in MOPS-SDS 

running buffer. Following electrophoresis, gels were stained with ~10 ml of InstantBlue™ 

stain (Expedeon) and gently rocked at room temperature for 30 minutes. Stain was washed 

off and replaced with water before inspection. 

2.3.5.2 Native Polyacrylamide Gel Electrophoresis (Native-PAGE) 

Protein samples were diluted to 1 µg total protein content in Lysis Buffer and 1x 

NativePAGE™ sample buffer (Invitrogen). 8 µl of sample was loaded onto NativePAGE™ 3-

12% Bis-Tris gels (Invitrogen). Gels were run at 150V for 2 hours, with NativePAGE™ 1X 

running buffer for the anode chamber and 1X running buffer plus Cathode Buffer Additive 

for the cathode chamber (Invitrogen). Following electrophoresis, gels were stained with ~10 

ml of InstantBlue™ stain (Expedeon) and gently rocked at room temperature for 30 

minutes. Stain was washed off and replaced with water before inspection. 
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2.3.5.3 Western Blot 

Solutions used in western blots are outlined in Table 2.8. 

Table 2.8:  Solutions used in Western Blotting 

Solutions were freshly made in distilled water and used immediately. 

Solution Name Components  
Blocking Solution 1x Phosphate Buffered Saline (PBS) 

0.05 % v/v TWEEN-20 
3% w/v Bovine Serum Albumin (BSA) 

Wash Solution 1x PBS 
0.05 % v/v TWEEN-20 

Antibody Solution 1x PBS 
0.05 % v/v TWEEN-20 
1% w/v skim milk powder 
1:10,000 Streptactin/Horseradish Peroxidase Conjugate 

 
 

Western blots were performed using the iBlot2 dry blotting system (Invitrogen). SDS-PAGE 

gels were run as previously described but covered with distilled water instead of staining. 

Gels were then placed inside the blotting cassette and inserted into the iBlot2 transfer 

device. The transfer scheme (the setting “mixed mW”) consisted of 20 V for 1 minute, 23 V 

for 4 minutes, and finally 25 V for 2 minutes. Following blotting the membrane was 

removed, and the following incubation steps carried out at room temperature with gentle 

rocking: 

1. 35 ml Blocking Solution for 1 hour 

2. Blocking solution was removed and 50 ml Wash Solution added for 5 minutes 
– this step is repeated three times. 

3. 20 ml Antibody Solution for 90 minutes 

4. 3x 5-minute washing steps as in step 2. 

Following these incubations, the blot was developed by addition of two SIGMAFAST  3,3-

Diaminobenzidine (DAB) tablets dissolved in 5 ml of distilled water. This solution was 

washed off with 50 ml distilled water after 5 minutes. 



 63 

2.3.5.4 Protein Concentration Measurements 

Protein concentration was measured using absorbance at 280 nm. Measurements were taken 

using a Denovix DS-11 Spectrophotometer, with path length automatically adjusted to 1 cm 

equivalent. Concentration was calculated using the formula: 

[𝑃𝑟𝑜𝑡𝑒𝑖𝑛]  =  
𝐴280

𝜖
× 𝑚𝑊 

Where: 

[Protein] is measured in mg/ml 

A280 is the absorbance at 280 nm as measured with a 1 cm path length equivalent 

 is the extinction coefficient of Eh as estimated by ProtParam [237] 

mW is the molecular mass of the protein in g/mol 

2.3.5.5 Dynamic Light Scattering (DLS) 

Hydrodynamic particle diameters of purified protein samples were measured using dynamic 

light scattering (DLS) using a Zetasizer Nano ZS (Malvern). Measurements were performed 

at 0.1 mg/ml protein concentration in 50 mM Tris pH 8.0, 150 mM NaCl, at 25 ˚C. Three 

repeat measurements were made for each sample with backscatter detection. Measurements 

were made using the default “Size” protocol in the Measurement Builder wizard in the ZS 

Xplorer software (Malvern). Instrument parameters were optimised automatically.   

2.3.5.6 Transmission Electron Microscopy (TEM) 

TEM of negatively stained proteins was performed at the Birkbeck EM and Image Processing 

Lab by Dr Shu Chen. 3 µl of purified protein (0.1-0.5 mg/ml concentration) in Lysis Buffer 

was loaded onto 6 mm glow-discharged carbon grids. After 30 seconds, 3 drops of filtered 

uranyl acetate stain were added. After another 30 seconds, grids were blotted with filter 

paper and allowed to dry for at least 3 minutes before imaging. Micrographs were taken at 

26000x or 52000x magnification on a Tecnai T12 120 keV microscope with a Gatan 

Ultrascan 4000 camera. 
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2.4 High-Throughput Methods for Encapsulin Characterisation and 

Screening 
This section details modifications made to the methods in Section 2.3 to adapt them to a 

high-throughput setting, to allow scalable experimental screening of encapsulin designs. 

Automated liquid handling protocols were performed using an Opentrons OT-2 liquid 

handler. All liquid handling protocols and custom labware definitions are publicly available 

at https://github.com/naailkhan28/opentrons_protocols . 

2.4.1 E. coli Transformation 

The previously described transformation protocol was adapted for use with the Opentrons 

OT-2 liquid handler. 10 µl of competent E. coli cells was aliquoted into each well of a 200 µl 

96-well PCR plate (Starlab). The plate was transferred to the OT-2 Temperature Module 

which was always kept at 4 °C. Cells were incubated for 5 minutes before 15 µl plasmid DNA 

(diluted to ≈10 ng/μl) or DNA assembly reaction mix was added, and cells incubated for a 

further 30 minutes at 4 °C. The plate was removed and subjected to a 60 second heat shock 

at 42 °C in a water bath, before being returned to the Temperature Module for 5 minutes. 

125 µl of SOC medium was added to each well, and the plates sealed with breathable plate 

seals (Sigma) and transferred to a Thermomixer (Thermo Fisher) incubator at 37 °C 750 rpm 

shaking for 1 hour. Following outgrowth, the plate was returned to the OT-2 where 10 µl of 

each outgrowth culture was spotted onto a rectangular agar plate (Grenier) in a 96-well 

pattern. Lastly, 70 µl of each culture was removed and replaced with 70 µl of fresh SOC 

medium to dilute cultures to double their starting volume. 10 µl of diluted culture was 

spotted onto the agar plate.  

2.4.2 Protein Expression 

Colonies from a freshly grown agar plate were picked using a PIXL colony picking robot 

(Singer Instruments) in the “background subtraction” detection mode, or manually. Each 

colony was used to inoculate 250 µl of LB medium with antibiotics in a 2.2ml deep 96-well 

plate (Thermo Fisher). Plates were sealed using breathable seals as previously and incubated 

in a Thermomixer overnight at 37 °C with 1200 rpm shaking. 

The following day, 25 µl of overnight culture was added to 225 µl of TB medium in a fresh 

deep 96-well plate and plates covered with breathable seals. Expression cultures were grown 

in a Thermomixer at 37 ˚C, 1200 rpm shaking for 3 hours before induction of protein 

https://github.com/naailkhan28/opentrons_protocols
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expression by the addition of 1 mM IPTG as previously described. The temperature was 

lowered to 25 ˚C and induced cultures grown for 24 hours. Finally, cell pellets were 

harvested and stored as previously described. 

2.4.3 Protein Solubility Screening 

Cell pellets in deep-well 96-well plates were resuspended in 25 µl BugBuster protein 

extraction reagent (Sigma) supplemented with 25 U/ml benzonase. Resuspended cell pellets 

were incubated at room temperature with 1200 rpm shaking for 30 minutes and clarified by 

filtration. Lysates were transferred to a 0.22 µm MultiScreen 96-well filter plate (Merck) and 

centrifuged at 4000xg for 15 minutes at 4 °C. 5 µl of the clarified lysate was applied to a 

nitrocellulose membrane (Bio-Rad) for dot blotting and the membrane was blocked, washed, 

incubated with antibody, and detected in the same way as the previously described Western 

Blots (Section 2.3.5.3). Dot blot images were processed in ImageJ. 
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Chapter 3: Discovery of Novel Encapsulin Candidates from 

Metagenomic Databases 
Published works statement: Data and figures in this chapter are reproduced from: Naail 

Kashif-Khan, Renos Savva, Stefanie Frank, Mining metagenomics data for novel bacterial 

nanocompartments, NAR Genomics and Bioinformatics, Volume 6, Issue 1, March 2024, 

lqae025, https://doi.org/10.1093/nargab/lqae025 [238] as described in the UCL Research 

Paper Declaration Form. 

3.1 Background 

A recent bioinformatics study described a dataset of over 6000 encapsulin sequences [26], 

however this work deliberately excluded metagenomics data from the search. As described 

in Section 1.5.3, metagenomics databases contain diverse protein sequences which share 

little or no identity with known proteins from sequenced, assembled genomes. However no 

previous work has attempted to search for encapsulins in these databases. In this chapter, it 

is hypothesised that metagenomics databases are a potential source of novel encapsulin 

proteins, showing low sequence identity with protein sequences in genomic databases. 

These novel encapsulins may have interesting new properties, including novel structural 

features, previously unseen cargo proteins or biological functions, and potentially new 

assembly architectures beyond the T=1, 3, or 4 encapsulin systems which are currently 

known. 

3.2 Search Pipeline 

This work focuses on the MGnify Protein Database, a publicly available metagenomic 

protein database. This resource contains over 2 billion protein sequences, aggregated from 

metagenomics studies deposited in MGnify, a universal resource for metagenomics data 

hosted by the European Bioinformatics Institute. Predicted structures for a large subset of 

MGnify proteins are also available in the ESM Atlas. An overview of the search pipeline is 

presented in Figure 3.2.1 (panels a and b). 

The search strategy used here is comparable to previous work, with two key differences. The 

MGnify Protein Database was searched using Pfam functional annotations as in [26], 

however all 17 Pfam families from the clan CL0373 (“phage coat”) were used as queries. 

This differs from previous work where only two Pfam families were used as queries, namely 

https://doi.org/10.1093/nargab/lqae025
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PF04454 (“encapsulating protein for peroxidase”) and PF05065 (“phage capsid family”). 

Pfam clan CL0373 contains annotations for all HK97-fold proteins, including both phage 

capsids and encapsulins. Using all Pfam labels in this clan is expected to discover more 

distantly related encapsulin homologs, or sequences which have been misannotated as 

phage capsids. However, this strategy is also expected to return many phage capsid 

proteins, which must be filtered out afterwards. In parallel, the ESM Atlas was searched 

using a set of encapsulin structures as query, which has not been described in previous 

work. Protein structure search can recover more distant sequence homologs when compared 

to sequence-based searches [152], making it well suited for interrogating metagenomic 

databases like MGnify. However, since encapsulins and phage capsids share the HK97 fold, 

this search also returned contaminating phage capsid proteins [238]. 

Pfam family and structure searches returned ≈760,000 and ≈2800 sequence hits respectively 

(Figure 3.2.1c), however most of these hits were likely phage capsid proteins. To remove 

viral sequences from the dataset, the genomic context of each candidate encapsulin gene 

was examined. Metagenomic sequence data consists of contiguous nucleotide sequence 

regions known as “contigs”. These contigs vary in length and the number of protein-coding 

genes they contain. Several different database queries against both MGnify and the 

European Nucleotide Archive (ENA) were required to obtain the contig sequences for each 

encapsulin candidate (Figure 3.2.1b). Contig accessions were obtained for 83% of initial 

encapsulin candidates, but protein coding sequences were only available for 53% of these 

contigs. These protein coding sequences surrounding the putative encapsulins were further 

investigated to remove potential phage capsid proteins. 

Several filtering steps were required to remove potential phage capsid proteins from the 

dataset. The protein coding genes from each contig were searched against a sequence 

database containing two phage proteomes, to identify any phage-associated proteins near 

the candidate encapsulin-coding gene, as in [26]. Any candidates found in contigs 

containing a hit against a phage protein sequence were removed. Next, candidate proteins 

associated with a contig under 25 kb in length or containing fewer than 10 protein-coding 

genes were removed from the dataset. This is to ensure that every putative sequence has a 

minimum level of genomic context available, to rule out the possibility of that sequence 

being of viral origin, but also to aid in subsequent functional annotation. 
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Figure 3.2.1: Data Search and Retrieval Methodology 

a) Input structures and Pfam families were searched against the ESM Atlas and MGnify Protein 

Database respectively. The resulting MGYP protein accessions were mapped to MGYC contig 

accessions from the MGnify Protein Database. b) MGYC contig accessions were mapped to ERZ 

analysis accessions, and MGnify contig names using simple text-based filtering. ERZ accessions were 

mapped to MGYA accessions using the MGnify API. Repeated API calls were made to retrieve contig 

sequences from MGYA and ERZ accessions, and contig names. Accessions and data are coloured 

according to source, with MGnify Protein Database shown in purple, MGnify studies and API in teal, 

European Nucleotide Archive in orange, and all other data sources in grey. c) Sankey diagram 

showing a summary of the number of putative encapsulin sequences at each step of the filtering and 

curation pipeline. Red nodes indicate sequences which were removed from the analysis. The purple 

box in the top right corner indicates the final dataset of putative encapsulin sequences after all 

curation steps. Figure reproduced from [238]. 
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Lastly, the Pfam annotations of all proteins in each contig were examined and compared 

against a curated set of phage-associated Pfam families. Any candidates associated with 

contigs containing a putative phage-associated gene were removed from the dataset. Thus, 

from ≈372,000 encapsulin candidates with available contig proteins, a final curated dataset 

of 1548 filtered encapsulin proteins was produced [238].  

3.3 Length and Biome Distribution of Metagenomic Encapsulin Candidates 

As shown in Figure 3.3.1a, the vast majority of encapsulin candidate sequences discovered 

in this work were under 500 residues in length. This is expected given that all 

experimentally characterised encapsulins are between 2-300 residues long. The 

metagenomic candidate sequences were searched against UniRef90 to find the sequence 

identity with closest hits in a conventional, genomic protein database (Figure 3.3.1b). 

Whilst 225 candidate sequences shared 95% identity or higher with a UniRef90 sequence, 77 

sequences returned no hits at all. The rest of the candidate sequences showed sequence 

identities ranging from 20-90% against their nearest hit in UniRef90. These data 

demonstrate that the metagenomic candidate sequences presented here explore a wide 

range of sequence space, and that some metagenomic sequences do indeed show low 

identity against sequences in conventional databases [238].  

Since the candidate sequences originate from metagenomic contigs, and not fully 

assembled genomes, tracing the species of origin for these 1548 sequences is non-trivial. 

However, each of these sequences is associated with a metagenomic study in MGnify, with 

corresponding metadata on sample collection. These samples are annotated with biome 

information according to the Environment Ontology, as shown in Figure 3.3.2. Putative 

encapsulins were found in 2000 different metagenomics samples across diverse 

environments. Whilst most samples are sourced from aquatic environments, a sizeable 

proportion (29%) are associated with host-associated biomes, most of which are microbiota 

of the digestive systems of humans, other mammals, or birds. The presence of encapsulins 

in host-associated pathogens aligns with previous results [26] and may support the 

hypothesis that these proteins serve roles in bacterial pathogenicity [239]. 
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Figure 3.3.1: Length and Identity Distribution of Encapsulin Candidate Sequences 
Histograms depicting the distribution of a) length and b) sequence identity of the closest hit in 
UniRef90 for 1548 encapsulin candidate sequences. X-axis values denote the centre of each bin. 77 
sequences had no hits in UniRef90, and 225 sequences showed over 95% identity to a sequence in 
UniRef90. Most candidate sequences are under 500 residues, with only 38 sequences over 900 
residues. Figure reproduced from [238]. 
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Figure 3.3.2: Biome Distribution of Metagenomic Encapsulin Candidates 

a) Breakdown of biome data for the 2000 metagenomic samples where putative encapsulin 

sequences were found. The four categories in the pie chart represent the four top-level categories of 

the Environment Ontology used in the MGnify database – environmental, host-associated, 

engineered, and mixed. b) Sunburst plot showing a breakdown of the biomes within each category 

from b). “Other animals” includes mammals and birds. “Other” engineered types include laboratory 

samples, food production, fermented beverage production, and bioreactors/biogas sites. These 

categories contain many sparsely populated subcategories which are omitted for clarity. The 

“Mixed” biome has no subcategories and is thus omitted. Figure reproduced from [238]. 

3.4 Metagenomic Encapsulin-Associated Cargo Proteins 

Several methods were used to annotate metagenomic encapsulin candidates with a cargo 

protein, to try to establish putative biological function for these encapsulin systems. Pfam 

annotations for the surrounding proteins from each contig were compared against a curated 

list of encapsulin cargo Pfam families. Hidden Markov models (HMMs) were constructed for 

each of the family 2 cargo proteins and searched against contig proteins to identify hits. 

Contig proteins were searched against the BLAST non-redundant database to potentially 

identify cargo proteins with similarity to those in genomic databases. Lastly, representative 

cargo loading peptide (CLP) sequences were searched against these contig proteins, to 

identify cargo proteins with no annotated function, but containing a potential CLP region 

targeting proteins for encapsulation [238]. However, even with this involved search 

strategy, only 177 out of 1548 metagenomic encapsulin candidates were annotated with an 

associated cargo protein (Figure 3.4.1).  
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Figure 3.4.1: Metagenomic Encapsulin Candidates and Putative Cargo Proteins 

a) Icicle plot showing a breakdown of annotated cargo proteins for metagenomic encapsulin 

candidates, separated by family. Out of 1548 putative encapsulin hits, 177 were annotated with 

putative cargo proteins. Most cargo proteins were from families 1 and 2, with 3 proteins from family 

4. b) ESMFold predicted structures of a putative encapsulin hit and its respective ferritin-like cargo 

protein. Despite low sequence identity to any sequence in conventional databases, both are 

identified as encapsulin and ferritin-like proteins by functional annotation and predicted structures 

respectively. Figure reproduced from [238]. 

This shows the diverse nature of metagenomic proteins and the well-known difficulties in 

assigning them biological functions. 

Most metagenomic cargo candidates belonged to encapsulin families 1 and 2 and included 

DyP-type peroxidases, ferritin-like domains, cysteine desulfurases, and polyprenyl 

transferases. Figure 3.4.1b shows the predicted structure of a representative putative 

encapsulin and its candidate corresponding ferritin-like cargo protein. Both show low 

sequence identity to any protein in conventional databases (46.2% and 32.7% for encapsulin 

and cargo) but are annotated as encapsulin and cargo by Pfam family. Predicted structures 

of these two proteins also corroborate their sequence-based functional annotations – the 

encapsulin clearly displays the HK97 fold while the cargo protein gives significant hits 

against crystal structures of ferritins from E. coli when searched against the PDB using 

Foldseek. Interestingly, this encapsulin was annotated with Pfam PF05065 (“phage capsid 
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family”), a label which was previously assigned to family 3 encapsulins [26] but which is 

seen here in a putative family 1 encapsulin system. 

3.5 Metagenomic Encapsulin-Associated Biosynthetic Gene Clusters 

Family 3 encapsulins are found within putative BGCs (see Section 1.4.1). In order to find 

potential family 3 encapsulins in this metagenomic dataset, each encapsulin-associated 

contig was run through two BGC prediction tools, DeepBGC [71] and antiSMASH [70]. The 

former uses a deep learning model to predict the presence of BGCs based on the co-

occurrence of Pfam families, while the latter is a more traditional bioinformatics tool which 

uses manually defined rules to define BGCs based on Pfam families and other HMM 

searches. Contig nucleotide sequences were used as inputs to both tools. Whilst DeepBGC 

outputs a simple tabular data file which can be processed in Python, antiSMASH generates a 

folder of HTML files for each input contig, intended for manual inspection in a web browser 

but not suitable for automatic processing and analysis. As such, a script was written to 

automatically scrape the data from these HTML files using the Python package 

beautifulsoup4 [223]. 

BGC predictions uncovered a potentially novel encapsulin-associated BGC, the Saccharide 

BGC (Figure 3.5.1a). These putative BGCs are predicted by DeepBGC to produce 

antimicrobial or cytotoxic saccharides, and all encode at least one glycosyl transferase 

enzyme, although most contain multiple such enzymes. 
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Figure 3.5.1: Putative Metagenomic Encapsulin-Associated BGCs 

a) 29 putative encapsulins are found in predicted saccharide BGCs, all containing at least one 

glycosyl transferase. These BGCs may also encode epimerases, aldolases, oxygenases, and redox 

proteins. b) Some putative encapsulins are found in putative BGCs, and near known cargo proteins 

with loading peptides or domains (grey arrows with red dashed outline). In one example 

hemerythrin, a family 1 cargo protein, is seen upstream of the putative encapsulin and a polyketide 

synthase (PKS)-like BGC. Other encapsulin candidates are found upstream of saccharide BGCs 

containing cysteine desulfurase, a family 2 cargo. The N-acetylglutaminyl glutamine amide (NAGGN) 

BGC contains asparagine synthase and acetyltransferase enzymes, whilst non-ribosomal peptide 

synthetase (NRPS)-like clusters encode phosphate/AMP binding proteins. Both contain putative 

encapsulins with ferritin cargos. Enzymes not found in all operons are shown in dashed outline. 

Direction of arrows does not indicate gene orientation and is for schematic purposes only. 

PAA = Phenylacetic acid, IC = Isoprenylcysteine. Figure reproduced from [238]. 
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Other enzymes that can be found in such BGCs include carbohydrate epimerases and 

dehydratases, methyltransferases, and oxygenases. Proteins from several Saccharide BGC 

systems were used as query for BLAST searches or Foldseek searches against the PDB using 

ESMFold predictions. However, none of these searches gave any significant matches (E-

Value < 10-3 for BLAST, or TM-Score and Probability > 0.5 for Foldseek) to proteins of 

known structure or function from these databases, indicating that the Saccharide BGC query 

proteins show a low degree of homology to proteins in these databases. 

Several putative encapsulins were found within predicted BGCs with known cargo proteins 

that contain capsid targeting peptides or domains (Figure 3.5.1b). Several putative 

Saccharide BGCs also contains cysteine desulfurases, a known family 2 cargo. A putative 

encapsulin was found downstream of a putative hemerythrin cargo, but upstream of a 

polyketide synthase-like BGC, which encodes enzymes involved in the synthesis of 

chalcones. Putative encapsulins with ferritin cargos were also found in N-acetylglutaminyl 

glutamine (NAGGN) and non-ribosomal peptide synthetase (NRPS)-like clusters, both of 

whose general function is to synthesise short modified peptides [78, 240]. 

The encapsulin-associated NAGGN BGC described here encodes the asparagine synthase 

and acetyltransferase enzymes needed to produce the osmoprotective peptide NAGGN 

[240]. NRPS-like encapsulin BGCs encode the phosphate/AMP binding proteins usually 

associated with NRPS BGCs, but are missing the key peptidyl carrier protein (PCP) which is 

required for non-ribosomal peptide synthesis [241]. However, such systems encode several 

potentially encapsulated enzymes, including gluconolactonases, thioesterases, aldo-keto 

reductases, and nitroreductases. Encapsulins have been previously reported as part of NRPS 

operons, but these partial “NRPS-like” systems lacking a full complement of enzymes have 

not been seen previously. 

In total, both BGC prediction tools only returned 32 putative BGCs out of 1548 potential 

candidates. In addition, antiSMASH falsely predicted around 80 “RiPP-like” BGCs (short for 

ribosomally synthesised and post-translationally modified product). The putative 

encapsulin genes in these BGCs are assigned the Pfam family PF04454 whose full name is 

“Encapsulating protein for peroxidase”. However, antiSMASH incorrectly designates this 

Pfam family with the short name “Linocin:M18” [228]. Since linocin genes are usually found 
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as part of real RiPP-like BGCs, antiSMASH falsely annotated these encapsulin-containing 

gene clusters as RiPP-like. This false annotation of encapsulin genes has been previously 

observed in the literature [242] and occurs in the Pfam database itself as well as in programs 

such as antiSMASH which make use of its functionality. 

3.6 Structure Prediction of Metagenomic Encapsulin Candidates  

Following cargo annotation and BGC prediction, predicted structures for the encapsulin 

candidates were inspected, to uncover potentially novel structural features in these diverse 

metagenomic proteins. Predicted structures for these encapsulin candidates were 

downloaded from the ESM Atlas where available, however in most cases a predicted 

structure was not available for download and so ESMFold predicted structures were 

generated manually. 38 sequences longer than 900 residues were not predicted or included 

in the analysis due to memory constraints (see length distribution in Figure 3.3.1). Any 

structures with mean predicted local distance difference test (pLDDT) values below 70 were 

also excluded from further analysis, to avoid artefacts from low confidence predictions.  

Manual inspection of over 1000 predicted structures is impractical, so an automated 

investigation of these structures was carried out. Pairwise similarity between confident 

structures was computed in an all-against-all manner using DALI [218]. Four experimentally 

solved structures were also included in this matrix. As shown in Figure 3.6.1a, the similarity 

matrix showed clear patterns of clustered structures that share similarity with each other. 

The resulting similarity matrix was clustered using the scipy package in Python [219], and 

these clusters correspond to distinct regions of protein feature space (Figure 3.6.1b). 

Candidate sequences explore a wide range of lengths and charge properties, and in several 

cases, predicted encapsulin structures in the same cluster show similar length and 

isoelectric points. Notably, three out of the four experimental structures analysed here fall 

within the largest cluster of structures. This suggested that the other clusters may contain 

predicted structures with novel features not observed in these experimental structures. 
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Figure 3.6.1:  Clustering of Metagenomic Encapsulin Predicted Structures 

a) Clustered heatmap of DALI all-against-all pairwise similarity for high confidence encapsulin 

predicted structures. Clusters of structures sharing high similarity with each other can be seen 

visually and assigned using hierarchical clustering. These clusters of similar structures are shown in a 

coloured dendrogram at the top of the heatmap. b) Scatterplot of sequence length versus isoelectric 

point for predicted encapsulin structures, coloured by cluster. Whilst some clusters are relatively 

dispersed, there are some local regions where encapsulins of similar length and/or isoelectric point 

are clustered together (highlighted with coloured boxes). Experimentally solved encapsulin 

structures are shown, 3/4 of which fall within a single cluster. Figure reproduced from [238]. 
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It is possible that the clustering results are based on artefacts from structure prediction 

using ESMFold as opposed to the more accurate AlphaFold2. As such, representative 

sequences from each cluster of ESMFold predicted structures were predicted using 

AlphaFold2 and the predictions from the two different methods were investigated. Across 

this set of representatives, the two methods showed good agreement as measured by TM-

Score and comparison of pLDDT values (Figure 3.6.2a). In the one case where AlphaFold2 

pLDDT is below 70, both structure predictions show good agreement in the HK97 fold and 

differ only in the conformation of an N terminal extension region (Figure 3.6.2b). TM-

Scores between ESMFold and AF2 predictions are always at least 0.8, apart from two cases 

where, again, N terminal regions differ in conformation but the HK97 fold is preserved 

(Figure 3.6.2c and d). Most predictions show higher AF2 confidence than ESMFold; this is 

most likely because of the use of MSAs and templates in AF2 prediction as opposed to just 

sequence with ESMFold. Overall, these results appear to rule out the possibility that 

analysis is influenced by artefacts from ESMFold structure prediction. 

Next, ESMFold predicted encapsulin structures from several clusters were further 

investigated to find potentially novel features. Each structure cluster were further clustered 

at 80% sequence identity to remove redundancy, and all predicted structures from these 

reduced clusters were visually inspected in PyMOL. As expected, predicted structures from 

Cluster 8 (which contained 3/4 of the experimental structures analysed) all resembled 

known encapsulin structures from the literature (Figure 3.6.3a), with E-loops either in the 

“T=1-like” conformation or in a position resembling the T=3 or T=4 encapsulins. However, 

encapsulins from other clusters displayed some conformational diversity compared to 

experimentally solved structures. For example, putative encapsulins from Cluster 1 showed 

insertions in the A-domain apical loop region, and a longer E-loop. Predicted structures 

showed favourable pLDDT and predicted aligned error (PAE) values (Figure 3.6.3b). 
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Figure 3.6.2:  Comparison of Representative AlphaFold2 and ESMFold Predicted Structures 
48 representative sequences were chosen from ESMFold predicted structure clusters and predicted 
with AlphaFold2.  
a) Plot of ESMFold pLDDT against AlphaFold2 pLDDT, showing all but two structures have mean AF2 
pLDDT above 70. Similarity between ESMFold and AF2 predictions as measured by TM-Score was 
always 0.7 or higher, and in all but 5 cases TM-Scores are above 0.8, indicating good agreement 
between predictions. 
b) Visual comparison of ESMFold (orange) and AF2 (blue) predictions where the AF2 prediction 
shows low confidence. Despite the lower AF2 confidence, the two predictions agree in the HK97 fold 
and differ only in their prediction of an extended N-terminal region. 
c), d) Visual comparison of ESMFold and AF2 predictions for two putative encapsulins with TM-Score 
below 0.8. Despite this, structures agree in both cases and differ only in extended N-terminal regions 
which appear disordered (shown in darker blue for AF2 and yellow for ESMFold). In c) this appears to 
be a large insertion at the N-terminus. Both methods predict it to be mainly helical, although in 
differing conformations. Such flexible fusion domains are found in the N-terminus of some Family 1 
encapsulins. In d) this N-terminal region has an extended loop, comparable to the N-arm of the S. 
elongatus T=1 encapsulin. Aside from these terminus regions indicated, ESMFold and AF2 predicted 
structures appear to be in good agreement. Figure reproduced from [238]. 
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Figure 3.6.3: ESMFold Predicted Structures of Metagenomic Encapsulin Candidates 
a) Cluster 8 (orange) contains predicted structures closest to experimentally solved encapsulin 
structures. Some resemble the T. maritima T=1 encapsulin (left), while others have an E-loop angle 
closer to higher T-number encapsulins from M. xanthus and Q. thermotolerans (middle). Cluster 1 
(right, pink) contains structures with minor variations, including insertion loops in the A-domain and 
a longer E-loop. 
b) pLDDT (top) and PAE (bottom) plots for the three predicted structures. All structures have a mean 
pLDDT above 0.7. MGYP000906978198 and MGYP003113059926 showed acceptable mean PAE of 
3.7 and 2.9 Å respectively. MGYP001626330305 has mean PAE around 11 Å, however this was due 
to the presence of two distinct domains structure with poor PAE values against each other, visible in 
the plot as dark coloured squares separated by regions of brighter colour. These two domains 
correspond to the main HK97 fold of the encapsulin, and the N-terminal rubrerythrin cargo fusion. 
The mean PAE within these regions was under 4 Å, indicating two confidently predicted domains 
whose positioning relative to each other is uncertain. Figure reproduced from [238]. 

However, the predicted structures from Cluster 6 appeared to be the most interesting. These 

candidates all displayed several interesting features not seen in known encapsulins (Figure 
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3.6.4a). This included large insertion domains in the E-loop which could not be identified by 

sequence or structure searches against existing databases. These predicted structures also 

showed insertion of a small β-strand in the G-loop region, which is not seen in 

experimentally solved encapsulin structures. The positioning of these insertions in E- and 

G-loops indicates that these domains could decorate the outside of the assembled capsid 

shell (Figure 3.6.4b). 

 

Figure 3.6.4: A Cluster of Encapsulin Candidates with Novel Structural Features 

a) Cluster 6 contains novel encapsulin predicted structures with a large insertion domain in the E-

loop (dark blue), and an extended G-loop (teal) not seen in experimental encapsulin structures. 

Some predicted structures contain N-terminal extensions or fusion domains (purple). c) Alignment 

with the T. maritima encapsulin pentamer shows E-loop and G-loop extensions are predicted to 

decorate the outer surface of the capsid. Pentamer fitting is not energy minimised and shown for 

schematic purposes only. Figure reproduced from [238]. 

3.7 Experimental Characterisation of Metagenomic Encapsulin Candidates  

Next, several metagenomic encapsulin candidates were chosen for experimental 

characterisation. Experimental efforts were focused on the Cluster 6 candidates since these 

appeared to show interesting and potentially useful new structural features. Three 

sequences from Cluster 6 were chosen for experimental characterisation: 

MGYP000631152961, MGYP002732142711, and MGYP000702098687. These will henceforth 

be referred to as MGYP-61, MGYP-11 and MGYP-87 for brevity. These Cluster 6 sequences 

were chosen due to the presence of an annotated family 2 cargo protein on the same contig 
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as the candidate sequence (polyprenyl transferase for MGYP-61 and MGYP-11, and xylulose 

kinase for MGYP-87). Protein sequences were codon optimised for E. coli, ordered as 

synthetic genes, and cloned into pSB1C3-FB for expression under the T7 promoter. 

Figure 3.7.1a shows the confidence metrics for the three chosen candidate sequences – all 

have satisfactory mean pLDDT values, sub-5 Å PAE values within the majority of the HK97 

fold, and only displaying higher PAE values in E-loop insertion domain region. All three 

proteins were expressed in E. coli in 6 ml cultures, at three different temperatures (Figure 

3.7.1b). MGYP-11 appeared to show poor expression and low soluble yield across all 

temperatures. Whilst MGYP-87 displayed a strong band on SDS-PAGE of the expected size 

for the insoluble fraction, the same band appeared much fainter in the soluble fraction 

across all temperatures, indicating that most of the expressed protein was insoluble. 

However, MGYP-61 showed intense bands of the expected molecular weight for both 

soluble and insoluble fractions at 18 ˚C and 25 ˚C. As such, given its good expression levels 

and high soluble yield compared to the other two candidates, only MGYP-61 was carried 

forward to further experiments. 
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Figure 3.7.1:  Confidence Metrics and Solubility Screening of Metagenomic Encapsulin Candidates 
a) pLDDT (left) and PAE (right) plots for the three chosen experimental metagenomic encapsulin 
candidate sequences. All sequences have mean pLDDT above 80. Mean PAE for each structure is 
between 10-11 Å but this drops to 6-7 Å when excluding the low confidence N-termini. This is due to 
the uncertain alignment of residues 70-180 (the E-loop and insertion domains) with the rest of the 
structure. b) SDS-PAGE gels showing the soluble (S) and insoluble (P) fraction of E. coli cell lysate 
following expression of the three proteins at three different temperatures – 18 ˚C, 25 ˚C, and 37 ˚C. 
All three proteins have an expected molecular weight of 47 kDa, with the overexpressed protein 
band indicated with red arrows. MGYP-61 appeared to have the highest level of soluble expression 
based on the intensity of the band, followed by MGYP-87, with MGYP-11 showing a comparatively 
poor yield of soluble protein. Note that cropped gel lanes shown here come from three separate 
SDS-PAGE gel images; one gel was run for the samples for each different protein. 

3.8 Further Experimental Characterisation of MGYP-61  

Next, MGYP-61 expression in E. coli was scaled up to the flask scale, and protein purified 

using affinity chromatography using Streptactin columns. Purified protein from affinity 

chromatography was pooled, concentrated, and run on a Native-PAGE gel. This sample was 

then polished using size exclusion chromatography. Unfortunately, at the time these 

experiments were carried out, a gel filtration column with the appropriate fractionation 
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range for nanoparticles was not available. Concentrated protein was therefore loaded onto a 

Superdex 200 column with a 10-600 kDa fractionation range. However, this was deemed 

unlikely to affect chromatography results, since the hydrodynamic radius of assembled 

encapsulin particles should be too large to enter the column’s gel matrix, and thus, these 

are expected to elute in the void volume. 

As shown in Figure 3.8.1a, pure MGYP-61 was recovered in high yield from large-scale E. 

coli cultures. Native-PAGE analysis of pure MGYP-61 fractions (Figure 3.8.1b) indicated that 

the protein does not assemble into large nanoparticles as expected from an encapsulin, with 

no large molecular weight species visible. The MGYP-61 SEC trace (Figure 3.8.1c) showed a 

broad peak formed of two components – a narrow, earlier component and a broad, later 

component. This suggests that there could be two distinct populations, one of a larger 

molecular weight and one smaller. However, both fractions eluted outside the void volume 

for this column (30 ml).  Fractions comprising both parts of this peak were separately pooled 

and concentrated for further analysis. DLS measurements (Figure 3.8.1d) seemed to indicate 

that both early and late fractions contained a broad distribution of assembled particle sizes, 

centred around ≈70 nm. These broad DLS peaks have long tails (truncated on the plot shown 

in Figure 3.8.1d for clarity) which may indicate the presence of high molecular weight 

aggregates. TEM images (Figure 3.8.1e) conclusively showed that MGYP-61 does not 

assemble into nanoparticles, with both early and late samples showing no visible assembled 

particles. 
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Figure 3.8.1: Biochemical and Biophysical Characterisation of MGYP-61 
a) SDS-PAGE of MGYP-61 fractions purified using affinity chromatography from large-scale E. coli 
expression cultures. FT = flow-through, W = wash. Numbered fractions indicate elution fractions 
from the Streptactin column, showing high yield of pure protein. b) Native-PAGE of pooled fractions 
from MGYP-61 affinity chromatography and a pure TmEncap control. TmEncap shows the higher 
molecular weight bands associated with capsid assembly (orange arrow), but MGYP-61 does not 
show any higher molecular weight bands, only a low molecular weight smear (red arrow). c) 
Chromatography trace of Streptactin purified MGYP-61 fractions loaded on a Superdex 75 gel 
filtration column (10-600 kDa fractionation range). MGYP-61 appears to show a doublet peak 
composed of early and late components. d) DLS intensity data (averaged by number of particles) for 
the MGYP-61 early and late fractions from SEC (separately pooled and concentrated) and a TmEncap 
control. Shaded areas represent 3 measurement runs for each sample, and solid lines represent 
mean values of these measurements. TmEncap shows the expected narrow distribution around 24 
nm, where both MGYP-61 fractions show broad distributions centred around 70-80 nm sizes. e) TEM 
images showing MGYP-61 early (left) and late (right) fractions. Neither sample appears to contain 
assembled particles. Bright spots seen in the MGYP-61 early fraction image (left) are staining 
artefacts. 
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3.9 Discussion 

3.9.1 Metagenomic Encapsulin Discovery 

In this chapter, a dataset of novel putative encapsulin sequences is presented, leveraging 

the rapid growth in metagenomic databases, and the wealth of new sequence diversity 

contained within them. This diversity presents many opportunities for discovery of novel 

proteins; however, it also brings to light several challenges which were encountered in this 

work. Analysing metagenomic encapsulin hits by functional prediction is a non-trivial task, 

as seen in the relatively slim proportion of candidate encapsulin sequences that could be 

annotated with a feasible cargo type. This could be because of low sequence identity (often 

sub-30%) of putative cargo proteins with any protein of known function, or it could also 

indicate that putative encapsulins in this dataset are associated with novel cargo proteins 

whose function hasn’t previously been observed in known encapsulin systems. The scarcity 

of genomic context surrounding metagenomic encapsulin hits also makes removing phage 

proteins difficult, requiring a much more involved search and filtering strategy compared to 

previous work. Many initial candidate sequences had to be removed due to small contig 

sizes, and contigs could not be retrieved for many candidate sequences due to missing 

metadata in the MGnify Protein Database (Figure 3.2.1c). 

It must be noted that the Pfam annotations used in the initial search stage of this work were 

generated using ProtENN, a previously described deep learning model which has been 

demonstrated to be more accurate than conventional HMM-based approaches [138], 

particularly on sequences with remote homology to any existing annotated sequence. The 

authors of ProtENN suggest combining deep learning predictions with traditional HMM 

approaches for optimal performance and coverage. Unfortunately, re-annotating all 2.4 

billion protein sequences using HMMs is far beyond the scope of this study, especially when 

ProtENN annotations are already provided, and are likely to be more accurate for the novel 

sequences sought after in this work. Aside from its use in the MGnify Protein Database, 

there are no examples in the literature of ProtENN being applied to metagenomics data. 

This work is the first study focusing on genome mining of the MGnify Protein Database, and 

as such the first detailed interrogation of ProtENN annotations applied to metagenomics 

data. 
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Despite the rigorous filtering strategy employed in this study, there is still a chance that 

some candidate encapsulins presented here are phage proteins and not encapsulin proteins 

of cellular origin. Encapsulins and phage capsid proteins from conventional databases can 

show as little as 20% sequence identity despite similarity in tertiary and quaternary 

structure. The degree of uncertainty is compounded by the fact that the metagenomic 

candidate sequences presented here show low identity with sequences in conventional 

biological databases, for which species and functional annotations are available. This 

twofold issue of low sequence identity is then also complicated by the unclear evolutionary 

history of the HK97 fold: as described in Section 0 it is unknown whether this family of 

proteins originated in viruses or cellular organisms. Due to this obscure evolutionary 

relationship, putative encapsulin hits may resemble phage capsid proteins in sequence or 

structure, however it is impossible to rule out the scenario that they are very primitive 

cellular proteins close to the HK97 fold’s common ancestor. Genomic context can give clues 

as to a protein’s origin, however in the metagenomic case this information is limited, and 

functional annotation of neighbouring genes is troublesome. Indeed, an ancient phage-like 

encapsulin sequence could be neighboured by primitive genes appearing viral in character, 

and with limited sequence identity and annotations it would be very difficult to decide 

whether these genes are cellular or viral in origin. These thought experiments serve to 

demonstrate the difficulty in distinguishing encapsulins from phage capsid proteins, and 

more broadly to discriminate between viral and cellular proteins. Notwithstanding the 

presence of such thought-provoking examples, this work strives to use all available 

information to rule out the presence of phage capsids where possible.   

3.9.2 Putative Encapsulin-Associated BGCs 

Biosynthetic gene cluster prediction revealed a potentially novel class of encapsulin-

associated BGC, the Saccharide BGC. This may be an interesting new class of encapsulin 

system involved in producing cytotoxic or antimicrobial saccharides, as predicted by deep 

learning tools. The precise substrates and products of these saccharide pathways are not 

known. However, given the presence of putative encapsulins in these systems, and that the 

predicted product classes of these systems are antimicrobial/cytotoxic, it is assumed that 

these saccharide pathways produce toxic products or intermediates, hence the requirement 

for enzyme encapsulation. There are many known glycosylated cytotoxic natural products 

in bacteria, for example the substituted aminoglycoside pactamycin [243]. However, it is 
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important not to draw too strong a conclusion from the BGC prediction data; BGC 

prediction algorithms are notoriously error-prone and are known to produce many false 

positives [244]. Indeed, 80 false positive “RiPP-like” BGCs were predicted by antiSMASH in 

this work, emphasizing the care needed in interpreting BGC prediction data. 

Putative cargo proteins from several Saccharide BGC examples returned no informative hits 

when searched using BLAST, or when predicted structures were searched against the PDB 

using Foldseek. The few significant (E-Value < 10-3) sequence hits from BLAST were all 

hypothetical proteins with no annotated function. Structure hits only showed insignificant 

structural similarity over small regions (TM-Scores and probabilities below 0.5). The 

number and accuracy of BGC predictions is limited in this case by the genomic context 

available in the contigs surrounding each candidate encapsulin, which explains the 

relatively few BGC predictions observed in this study. Such tools are usually intended to be 

run on full genome sequences. BGC prediction tools also make use of Pfam and other 

functional annotations, which have their own limitations with metagenomic proteins as 

previously mentioned. Given the limitations in the underlying data and the tools used, 

Saccharide BGCs remain a hypothetical new biological function for encapsulins until 

experimental characterization can be done. 

The same limited conclusions can be drawn from the observation of known family 1 or 2 

cargos within other types of BGC, including Saccharide BGCs. The limitations of the data 

presented here indicate that this is simply a coincidence, however an encapsulin and its 

associated cargo forming part of a larger cluster of metabolic genes is an interesting 

possibility. It is speculated that if this were to be observed in a more significant number of 

genomes or metagenomic contigs, this could have implications for encapsulated ferritin or 

cysteine desulfurase function as part of a larger cluster of genes involved in secondary 

product metabolism. It is noted that BGC prediction in the context of encapsulins has not 

previously been carried out on as large a scale as in this work, and such approaches could be 

applied to the existing encapsulin datasets to potentially give new insights into biological 

function. 

3.9.3 Experimental Characterisation of Metagenomic Encapsulins 

Predicted structures of putative encapsulin hits revealed some interesting new structural 

features. Whilst many of these predicted structures show similar topology to experimentally 
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resolved encapsulin structures, the predicted structures from Cluster 6 display a set of novel 

structural features compared to known encapsulins. Initially, it seemed that insertions in 

the E-loop and A-domain could decorate the vertices of pentameric units in the capsid shell, 

and it was speculated that these insertion domains may lead to architectural differences in 

these putative capsids. Three of these candidates were chosen for experimental 

characterisation, and two of them showed good expression levels in E. coli. The best 

expressing candidate protein was purified and investigated using biophysical techniques, 

however it appears that this candidate (MGYP-61) does not form assembled particles under 

the conditions used in this study.  

3.9.4 MGYP-61 Experimental Characterisation 

There are several possible explanations as to why MGYP-61 was not observed to form 

assembled particles following expression in E. coli and purification. It is possible that the 

experimental conditions used in this study were not conducive to capsid formation. Only 

the capsid protein was overexpressed, but co-expression of the putative cargo protein may 

be necessary for capsid formation. Indeed, it has been observed in some encapsulin systems 

that co-expression of the cargo protein can have a “scaffolding” effect and direct assembly 

of the shell. In the M. xanthus encapsulin, expression of just the shell protein alone leads to 

T=1 sized particles, whereas co-expression of the cargo leads to the formation of a larger 

T=3 shell [22]. Whilst cargo proteins have never been implicated as essential for encapsulin 

assembly, this could be the case for MGYP-61 and its polyprenyl transferase cargo. The pH 

and salt concentration used (150 mM NaCl, pH 8.0) could be potentially suboptimal for 

capsid formation. However, encapsulins are generally stable across wide pH ranges, 

typically pH 3-12 [245]. As such, it is surprising that no assembled particles at all were 

observed under these conditions. Similarly, whilst assembly could be disrupted by inclusion 

of a Strep tag for affinity purification, or by strong overexpression using 1 mM IPTG under 

the T7 promoter (as opposed to more gentle overexpression techniques like autoinduction, 

or lower inducer concentration), neither of these is observed to affect assembly in known 

encapsulins, so this is unlikely. 

Alternatively, it is possible that MGYP-61 is not an encapsulin at all, but in fact a phage 

capsid protein, or an otherwise inactive/non-functional protein that resembles an 

encapsulin or a phage capsid protein. As noted previously, it is possible that the 



 90 

metagenomic encapsulin dataset presented here contains some phage capsid proteins. 

Furthermore, whilst MGYP-61 does have an annotated polyprenyl transferase cargo protein, 

this gene is found several kilobases upstream of MGYP-61, in the opposite orientation. In 

almost all experimentally investigated encapsulin/cargo systems, the shell protein and the 

cargo protein are found adjacent to each other in the genome. However, it has been 

observed that the M. xanthus encapsulin encapsulates several different iron-binding cargo 

proteins, including two proteins located several kilobases upstream and downstream of the 

shell protein [22, 27, 246]. 

Native-PAGE, SEC, and TEM experiments conclusively demonstrated that MGYP-61 does 

not assemble into particles under the conditions tested here, however DLS measurements 

showed broad peaks resembling an assembled particle population. It is unknown why DLS 

produces these false positive results. It is possible to speculate that this is due to the minute 

presence of protein aggregates in pure samples, or the presence of other contaminating 

species such as lipids or nucleic acids. Alternatively, it could be due to the overfitting of the 

DLS data by the analysis packages used. DLS experiments measure the intensity fluctuations 

in laser light scattered by particles in the sample. These intensity fluctuations are used to 

calculate an autocorrelation function, which is then used to fit various other parameters, 

including a diffusion coefficient which is related to the particle diameter [247].  

Despite this high degree of model fitting and processing of the raw data, the proprietary 

Malvern software for the instrument used in this study only outputs the intensity-weighted 

distribution as raw data, as well as other processed forms of this data. As such, it is possible 

that overfitting has occurred somewhere “behind the scenes” between data acquisition and 

data output for plotting. DLS measurements overall are prone to high variability; in Frank 

Lab unpublished data, variation in DLS diameters has been observed across different wild-

type encapsulin samples, even in the same sample on subsequent experimental runs. As 

such, the DLS results here are false positives arising from experimental or data processing 

artefacts and are conclusively contradicted by other biochemical and biophysical 

measurements. 

3.9.5 Future Work 

In this chapter, three encapsulin candidates were experimentally tested, from a potential 

dataset of over 1000 new sequences. As such, the natural next steps are to experimentally 
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characterize more of these candidates. Candidates can be screened for expression and 

solubility before purification and biophysical characterization as presented in this work. 

Since around 120 candidates have been annotated with a putative cargo protein, these 

sequences could also be co-expressed with the cargo protein to assay function and 

assembly. The Saccharide BGC candidates could even be expressed with the entire putative 

operon, to investigate potential secondary product synthesis in these systems. Indeed, 

future work should focus on these interesting BGC candidates, establishing their 

biosynthetic function(if any) and how the putative encapsulin protein is involved in this 

function. 

3.9.6 Conclusion 

To conclude, this study presents exploratory work towards discovering new encapsulin 

sequences in metagenomic databases, and the workflows required to filter and analyse these 

sequences. These new data may be useful in understanding encapsulin biology and/or in 

developing new engineering applications for encapsulins. One of these encapsulin 

candidates gave unsatisfactory results when investigated experimentally, highlighting the 

strong need for experimental screening following the computational discovery process. The 

data presented here may provide a platform for the discovery of more novel encapsulin 

systems in future. 
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Chapter 4: Developing a High Throughput Design Pipeline 

for Encapsulin Proteins 
4.1 Background 

One of the aims of this work was to generate novel encapsulin variants with increased 

solubility and expression yield. This requires high-throughput, scalable methods for 

computational protein design and screening, as well as experimental characterisation in the 

laboratory. Both computational and laboratory methods must be scalable to large sets of 

candidate proteins – on the order of thousands or hundreds of thousands in silico, and 

hundreds in the laboratory using 96-well plates. 

 The following section will outline the development of this pipeline, starting with 

experiments using in silico protein design tools, and methods for computationally validating 

designed sequences. Finally, the establishment of a high-throughput workflow for cloning, 

expression, and solubility screening of encapsulin candidates is presented. This 

experimental workflow can be applied to de novo designed encapsulin proteins, or natural 

candidates from bioinformatics databases (such as those presented in the previous chapter). 

4.2 Encapsulin Design and In Silico Screening Experiments 

4.2.1 Structure Prediction Benchmarking 

A key principle of protein design in the deep learning era is the use of structure prediction. 

Typically, candidate protein sequences are used as the input to structure prediction tools 

such as AlphaFold2 [134] and the resulting structure predictions compared to 

experimentally solved structures of the design template. The quality of designed sequences 

is inferred from the confidence of their predicted structure, as measured by the average 

predicted Local Distance Difference Test (pLDDT) value over all residues. Design quality can 

also be estimated from the structural similarity between the predicted structure and the 

template; there are several measures of structural similarity between two protein 

structures, but the metric used in this study is the Template Modelling score (TM-Score), 

since it is generally robust to variations in the length of structures [225]. 

This process is sometimes called “refolding” [172] and is often used in the validation of 

protein design tools [162, 163].  AlphaFold2 is the de facto standard in protein structure 

prediction, however it can take several minutes or longer to generate a prediction, owing to 
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the time-consuming step of searching genetic databases to generate a multiple sequence 

alignment (MSA). This can be a significant issue if the scalable screening of thousands of 

candidate protein sequences is required, as in this work. However, the advent of MSA-free 

structure prediction tools relying on protein language models, such as ESMFold [137] and 

OmegaFold [224] may provide a potential solution to this problem of scaling. 

To investigate this, the prediction performance of AlphaFold2, ESMFold, and OmegaFold 

was tested on a representative set of experimentally solved, HK97-fold protein structures 

(Table 4.1) taken from [26]. These structures encompass the structural diversity of the 

HK97-fold across phage capsid proteins and encapsulins, with diverse T-numbers, 

architectures, and biological functions.Figure 4.2.1 shows the results of this benchmark 

experiment.  

As expected, AlphaFold2 shows the best performance across both encapsulins and phage 

capsid proteins but is orders of magnitude slower than MSA-free methods. ESMFold shows 

better performance than OmegaFold across both encapsulins and phage capsid proteins and 

generates outputs an order of magnitude faster than OmegaFold and two orders of 

magnitude faster than AlphaFold2. ESMFold showed acceptable performance on these 

representative structures, with all TM-Scores above 0.6, and all pLDDT scores above 60 

apart from the phage capsid protein 1YUE. ESMFold was thus chosen for all structure 

prediction experiments in this study (unless otherwise stated), due to this combination of 

adequate performance and quickly obtainable results. 
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Table 4.1: Protein Structures used for Structure Prediction Benchmarking 

FLP = Ferritin-like protein DYP = Dye-decolourizing-type Peroxidase  

IMEF = Iron-Mineralizing Encapsulin-Associated Firmicute Protein 

PDB ID Species Type Pfam T-Number 

7MU1 Thermotoga maritima Encapsulin (FLP Cargo) PF04454 1 

7BOJ Mycobacterium smegmatis Encapsulin (DYP Cargo) PF04454 1 

6I9G Mycobacterium hassiacum Encapsulin (DYP Cargo) PF04454 1 

7OE2 Haliangium ochraceum Encapsulin (FLP Cargo) PF04454 1 

7BCV Brevibacterium linens Encapsulin (DYP Cargo) PF04454 1 

7S20 Myxococcus xanthus Encapsulin (FLP Cargo) PF04454 3 

7S21 Myxococcus xanthus Encapsulin (FLP Cargo) PF04454 1 

2E0Z Pyrococcus furiosus Encapsulin (FLP Cargo) PF04454 3 

6NJ8 Quasibacillus thermotolerans Encapsulin (IMEF Cargo) PF04454 4 

2PK8 Pyrococcus furiosus DUF2184 PF08967 Unknown 

1OHG Escherichia virus HK97 Phage capsid family PF05065 7 

6OMC Escherichia virus T5 Phage capsid family PF05065 13 

3BJQ Bordetella bronchiseptica Phage major capsid protein E PF03864 Unknown 

3BQW Escherichia coli CFT073 Phage major capsid protein E PF03864 Unknown 

1YUE Escherichia virus T4 Major capsid protein Gp23 PF07068 13/20 

5VF3 Escherichia virus T4 Major capsid protein Gp23 PF07068 13 

5L35 Shigella flexneri bacteriophage Sf6 P22 coat protein Gp5 PF11651 7 

3J7W Escherichia phage T7 P22 coat protein Gp5 PF11651 7 

3J40 Salmonella phage Epsilon15 DUF2184 PF08967 7 

3J4U Bordetella phage BPP-1 DUF2184 PF08967 7 
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Figure 4.2.1: Benchmarking Structure Prediction Methods on HK97-Fold Proteins 
a) TM-Scores and b) pLDDT confidence values for encapsulins (left) and phage capsid proteins (right) 
when predicted using AlphaFold2 (blue), OmegaFold (orange) and ESMFold (purple). Mean values 
for each model shown with dashed horizontal lines. AlphaFold2 shows the best mean performance 
across both encapsulins and phage capsid proteins. ESMfold gave higher mean TM-Score than 
OmegaFold for both encapsulins and phage capsids, and higher pLDDT values for phage capsids. 
OmegaFold shows higher mean pLDDT for encapsulins than ESMFold despite worse performance as 
measured by TM-Score. 
b) Time taken for each model to generate structure predictions as a function of protein length in 
amino acids. Time is shown on a log scale. ESMFold is by far the fastest method, with times an order 
of magnitude lower than OmegaFold and two orders of magnitude lower than AlphaFold2. 
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4.2.2 Inverse Folding Models for Encapsulin Design 

Next, the performance of fixed-backbone protein design models was investigated. These 

models are sometimes called “inverse folding” models, because they generate protein 

sequences from an input protein structure and will henceforth be referred to as such. Two 

inverse folding models, ESM-IF [163] and ProteinMPNN [162] were tested with three 

different encapsulin monomer structures as input; the T. maritima T=1 encapsulin (PDB: 

7MU1), the Q. thermotolerans T=4 encapsulin (PDB: 6NJ8) and the S. elongatus T=1 

encapsulin (PDB: 6X8M). These three cases were chosen since they represent the diversity 

of solved encapsulin structures – a simple T=1 system, a larger T=4 system, and a T=1 

system with an exposed N-terminal arm as in HK97 phage capsids. In addition to the design 

template, the effect of a design parameter known as the “sampling temperature” was also 

investigated in this initial experiment. Sampling temperature is a common parameter in 

machine learning models which generate an output probability distribution; in this case 

ProteinMPNN and ESM-IF both generate a distribution over all 20 amino acids, at each 

position in the protein backbone. It is typically expected that a lower sampling temperature 

produces less diverse but more accurate results, whereas a higher temperature allows more 

diversity to be sampled at the cost of producing lower quality sequences. This is sometimes 

referred to as the “exploration-exploitation trade-off” [248].  

As shown in Figure 4.2.2, both ESM-IF and ProteinMPNN show lower performance at higher 

temperature settings, as measured by the identity of the designed sequence against the 

original structural template (henceforth referred to as sequence recovery). Across all 

temperature values and templates, ESM-IF shows a higher median sequence recovery than 

ProteinMPNN, apart from when temperature > 1 for the Q. thermotolerans encapsulin. 

However, as discussed in Section 1.5.2.3, sequence identity against a template can be a poor 

predictor of experimental success and favourable biochemical properties. Two proteins can 

show low sequence identity but have identical folds and similar physical properties, whereas 

a single point mutation can be enough to destabilise protein folding and destroy activity. 

Therefore, to further investigate quality of the inverse folding designs beyond sequence 

identity alone, protein structures were predicted for all designs using ESMFold. Design 

quality was measured was measured by structural similarity against the template (TM-

Score) and confidence (average pLDDT). 
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Figure 4.2.2: Inverse Folding Performance Varies with Sampling Temperature 
Boxplots (n=100), showing distribution of sequence recovery (percent identity against the template 
sequence) of proteins designed against three different encapsulin templates (bottom, middle, and 
top). ProteinMPNN data shown in purple and ESM-IF data in blue. Sequence recovery decreases as 
temperature increases, across all three templates. ESM-IF shows higher median sequence recovery 
in all cases, except from low temperature (less than 1.0) designs against 6NJ8, where ProteinMPNN 
shows a higher median recovery. Note that sequences were designed using monomer structures as 
input – encapsulin shell structures are shown for illustration only. 

Figure 4.2.3 shows that the low-temperature designs generated by ESM-IF and 

ProteinMPNN also show good refolding accuracy, as measured by TM-Score and pLDDT. 

This indicates that not only does lowering temperature improve sequence recovery, but it 

may also improve structural accuracy of generated sequences. Across all templates, both 
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inverse folding models show a dense cluster of low-temperature sequences which display 

high TM-Scores and pLDDT (above 0.7 and 70 respectively). However, both models are also 

capable of generating sequences with acceptable TM-Scores above 0.7, but with low 

confidence (pLDDT below 50). To better compare the two models across experiments, 

sequences were designated as “satisfactory” if they showed both TM-Score of at least 0.7 

and pLDDT of at least 70. The choice of TM-Score and pLDDT thresholds is somewhat 

arbitrary, and many different values are deemed “acceptable” in the literature. However, for 

this work, the pLDDT cut-off of 70 was chosen to match the AlphaFold database guidance 

for what constitutes a well-modelled protein structure [144]. The TM-Score cut-off of 0.7 

was chosen based on a previously published analysis of TM-Score distributions among 

solved structures of natural; this analysis demonstrated that two protein structures with a 

TM-Score of 0.7 or higher have a 90% chance of belonging to the same fold [249]. 

Figure 4.2.4 shows the fraction of “satisfactory” sequences from both models, across all 

three templates and all temperature settings, and allows detailed comparison of model 

behaviour with varying temperature across the three templates. For the basic test case of 

the T. maritima T=1 encapsulin, almost every designed sequence is satisfactory when 

temperature is set to 0.5 or less, for both models. Above this temperature value, the fraction 

of satisfactory designs starts to markedly decrease, with ProteinMPNN failing to generate a 

single satisfactory design when temperature is set to 1.5 or 2.0.  

For the S. elongatus encapsulin designs, ProteinMPNN displays weak performance compared 

to ESM-IF, with the former model never showing a success rate higher than 20% for any 

temperature value. ESM-IF, on the other hand, shows similar performance to the T. 

maritima test case (and generating more satisfactory sequences when temperature is set to 

1.5, for example). Both models show excellent performance on the Q. thermotolerans 

encapsulin template, when temperature is 0.1 or lower. Above this temperature, 

ProteinMPNN shows a higher fraction of satisfactory sequences than ESM-IF, however 

performance for both models rapidly decreases. Neither model shows more than 10% 

satisfactory sequences when temperature is 1.5 or 2.0. On a final note, none of the designs 

generated at temperature of 3.0 were satisfactory for either model, across all three 

templates.  
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Figure 4.2.3: Refolding Performance of Inverse Folding Models 
Plots showing structural similarity to the template (TM-Score) and average confidence (pLDDT) of 
refolded protein designs, generated by ESM-IF (left) and ProteinMPNN (right), for the three different 
design templates. Designs are coloured by sampling temperature. Low temperature designs 
generally show high TM-Score (above 0.7) and high pLDDT (above 70). However, some designs show 
TM-Scores above 0.7 but low confidence (pLDDT of 50 or less).  
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Figure 4.2.4: Inverse Folding Models Generate Feasible Protein Sequences 
The fraction of “satisfactory” protein sequences, defined as the fraction of designs with TM-Score at 
least 0.7 and pLDDT at least 70, shown for both models across all three templates and all 
temperature values. For the T. maritima encapsulin (top), almost every designed protein sequence is 
satisfactory when temperature is below 1.0, for both models. When temperature is above 1.0 in this 
case, the fraction of satisfactory sequences drops, with ESM-IF showing a higher proportion of 
satisfactory designs than ProteinMPNN. For the S. elongatus encapsulin, the fraction of acceptable 
sequences is never more than 20% across all temperatures for ProteinMPNN, where ESM-IF in 
contrast shows similar performance to the T. maritima encapsulin designs. For the Q. 
thermotolerans encapsulin designs, ProteinMPNN now shows a higher proportion of satisfactory 
designs than ESM-IF across all temperatures. ESM-IF’s fraction of satisfactory sequences falls off 
more drastically with increasing temperature for this encapsulin compared to the other two, with 
less than 80% satisfactory sequences even when temperature is set to 0.5.   
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To summarise, the data presented here demonstrate that both ESM-IF and ProteinMPNN 

can generate feasible, satisfactory encapsulin sequence designs, as measured by sequence 

recovery, TM-Score, and pLDDT, for three different template structures. Investigation of 

both models’ behaviour reveals certain “blind spots” with specific template structures or 

temperature settings. 

4.2.3 Markov-Chain Monte Carlo (MCMC) Methods for Encapsulin Design 

Next, the performance of two Markov-Chain Monte Carlo (MCMC) protein design methods 

was investigated for the design of encapsulin sequences. MCMC methods for protein design 

(Figure 4.2.5) involve iteratively mutating a protein sequence, and then calculating a score 

for that sequence based on a protein structure. This score is usually a weighted sum of 

multiple terms, which can be physics-based terms calculated using force fields, or statistical 

terms based on protein structures and sequences in the PDB [250]. However, with the 

advent of deep learning models trained on protein sequences and structures, there has been 

considerable interest in augmenting these scoring functions with probabilities calculated 

using machine learning tools. 

 

Figure 4.2.5: Overview of Markov-Chain Monte Carlo (MCMC) Protein Design 
In MCMC, an initial protein sequence is randomly mutated, and the score of the input sequence 
evaluated against the design template (a protein structure in this case). This score function can be a 
physics-based force field, but more recent methods use deep learning models for scoring (see text). 
Depending on the score of the mutated sequence, the mutation can either be accepted or rejected. 
The criteria for accepting or rejecting a mutation is often lenient to begin with, before becoming 
more and more strict over later iterations – this is known as simulated annealing [251] and helps 
avoid local minima. 
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In this work, the performance of two deep learning-based MCMC methods will be 

investigated; these methods will be referred to as ProteinLM [171] and Protein 

Programming Language [226]. These two methods follow the regime shown in Figure 4.2.5, 

but use either the ESM-2 protein language model or ESMFold respectively to calculate the 

score of the proposed sequence against the input structure. 

Figure 4.2.6 shows the result of a successful MCMC protein design experiment. Sequences 

were designed with ProteinLM for the T. maritima T=1 encapsulin monomer structure (PDB 

7MU1) with varying number of iterations. Sequences generated with 80,000 iterations or 

fewer show low sequence recovery and poor TM-Score pLDDT values, indicating poor design 

quality and bad structural accuracy compared to the design template. These sequences are 

also assigned a relatively high score by the model (where lower scores are better), indicating 

poor quality. However, around 100,000 iterations, a phase transition occurs, and sequences 

begin to show acceptable TM-Score and pLDDT values. This is accompanied by low model 

score, and higher sequence recovery against the template. This behaviour makes sense, 

given that the authors of ProteinLM use 170,000 iterations over ≈10 hours to generate 

protein designs [171]. Overall, these findings indicate that ProteinLM can generate high 

quality sequences against the T. maritima encapsulin monomer, given enough MCMC 

iterations. 

In contrast, Figure 4.2.7 shows the result of an unsuccessful design experiment using 

Protein Programming Language. In this experiment, sequences never show TM-Score above 

0.3 or pLDDT above 30 for any number of MCMC iterations, and sequence recovery never 

rises above 5%. These experiments were run with a maximum of 30,000 iterations, which is 

the setting used by the authors themselves in their protein design experiment. It should be 

noted that protein design with 30,000 MCMC iterations took over 72 hours, and so it is 

impractical to experiment with more iteration steps. These findings suggest that the Protein 

Programming Language method is incapable of generating plausible protein sequences for 

encapsulin monomer structures. 
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Figure 4.2.6: MCMC Protein Design with ProteinLM 
Sequences were designed using the ProteinLM method against the T. maritima encapsulin monomer 
structure. Plot showing score assigned to each sequence (y-axis) with varying number of MCMC 
iterations (x-axis). For selected designs, ESMFold predicted structures are shown with TM-Scores and 
pLDDT values indicated. Data points coloured by sequence identity to the template (sequence 
recovery). Below 100,000 iterations, sequences show low recovery (below 10%), and 
correspondingly low TM-Scores and pLDDT. Around 100,000 iterations a sharp phase transitions 
occurs, where the model’s score of the sequences drops drastically. This is associated with a large 
increase in sequence recovery (now around 25% or higher), TM-Score, and pLDDT.  
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Figure 4.2.7: Unsuccessful MCMC Protein Design with Protein Programming Language 
Sequences were designed using the Protein Programming Language method against the T. maritima 
encapsulin monomer structure. Plot showing score assigned to each sequence (y-axis) with varying 
number of MCMC iterations (x-axis). For selected designs, ESMFold predicted structures are shown 
with TM-Scores and pLDDT values indicated. Data points coloured by sequence identity to the 
template (sequence recovery). Protein sequences seemingly never converge on an accurate design, 
with low recovery, TM-Scores, and pLDDT values even at the 30,000 iterations recommended by the 
authors. 

4.2.4 Protein Language Models (PLMs) for Encapsulin Design 

4.2.4.1.1 Background on Generative Language Models 

As described in Section 1.5.2.2, there is a large body of work describing the application of 

natural language models to protein sequences, essentially treating amino acids and proteins 

as letters, words, and sentences. These protein language models (PLMs) show promising 

results in various bioinformatics tasks, including sequence generation and protein design as 

is the focus of this work. Large language models for text or for proteins typically make use of 

the Transformer architecture. The initial implementation of the Transformer describes a 
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model with two parts, an encoder and a decoder [95]. So-called “generative” language 

models sometimes have an encoder and a decoder, as in the T5 language model [252] or the 

ProstT5 PLM  [253]. Generative models may also only use a decoder, as in the ubiquitous 

GPT-3 [97] or the ProGen PLM [164]. In contrast, there is a class of encoder-only language 

models, which are not usually intended for generative use, but are designed for 

classification and other understanding tasks. The archetypal encoder-only language model 

is the original BERT model [254], upon which the first ESM family of PLMs was based. This 

family of models was the first notable example of Transformer language modelling applied 

to proteins, and is perhaps the most widespread PLM, chiefly in its application to the 

ESMFold structure prediction tool [137].  

Whilst previous work in the natural language field has focused on the use of BERT as a 

generative model [255], the capabilities of ESM models for protein design have not been 

well explored. One previous study investigated two of the first-generation ESM models and 

their use in generating variants of a chorismate mutase enzyme [256], however this study 

suffers from a number of limitations. Generated sequences were only subjected to a limited 

set of validation steps, and structure prediction was not used for validation. Limited 

optimisation of parameters used in generation was done, and most notably, no 

experimental validation of these sequences was performed. Additionally, this study looked 

at ESM-1b models, which have been since superseded by the ESM-2 family. Another 

previous study [232] looked at generation of 23 different proteins using MSA Transformer, 

an ESM-like model trained on sequence alignments instead of single sequences [141]. 

However, generation with MSA Transformer requires an alignment instead of a single 

sequence, which may be undesirable for design of proteins with few or no homologs.  

In this section, the use of ESM-2 family PLMs for protein sequence generation will be 

systematically explored. Different model sizes and generation methods will be investigated, 

as well as the fine-tuning of ESM-2 models on specific protein families for enhanced 

generation. 

4.2.4.1.2 Protein Sequence Generation with ESM-2 

Protein sequence generation in this work adopts a similar scheme to that used in [232], as 

described in Figure 4.2.8a. Here, a starting protein sequence has a proportion of its residues 

randomly replaced with mask tokens. Then, at a given masked position, the language model 
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is used to obtain a probability distribution over all 20 amino acids. This probability 

distribution can be sampled from, and an amino acid chosen to replace the mask token. This 

process is repeated until no mask tokens remain and a newly generated sequence is 

obtained. As such, this is not strictly de novo design since a starting sequence is required. 

This process of masking sequences and estimating probabilities is essentially the same as 

that used in pre-training the PLM. During pre-training the mask probability is fixed, but for 

the generation of new sequences it can be freely set and may differ from the training value. 

To investigate the optimal masking proportion, the sequence generation performance of the 

ESM-2 3B parameter model was investigated at varying masking percentages (Figure 

4.2.8b). 300 sequences were generated for each masking percentage, using the scheme 

described in Figure 4.2.8a, with the T. maritima T=1 encapsulin as a starting sequence. This 

sequence was used for all future language modelling experiments unless otherwise stated. 

As a baseline, sequences were also generated in the same manner, but instead of using a 

PLM to estimate probabilities and sample amino acids, a random choice of residue was used 

as a control. Performance was measured by TM-Score of the designed sequences as 

previously. 

The results in Figure 4.2.8b show that when masking percentage is low, ESM-2 3B only gives 

a modest improvement over a random baseline. This is expected, since changing 5-10% of a 

protein’s sequence is unlikely to cause large perturbations in the predicted structure, 

whether these changes are random or estimated using a PLM. Furthermore, at very high 

masking percentages, the performance of ESM-2 3B is worse than the random baseline. This 

is again expected, as during pre-training the model is only exposed to protein sequences 

with up to 15% masking. At higher masking levels, the model clearly lacks sufficient 

sequence context to accurately predict missing residues. However, at 25% or 50% sequence 

masking, ESM-2 3B shows a clear performance improvement over a random control. It 

appears that this “sweet spot” masks too much of the protein sequence for a random choice 

of residues to rescue the predicted structure, but not too much for the PLM to generate 

feasible protein sequences. As such, a masking frequency of 0.5 was chosen for subsequent 

PLM experiments. 
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Figure 4.2.8: Protein Sequence Generation Using Encoder-Only PLMs 
a) Diagram describing the process of sequence generation using encoder-only PLMs. An initial 
protein sequence has fixed proportion of residues randomly replaced with mask tokens. For each of 
these mask tokens, a PLM is used to obtain probabilities for each amino acid. An amino acid is 
sampled from this probability distribution and replaces the mask token. This process iterates over all 
mask tokens until a newly generated sequence is obtained. b) Boxplot (n=200) showing the TM-
Scores of T. maritima encapsulin sequences generated using the ESM-2 3B model (or a random 
choice of amino acids) with varying masking percentages. At low masking levels (0.05 and 0.1) ESM-2 
shows similar performance to a random baseline, and at high masking levels (0.8 and above) the 
PLM shows worse performance than random. However, at intermediate masking (0.25 and 0.5) the 
language model shows greatly improved performance compared to the random baseline. 

These initial masking experiments used the ESM-2 3B parameter model with standard 

temperature-based sampling at T=1.0 (this sampling technique is the same as that used in 

the ESM-IF and ProteinMPNN models described in Section 2.2.2). The 3B parameter model 

is the largest that fits in the GPU memory available (with the cloud resources used in this 
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work), however it is possible that models with a smaller memory footprint provide 

comparable performance. Similarly, changing the sampling method may also improve 

generation performance over standard temperature-based sampling with T=1.0. As such, 

the next set of ESM-2 experiments focused on varying either model size or sampling 

method (Figure 4.2.9a and b respectively). 

 

Figure 4.2.9: ESM-2 Model Size and Sampling Experiments 
Bar charts showing the fraction of satisfactory sequences generated as in Figure 4.2.4 (top) and 
boxplots showing the sequence identity distribution against the T. maritima template for satisfactory 
sequences (bottom). All experiments were done using 0.5 masking fraction. 
a) Experiments with ESM-2 models of varying number of parameters (n=300). The smallest 8M 
parameter model failed to generate any feasible sequences, and the 35M parameter model only 
produced a tiny fraction of viable sequences. However, there was a large jump in performance 
between 35M and 150M parameters, and an even larger jump from 150M to 650M, as measured 
both by fraction of satisfactory sequences and by median sequence identity. The 3B parameter 
model gave a further, smaller increase in performance. 
b) Experiments with different sampling techniques using the 3B parameter model. In temperature-
based sampling, decreasing the T value below 1.0 gave more viable sequences and a higher median 
sequence identity, whilst increasing the T value to 2.0 gave the opposite effect. Top-k sampling and 
nucleus sampling (see text for details) appeared to give comparable results to temperature-based 
sampling with T=1.0, both in the fraction of satisfactory sequences, and in the sequence identity 
distribution of these satisfactory sequences. 

300 sequences were generated with each ESM-2 model size using 0.5 masking frequency, 

and the fraction of satisfactory sequences reported as in Figure 4.2.4, as well as the 



 109 

sequence identity distribution of all satisfactory sequences against the T. maritima 

template. 8M and 25M parameter models generate few (if any) feasible protein sequences, 

but the 150M parameter model shows a sizeable increase in generation performance as 

measured by feasible sequence fraction, or by median sequence identity. An even bigger 

increase is seen between 150M and 650M parameters, with a more modest increase seen 

between 650M and 3B parameters (Figure 4.2.9a). This is broadly in line with the 

performance profile on UniRef reported in the ESM-2 paper [137] and supports the 

phenomenon of “emergent properties” in language model understanding as the number of 

parameters and compute resources used in pre-training increases. It is particularly 

noteworthy that the 3B model only shows a 10-percentage point increase in feasible 

sequence generation, and a 2-percentage point increase in median identity over the 650M 

model, despite using almost 5 times the parameters (and thus 5 times the memory at 

inference time). 

Next, the impact of using different sampling methods was investigated (Figure 4.2.9b). All 

experiments so far have used temperature-based sampling, but with T set to 1.0, meaning 

that in effect no temperature was used. In this scheme, amino acids are sampled directly 

from the probability distribution provided by the PLM with no processing or scaling. As 

explained in Section 2.2.2, setting T to a value lower or higher than 1.0 can change the 

shape of this probability distribution and prioritize either diversity or accuracy of generated 

sequences. The experiments in Figure 4.2.9b bear out this hypothesis, where lower 

temperature values increase the fraction of feasible sequences but produce sequences with a 

higher identity against the template. The reverse is seen when T=2.0, with fewer feasible 

sequences at a lower sequence identity.  

Two alternative sampling techniques were also investigated, namely Top-k sampling and 

Nucleus sampling. In these techniques, instead of sampling from the probability 

distribution of all 20 amino acids, a subset of amino acids are first chosen and then sampled 

from; in Top-k this is the top k most likely residues, and in Nucleus sampling this is the top 

n amino acids where the sum of the probabilities of all n amino acids adds up to a fixed 

value (here set as p=0.92). Top-k sampling was used with two different k values, however 

neither this technique nor Nucleus sampling gave a big improvement in performance over 

T=1.0 temperature sampling: 64% of sequences generated were feasible with T=1.0 
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compared to 63%, 65%, and 67% for Top-k with k=6 or 12 and Nucleus respectively. 

Similarly, median sequence identity with T=1.0 was 67%, versus 71%, 67%, and 68% for the 

three alternative sampling methods. Overall, this standard temperature sampling with 

T=1.0 was used for all further experiments, since it seemingly provides a good balance 

between generating feasible sequences, while still providing some diversity in these 

sequences compared to the starting template. 

Fine-tuning is a common technique used in deep learning, whereby a large deep learning 

model is pre-trained on a large corpus of data, before being further trained on smaller, more 

specific datasets to provide better performance in a particular task or problem domain. 

ESM-2 models are already pre-trained on large protein sequence datasets, but fine-tuning 

on smaller sequence sets has not been well explored in the literature. Here, a dataset of 

HK97-fold sequences was constructed and used to fine-tune the ESM-2 650M model (see 

Methods for details on datasets, training, and evaluation) to investigate whether this 

improves performance on this family of proteins. The model was trained for 10 epochs, 

however overfitting was seen after 4 epochs, so this checkpoint was used for further 

experiments (Figure 4.2.10a).  

The fine-tuned model was evaluated on an unseen test set comprised of HK97 fold 

sequences, including sequences of experimentally solved encapsulin and phage capsid 

protein structures. Perplexity is one of the chief metrics used to evaluate language models, 

including in the ESM-2 paper, and can be intuitively thought of as the number of different 

amino acids the model is “choosing” from when replacing a masked residue in a protein 

sequence; hence a lower perplexity value is better, and an ideal perplexity is 1. The fine-

tuned ESM-2 650M model shows a better perplexity on the unseen HK97 test set than the 

non-fine-tuned model with the same number of parameters but doesn’t perform as well as 

the larger 3B parameter model (Figure 4.2.10b, left). The model was also evaluated on 

contact prediction on a set of encapsulin and HK97 protein structures and sequences but 

failed to show improvement on the non-fine-tuned model (Figure 4.2.10b, right). 
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Figure 4.2.10: ESM-2 650M Fine-Tuning Experiments and Evaluation 
a) Fine-tuning loss as a function of training epoch for the ESM-2 650M model on train (purple) and 
validation (orange) sets. After epoch 4 (indicated by dashed black line) the model appears to start 
overfitting as shown by evaluation loss increasing. The fine-tuned model from epoch 4 was used in 
further experiments. b) Perplexity (left) and contact prediction performance (right) for the fine-
tuned model compared to the non-fine-tuned 650M and 3B parameter models. The fine-tuned 
model improves on perplexity compared to the non-fine-tuned model but doesn’t perform as well as 
the 3B model (lower perplexity is better). The fine-tuned model shows the same contact prediction 
performance as the non-fine-tuned model. 

Next, the performance of the fine-tuned model on sequence generation tasks was 

investigated. As shown in Figure 4.2.11a, the fine-tuned model outperforms not only the 

non-fine-tuned 650M model, but also the larger 3B parameter model. This is an interesting 

finding since this larger model has almost 5 times the parameters, as previously mentioned. 

The performance of this fine-tuned model was also investigated across different sequence 

templates (Figure 4.2.11b). Performance was comparable for the T. maritima and M. xanthus 
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encapsulins, and the best performance was seen for the Escherichia phage HK97 major 

capsid protein. Interestingly, poor performance was observed for the S. elongatus T=1 

encapsulin, with only 6% of generated sequences deemed as satisfactory. This appears to 

agree with the poor performance on this template seen in the inverse folding models in 

Section 2.2.2. Overall, these findings seem to support the claim that fine-tuning ESM-2 

PLMs can provide performance benefits in sequence generation. 

 

Figure 4.2.11: Sequence Generation with the fine-tuned ESM-2 650M Model 
Bar plots showing fraction of satisfactory sequences (top) and boxplots showing identity distribution 
of satisfactory designed sequences (bottom). All experiments are n=300 with 0.5 masking. a) 
Comparison of the fine-tuned 650M model with non-fine-tuned 650M and 3B parameter models on 
generation for the T. maritima T=1 encapsulin. The fine-tuned model shows the best performance as 
measured by fraction of satisfactory sequences. b) Sequence generation performance of the fine-
tuned model across various encapsulin and phage capsid templates. The model shows optimal 
performance when designing sequences for the HK97 phage capsid, but performance is acceptable 
across all other templates, except the S. elongatus T=1 encapsulin, which shows poor generation 
performance. 
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4.2.4.1.3 Protein Sequence Generation with Ankh 

As described above, ESM-2 is an encoder-only PLM, however there are other model 

architectures that are commonly used. To this end, the Ankh family of PLMs [257] was 

investigated, as an example of an encoder-decoder PLM. These models are often used in 

natural language generation for so-called “sequence to sequence” tasks, such as translating 

text from one language to another [252]. As with the ESM-2 models, an initial experiment 

was performed to investigate sequence generation using the T. maritima T=1 encapsulin as a 

template, using the two pre-trained Ankh models – a 450M parameter “Base” model and the 

larger 1.15B parameter “Large” model. 

Ankh can be used to generate sequences using the iterative mask-and-replace scheme as 

described above with ESM-2 (this will hereafter be referred to as “MLM” generation). 

However, as an encoder-decoder model, it can also be used to generate sequences 

“autoregressively”. This is where, instead of a randomly masked protein sequence, a 

contiguous protein sequence is provided as a prompt, and the model generates a new 

sequence by adding residues to the C-terminus of this sequence. Both methods were used in 

the Ankh paper [257], however the performance of these two methods was not compared, 

and the level of masking used was not systematically explored. As such, both Ankh models 

were used to generate sequences using either autoregressive or MLM generation, with a 

variety of masking levels ranging from 5% to 95% of the input sequence. To reiterate, in 

MLM generation this masking is random and spread throughout the input sequence, 

whereas in autoregressive modelling residues are masked starting from the end of the input 

sequence (i.e. the C-terminus).  

Figure 4.2.12a compares generation performance in autoregressive vs MLM generation, 

using the fraction of satisfactory sequences metric defined previously. In MLM generation, 

neither Ankh model greatly outperforms a random baseline (by more than 5 percentage 

points). In fact, the random baseline sometimes performs better than both models, as in the 

experiment with 25% masking. In autoregressive modelling, both models fail to generate 

more than 15-20 satisfactory sequences with any masking level above 0.05. These data 

indicate that the pre-trained Ankh models show poor generation performance for 

encapsulins with the parameters used in this experiment. 
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Figure 4.2.12: Sequence Generation with Ankh PLMs 
a) Bar plot showing fraction of satisfactory sequences (n=200) in either autoregressive (left) or MLM 
generation, with Ankh Base and Large models and a random baseline, at varying levels of sequence 
masking. Autoregressive generation shows poor performance above 0.05 masking, where less than 
15% of sequences generated are viable. MLM performance appears better, however neither model 
outperforms the random baseline by more than 5 percentage points at any masking level (apart 
from 0.3 masking where Ankh Large performs 7 percentage points better). b) Line plots showing 
mean pLDDT (diamonds) and TM-Score (circles) as a function of masking, for both Base and Large 
models (left and right respectively), in both autoregressive and MLM generation (top and bottom 
respectively). pLDDT is divided by 100 for presentation on the same axis as TM-Score. Dashed lines 
indicate the 0.7 cutoff for both TM-Score and pLDDT used to determine “satisfactory” protein 
sequences. In both generation methods, mean TM-Score starts higher than mean pLDDT, and TM-
Score stays above the cutoff at higher masking level than pLDDT. Across both models, pLDDT stays 
above the 0.7 threshold at a higher masking level for MLM generation than autoregressive 
generation.   
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As described above, a “satisfactory” sequence is defined here as a sequence whose ESMFold 

predicted structure shows pLDDT above 70 and TM-Score above 0.7. To better understand 

the poor generation performance of Ankh PLMs, the mean TM-Score and pLDDT for each 

generation experiment was plotted as a function of masking level (Figure 4.2.12b). This 

provides several insights into the model’s performance. Across both models and both 

generation types, mean TM-Score is high at low masking levels, and remains higher than 

pLDDT across all masking experiments. In all four plots, the TM-Score line crosses the 

threshold at a higher masking level than pLDDT. This indicates that overall, generated 

sequences tend to fail the satisfactory sequence constraint because of low predicted 

structure confidence, not low predicted structural similarity to the template fold. Notably, 

in both models, mean pLDDT appears to fall off much faster in the autoregressive 

generation experiments (the top pair of plots in Figure 4.2.12b) than in MLM generation 

(the bottom pair of plots). This indicates that poor confidence of generated sequences is a 

particular issue in autoregressive generation. Fine-tuning experiments also failed to provide 

any tangible performance improvements (see Figure 7.1.3, Appendix). As such, Ankh was 

ruled out as a feasible encapsulin design tool, in favour of the ESM-2 PLMs.  

4.3 Establishing an Experimental Encapsulin Characterisation Pipeline 

4.3.1 High-Throughput Cloning of Encapsulin Proteins 

In a typical protein expression experiment, a DNA sequence encoding a protein of interest 

is assembled with a bacterial plasmid sequence, containing an origin of replication, 

antibiotic selection marker, and other regulatory elements required for stable replication 

and expression of the protein. Classical methods for this DNA assembly step (commonly 

referred to as “cloning” for historical reasons) involve laborious enzyme digestion, DNA 

purification, and ligation steps and often require non-trivial troubleshooting and 

optimisation experiments. Clearly, such classical methods are not suitable to a high 

throughput setting and are not amenable to automation. This section will describe the use 

of modern DNA assembly methods and automation to enable high throughput cloning of 

encapsulin candidate DNA sequences. 

The Golden Gate/MoClo DNA assembly protocol based on Type IIS restriction enzymes [258] 

was used in this work. As shown in Figure 4.3.1a, this method relies on restriction enzymes 

which cut outside of their recognition sequence, which allows the user to define the 
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nucleotide sequences left at overhang regions. Type IIS DNA assembly provides a myriad of 

advantages over conventional methods (for a detailed review see [259]) but the main 

advantage in this use case is convenience. In contrast to other methods, Type IIS assembly 

only requires the mixing of DNA and enzymes, thermocycling for ≈ 5 hours, and then 

transformation of the assembly mixture into E. coli. As such it is perfectly suited to the 

parallel cloning of hundreds of different DNA sequences. 

Like other DNA assembly methods, Type IIS assembly is often used in conjunction with so-

called “blue-white” screening (Figure 4.3.1b). In this system, a plasmid contains the beta-

galactosidase alpha fragment gene (LacZ), flanked by Type IIS sites in the backbone. Upon 

successful cloning, this fragment is replaced by the gene of interest. The DNA assembly mix 

is transformed into E. coli plated on agar plates containing IPTG and the dye molecule X-Gal 

[260]. If assembly is successful, colonies will appear white in colour after transformation, 

however if the LacZ fragment is still present (indicating unsuccessful insertion of the DNA 

fragment), then beta galactosidase will be expressed under the T7 promoter and will process 

the X-Gal substrate to produce blue colonies. 

Cloning and screening a protein of interest requires a suitable expression vector for the host 

organism (in this case E. coli). In this work, the pSB1C3-FB vector (iGEM registry part 

BBa_K2842666) was used for all cloning and protein expression experiments. This vector is 

based on the well-characterised iGEM vector pSB1C3, which has been used extensively in 

the Frank group for overexpression of encapsulin proteins in E. coli. pSB1C3-FB is based on 

pSB1C3 but adds the necessary Type IIS restriction sites and LacZ fragment for cloning. A 

plasmid map of pSB1C3-FB is shown in Figure 7.1.1 (Appendix). 

Physical DNA stocks for pSB1C3-FB vector could not be found, meaning the vector had to be 

re-synthesised. Forward and reverse primers (binding to the BioBrick suffix and prefix 

sequences respectively) were used to amplify the pSB1C3 plasmid backbone using inverse 

PCR. A linear DNA fragment was ordered, containing the LacZ alpha fragment insert, Type-

IIS sites, and 20 bp overhangs matching the amplified backbone region. These two linear 

DNA fragments were assembled using Gibson Assembly, transformed into E. coli DH5α, and 

purified plasmid DNA isolated. The purified pSB1C3-FB vector stocks were verified using 

restriction digestion and Sanger sequencing, and testing with a candidate encapsulin  
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Figure 4.3.1: DNA Assembly using Type IIS Restriction Enzymes 
a) Type IIS restriction enzymes cut (sites shown with purple/blue dashed lines) outside their 
recognition sequences (shown as rectangles). This allows assembly of vector backbones (left) and 
inserts (right) containing outward- or inward-facing Type IIS sites respectively, so long as the 
overhang sequences are designed appropriately. Following digestion and ligation (which occur in 
cycles in the same reaction), the assembled product has no remaining Type IIS sites and so cannot be 
cut and re-ligated, which reduces the number of empty background vector DNA in the reaction over 
time. b) “Blue-white” screening is a commonly used selection method used with DNA assembly 
methods, including Type IIS. In this system, a beta-galactosidase (LacZ) fragment is included between 
the restriction sites in the backbone. Successful assembly of an insert will cause this fragment to be 
excised, while empty background colonies will still harbour the LacZ gene. The presence or absence 
of this gene (and therefore assembly) can be screened by plating transformants on agar plates 
containing IPTG and the dye molecule X-Gal.  
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protein sequence confirmed that Type IIS assembly yielded plasmids with the correct 

sequence. 

Next, an automated Type-IIs protocol was established and optimised using the Opentron 

OT-2 robot. Type IIS assembly was tested using eight control sequences – designed 

encapsulin sequences against the T. maritima encapsulin (PDB 7MU1) using ProteinMPNN 

and ESM-IF (four sequences each). These protein sequences were not subjected to rigorous 

computational screening or selection but were chosen simply as test sequences for DNA 

assembly. 6/8 of these control sequences were successfully manually cloned using Type IIS 

assembly and verified by restriction digest (Figure 7.1.2, Appendix). 

Figure 4.3.2a shows an overview of the experimental steps required in Type IIS assembly. 

The OT-2 robot has the capability of performing all these steps automatically, however 

attempting to automate the entire process failed to give any colonies for any of the controls 

(a detailed log of all OT-2 optimization experiments is shown in Table 7.4, Appendix). This 

indicated that the issue lies in thermocycling, transformation, or plating. To investigate the 

latter, a Type IIS reaction was set up manually and transformed into E. coli, and varying 

amounts and dilutions were manually plated onto the same agar plates used in the OT-2 

(Figure 4.3.2b). Several dilutions and amounts yielded colonies, indicating that plating 

using the OT-2 is possible.  

As such, it was hypothesised that the issue lies in the OT-2’s thermocycler, or the 

temperature module used for heat shock and outgrowth. To investigate this, a “semi-

automated” procedure was used. Here, the robot was used to mix up Type IIS reactions and 

add a layer of silicone oil to prevent evaporation. Plates were then manually sealed with foil 

seals and placed in a normal benchtop thermocycler for assembly. Following this, plates 

were returned to the OT-2 and reactions mixed with E. coli competent cells. Cells were heat 

shocked in a water bath and outgrowth performed in a benchtop incubator, as in 

conventional manual cloning. Here, the OT-2 was only used to add outgrowth medium, and 

to plate transformation cultures onto agar plates. This protocol yielded a single successful 

colony when tested with the control inserts (Figure 4.3.2c).  
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Figure 4.3.2: Optimizing Type IIS Assembly with the Opentron OT-2 
a) Overview of the Type IIS protocol. Reactions mixtures are set up and incubated in a thermocycler. 
Assembly mixtures are added to competent E. coli cells and heat shocked, before medium is added 
and cells are grown at 37 ˚C with shaking. Finally, cell mixtures are plated on agar plates. No colonies 
were seen when attempting to automate this entire protocol using the OT-2 robot. b) Testing Type-
IIs assembly manually with a known control insert yields colonies at varying plating densities. From 
200 µl of outgrowth culture, varying amounts and dilution factors were tested. 10 µl of culture at 1x 
(undiluted) and 2x dilutions was used in subsequent experiments. c) Type-IIs assembly of 8 different 
insert sequences under a “semi-automated” scheme, where the robot only carries out key protocol 
steps (see text for details). Reaction plates are covered with silicone oil and sealed with foil seals 
before thermocycling. This protocol only yielded a single colony for one assembly reaction. d) 
Removing the silicone oil step and only sealing plates with foil seals gives multiple colonies with the 
same assemblies shown in c).   

However, the addition of silicone oil in this protocol added significant complexity to the 

OT-2 protocol, requiring custom tuning of pipetting rates and movement speeds, and 
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despite this tuning it was observed that adding and mixing oil with the reaction mixtures 

introduced air bubbles and caused spillages. Since plates were manually sealed with foil 

seals afterwards, it was hypothesised that the silicone oil could be omitted entirely, and 

Figure 4.3.2d shows that with this step removed, 4 out of 8 trial assemblies gave colonies. 

Further test runs using purified assembled plasmid DNA also yielded satisfactory numbers 

of colonies following optimization (see Table 7.4, Appendix). As such, this optimised 

protocol was used for encapsulin design cloning in subsequent experiments. 

4.3.2 Solubility Screening of Encapsulin Proteins 

Next, a scalable method for assessing the soluble yield of encapsulin proteins was 

developed. In a low throughput setting, protein soluble yield is assessed following 

expression in E. coli, from cultures in tube or flask scale. Expression is usually verified using 

SDS-PAGE or western blots, and solubility can be interrogated by comparing the soluble and 

insoluble fractions of the E. coli cell lysate. This approach presents several problems when 

screening many proteins in parallel. First, tubes or flasks are difficult to handle in large 

quantities (especially when biological replicates are required), and SDS-PAGE is laborious 

when screening many samples in parallel. Furthermore, the insoluble fraction of E. coli cell 

lysates can be viscous and difficult to handle, especially when running SDS-PAGE gels. 

To streamline solubility screening of encapsulin proteins, a protocol was developed based 

on E. coli expression in 96-well plates, followed by solubility screening using a dot blot 

against the Strep Tag II. Across many experiments, several different variables relating to 

expression or immunodetection were optimised; these include cell culture volume and 

medium type, shaking speed, membrane blocking, and experiments on denaturation or 

clarification of cell lysates. Figure 4.3.3a shows the results of a successful dot blot with the 

final optimised protocol. Here, 250 µl E. coli cultures are grown with high shaking, harvested 

and resuspended in 25 µl of BugBuster cell lysis reagent. Cell lysates are clarified by 

filtration before 5 µl of lysate is pipetted onto the membrane for immunodetection (see 

Methods for full details). In this experiment, two different induction methods and media 

were tested, either autoinducing medium or Terrific Broth with manual IPTG induction after 

3 hours. Both methods appeared to give good signal for the encapsulin cultures, and lower 

signal for the negative controls. 
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Figure 4.3.3: An Optimised Dot Blot Protocol for Encapsulin Solubility Screening 
a) Scanned image of a nitrocellulose membrane showing a dot blot against Strep Tag II, for either the 
wild-type T. maritima encapsulin (Enc) or an empty plasmid as negative control (-). Two different 
induction methods were tested: autoinduction medium (Auto) or Terrific Broth with manual 
induction using IPTG (TB). Purified TmEncap protein was also loaded onto the membrane as a 
loading control. Each spot is a different biological replicate. b) Boxplots showing the quantified 
integrated density of the dot blot spots after image processing in ImageJ. Density values are 
background subtracted and normalised by the OD600 of each sample. Distributions of the density 
values of TmEncap and empty plasmid populations were compared using Welch’s t-test. There was 
no significant difference between Enc and – densities with autoinduction medium, but a significant 
difference was observed for TB samples (p < 0.05). 

However, following image processing and quantification of the normalised density of the 

dots in ImageJ, it appears that there is no significant difference between the densities for 

the encapsulin protein and the negative control using autoinduction medium. The TB 

samples induced by IPTG showed a higher mean dot density, which was statistically 

significant. As such, this experiment produced a final optimised dot blot protocol using TB 

medium with manual induction by IPTG. 
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4.4 Discussion 

4.4.1 Deep Learning Tools for Encapsulin Design 

4.4.1.1.1 Structure Prediction Benchmarking 

In this chapter, several different deep learning tools for protein design were investigated, 

and their performance characterised on encapsulin proteins as a use case. As a foundation 

for this work, the performance of three different protein structure prediction tools was 

benchmarked on a representative set of HK97-fold protein structures. AlphaFold2 shows the 

best performance on this dataset, at the cost of prohibitively long run times. ESMFold shows 

more than acceptable performance with runtimes an order of magnitude shorter than 

AlphaFold2, and so this model was used in subsequent experiments. 

4.4.1.1.2 Inverse Folding Models 

The first set of experiments focused on ProteinMPNN and ESM-IF, two so-called “inverse 

folding” models which generated protein sequences conditioned on a structural backbone 

provided as input. Both models appeared to generate feasible protein sequences (as 

measured by TM-Score and pLDDT of predicted structures) across a selection of encapsulin 

structure templates. Interestingly, ProteinMPNN provides comparable performance to ESM-

IF, despite having ≈100 times fewer parameters and being trained on a vastly smaller 

dataset (≈25,000 clustered PDB structures for ProteinMPNN, versus 12 million AlphaFold2 

predicted structures plus PDB structures for ESM-IF). However, it is unclear whether these 

differences will result in any real-world performance differences until sequence designs are 

experimentally characterised. 

4.4.1.1.3 Monte-Carlo Methods 

Next, two Monte Carlo-based protein design methods were tested, namely ProteinLM and 

the Protein Programming Language. ProteinLM generated feasible protein sequences after a 

sufficient number of Monte Carlo iterations, over the course of several hours. However, the 

Programming Language model failed to generate any feasible sequences even after hours of 

Monte Carlo iterations. There are several potential causes for this poor performance on 

encapsulin proteins. The examples presented in the Programming Language preprint are all 

small, single domain proteins, which are a much easier design challenge conceptually than 

an HK97-fold protein monomer. The HK97 fold is formed from three different domains with 

flexible regions, and notably several beta sheets, which are known to be more difficult to 
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design than helical regions due to their more complex hydrogen bonding patterns and 

longer-range interactions. 

Alternatively, the parameters used for the energy function weightings were left on their 

default values, and so could have been configured incorrectly. This could be a potential 

avenue to explore in future work, however it may not be necessary when ProteinLM 

provides acceptable performance in Monte Carlo-based design. Recall that both models use 

Markov Chain Monte Carlo to optimise a random starting protein sequence, but ProteinLM 

uses scoring based on ESM-2 PLMs, where Programming Language uses ESMFold. Given 

that sequence designs are subsequently screened using ESMFold in this work regardless of 

design method, it appears that the Programming Language method is not worth 

investigating any further. 

4.4.1.1.4 Protein Language Models 

In this chapter, the performance of two different PLMs in encapsulin design was 

investigated. ESM-2 encoder only PLMs were shown to give acceptable performance in 

encapsulin design across different templates, masking percentages, and model sizes. 

Different sampling methods didn’t appear to have a great impact on generation 

performance. Initial experiments suggested that masking 50% of the input sequence 

provided a “sweet spot” where the model had enough context to generate plausible protein 

sequences, but allowing for some variation to be generated relative to the starting sequence. 

It should be noted that masking in the generation algorithm used here is stochastic and 

based on a binomial distribution (see Methods), and so not every generated sequence has 

the same number of residues designed by the PLM. 

Next, it was demonstrated that fine-tuning an ESM-2 PLM on a curated dataset of HK97-

fold protein sequences can provide performance benefits for sequence generation. Fine-

tuning did not provide any performance benefits for contact generation, but did boost 

sequence generation performance, to the point where a fine-tuned 650M parameter model 

outperformed a much larger 3B parameter model. This fine-tuned model was also able to 

generate satisfactory sequences across a range of encapsulin templates, apart from the S. 

elongatus T=1 encapsulin (PDB 6X8M). It is interesting to note that slightly inferior 

performance on this template was observed with ProteinMPNN and ESM-IF compared to 

other encapsulin templates. There are two possible explanations for this behaviour. On the 
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one hand, this template might be a difficult challenge for deep learning-based protein 

design tools. Alternatively, given that all designs were validated using ESMFold, it is also 

possible that this protein and its variants are a “blind spot” for the structure prediction tool 

used to validate designs, rather than the design tools themselves. 

Next, the performance of the two Ankh PLMs was investigated. Overall, these models 

showed poor performance in encapsulin generation, both using autoregressive or MLM 

generation. Autoregressive modelling, sometimes called causal language modelling, is often 

used in natural language models (for example the GPT family of LLMs). In autoregressive 

modelling, sequences of words or characters are generated from “left to right” given a 

starting prompt. This makes intuitive sense for languages like English where sentences are 

constructed and read in this way. However, this modelling scheme makes less sense for 

proteins, where the order in which domains or secondary structure elements appear in the 

sequence can sometimes have little effect on structure or function; consider for example 

circularly permuted proteins, where the order of domains can be swapped with no impact on 

function. Nevertheless, Ankh models showed poor performance in sequence generation in 

either the autoregressive or MLM-based schemes, even with fine-tuning. 

Lastly, it may be worth considering whether the “fraction of satisfactory sequences” metric 

used in this work is a good measure of generation performance. It could be argued that the 

number of feasible protein sequences a model can generate is irrelevant, as long as it can 

generate at least one attractive candidate. However, if a model generates very few feasible 

sequences and many unsuitable sequences, then this requires lots and lots of generation 

experiments and computational screening, which is not efficient or sustainable with regards 

to energy and compute resources. Furthermore, the “satisfactory” sequences in this work 

are delineated as such by acceptable TM-Score and pLDDT. This is intended to be a starting 

point for further in-depth screening specific to a certain use case. Aside from TM-Score and 

pLDDT, there are many other metrics and screening criteria that can be considered, for 

example the presence of specific structural or sequence motifs, predicted solubility or 

thermal stability, or the suitability of DNA sequences.    

4.4.2 Experimental Screening Methods for Encapsulin Design 

Next, a set of automated screening methods were developed for the cloning, expression, and 

screening of encapsulin proteins. First, a type IIs DNA assembly protocol using an Opentron 
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OT-2 robot was established and optimised. Whilst the robot has the capability to carry out 

all steps of the protocol from start to finish, in testing it was observed that some steps had 

to be carried out using conventional lab equipment. For example, when transforming DNA 

assembly mix into E. coli, the heat shock step was carried out in a water bath instead of the 

OT-2 Temperature Module. It is likely that the Temperature Module cannot heat up and 

cool down fast enough to provide a heat shock to E. coli cells, compared to incubating the 

plate on ice and transferring to and from a 42 ˚C water bath. This Module also has no 

shaking capability, and so 37 ˚C outgrowth was performed in a standard benchtop incubator. 

In future, an Opentron Heater-Shaker Module could potentially be used to automate both 

steps, towards a fully automated protocol for cloning and transformation.  

Finally, a pipeline was developed for expression and solubility screening of encapsulin 

proteins in E. coli in 96-well plates. Many variables were investigated and optimised, 

including cell culture volumes, shaking speeds, temperatures, and downstream processing 

methods - for example, using clarified lysates versus crude whole lysates, adding a 

denaturing step, and resuspending frozen cell pellets in different volumes. Eventually, an 

optimal protocol was established based on growth of 250 µl E. coli in TB medium, and 

manually inducing protein expression with 1 mM IPTG after 3 hours. It should be noted that 

the final, optimised protocol only investigates encapsulin soluble yield under a single 

experimental condition (comprising temperature, E. coli strain, medium type, induction 

etc). However, the aim of this screen is to detect candidate proteins with increased soluble 

yield compared to a wild-type protein, and since it is already known that the wild-type 

shows good yield under this condition, this single condition should be sufficient to screen 

for these candidates.  

After this work was completed, a preprint was made available detailing an automated 

protocol for E. coli transformation and protein expression using the Opentron OT-2 robot 

[261]. However, this method does not deal with DNA assembly steps in any way and starts 

from purified plasmid stocks. Crucially, this method does not allow for any kind of solubility 

screening of expressed proteins and relies on low-throughput SDS-PAGE readouts, or plate 

reader fluorescence measurements for fluorescent proteins (which is not applicable here). 

As such, the automated method detailed in this work still has some key differences with this 

concurrently released work.  
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The expression and dot blot screening protocol does have some limitations, namely low 

sensitivity, and readouts only being semi-quantitative. There is also variability between 

samples in the dot blot assay, potentially arising from the manual pipetting of samples onto 

a membrane. This could be alleviated in future using a vacuum dot blot apparatus. Manual 

induction after 3 hours may also introduce some variability in protein expression since 

cultures may be at different stages of growth. However, with adequate biological replicates 

it is likely that this variability can be averaged out somewhat. Overall, despite these 

limitations, the dot blot protocol does appear to give satisfactory results when comparing 

wild-type encapsulin with a control, and so it should work well enough to spot promising 

candidates with higher soluble yield.   

4.4.3 Future Work 

The computational design and experimental screening methods described in this chapter 

lead to one obvious next step, which is their application to the design of new encapsulin 

proteins. This will be described in the following chapter. However, there are several other 

interesting avenues which could be investigated in follow up work. On the computational 

side, there are many protein design methods which were not tested here, the most exciting 

of which are diffusion models such as RFDiffusion [165] and Chroma [172]. These models 

could be useful in designing new encapsulins in future and merit further investigation. 

Furthermore, all computational design presented here took place in a “monomeric” context, 

that is, designing new sequences given a structure of template sequence of an encapsulin 

monomer. However, in a true biological context encapsulin proteins are large icosahedral 

complexes, and so in silico design methods should take this into account if possible. This 

could be done using multichain design and scoring methods (possible with ProteinMPNN 

and ESM-IF) or using physics-based docking and scoring methods such as those available in 

the Rosetta software package. 

On the experimental side, the “semi-automated” cloning and solubility screening protocol 

shown here works well to parallelize and automate time-consuming steps during 

characterization. However, the method is not fully automated and still requires manual 

intervention and supervision. Future work could attempt to fully automate the Type IIS 

assembly thermocycling and bacterial transformation/growth steps in the protocol, which 

would be possible on an upgraded Opentron robot with more available modules. 
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Chapter 5: In silico Design and Experimental Validation of 

Novel Encapsulin Proteins 
5.1 Background 

The previous chapter described preliminary work on computational and experimental 

design and screening of encapsulin proteins. In this chapter, learnings from these design 

and screening experiments will be applied to the design of novel encapsulins. The primary 

aim of this chapter is to produce novel variants of the T. maritima T=1 encapsulin protein, 

with increased soluble yield. Deep learning tools for protein design will be used to generate 

thousands of candidates, which will be computationally screened to produce a small final 

set of candidate proteins. These candidates will be experimentally validated using the 

cloning and expression pipeline outlined in the previous chapter. 

Alongside this work, the assembly of encapsulin proteins will also be investigated. Previous 

literature has hypothesised that the E-loop region is a major determinant of encapsulin T-

number and assembly dynamics, but this has not been experimentally demonstrated. To 

this end, a pair of chimeric encapsulin variants with modified E-loops will be designed and 

included in the experimental pipeline with the solubility designs. One chimeric encapsulin 

variant with altered assembly characteristics will be characterised in more detail. 

5.2 Design of Novel Encapsulin Variants with Improved Soluble Yield 

5.2.1 Computational Encapsulin Design and Screening 

When changing the sequence of a protein to make it more soluble, care must be taken not to 

disturb function by changing important residues. Indeed, as described in [211], redesigning 

wild-type proteins can be viewed as a trade-off between preserving natural function and 

increasing solubility. As such, starting from the T. maritima T=1 encapsulin sequence or 

structure, several residue positions were fixed during design. Residues involved in flavin 

binding, capsid assembly, and cargo loading were manually chosen based on crystal 

structures and experimental data (both in the literature and from previous Frank Lab 

experiments). Additionally, a set of residues were chosen automatically based on an MSA as 

in [211]. The T. maritima T=1 encapsulin sequence (UniProt accession Q9WZP2) was used to 

search UniRef90 using mmseqs2. All 430 hits returned showed E-values below 10-20 and 

fewer than 3 gap openings and were used to build an MSA using MUSCLE. At each position 

in the alignment, the frequency of each amino acid was calculated, and positions in the 
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sequence were ranked by the frequency of the most common amino acid. The top 30% of 

these most conserved positions were chosen as fixed residues for the design process, 

making a total of 96 fixed amino acid positions (out of a total of 263 residues in the 

encapsulin sequence).   
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Supplementary Tables 

Table 7.1 (Appendix) shows a detailed breakdown of fixed residue positions. Figure 5.2.1a 

shows the full design pipeline. Following fixed residue selection, four different models were 

chosen for encapsulin design, based on the previous chapter’s findings. Two inverse folding 

models (ProteinMPNN and ESM-IF), one protein language model (ESM-2, both “vanilla” and 

fine-tuned variants) and one Monte-Carlo based method (ProteinLM) were used. For the 

inverse folding models, sequences were generated with six different temperature values for 

sampling: 10-6, 0.1, 0.2, 0.3, 0.4, and 0.5, with 200 sequences per temperature value. 40 

sequences were generated with ProteinLM using the default “fixedbb” protocol and 120,000 

iterations as in previous experiments. For both ESM-2 models (vanilla and fine-tuned), 

sequences were generated with 9 different masking amounts based on previous 

experiments: 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, and 200 sequences per masking 

amount. 

Following generation, designs were first subjected to a set of simple sequence-based filters. 

Here, any sequences containing illegal amino acid residues (such as B, X, O, or Z) or repeats 

of more than two residues were removed. Duplicates were also removed. This step removed 

over 2000 initial designs (Figure 5.2.1b). Next, NetSolP was used to predict the solubility of 

all designs. Any designs with predicted solubility or usability scores lower than the T. 

maritima template sequence were removed. Finally, a multichain score was calculated for 

each design. Both ESM-IF and ProteinMPNN can calculate a sequence likelihood score – the 

probability of a sequence given a protein structure. This can also be applied to complexes, 

where the model computes a likelihood of a sequence given a single chain in a multichain 

complex. Computing this likelihood for a sequence given an entire capsid of 60 subunits is 

not feasible given the GPU memory requirements of modelling all ≈47,000 atoms, and so to 

calculate the probability of sequences assembling into a full capsid, likelihoods were 

calculated against a single chain in either an encapsulin pentamer, or in a “capsid 

fragment” containing a single monomer and the 6 neighbouring subunits which make 

contacts with it.  
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Figure 5.2.1: Computational Design of Encapsulin Variants 
a) Illustration of the computational design pipeline. Starting from a structure or sequence, residue 
positions are fixed, and design models used to generate candidate sequences, which are screened to 
produce a final set of sequences for experimental validation. b) Sankey diagram showing the number 
of candidates screened. Designs are first screened using a set of basic sequence filters, before 
solubility is predicted using NetSolP, and any sequences with predicted solubility lower than the 
template are removed. Finally, sequences from each model are ranked using an aggregate 
multichain likelihood score, and 46 sequences total are chosen across the four models (see text for 
details on filters). c) Overview of multichain scoring. ProteinMPNN and ESM-IF are used to compute 
a probability for each sequence, against a single chain in a complex of either an encapsulin 
pentamer, or a fragment of the capsid containing the 6 neighbouring subunits which contact a single 
monomer. 
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Multichain scoring is explained schematically in Figure 5.2.1c. Following selection, 

structures were predicted for each chosen design using AlphaFold2 in single-sequence mode 

as in [211]. All designs showed high TM-Score and pLDDT when predicted with AlphaFold2 

(Figure 5.2.2a) as well as ESMFold (not shown). Designs also spanned a wide range of 

sequence identity against the original T. maritima template sequence, between 40% and 

95% (Figure 5.2.2b). 

 

Figure 5.2.2: Quality Metrics for Encapsulin Designs 
Plots showing a) TM-Score and pLDDT of single-sequence AlphaFold2 predictions and b) sequence 
identity against the template sequence for all 46 encapsulin designs. All designs show acceptable 
TM-Scores and pLDDTs, above 0.8 and 80 respectively. Sequence identities of the designs span a 
wide range - as low as 40% for the ProteinLM designs, around 60-70% for the inverse folding designs, 
and above 90% for the ESM-2 designs. ESM-2 vanilla and fine-tuned designs also appear to show the 
highest TM-Scores and pLDDTs.  

5.2.2 Experimental Encapsulin Screening 

Synthetic DNA fragments encoding each of the 46 encapsulin designs was ordered. 

Fragments contained DNA encoding the encapsulin protein (codon optimised for E. coli K12 

using the IDT website), along with the T7 promoter and RBS upstream and rrnB T1 and T7 

terminators downstream of the gene, and BsaI sites on either end of the fragment for 

assembly into pSB1C3-FB with Type IIs assembly. Protein coding genes were ordered 

without Strep Tag, which was to be added once fragments were cloned into pSB1C3-FB. 

Figure 5.2.3a shows the results of the Type-IIs assembly process. All 46 assembly reactions 

gave colonies, and 32 were verified as correct by sequencing. Of the remaining 14 samples, 

only 1 was verified as incorrect, with another sample verified as correct by sequencing but 
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with a single residue mutation. 12 samples gave inconclusive Sanger sequencing data. All 46 

designs were carried forward to the next stage of cloning regardless of sequencing data. 

 

Figure 5.2.3: Parallel Cloning of Encapsulin Protein Designs 
a) Type-IIs DNA assembly results for all 46 designs. 38 designs gave colonies at the first attempt with 
the automated protocol, and the remaining 8 gave colonies with manual optimisation. Plasmid DNA 
was prepared and sequenced for all samples, and 32 were verified as correct by Sanger sequencing. 
12 samples gave inconclusive sequencing results, where data from either primer read was of poor 
quality. 1 sample was sequenced as incorrect with a deletion, and 1 final sample was sequenced as 
correct but with a single residue mutation. Regardless of sequencing results, all 46 plasmids were 
carried forward to the next stage of cloning. b) Results of site-directed mutagenesis experiments. 
25/46 constructs gave a PCR product after a single attempt, and the remaining 21 gave products 
after a round of optimisation. Following ligation and transformation, 36 mutagenesis products gave 
colonies, and of these 36 products with colonies, 25 were verified as correct by sequencing. 8 were 
incorrect (missing sequence fragments), 2 had inconclusive sequencing data, and 1 plasmid showed 
a single residue mutation.  
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Next, a Strep Tag II sequence was added to the C-terminus of each design using site-

directed mutagenesis, to facilitate high-throughput solubility screening using the dot blot. 

A single forward primer binding to the stop codon region of the plasmid was used, 

containing an overhang with the Strep Tag II sequence (WSPHQFEK). 46 different reverse 

primers were designed using the primer3 python package, binding to the region of the 

protein immediately before the stop codon.   

Figure 5.2.3b shows the results of the mutagenesis process. All 46 plasmids gave a PCR 

product, either at the first time or on optimisation (adding 3% DMSO and 1M Betaine to 

PCR reactions). 36 PCR products gave colonies when ligated and transformed, but 10 

samples gave no colonies and were not further investigated. Colonies were grown in LB 

medium and plasmid DNA purified and sent for sequencing. 25/36 samples were verified 

correct by sequencing; however, 8 samples were verified as incorrect (missing the Strep Tag 

II sequence or other sequence regions). Of the remaining 3 samples, one was correct but 

with a single residue mutation (Gln2 mutated to Ser), and the other 2 showed inconclusive 

sequencing data. Again, all constructs were carried forward for solubility screening 

regardless of the sequencing results. A list of all protein sequence designs along with their 

sequencing status and links to Sanger sequencing files is shown in Table 7.5 (Appendix). 

Next, encapsulin design plasmids were transformed into E. coli and proteins expressed in TB 

medium using IPTG induction as described in Section 4.4.2. As shown in Figure 5.2.4a, none 

of the 46 designs showed any signal on the solubility dot blot, compared to positive and 

negative controls. To confirm this negative result, a traditional western blot was carried out 

on total cell lysates, to investigate whether proteins were expressed at all. This analysis was 

carried out only for the sequence verified designs. This blot showed that some proteins 

expressed at a low level compared to the wild-type, where others showed no expression at 

all (Figure 5.2.4b).   
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Figure 5.2.4: Solubility Screening of Encapsulin Designs 
a) Anti-Strep Tag dot blot of 46 encapsulin design soluble lysates. Controls shown are T. maritima 
and Q. thermotolerans encapsulins (TmEncap and QtEncap) and empty plasmid (pSB1C3-FB). Purified 
TmEncap was used as loading control. Each spot is a biological replicate (n=3), and each rectangle in 
the grid corresponds to a different design.). Positive controls showed detectable signal, and negative 
controls showed low background signal, but none of the designs showed detectable signal in any 
biological replicate. b) Anti-Strep Tag western blot on total cell lysates of the 25 sequence-verified 
encapsulin design constructs. Some samples show signal around the expected molecular weight 
(indicated in red) suggesting that these proteins show some expression, but not enough soluble yield 
to detect on the dot blot. Other samples show no signal, indicating failed expression. Expressed 
TmEncap protein and an empty plasmid were used as a control again. c) Plot showing areas under 
the intensity curves for the visible bands in b) measured by ImageJ and normalised by OD600. Only 
one sample showed higher intensity than TmEncap and this sample failed to show higher soluble 
yield in further experiments (Figure 7.1.4, Appendix). 
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When bands from this blot were quantified using ImageJ and normalised by OD600, it was 

revealed that only a single sample showed higher total expression than the wild-type. 

However, further investigation of the soluble fraction of this lysate confirmed that, while 

total expression was comparable to the wild type, soluble yield was still lower than the T. 

maritima encapsulin (Figure 7.1.4, Appendix). Overall, this data indicates that none of the 

46 encapsulin designs were successful in achieving the original aim of increased soluble 

yield over the wild type protein.   

5.3 Chimeric Encapsulin Variants 

5.3.1 Design of Chimeric Encapsulins with Modified E-Loops 

Next, two encapsulin variants were manually designed, to investigate the effect of the E-

loop region on encapsulin assembly. Two wild-type encapsulin structures, from T. maritima 

and Q. thermotolerans, with T-numbers of 1 and 4 respectively, were used as a starting 

template. Sequence regions corresponding to the E-loop from these two wild-type 

structures were delineated according to a structural alignment and swapped to create two 

new chimeric designs (Figure 5.3.1b). Single-sequence AlphaFold2 predictions of these new 

chimeric proteins showed acceptable pLDDT and PAE values, apart from in these loop 

regions. This is expected given that these loop regions were swapped and are also expected 

to be flexible.  
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Figure 5.3.1: Design of Chimeric Encapsulin Variants 
a) Monomer structure of wild-type encapsulins from T. maritima (orange) and Q. thermotolerans 

(cyan), with schematic view of the HK97 fold (rectangles) and the E-loop region, with antiparallel  
sheets (arrows). b) Structure and sequence alignment of the E-loop region from the two encapsulin 
structures. The four residues either side of the loop region (highlighted in bold) structurally align and 
show high sequence similarity. The sequence region between these four-residue motifs was 
swapped between the two sequences. c) Single-sequence AlphaFold2 predicted structures of the 
two chimeric designs with swapped E-loops, along with schematic depiction of the new topology 
(top). Plots showing pLDDT (middle) and PAE (bottom) of the two chimeric designs, with E-loop 
regions highlighted with rectangles. E-loop regions in the chimeric variants show low confidence and 
high PAE values compared to the rest of the HK97 fold. 
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Following design, protein sequences for these two chimeric variants were ordered as 

synthetic gene fragments, cloned into pSB1C3-FB, and screened for solubility in the same 

experiment as the deep learning encapsulin designs described in Section 5.4.1. Both 

chimeric designs were successfully cloned with the Strep Tag-II sequence added, and 

sequence verified. As shown in Figure 5.3.2, one of these chimeric designs appeared to show 

strong soluble signal, both on the dot blot and on a Western Blot, compared to the wild-type 

proteins. This chimera was comprised of the Q. thermotolerans encapsulin with the T. 

maritima E-loop region. This serendipitously aligns with the design aim of the previous 

section – finding new encapsulin variants with increased soluble yield. As such, this 

chimeric variant (henceforth referred to as CmEncap) was further characterised. 
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Figure 5.3.2: Solubility Screening of Chimeric Encapsulin Designs 
a) Dot blot of two encapsulin chimeric designs, from the same experiment as Figure 5.2.4 with same 
controls. The T. maritima encapsulin with Q. thermotolerans E-loop showed low signal, whereas the 
reciprocal design showed a strong signal on the dot blot. Each spot is a biological replicate. b) SDS-
PAGE (left) and Western Blot against the Strep-Tag II (right) of soluble lysates from the dot blot. 
Samples shown are the wild type Q. thermotolerans encapsulin (QtEncap) and Q. thermotolerans 
encapsulin with T. maritima E-loop (CmEncap). CmEncap showed strong signal in SDS-PAGE. A 
western blot confirms these findings, with much stronger signal for CmEncap over wild-type. 
Samples shown are not normalised by OD600, but normalizing band intensities from the Blot gives 
fivefold higher intensity for CmEncap over wild-type (not shown). Each lane is a biological replicate. 

5.3.2 Experimental Characterisation of a Chimeric Encapsulin 

Next, CmEncap was expressed in E. coli in large scale and purified using affinity 

chromatography. Pure fractions from affinity chromatography were then loaded onto a gel 

filtration column for size exclusion chromatography. QtEncap was also expressed and 

purified alongside CmEncap, and both were subjected to downstream analysis. 
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As shown in Figure 5.3.3b, the wild-type QtEncap protein shows a single, sharp peak around 

8 ml when eluting from a Superose 6 size exclusion column, as expected for assembled 

encapsulin particles. In contrast, CmEncap shows a much smaller peak which appears to be 

formed of two components. The majority of CmEncap protein (≈97 % as estimated from 

peak area) appears to elute much later from the column, suggesting that only a small 

fraction of total protein is assembled into particles. Native-PAGE and TEM images (Figure 

5.3.3c-d) show that this early peak is indeed formed of assembled particles, and that the late 

peak is formed of unassembled particles. Native-PAGE suggests that this unassembled 

population is formed mainly of monomers and dimers, with a smear of higher molecular 

weight species. Inspection of TEM images reveals that, whilst QtEncap assembles into a 

monodisperse population of ≈42 nm particles, the ≈3% fraction of assembled CmEncap 

particles forms two discrete populations of particles: a smaller ≈20 nm size and a larger ≈42 

nm size (Figure 5.3.3e). These sizes are consistent with a T=1 and T=4 sized particle 

respectively. 
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Figure 5.3.3: Experimental Characterisation of CmEncap 
a) SDS-PAGE of purified CmEncap fractions following large scale expression in E. coli and purification 
using affinity chromatography. FT = column flow-through, W = wash fractions, E = elution fractions. 
b) Elution fractions were pooled and loaded onto a Superose 6 gel filtration column. QtEncap shows 
the expected behaviour, showing a large, sharp peak around 8 ml corresponding to assembled 
particles (cyan). CmEncap shows a very small double peak around 8 ml, and a much larger peak 
around 14 ml. c) Native-PAGE of purified QtEncap and CmEncap both from the early and late peaks 
shown in b). QtEncap shows the expected band pattern, with faint bands at the top of the gel 
around 1200 kDa. The early CmEncap peak also shows this behaviour, but the later peak consists of 
low molecular weight species which appear to correspond to a monomer, dimer, and other partial 
assembly products. d) TEM images of purified QtEncap and CmEncap early and late peaks. As in SEC 
and Native-PAGE, these images reveal that the early CmEncap peak corresponds to assembled 
particles, although there appears to be two populations of particles, one around ≈20 nm and one 
around the same size as QtEncap (≈42 nm). e) Plot showing the distribution of particle sizes from 
TEM images, as measured by Feret diameter in ImageJ, confirming two populations of particles for 
CmEncap.  
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5.4 Discussion 

5.4.1 Redesigning Encapsulins for Increased Soluble Yield 

In this chapter, a wild type encapsulin protein was redesigned, with the aim of increased 

soluble yield. 46 candidates were designed, however of these only 25 were successfully 

cloned and sequence verified. The greatest source of difficulty in cloning was the 

mutagenesis stage of adding Strep-Tag II sequences to all 46 designs – in future if this work 

is to be repeated, this sequence should be included in the initial synthetic DNA designs, 

rather than added later using PCR. However, none of these 46 designs showed any visible 

signal on the dot blot solubility screen, sequence verified or otherwise. DNA sequence errors 

are the most obvious cause of negative results in the 21 plasmids which were not verified as 

correct by Sanger sequencing. However, there are many other potential points of failure in 

the 25 sequence verified plasmids. 

Western blot of total cell lysates in the 25 sequenced plasmids shows that most of these 

proteins express to a very low level in E. coli under the expression conditions used in this 

experiment. It is possible that higher expression levels could be achieved by varying these 

conditions – induction temperature, E. coli strain, medium type, and similar. However, the 

conditions used here give good soluble yield for the wild-type protein and so were used as a 

basis to screen for any improved variants. Only one design expressed to a level comparable 

with the wild type T. maritima protein, however this protein was mostly insoluble. These 

results may indicate that, in all but one case, designed proteins are either unstable or toxic 

when expressed in E. coli, causing low overall yield. Possible causes for these poor design 

results could lie in the protein design models and methods used, or in the computational 

screening process used to choose candidates for experimental validation. 

During design, certain residues were fixed in an attempt to preserve wild type function. It is 

possible that too many residues were fixed in these design experiments, which could cause 

designs to have reduced solubility. Previous work has shown that too high a proportion of 

fixed residues in a wild-type protein can result in reduced solubility following redesign with 

ProteinMPNN, in optimization of a lysozyme and a myoglobin [211]. Outside of this, it is 

possible that the protein design methods used have limitations which affect the quality of 

encapsulin designs. ProteinMPNN and ProteinLM have both been validated experimentally 

[162, 171, 211, 262], suggesting that these models are capable of designing well performing 
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proteins in some cases. However, both models have been used to design mostly small, 

single-domain proteins, which is a much easier design task than a large self-assembling 

protein organelle. The HK97 fold also contains several beta sheet regions, which can be 

difficult to design using deep learning methods, since sheet regions are less common than 

helical regions in the PDB which is used to train these models [263]. Indeed, more recent 

benchmarking efforts have shown that deep learning-based design tools such as 

ProteinMPNN and ESM-IF fail to outperform “classic” biophysics-based design tools such as 

Rosetta [264]. In this work, the “vanilla” ProteinMPNN model weights were used, trained on 

the entire PDB. However, the authors of this tool also provide a “soluble” model which is 

trained only on soluble protein structures (no membrane proteins). This model may have 

given better results in the pipeline used here. 

However, while ProteinMPNN and ProteinLM have been experimentally validated 

previously, there are no examples in the literature of ESM-IF protein designs being tested 

experimentally. Anecdotal evidence suggests that other users have had issues with the 

solubility of ESM-IF designed proteins (Martin Pacesa, personal communication). These 

results are particularly interesting since ESM-IF and ProteinMPNN are both inverse folding 

models which set out to solve the same design task, however the former has not been 

proven to work in the real world, where the latter has been demonstrated to design 

successful proteins multiple times. Compared to ProteinMPNN, ESM-IF uses a larger neural 

network model with orders of magnitude more parameters, and most notably is trained on 

AlphaFold2 predictions as well as experimental structures from the PDB. Related work on 

protein design has shown that AlphaFold2 structures are not as “designable” as 

experimental structures, potentially due to many local inaccuracies in atomic positions 

[265], and in the ESM-IF paper it was shown that training solely on AlphaFold2 structures 

leads to worse performance [163]. As such, ESM-IF’s poor performance could be due to the 

inclusion of predicted structures in the training data, which the better-performing 

ProteinMPNN does not use. 

As for the negative ESM-2 results, there are several potential reasons for the poor 

performance of these designs. The design method used here involved removing residues 

from the template protein sequence and replacing them according to PLM likelihoods. This 

method has been documented in the literature previously [232, 256] but has not been 
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applied to the latest ESM-2 models, and crucially, no previous work has subjected this 

design method to experimental validation. As such, it could be possible that these PLM 

likelihoods alone are not suitable for protein design or optimising protein sequences 

towards a given target property. It has been hypothesised previously that PLMs broadly 

learn the evolutionary landscape and statistics across protein families [266], as opposed to 

learning the precise determinants behind protein structure, function, and biophysical 

properties. It is thus possible that these PLM likelihoods alone are insufficient for protein 

design in some cases, and as such other methods have combined likelihoods from PLMs like 

ESM with potentials from more traditional physics-based design methods [267]. 

Finally on the topic of design tools, it is possible that the underlying rationale behind all the 

designs generated in this work is flawed. With all four models, design tools were used to 

generate sequences against the T. maritima encapsulin monomer, which is a gross 

simplification of the entire, assembled capsid with 60 subunits. Monomeric design ignores 

the true biological complexity of the encapsulin shell, to make protein design more 

computationally tractable. The monomer used in these experiments contains 264 residues, 

or ≈1320 backbone atoms, and designing sequences for this monomer required anywhere 

from 3-15 gigabytes of GPU memory, depending on the size of the neural network used for 

protein design. It is thus computationally infeasible to model an entire capsid of 60 

monomers, without access to industrial-scale GPU clusters. And even in this case, the 

protein design methods tested in this work were not trained on or intended for use with 

such large protein complexes. However, in hindsight, it may have been possible to use the 

inverse folding methods (ProteinMPNN and ESM-IF) to perform multichain design against a 

single copy of the monomer in complex with either a pentamer or a capsid fragment as 

described in Section 5.2.1.   

An alternative explanation for these negative results lies not in the protein designs 

themselves, but in the screening process used to choose candidates for experimental 

validation. 46 sequences were chosen from a pool of thousands of designs, and it is possible 

that suitable designs were found outside this small sample chosen for experiments. Designs 

were selected based on predicted solubility metrics calculated with NetSolP, and with 

multichain scores calculated using ProteinMPNN and ESM-IF. It is possible that none of 

these metrics are associated with experimentally successful proteins in this case, and that 
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their use may have biased the selection of designs towards those with poor properties. 

There is also evidence in the literature that predicted structure pLDDT does not correlate 

with experimental success in terms of protein stability or function [268–270], however 

following an initial sequence-based screen all designs showed acceptable pLDDT, and so in 

effect no filtering based on this metric was used. In general, whilst screening based on 

predicted structures is a de facto standard in protein design currently, caution should 

always be used when filtering protein sequences based on predicted structures (and indeed, 

caution should be used when dealing with predicted structures in any capacity). Structure 

prediction tools like AlphaFold2 and ESMFold are not especially sensitive to small errors in 

protein sequence, but in reality the structure of a protein can be completely disrupted or 

destabilised by even a single point mutation [271]. 

5.4.2 Chimeric Encapsulin Designs 

In this work, two chimeric encapsulin proteins were designed with modified E-loop regions. 

The rationale behind this work was initially to investigate encapsulin assembly and the role 

of this E-loop region, however it was discovered that one of these chimeric designs showed 

vastly increased solubility compared to the wild-type protein. This rather serendipitous 

discovery aligned with the aims of the deep learning-based protein design work, and so 

experimental efforts focused on characterising this newly discovered chimeric mutant, 

formed from a Q. thermotolerans encapsulin with an E-loop region from the T. maritima 

encapsulin. Despite showing vastly increased soluble yield, it was seen that swapping this 

E-loop region causes assembly to be almost completely abolished, with only ≈3% of total 

pure protein being in the assembled state. Interestingly, the small fraction of assembled 

protein appears in TEM images to form two separate populations, whose diameters are 

consistent with a T=1 and T=4 sized particle respectively. However, this remains a 

hypothesis until more high-resolution structural information is available. As a brief aside, 

these findings also demonstrate the utility of the dot blot assay as a means to discover new 

encapsulin variants with increased soluble yield. 

These results empirically demonstrate that the E-loop region of the HK97 fold is directly 

involved in capsid assembly, which has not been demonstrated experimentally in 

encapsulins. However, its precise role in assembly is still unknown. This work shows that 

completely swapping the E-loop in one encapsulin abolishes assembly, but more precise 
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mutagenesis experiments are required to determine exactly which sequence motifs are 

involved. It may be possible that single mutants of the wild-type E-loop region have a less 

pronounced effect on assembly. The relationship between E-loop sequence and T-number 

also remains unclear without a solved structure of the chimeric mutant capsid. The E-loop 

may directly determine T-number, or it may act in concert with residues in the main body of 

the HK97 fold to direct assembly and geometry. Matters are further complicated by the fact 

that the E-loop introduced into the Q. thermotolerans encapsulin here is shorter than the 

wild-type loop. Again, it is unknown whether varying the length alone of this region is 

enough to perturb assembly, or whether it is the precise amino acid sequence which directs 

assembly (or whether both are interlinked). Overall, these experiments show a relationship 

between E-loop and capsid assembly, but the precise nature of this relationship is unclear 

and requires more detailed investigation. 

The preliminary CmEncap assembly data presented here make it possible to speculate on 

the assembly mechanism and dynamics of encapsulin proteins. Phage capsids use multiple 

protein subunits and accessory proteins, and show a complex assembly pathway involving 

multiple stable intermediates [272]. In contrast, encapsulins only use a single protein 

subunit and no accessory proteins, and no stable intermediate states have been isolated. 

This suggests that encapsulins exist in equilibrium between the unassembled and fully 

assembled states. When wild type encapsulins are recombinantly expressed, this 

equilibrium heavily favours the assembled state, to the point where no monomers or 

unassembled species can be observed or isolated. This inability to isolate intermediates 

directly means that the assembly pathway of encapsulin particles can only be probed 

indirectly – two main methods are to make mutations which disrupt assembly, or to purify 

whole capsids and subject them to chemical disassembly and reassembly. 

How do the CmEncap findings fit into the current knowledge from these two experimental 

approaches? As far as making assembly mutants is concerned: there are examples in the 

literature of mutations in the monomer protein changing the shape or symmetry properties 

of the assembled capsid [29, 30]. However, there are no examples of mutations which 

abolish or otherwise reduce capsid assembly in the published work on encapsulins. 

Unpublished Frank Lab experiments describe a double mutant of TmEncap with almost 

complete assembly, but with a very small fraction of dimers visible on a Native-PAGE gel. In 
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contrast, this work presents a CmEncap mutant which shows almost completely abolished 

assembly, where only 3% of total protein is present as assembled particles. Native-PAGE 

gels show that the unassembled fraction of protein contains several well-resolved 

oligomeric species (Figure 5.3.3). Clear bands are visible with molecular weights consistent 

with the size of a monomer and dimer, as well as a larger band which may be a trimer, 

tetramer, or some other higher-order species. Such a range of well-resolved intermediate 

species has not been observed for any previous encapsulin protein, either by mutation (as in 

this work) or by chemical disassembly/reassembly. 

As for these chemical disassembly and reassembly experiments, this is a much more fruitful 

area of the encapsulin literature. Both the literature [51] and unpublished Frank Lab 

experiments on TmEncap have shown the presence of the aforementioned dimer species 

after capsids are chemically disassembled (using either high pH or chemical denaturants) 

and re-equilibrated back into an assembled state. Native mass spectrometry experiments on 

the cargo-loaded B. linens encapsulin (also a T=1 capsid like TmEncap) have observed a 58-

subunit partially assembled capsid, missing two subunits [273]. Taken together, these 

findings suggest that some encapsulins assemble starting from dimeric species which form 

the “base unit” of the shell, and exist as equilibria between assembled capsids and dimers, 

as opposed to monomeric species. 

In contrast, QtEncap does not exhibit this dimeric species in assembly/disassembly 

experiments, and only shows a band consistent with the molecular weight of a monomeric 

species as shown in [51] and unpublished experiments. It is also worth noting that a well 

resolved monomeric species is visible for CmEncap (which is a QtEncap mutant). This 

suggests that QtEncap does not assemble by this same pathway starting from a dimer, but 

instead starts from unassembled monomers. However, the CmEncap mutant shows well-

resolved higher-order species such as dimers and a putative trimer or tetramer, which may 

also be assembly pathway intermediates. QtEncap is also a larger T=4 capsid which suggests 

that perhaps larger encapsulin particles assemble by a different pathway than smaller T=1 

capsids. However, this all remains speculation until further experiments can be done. The 

CmEncap findings shown here represent a first step towards elucidating an assembly 

pathway, where the regular assembly equilibrium which so heavily favours the QtEncap 

assembled state has been significantly shifted. 
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Another interesting observation is that both CmEncap and the non-functional MGYP-61 

encapsulin candidate from Section 3.8 showed high soluble yield but poor assembly 

characteristics (or no assembly in the case of MGYP-61). This may be a simple coincidence; 

however, it may also suggest some kind of trade-off between assembly and soluble yield. It 

must be stressed that this is purely conjecture, but it is possible that a hypothetical, stable 

encapsulin monomer is more soluble than an equivalent encapsulin protein which 

assembles into full particles. There are many speculative reasons why this might be the 

case; from a protein sequence perspective, it seems reasonable that the set of soluble 

monomeric proteins with the HK97 fold is much larger than the set of soluble HK97 fold 

proteins which assemble into full capsids. It also seems reasonable to assert that large 

particles may be more prone to aggregation than smaller monomeric species. If this is the 

case, then the screening process used here may not make much sense. In this work, 

candidates are first screened for soluble yield, before investigating hits for their assembly 

properties. However, if assembly comes at the cost of soluble yield, then it may be necessary 

to first screen all designs for assembly, and then choose the highest yielding designs. 

However, this is difficult since screening for assembly is currently done using Native-PAGE 

and TEM measurements, which are low-throughput and require purified protein. In future, a 

higher throughput method for screening capsid assembly may be required. 

5.4.3 Future Work 

In this chapter, an attempt was made to design T. maritima encapsulin variants with 

increased soluble yield for biotechnology applications. Whilst this was not accomplished in 

the present work, future work may attempt to achieve this goal using a different 

computational approach. As mentioned previously, this may involve designing encapsulin 

sequences in the context of the entire capsid or a fragment thereof, or using different design 

tools to those tested here. It should also be noted that only 25/46 designs were sequence 

verified, so future work could start with re-cloning the remainder of these designs and 

investigating these further. The dot blot assay used here is relatively insensitive, and so 

future work may focus on developing better high-throughput methods for detecting protein 

solubility, perhaps using split green fluorescent protein reporters in combination with flow 

cytometry and next-generation sequencing as in [172]. As mentioned above and as borne 

out in the results presented in this thesis, screening for encapsulin assembly is just as 

important as finding soluble high-yield candidates. Future work should focus on developing 
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a method for detecting capsid assembly, in higher throughput than the currently-used and 

laborious method of purifying proteins and screening using Native-PAGE and negative stain 

TEM imaging. 

The chimeric encapsulin mutant CmEncap presents some interesting expression and 

assembly properties which could be investigated further. For example, if the non-

assembling protein fraction can be separated into monodisperse populations of monomers, 

dimers, or other oligomeric species, then these could be subjected to crystallization screens 

and potentially investigated using X-ray crystallography. SEC-MALS analysis could also 

shed light on the precise composition of this non-assembled fraction and determine the 

proportions of monomeric, dimeric, and higher order species. Despite only forming a small 

proportion of the total expressed protein, the fully assembled capsid population could be 

analysed using cryoEM and single particle analysis to solve high resolution structures of the 

two particle sizes seen in the TEM images. Additionally, CmEncap has an entirely swapped 

E-loop region, but future work could focus on making individual mutations from the wild-

type QtEncap protein and investigate the effect these have on assembly, to obtain more 

fine-grained information on capsid assembly. 

A final point of discussion is the second chimeric encapsulin mutant which was designed. 

Recall that the CmEncap protein investigated here is the Q. thermotolerans encapsulin with 

an E-loop from the T. maritima encapsulin. However, the reciprocal mutant was also 

designed, consisting of the T. maritima encapsulin with the Q. thermotolerans E-loop. This 

protein was not characterised in any depth, since solubility screens showed that CmEncap 

had desirable properties which were sought after in this work. Given the altered assembly 

seen in CmEncap, it would be very interesting to revisit the other chimeric design and 

determine first whether it assembles into particles at all, and their size distribution if 

present.  
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Chapter 6: Discussion and Conclusions 
To conclude, this work presents an exploration of the currently available deep learning tools 

and methods for protein design and discovery. This includes tools for protein structure and 

function prediction, tools for searching vast databases of protein structures and sequences, 

protein language models, and various tools for protein design using structure or sequence. 

These tools and models were applied to encapsulins, which are a useful test case for two 

reasons; they represent a difficult challenge for both discovery and design of new variants, 

and they also come with a wealth of exciting attributes for use in synthetic biology. In broad 

summary, this work demonstrates some of the exciting opportunities afforded by these new 

deep learning methods, as well as the potential pitfalls of using these methods, and the 

challenges which lie ahead if these tools are to become part of the landscape in 

experimental biology. 

6.1 Deep Learning in the Biological Sciences 

At this juncture it may be useful to review how the findings from this work fit in with the 

overall outlook of deep learning for biology. Many practitioners see deep learning as reliant 

on three key prerequisites: model architecture, compute, and data [274]. These three 

elements are all interdependent on each other: training models on larger datasets requires 

more compute, but as datasets scale models must also increase in size and complexity to 

properly learn the underlying distribution and properties of the data, which requires more 

compute, and so on. In practice one of these three elements is always limiting, which 

requires the other two to be optimised to maximise efficiency. Many studies have been 

carried out to empirically derive the so-called “scaling laws” which define the relationship 

between data, compute, and model size, and define the optimal way to train large models 

given either a fixed dataset or compute budget [188, 274–276]. 

As far as deep learning in biology is concerned, which of these interlinked elements is 

currently most important? In terms of models, there have been many recent advances in 

implementation, training, and model scaling to billions or even trillions of parameters. A 

wide range of model architectures are available to researchers, including the famous 

Transformer model underlying most large language models and many protein models. As 

for compute, in recent years, computing power has become cheaper and more easily 

available than ever before, and GPU hardware can be accessible at a low cost or even for free 
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in some cases. However, training very large deep learning models (sometimes called 

“frontier” or “foundation” models) is still out of reach to all but the biggest of corporations 

and academic institutes. For example, OpenAI have estimated that the cost of training GPT-

4 was over $100 million [277]. This work contains far more modest compute experiments, 

and even these would have been impossible without an external grant from Oracle for 

Research. Outside of these exceptional cases, deep learning is now more accessible than 

ever, especially to smaller academic groups whose focus may be more grounded in 

experimental biology. 

In deep learning in general, the commonly accepted wisdom is that data is the most 

important element of the three. It is widely observed that obtaining and curating a smaller 

dataset of higher quality can provide better performance than larger, lower quality datasets 

[278], and these smaller datasets also require less compute to train models on. However, 

data is much more difficult and expensive to collect in the biological sciences compared to 

other fields like computer vision or natural language. Despite this, high quality data for 

proteins specifically (as is the focus of this work) is plentiful and readily available. The PDB 

is almost a textbook example of an excellent data resource for deep learning, containing a 

wealth of well-curated protein structures and associated metadata. Databases like UniProt 

and the NCBI nr database contain billions of protein sequences with varying levels of 

curation and annotation. Together, these resources have already driven big breakthroughs 

in deep learning for protein structure prediction and design, to name just two examples. 

However, data is always a limiting factor in deep learning, and even the best resources have 

limitations and “blind spots”: for example, the PDB is biased towards types of proteins and 

limited in others (such as membrane proteins, disordered proteins, and fold switching 

proteins) [279]. Similarly, sequence databases only sample a small region of the space of all 

possible protein sequences, and it is thought that there is a wealth of diversity in proteins 

that have not yet been discovered [186]. 

To conclude on the “holy trinity” of deep learning, there are many opportunities available 

with current data, model, and compute capabilities, but also many potential avenues for 

exploration and improvement. Whilst model and compute advances are most likely to come 

from large technology corporations and computer scientists, the responsibility for 

improving deep learning datasets lies largely with experimental biologists. The big 
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challenge in future may lie in the interplay between wet lab experiments and computational 

work, and experimental biologists have a big role to play in generating breakthroughs 

towards this goal. The experiments presented in this work go some way towards 

demonstrating this fact – a strong set of in silico predictions and hypotheses were generated 

but failed to provide positive results when validated experimentally. 

This leads to the key take-home message of this work: the vital importance of the 

experiment. Computational tools have the power to make biological experiments faster, 

easier, reduce the number of experiments required, and in some special cases provide 

insight where experiments fail to do so. This is especially the case with deep learning tools 

available now. However, the vast promise of computational tools is best exploited as a 

companion to experiments, as the negative experimental results in this work have shown. 

This is a point that is particularly worth emphasising, since many papers or preprints 

describing new deep learning models for proteins neglect to perform wet lab validation of 

their findings.  

In other deep learning modalities like computer vision or language, models can be 

somewhat intuitively evaluated. A model for generating text or images can be tested by 

human investigators, and human feedback is indeed an important part of the training and 

alignment process for these models. However, in a biological setting, model outputs cannot 

always be evaluated fully by human inspection. For example, protein sequences generated 

by a protein design model cannot be easily inspected by humans to check their quality. 

Outputs can be computationally screened, and models can be evaluated against benchmark 

datasets, but again, as this work shows, the true test of a biological deep learning tool’s 

performance is whether the proteins it generates or the predictions it makes are feasible in 

the real world. 

To conclude: biological deep learning models generate hypotheses about the physical world. 

For example, protein sequences generated by protein design models are hypotheses that a 

given protein sequence will be stable, soluble, fold into a given structure, perform a given 

function, or similar. As this work has shown, these hypotheses can be a valuable source of 

ideas, narrow down the set of experiments to be carried out, or provide useful information 

about a system which cannot be obtained experimentally. However, whilst some of these 
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hypotheses lead to useful insights about biology, others will not always stand up to 

validation using experimental methods. However, it is worth noting that many experimental 

methods are often treated as ground truth, but suffer from similar limitations of fitting 

models to limited experimental data (such as X-ray crystallography, for example). 

The metagenomic proteins and de novo designed proteins produced in this work are two 

large sets of hypotheses, and it was shown in experiments that some of these hypotheses 

did not provide the expected result when tested. The process of going from a large set of 

predictions to experimental results is not trivial by any means. As such, despite the vast 

promise shown by deep learning tools in biology, it remains the case that domain 

knowledge, experience, and intuition are still prerequisites in any biological investigation.  
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Chapter 7: Appendix 

7.1 Supplementary Figures 

 

Figure 7.1.1: pSB1C3-FB Plasmid Map 
Plasmid map for the pSB1C3-FB vector assembled in Section 4.3.1 and used in protein expression in 
this work. Sanger sequencing data for the BsaI sites (and the region between them) in the form of 
.ab1 and .seq files is available in this GitHub folder: 
https://github.com/naailkhan28/encapsulin_bioinformatics_exploration/tree/master/Experimental
%20Data/Sequences/Sequencing%20Data/pSB1C3-FB  

 

 

 

 

https://github.com/naailkhan28/encapsulin_bioinformatics_exploration/tree/master/Experimental%20Data/Sequences/Sequencing%20Data/pSB1C3-FB
https://github.com/naailkhan28/encapsulin_bioinformatics_exploration/tree/master/Experimental%20Data/Sequences/Sequencing%20Data/pSB1C3-FB
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Figure 7.1.2: Control Type IIS DNA Assemblies 
Agarose gel electrophoresis showing a diagnostic restriction digest verifying manual Type IIS 
assemblies for 6/8 control inserts (3 each from ESM-IF and ProteinMPNN) as described in Section 
4.3.1. Plasmid DNA was purified from two colonies per assembly and digested with NdeI and NcoI, 
and digests showed bands consistent with the sizes expected for this double digest (indicated with 
red arrows).  
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Figure 7.1.3: Sequence Generation Performance of Fine-Tuned Ankh Models 
The fraction of satisfactory sequences is shown for fine-tuned Ankh Base and Large models versus a 
random baseline. Results shown are in MLM performance. Neither model greatly outperforms the 
random baseline at any masking level, and the fine-tuned ESM-2 model greatly outperforms both 
fine-tuned Ankh models. There is no consistent pattern in performance between Base and Large 
models. 
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Figure 7.1.4: Solubility Screening of ESM-2_4 
The ESM-2_4 design was seen to have comparable levels of total expression to the wild-type 
TmEncap protein in Figure 5.2.4. a) Anti-Strep-Tag II western blot showing either total cell lysates (T) 
or soluble fraction only (S), normalized by OD600. The low signal seen in ESM-2_4, T is likely a 
loading artefact since total cell lysates are very viscous and difficult to load and quantify in SDS-PAGE 
and western blots. Despite this, TmEncap shows a much stronger signal in the soluble fraction 
compared to the design. b) Quantification of the soluble signal from a) by measuring the area under 
the intensity curves for the bands of interest in ImageJ. TmEncap shows an order of magnitude 
stronger signal. Overall, these data confirm that ESM-2_4 exhibits much lower soluble expression 
yield than the wild-type. 
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7.2 Supplementary Tables 

Table 7.1: Fixed Residues in Encapsulin Design 
Residues shown were fixed in the redesign of the T. maritima T=1 encapsulin. The residue 
numbering scheme used is the same from the cryoEM structure (PDB 7MU1). 

Residues Function Source 
Trp90, Asp93 Flavin Binding [32], Frank Lab unpublished data 
Arg73, Arg240 Capsid Assembly Frank lab unpublished data 
Asp23, Arg27, Lys31, Leu34, Arg37, Val40, Val42, 
Gln231-Ile235 

Cargo Binding [1] 

Met4, Phe6, Leu7, Arg9, Phe11, Ala12, Gln18, Trp19, 
Ile22, Arg25, Ala26, Glu28, Ile29, Tyr35, Lys38, 
Asp41, Pro45, Gly47, Ala52, Gly56, Glu64, Val67, 
Trp70, Pro77, Ile79, Glu80, Leu81, Arg82, Thr84, 
Phe85, Leu89, Leu95, Arg97, Gly98, Asn101, Ala115, 
Glu118, Asp119, Val121, Gly125, Cys126, Ser129, 
Val131, Cys144, Gly145, Leu152, Ala158, Phe162, 
Asp165, Gly166, Ile167, Gly169, Pro170, Tyr171, 
Ile175, Trp180, His190, Tyr191, Pro192, Asp214, 
Arg221, Gly222, Asp224, Phe225, Leu227, Gly230, 
Gly236, Tyr237, Val245, Leu247, Phe248, Glu251, 
Thr254, Phe255, Asn259, Glu261, Ala262, Ile264, 
Leu266 

Conserved Residues MSA Analysis (see text) 
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Table 7.2: Raw Images Presented In This Document 
The type and description of each raw image is shown, along with a link to the figure where the image 
is used, and a GitHub link is provided to the raw image. 

Figure Description Image Type GitHub URL 
Figure 
3.7.1 

MGYP-61 expression screening gel SDS-PAGE https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-07-06-MGYP_61_Temperature_screen.jpg 
 

Figure 
3.7.1 

MGYP-11 expression screening gel SDS-PAGE https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-07-07-MGYP_11_small_scale_expression.jpg 
 

Figure 
3.7.1 

MGYP-87 expression screening gel SDS-PAGE https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-07-10-MGYP_87_sma_scale_temperature_screen.jpg 
 

Figure 
3.8.1 

MGYP-61 assembly screening gel Native-PAGE https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-07-18-MGYP_61_Streptactin_E3_Native_PAGE.jpg 
 

Figure 
4.3.2 

DNA assembly optimization – 
outgrowth plating 

Agar Plate https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-03-31-MPNN_3_GG_Opentrons_Plating_test.tif 
 

Figure 
4.3.2 

DNA assembly optimization – 
silicone oil and foil seals 

Agar Plate https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-06-14-GG_Opentrons_Transformation.png 
 

Figure 
4.3.2 

DNA assembly optimization – foil 
seals only 

Agar Plate https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-06-16-GG_Opentrons_Transformation.png 
 

Figure 
4.3.3 

Optimised solubility screening 
protocol blot 

Dot Blot https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-09-20-96well_encapsulins_clarified_lysates_TmEncap_control.tif 
 

Figure 
5.2.4, 
Figure 
5.3.2 

Encapsulin design solubility 
screening blot 

Dot Blot https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2024-02-23-Encapsulin_design_cloning_v2_expression_dot_blot.tif  

Figure 
5.2.4 

Encapsulin design expression 
screening blot 

Western Blot https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2024-04-17-
Encapsulin_design_expression_v3_lysate_antiStrep_Western_x2.tif  

Figure 
5.2.4 

Encapsulin design expression 
screening blot (controls) 

Western Blot https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2024-04-08-
Encapsulin_design_expression_v3_lysate_antiStrep_Western_x3.tif  

Figure 
5.3.2 

CmEncap and QtEncap solubility 
gel 

SDS-PAGE https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2023-02-27-
Encapsulin_Design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_SDS-
PAGE.jpg  

Figure 
5.3.2 

CmEncap and QtEncap solubility 
blot 

Western Blot https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2024-02-27-
Encapsulin_design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_western_blo
t_antistrep.tif  

Figure 
5.3.3 

CmEncap purification gel SDS-PAGE https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2024-05-09-CmEncap_Superose6.jpg  

Figure 
5.3.3 

CmEncap assembly gel Native-PAGE https://github.com/naailkhan28/encapsulin_design/blob/master/plots/ima
ges/2024-03-15-Tm_Qt_Cm_early_late_native.jpg  

 

 

 

https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-07-06-MGYP_61_Temperature_screen.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-07-06-MGYP_61_Temperature_screen.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-07-07-MGYP_11_small_scale_expression.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-07-07-MGYP_11_small_scale_expression.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-07-10-MGYP_87_sma_scale_temperature_screen.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-07-10-MGYP_87_sma_scale_temperature_screen.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-07-18-MGYP_61_Streptactin_E3_Native_PAGE.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-07-18-MGYP_61_Streptactin_E3_Native_PAGE.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-03-31-MPNN_3_GG_Opentrons_Plating_test.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-03-31-MPNN_3_GG_Opentrons_Plating_test.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-06-14-GG_Opentrons_Transformation.png
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-06-14-GG_Opentrons_Transformation.png
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-06-16-GG_Opentrons_Transformation.png
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-06-16-GG_Opentrons_Transformation.png
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-09-20-96well_encapsulins_clarified_lysates_TmEncap_control.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-09-20-96well_encapsulins_clarified_lysates_TmEncap_control.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-02-23-Encapsulin_design_cloning_v2_expression_dot_blot.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-02-23-Encapsulin_design_cloning_v2_expression_dot_blot.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-04-17-Encapsulin_design_expression_v3_lysate_antiStrep_Western_x2.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-04-17-Encapsulin_design_expression_v3_lysate_antiStrep_Western_x2.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-04-17-Encapsulin_design_expression_v3_lysate_antiStrep_Western_x2.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-04-08-Encapsulin_design_expression_v3_lysate_antiStrep_Western_x3.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-04-08-Encapsulin_design_expression_v3_lysate_antiStrep_Western_x3.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-04-08-Encapsulin_design_expression_v3_lysate_antiStrep_Western_x3.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-02-27-Encapsulin_Design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_SDS-PAGE.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-02-27-Encapsulin_Design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_SDS-PAGE.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-02-27-Encapsulin_Design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_SDS-PAGE.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2023-02-27-Encapsulin_Design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_SDS-PAGE.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-02-27-Encapsulin_design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_western_blot_antistrep.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-02-27-Encapsulin_design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_western_blot_antistrep.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-02-27-Encapsulin_design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_western_blot_antistrep.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-02-27-Encapsulin_design_TmEncap_QtEncap_pSB1C3_CmEncap_A2_western_blot_antistrep.tif
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-05-09-CmEncap_Superose6.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-05-09-CmEncap_Superose6.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-03-15-Tm_Qt_Cm_early_late_native.jpg
https://github.com/naailkhan28/encapsulin_design/blob/master/plots/images/2024-03-15-Tm_Qt_Cm_early_late_native.jpg
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Table 7.3 - Protein Sequences Used In Experimental Work 
All protein sequences were codon optimized for E. coli K12 using the IDT Codon Optimization Tool. 

Name Sequence Location 
TmEncap MSEFLKRSFAPLTEKQWQEIDNRAREIFKTQLYGRKFVDVEGPYGWEYAAHPLGEVEVLSDENEVVKWGL

RKSLPLIELRATFTLDLWELDNLERGKPNVDLSSLEETVRKVAEFEDEVIFRGCEKSGVKGLLSFEERKI

ECGSTPKDLLEAIVRALSIFSKDGIEGPYTLVINTDRWINFLKEEAGHYPLEKRVEECLRGGKIITTPRI

EDALVVSERGGDFKLILGQDLSIGYEDREKDAVRLFITETFTFQVVNPEALILLKFSGASDDDDKGAWSH

PQFEKTG 

Section 4.3.2, 
Section 5.2.2 

QtEncap MNKSQLYPDSPLTDQDFNQLDQTVIEAARRQLVGRRFIELYGPLGRGMQSVFNDIFMESHEAKMDFQGSF

DTEVESSRRVNYTIPMLYKDFVLYWRDLEQSKALDIPIDFSVAANAARDVAFLEDQMIFHGSKEFDIPGL

MNVKGRLTHLIGNWYESGNAFQDIVEARNKLLEMNHNGPYALVLSPELYSLLHRVHKDTNVLEIEHVREL

ITAGVFQSPVLKGKSGVIVNTGRNNLDLAISEDFETAYLGEEGMNHPFRVYETVVLRIKRPAAICTLIDP

EETSGAWSHPQFEKTG 

Section 5.2.2, 
Section 5.3.2 

MGYP-61 METQIVEGFAGASHVKGAPLTTTITREVSEELLRNEIDERIVKIRPMSTPIDQISRLADARLSSSMIVDY

YSVDTPPSVCKLFEGVESSQTSDIAELSVDNIAMFSPSDTILLPGVKGKAPGSCLMLYVISTGDKLRVKA

INPPTENTFPALNFEQSMIRMGRAAAELDVQTSQSEALPIKRRNFCQIFKCQVEQSILQRLSAKEVGWSL

TDQEETALIDMRLSMEKNFLFGARTRFEKDNTHGEVFTTEGIWTQAGKEFSYVKDKFNEEELVRLSRAAF

TGNAGSSRKVLIGGSGFIEQLSMLPHVKTAGPAETVTRWGIDFTEITTKFGRLYVVLSEVFDACGHADEA

MVLDPEYIQKYSHIPFKAMPIDLRSSGQRNCEAIVLTEASCIVLRYPDAHLRIVTKWSHPQFEK 

Section 3.7 

MGYP-11 MENNATIVNGVENGQHVVNGPLTTEVTNQASPSLLVNEIDRQIVKIRPMATPVDQLSRCAGAKRTGSMIV

DYYNVDTKPTSVSLVSSSTNLAGNVRGRLKTDNNDSIDVSDTLLVEGVTGYTDAGEPDENSRLVLYVVGK

DDVELMVMAVNGEPNGAGERIMPELDAGERLIRMGRAATELDVQTAQFEALPQKAQNYCQIFKMQIEQST

LQKIANKEVDWTMTDQEEAAIYDMRLGMEKNFLFGVKNKLWDSNKKETVMLTGGIWGQAGKTFTYSDGAL

TQDTVIDLMREAFTGNAGSKRKVLIGGSGLIGRLNKLDYTKMISAGENVAKWGIDFTEMRSKFGKLYVLL

SEVFDECGMPDNGMIIDPEYLQKYSHLPFGTEALNLKSAGVRNTDALVLTEASCLVLRYPKAHVRIVMEW

SHPQFEK 

Section 3.7 

MGYP-87 MNEMTQEPKIVEGTNGGAHVVDGPLTTTAARAASPGLLMSEIDKRVVKVRPMATPIDQISRMVGARNAKS

MVVEYYSVDTKGVSARSKSMTASEESDVEGMTTYLLKTDNDGIFSATETIFVPTLSGKDASGKDAGNLQL

YVLDKTDAGLKVVMLNAAGNASTLATAINGGVQIVRMGRAAAELDVQTPQFEAMPKKSSNYCQIFKAQIE

QSVFAKLSAKEVGWGFSDQEEVAIMDMRMGMEKNFLFGVKARITDPKKMDEVLFTQGIWNQCGSQETLDV

YNLQMADLVRIMRTAFTGDASGSNKKVFVAGSALIEAINNLEYTRVVGASQTTTRWGIDFQELRSKFGTL

YVVHGEIFDQCGLEECGIIIDPEYMTKYVHVPFKVEHLDLKKSGVRNVDALVVTEASCLVLRHPKAHVRI

VPAWSHPQFEK 

Section 3.7 

ESM_masked_T_0.5_4448 MTNLNTLKAPLTERQWSYISAVAKRIAGETSYGLKWADVLKPTGYDKNLTNVTDLIDYEKVLTKKALEV 

EITKENAVVKKSFDVNLDDMRALDKGKPDVDLSSLEETTNEVMALIDNYIFNGNKDTGEVGLLAYTDRT 

IATGTDPNALLTAITDANARFDADGVKGGKVLIISDDLWASYQATQDGSAPLDSAIKTVLDGGDIIKTP 

RIANALIVSKEGGTFDIVQGQKLSIGFDRYNNGAARLYIVAGYYVKVKDPKGLVRLGWSHPQFEK 

Section 4.3.1 

ESM_masked_T_0.5_6073 MERLKRAQAPLSEKQWELIQKRASRIAGESDFGLQFVDVGRPRKSAAIKEANLPQLDYDTGEEIHQADA 

ERLEINQTVLLSFEVDLEELKKLDQGKPNVDLTALEKAVYALCQKINDRIFNGDEKAGTVGLLQHEERT 

IATGNNPDDLLAAITKARLQFDADGIDGGIVLVINRDKWAAFQEQAKGGEPLAQAVEDKLNGGRIIKTP 

NIQDALIVSLDGGDFELELGQDVDIGYLRQTKDAALLYIVVSFNFNVKRPQALIRLGWSHPQFEK 

Section 4.3.1 

ESM_masked_T_0.5_3423 MDQLKRSEAPLTEKQWELIDKVAEKIYGENNYGARFIDVEEPTGQTVEAAKEALDLEKLKEKGAVVELA 

KLKLGKIELEYAFEIDLEELRKLDEGKPDVDLSALEETVLNVAKEIDDVVFYGSGRAGTKGLLAYSERK 

IDTGVDPASLLAAITEAKAIFKKEGIIGPVVLVINKELWKKYEEETKGVAPLEKAVKEALGGGDIIKTP 

RIKNALIVSLKGGDFRLVLGRGLEIGFKKEVEGKVRLYIKAGYTVEVLNPDNLILLEWSHPQFEK 

Section 4.3.1 

ESM_masked_T_0.5_7372 MKELDIEKAPLTEEQWELIKERASDIFEQNDYGSRFVDVIEPTGEDSVEASDTDVLIESVEGSVGVKIAS 

LGQKTIEKRFSFDVDLEELRKFSEGLPNVDLSSLEETVKQVCGYINNVIFDGSDETGSKGLLAYEERTIE 

TGSTPEDLIKAIVEANRKFDKAGINGKKVLVINKSEWEKYKEENKGEKPLDEDVKDKLNGGEIIKTNKID 

DAMIVSMSGGDFKLKMKTSVSIGYEKYNEDTVECFIEIKFSFEVLNPNSLIRLGWSHPQFEK 

Section 4.3.1 

ProteinMPNN_T_0.3_23 MSSLNLEKAPLTEKQKQYLADRFNKIFNENSYCLKFADVVPAQGEDFKEYPLNKVEETSSPNAKKKKGKK 

LTLPMIELKIPFEVPLKELQALDAGKKDVDVSNLDAATKKFCDKINDVFFYGDEKYGIKGLMQIKERTIE 

TGDTPEELIEAIKKANKIFKEAGVNGKKVLIINKKKFEEYKEKNKGEGDIEEEIKKALEGGEIIETPKID 

NALIVNLKGGNIKFYIGEPPSIGFLRENEDSVELYIYSKYGFLVENEDAIILLKWSHPQFEK 

Section 4.3.1 

ProteinMPNN_T_0.5_783 MPSLKLNQAPLTHEQIKLITNRFETVYKNNSYAEKISDVAPEKGSTYEAYPLNEVDWTSSDFEKYKTGTK 

RTLPMKELTIPFDLPLAELKKHDLGQKDVDLSNLDYATRALCREINNIFFKGDPKLGIKGLLELKERTIP 

TGDTVSSMLEAIKNAVQIFKELGVDGKKVLVINVDRFAQLKSKNQGNSNIESLIKSTLDGGVIIRTPEIS 

GGLIVSLKGGHLRMNYGIRPSIGYMSTNQSSVNLYLKVKYAFEVINKDAIILLEWSHPQFEK 

Section 4.3.1 

ProteinMPNN_T_0.3_813 MSMLNLDKAPLTEKQKKYLEDVFNKIYNENNYSLKFVDVVPERGPDAKEFPLNSIKWTSSPLAKNKTGEK 

ETLPFKELEIEFEIDLKEMEKLDEGKKDVDVSNLKEATKKFCKEINDLVFNGDEKYGIKGILQIKEQTIE 

TGDTLEELLKAIKKAVEIFKKRGINGKRVLIINEDKWKKILEESKGEGDPEELIKKELEGGEIIVTPYIE 

NAIIVSLEGNHLLFHVGLEPSIGYKEENNDKVVLYIKAKYAFLIKNPDAIIILKWSHPQFEK 

Section 4.3.1 

ProteinMPNN_T_0.5_593 MSELNLDKAPLTSKQKDYLTTVFNQIYNENSYSLKFADIIPATGETATAYDLNKTIDTTSPSAVNKSGTK 

ETLPMKEIEIEFEVPLVELQALDNGTQNVDVSNLIEATKKFCAEINDLAFYGSKEIGVVGVMQLKERTIE 

TGETPEELLAAIDAARARFKAAGVNGKLVLIINEKRYEELLSKTDGTENLEEKIREKLGGGEIIKTPYIE 

KGVIVSLKGNDLYFYTGLPPSIGYKKKNKNSVVLFIKSKFAFLVKNPDAIIILRWSHPQFEK 

Section 4.3.1 

experimental_screens_esm2_t33_65
0M_UR50D_0.1_masking_1 

MEFLKRSFAPLTEKQWQEIDNRAREIFKTQLYGRKFVDVEGPYGWEYAAHPLGEVEVLSDENEVVKWGLR

KSLPLIELRATFTLDLWELDNLERGKPNVDLSSLEETVRKVAEFEDEVIFRGIEKSGVKGLLSFEERKIE

CGSTPKDLLRAIVRALEIFSKDGIEGPYTLVINTDRWINFYKEEAGHYPLEKRVEECLRDGKIIKTPRIE

DALVVSERGGDFKLVLGQDLSIGYEDREKDAVRLFITETFTFQVVNPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

experimental_screens_esm2_t33_65
0M_UR50D_0.1_masking_2 

MEFLKRSFAPLTEKQWQEIDNRAREIFKEQLYGRKFVDVEGPYGWEYAAHPLGEVEVLSDENEVVKWGLR

KVLPLIELRATFTLDLWELDNLERGKPGVDLSALEETVRKVAEFEDEVIFRGCEKSGVKGLLSFEERKIE

CGSTPKDLLEAVYRALSIFSKDGIEGPYTLVINTDRWINFLKEEAGHYPLEKRVEECLRGGKIITTPRIE

DAIVVSERGGDFKLILGQDLSIGYEDREKDAVRLFITETFTFQVVNPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 
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experimental_screens_esm2_t33_65
0M_UR50D_0.1_masking_3 

MEFLKRSFAPLTEKQWAEIDNRAREIFKTQLYGRKFVDVEGPYGWEYAAKPLGEVEVLSDENEVVKWGLR

KSLPLIELRATFTLDLWELDNLERGKPNVDLSSLEETVRKVAEFEDEVIFRGCEKSGVKGLLSFEERKIE

CGSTPKDLLEAIGRALSIFSKDGIEGPYTLVINTDRWINILKEEAGHYPYEKRVRECLRGGKIITTPRIE

DALVVSERGGDFKLILGQDLSIGYEDREKDAVRLFITETFTFQVVNPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

experimental_screens_esm2_t33_65
0M_UR50D_0.1_masking_4 

MEFLKRSFAPLTEKQWQEIDNRAREIFKTQLYGRKFVDVEGPYGWEYAAHPLGEVEVLSDENEVVKWGLR

KSLPLIELRATFTLDLWELDNLERGNPNVDLSSLEETVRKVAEFEDEVIFRGDLKSGVKGLLSFEERKIE

CGSTPKDLLEAIVRALSIFSKDGIEGPYTLVINSDRWINFLKEEAGHYPLEKRVEECLRGGKIITTPRIE

DALVLSERGGDFKLILGQDLSIGYEDREKDAVRLFITETFTFQVVNPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

experimental_screens_esm2_t33_65
0M_UR50D_4_epochs_fine_tuned_0.
1_masking_5 

MEFLKRSFAPLTEKQWQEIENRAREVFKTQLYGRKFVDVEGPYGWEYAAHPLGKVEVLSDENEVVKWGLR

KSLPLIELRATFTLDLWELDNLERGKPNVDLSSLEETVRKVAEFEDEVIFRGCEKSGVKGLLSFEERKIE

CGSTPKDLLEAVVRALQIFRKDGKEGPYTLVINTDRWINFLKEEAGHYPLEKRVEKCLRGGKIITTPRIE

DALVVSERGGDFKLILGQDLSIGYEDREKDAVRLFITETFTFQVVNPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

experimental_screens_esm2_t33_65
0M_UR50D_4_epochs_fine_tuned_0.
1_masking_6 

MEFLKRSFAPLTEKQWQEIDNRAREIFKTQLYGRKFVDIEGPYGWEYAAHPLGEVEVLSDENEVVKWGLR

KSLPLIELRATFTLDLWELDNLERGKPNVDLSSLEETVLKVAEFEDEVIFRGCEKSGVKGLLSFEERKIE

CGSTPKDLLEAIVRALSIFSKDGIEGPYTLVINTDRWINFLKEEAGHYPLEKRVEEMLRGGKIITTPRIE

DALVVSERGGDFKLILGQDLSIGYEDREKDAVRLFITETFTFQVVTPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

experimental_screens_esm2_t33_65
0M_UR50D_4_epochs_fine_tuned_0.
1_masking_7 

MEFLKRSFAPLTEKQWQEIDNRAREIFKTQLYGRKFVDVEGPYGWEYAAHPLGEVEVLSDENEVLKWGLR

KSLPLIELRATFTLDLDELDNLERGKPNVDLSSLVETVRKVAEFEDEVIFRGCEKSGVKGLLSLEERKIE

CGSTPKDLLEAIVRALSILSKDGIEGPYTLVINTDRWINFLKEEAGHYPLEKRVEEKLRGGKIITTPRIE

DALVVSERGGDFKLILGQDLSIGYEDREKDAVRLFITETFTFQVVNPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

experimental_screens_esm2_t33_65
0M_UR50D_4_epochs_fine_tuned_0.
1_masking_8 

MEFLKRSFAPLTEKQWQEIDNRAREVFKTQLYGRKFVDVEGPYGWEYAAHPLGEVAVLSDEKEVVKWGLR

KSLPLIELRATFTLDLWELDNLERGKPNVDLSSLEEAVRKVAEFEDEVIFRGCEKSGVKGLLNFEERKIE

CGSTPKDLLEAIGRALSIFSKDGIEGPYVLVINTDRWINFLKEEAGHYPLEKRVEECLRGGKIITTPRIE

DALVVSERGGDFKLILGQDLSIGYEDREKDAVRLFITESFTFQVVNPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_1 MAFLKRSFAPLTARQWELIDARAREIIKENLYGRKFVDVLGPKGEDFKAYPLGEIDVTSGEDEVFQWGSR

VTLPLIELRLTFDVDLWDLDLLDRGLPNVDLSELEKTTLDLANAEDDVIYNGCKKSGVKGLMAYKEREIS

CGSDPKALLEAITKARAKFAEDGIRGPYVLVINEDLWKKYQEKTKGHYPLAKAVEDKLKGGRIIKTPRIK

DALIVSERGGDFYLIEGQDLSIGYKKRTKGKVRLFMREIFTFYVKNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_2 MDFLDRDFAPLSAAQWELIDARAREISKENLYGRKFVDVEGPAGADFKAYPLGKVNVTSGEDEVIRWGSR

AARPLIELRKTFDIDLWELDLLDRGLPNVDLSELEKTTLDLAEAEDDVIFNGCSKSGVVGLMAYTDRTIS

CGDDPAALLAAITKARAKFAEDGIKGPYVLVINESLWESYQAKNAGHYPLADAVKTELNGGDIIKTPRID

DALIVSKRGGDFYLIEGQDLSIGYNRRSDGKVELFMEEKFTFEVRNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_3 MEFLNREFAPLTEAQWELIDRRAREISKENLYGRKFVDVLGPKGADFKAYPLGAIDVTSGEDEVIKWGSR

VVRPMIELRLTFAVDLWELDLLERGLPNVDLSELEKTTLAFAKAEDDVIFYGCKESGVKGLMAYKDRTIS

CGDDPESLLKAITTARARFAEDGIRGPYVLVINEELWSEYKRKTEGHYPLEEAVKRELDGGDIIKTPRIK

DALIVSKRGGDFFLVEGQDLSIGYKRREEGKVLLFMEEKFTFEVKNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_4 MAFLNRAFAPLTEAQWRLIDARAREIAKENLYGRKFVDVLGPKGRSAKAYPLGAIKVTSGEDEVLKWGDR

VVRPLIELRLTFDVDLWELDQLDRGKPNVNLDELEKTTLALAKAEDAVIYYGCKKSGVKGLMAYKERTIA

CGTDPEALLKAITTARAKFKKDGIRGPYVLVINTDLWAEYQAKTAGHYPLEEAVKEKLDGGDIIKTPRID

DALIVSKRGGDFYLVEGQDLSIGYDRRVKGKVRLFMREIFTFEVLNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_5 MSFLDRSFAPLTKKQWELIDARAREIAKQNLYGRKFVDVEGPKGRDFKAYPLGEVAVTSGEDDVIVWGDR

VVQPLIELRLTFDVDLWELDLLDRGLPNVNLDNLEAATLDLADAEDDVIFYGCEESGVTGLMAYEERTIA

CGDNPDALLDAITKARAKFAEDGIKGPYVLVINEDLWAAYQEQNVGHYPLADAVKARLNGGDIIKTPRIT

DALIVSKRGGDFKLIEGQDLSIGYDRRVDGSVRLFMEEKFTFLVKNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_6 MKFLNRQFAPLTAKQWELIDARAREIAKENLYGRKFVDVEGPQGSLFKAYPLGEVDITSGEYEVEQWGTR

KTLPLIELRLTFEVDLWELDQLDRGKPNVDLSNLEATTLALAKKEDKVIFEGCKASGVVGLMAHEERTIS

CGTDPAALLTAITTARAKFAEDGIKGPYVLVINEDLWASYQAANDGHYPLADAVKTNLAGGSIIKTPRIK

DALIVSLRGGDFFLIEGQDLSIGYKRRVNGKVELFMEEKFTFLVKNPEALIRLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_7 MKFLNRKFAPLSAEQWELIDKRAREIAKNSLYGRKFVDVLGPKGSDFKAEPLGAVNVTSGELEVLKWGDR

AELPLIELRLTFDIDLWDLDLLDRGLPNVNLEALEAATLAFADAEDEVIFNGCAESGVVGLMDHEARTIS

CGDDPSALLSAITNARLRFAEDGIRGPYVLVINEDLWAAYQASNVGHYPLEDAVKENLNGGDIIKTPRIN

DALIVSLRGGDFFLVEGQDLSIGYLRRNEGSVSLFMEERFTFKVKNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_8 MKFLKRDFAPLSEKQWELIDARAREIAKENLYGRKFVDVEGPKGADFEAEPLGAVEITSGEDEVIRWGKR

AARPLIELRKTFAVDLWELDLLERGKPNVNLSELEKTTLDLAATEDDVIFNGCKTSGVVGLMQWEERKIT

CGTDPKALLDAITKARAKFDEDGIKGPYVLVINKDLWKAYLKKTKGHYPLADAVKKHLKGGRIIETPRIS

DALIVSLRGGDFKLVEGQDLSIGYLTRVKGKVKLFMEERFTFEVVNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_9 MEFLNREFAPLSELQWSLIDARAREIYKESLYGRKFVDVEGPKGVDFSAYPLGKVNVTSGEDEVIRWGSR

ETLPLIELRFTFDIDLWELDLLERGEPNVNLSNLEKTTLELAKAEDNVIFYGCETSGVKGLMEYEERKIA

CGTDPKALLAAITKARARFAEDGIRGPYVLVINENLWAAYQAKTQGHYPLSEAVKEKLSGGEIIKTPQIK

DALIVSKRGGDFKLVEGQDLSIGYEKRVNGKVRLFIQEKRTFLVVNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_10 MVFLNREFAPLSEKQWELIDQRAREISKENLYGRKFVDVLGPQGADFKAYPLGEVEITSGEDEVLVWGKR

KVLPLIELRKTFEVDLWDLDLLDRGLPNVDLSELEKTTLDVAKKEDEVIFYGCEESGVVGLMEYEDRRIE

CGKDPEALLKAITKAIEKFREDGIEGPYVLVINEELWAEYLKRSIGHYPLEEAVKEKLKGGSIIKTPRIK

DALIVSLRGGDFFLVEGQDLSIGYLRRKDGKVALFIEEKFTFLVKNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_11 MLFLKRDFAPLTERQWSLIDARAREIAKENLYGRKFVDVEDPQGEDFRAYPLGEVDVTSGEDEVIRWGTR

KALPLIELRLTFDIDLWELDQLDRGLPNVNLEALEVTVKQFADKEDTVIYYGCEESGVVGLMAHAEREIE

CGDTPGALLEAITKARDRFAEDGIRGPYVLVINEDLWKKLQEKNKGHYPLADAVKEKLDGGDIIRTPRIK

DALIVSTRGGDFYLHVGQDLSIGYSKRTRDSVRLFMKEKFTFEVKNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_12 MKFLRRDFAPLSERQWNLIDARAREISKENLYGRKFVDVLDPKGIDAKAYPLGEIKVTSGELDVDIWGER

VTQPLIELRLTFDIDLWELDLLDRGLPNVDLSELEKTTKAFAKAEDNVIYNGCKKSGVVGLMEHEDRTIT

CGETPAALLNAITTARARFAEDGIKGPYVLVINKDLWAKYQAKTNGHYPLAEAVKTNLNGGSIIETPRIT

DALIVSTRGGDFELVEGQDLSIGYSRRTDGKVSLFMVEKFTFIVKNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_13 MSFLDRSFAPLSEAQWSYIDARAREIAKENLYGRKFVDVGGPQGVDASAYPLGEVDITSGEDEVIKWGTR

KARPLIELRFTFDIDLWELDLLDRGKPNVDLSNLEKTTLDLANEEDDVIFYGCKKSGVVGLLSYKERTIE

CGDDPEALLDAITSALDKFAADGIRGPYVLVINQDLWKEYQEKNKGHYPLEDAVKKRLNGGDIITTPRIS

DALIVSKRGGDFYLVEGQDLSIGYEKRNDGKVSLFMREIFTFEVKNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 
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ESM-IF_experimental_screen_14 MDFLNRAFAPLTEKQWSLIDARAREILKEELYGRKFVDVLGPRGFDFAAYPLGEVDITSGENEVNVWGGR

KVRPLIELRLTFSVNLWELDLLDRGLPNVDLSELEKTTRQFAAIEDNVIFYGCDVSGVKGLTAFSEQEIE

CGTDPEALLEAITKAREKFDEDGIKGPYVLVINKKLWESYKEKTKGHYPLEEAVKEKLRGGDIIKTPRIE

DALIVSKRGGDFDLVLGQDLSIGYLRRVDGSVDLFMVERFTFEVVNPEALIRLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_15 MTFLNRDFAPLTAAQWQLIDSRAREIYKKQLYGRKFVDVEAPKGFNFKAYPLGEIEVTSSEDDVVIWGNR

VARPLIELRLTFDVDLWELDKLDRGKPNVDLSALDKTTLQLANAEDDVIYHGCSASGVKGLMSYKDRKCG

TDPAALLDAITQANAKFAEDGIDGPYVLVINTDLWQKYQAETKGHYPLADAVKEKLNGGSIIQTPRIDDA

LIVSTRGGDFYLHEGQDLSIGYERRVNGNVRLFMEEKFTFEVVNPEALIRLAWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ESM-IF_experimental_screen_16 MSFLKRDFAPLTDLQWELIDARAREISKDNLYGRKFVDVEGPRGIDAKAYPLGAIDVTSGEMDVIRWGTR

KARPLIELRLTFDVDLWDLDLLDRGKPNVDLSALEATTKALAKSEDDVIFYGCDKSGVTGLMAHTDRTIA

CGDDPESLLEAITDARTRFAEDGIDGPYVLVINEDLWAAYRDEAEGHYPLAEAVKDFLRGGSIIATPRIS

DALIVSERGGDFELVEGQDLSIGYSRRIRGRVRLFMRESFTFEVRNPEALIRLGWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

protein_LM_mutated_experimental
_screen_1 

MANLPRSLAPLTEEAWRVIDEEARRTIKRYLAGRRLVDVYAPTGPGASAIEVGIDDVEVSPDGGTVAVTR

KTVPVVELRKPFTLTRWDVDSVERGGRDLDLEALREAAGKVAEAEDKAVLEGYEKAGIKGLTNLADAKIK

LPTDVDGLPSSISNAVAELEKAGVTGPYVLVLSPETYAKLKDALKTGYPLKELIEESLGKARVIVSSKVT

GSLLIRARGDDFTLVPGQDLSIGYLKREGGKVTLYVSEAFTFTLRTAEAVVELSWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

protein_LM_mutated_experimental
_screen_2 

MTNLRRYLAPLTEEAWKKIDEEARRTAKKHLAARRIVDVEGPLGPGTVAIVSGTAEFELDPDGGPKATSR

KTVPIVELRVPFTLTRWELDAVQRGRLDLLEKKVKDAAEKIARAEDKAIIEGYEKAGIKGLKNVKPETIK

LPASPTDVPNAITKAVATLESAGVVGPYVLVLSPEVYATILASLKGGYPIKEYLKELLGEGEVITSSEIS

GIVAISKRGDDFRLVIGQDLSIGYLKREGENVVLYVSESYTFAVLTPEAVVKLSWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

protein_LM_mutated_experimental
_screen_3 

MSNLLRKLAPLPKEAWTKIDEEARRTVKSKLAARRIVDVYTPPGGESVAIPVGGELEKVKPGDGVSASSR

VRVPLVELRKPFTLTRWQLDAVKRGAKDLDVNVLENAATQVAKKEDDAILNGYEEAGIKGLRKVEGNEVS

LPSDPERIPEDTIKAIEKLEKAGVTGPYVLVLSPTKYAKLLKAGTEGYPVAEYVKDIIGKGKVVSDSTVD

GGVLISQRGQDFKLTIGQDLSIGYIGRKDGKVELYVVESLTFTVTTKEAVVTLSWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

protein_LM_mutated_experimental
_screen_4 

MANLLRYLAGLTKEAWETIDKEARRTLKKYLAARRLVDVEYPVGSAGVALEAGVITTEVTPKDGTKAVTR

KVVPLVELRFPFTLTRWDLDAVARGESDITLSDVEELAETIAEAEDSAIIDGYPEAGISGIKNLPENTVE

LPANVKEIPGKLIEAKAVLESAGVPGPYTLVLSADDYLSILSEVKAGYPLKDVVKELLGSGEVVTSSVTE

GGVLVSSRGTDFRLLIGQDLSIGYLKREDGKVTLYGIEYITFEVLTTEAIVVLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

protein_LM_mutated_experimental
_screen_5 

MANLERKLAELTAEAWLQIDDEARRTLKETLAVRRVVDVVGPLGAGTKAVKIGKTTVEIDPEDGKPAVER

EEVPIVELRVPFPVTRWEIDAVNRGLSDLDLTPLEDAAKEVARTEDKAIISGYKTAGITGLTELSKVTVS

LPSDPSELPDAIINAAEKLKDAGVSGPYVLVLSPSVYRKLHKLEKAGYPLLDSVKEILGGSRIVVSSEIT

GPVIITPRGPDFRLVIGQDLSIGYLARSDGNVVLYVSEVFTFEIKTPEAAVTLSWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

protein_LM_mutated_experimental
_screen_6 

MANLLRDLAALTEEAWKVIDSEARRTLKEYLAARRVVDVIEPPGGTGYAFVKGEIKTVLDPEGGPKAVKR

TLTPLVELRVPFELTRWEIDAVQRGEPDPDISTLENAAKEIAKAEDEAIINGYEKAGIKGLKNLNSVKKT

LPSSAESVPSEIAKAVGALKSAGVSGPYTLVLSPDLYEKLISAVKGGYPLEDYILSLVKDGRVIVERSIK

GALLVSSRGEDFTLAIGQDLSIGYVDREGDKVRLYVVETATFGVVTPEATVVLTWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_1 

MSFLRREFAPLTEKQWQYIDERAREIAKNNLYSRKFVDVVPPRGPDAKAYPLGEIEETSPETAVNKWGKR

KTLPFIELRETFEVPLWELDELDRGKENVNLSNLDEAVKKMADKEDDVVFNGCEESGVKGLLQLKERRIP

CGDTLEELLAAIKKAVERFKKDGIDGPYVLVINEERWEKIKETTKGHYPPEEAIKEALEGGEIIKTPKIK

DGLIVSKRGGDFLLYVGQDLSIGYLRRNEDSVELFLYEKFTFLVKNPEAIILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_2 

MSFLNRKFAPLTEKQWEYIDKRAREIAKNNLYSRKFVDVVPPLGPDAKAYPLGEIEWTSPETAVNKWGTR

KTLPFIELRITFDLPLWELDKLDRGEENVDLSNLDKAVLEMAKKEDDVVFYGCKESGVVGLMQLKERTIP

CGDTPEDLLAAIRRAVEIFREDGIDGPYVLVINKKRWEEYLKKTKGHYPLEEAVKEALEGGEIIVTDRIE

DGLIVNKRGGDFYLHVGQDLSIGYESRNEDSVNLFLYEKFTFEVKNPEAVILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_3 

MSFLRRKFAPLTKKQWEYIDKRAREIAKKNLYSRKFVDVVPPLGPDATAYPLGEVEETSPETAVNKWGTR

KTLPFIELRKTFDVPLWELDKLDRGEKNVDLSNLDKAVLEMAKEEDDVVFNGCEESGVKGLLQLKERTIP

CGDTPEELLAAIKEAVARFKEDGIDGPYVLVINKERWEKYLEKTKGHYPLEEAVKEALEGGEIIKTPRIK

DGLIVNLRGGDFLLHVGQDLSIGYESRNKDSVRLFLYEKFTFLVKNPEAVIILNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_4 

MSFLRREFAPLTEKQWEYIDKRAREIAKNNLYSRKFVDVVPPRGPDAKAFPLGEVEWTSAETDVNKWGTR

KTLPFIELRITFNVPLWELDELDRGKKNVDLSNLDKATLEMAKKEDDVVFYGCKESGVKGLLQFKERTIP

CGDTVEDLLNAIKEAVERFKKDGIDGPYVLVINKERWEKYLEKTKGHYPLEEAVKEALEGGEIIKTPRIK

DGLIVNKRGGDFLLHVGQDLSIGYLRRNEDSVELFLYEKFTFLVKNPEALILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_5 

MSFLRREFAPLTEKQWEYIDKRAREIAKKNLYSRKFVDVVPPRGPDAKAYPLGEVLETSPETAVDKWGER

KTLPFIELRITFDLPLWELDELDRGKENVDLSNLDKAVKEFAKKEDEVVFYGCKESGVVGILQLKERRIP

CGDTPEELLEAIKEAIERFKEDGIDGPYVLVINKERWEKIKEKTKGHYPIEEKVKEALEGGEIIKTPYIK

DGLIVNKRGGDFLLHVGQDLSIGYLERNEDSVRLFLYEKFTFEVVNPEAVILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_6 

MSFLRREFAPLTEKQWEYIDKRAREIYKNNLYSRKFVDVVPPQGPDAKAYPLGEVEWTSPETAVNKWGKR

KTLPFIELRKTFSLPLWELDELDRGKKNVNLSNLDKAVKEMADEEDKVVFYGCKESGVKGLLQFKERTIE

CGDTLESLLEAIKKAIERFKEDGIDGPYALIINEKKWEKILETSKGHYPPEEKVKEALEGGEIIKTPKIE

DGLIVNLRGGDFLLHVGQDLSIGYESRDETSVNLFLYEKFTFLVKNPEALILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_7 

MSFLRREFAPLTEKQWAYIDERAREIAKKNLYSRKFVDVVPPRGPDAKALPLGEVLETSPETAVRRWGER

RVLPFIELRITFSVPLWELDALDRGKENVDLSNLDKATLEFAEREDRVVFYGCEESGVVGLMQLKERTIP

CGDTLESLLEAIRRAVERFKEDGIDGPYVLVINEERWKEILKTTKGHYPAEERIKEALEGGEIIKTPRIK

DGLIVNLRGGDFELHVGQDLSIGYESRDEDSVRLFLYEKFTFRVVNPEAVIILNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_8 

MSFLRREFAPLTKEQWEYIDKRAREIYKNNLYSRKFVDVVPPQGPDFTAYPLGEVEWDSPETAVNKWGRR

KTLPMIELRITFDLPLWQLDALDRGEKNVDLSNLDKATLEFADKEDDVVFYGCKESGVVGLMQLKERTIP

CGKTPESLLEAIRRAREIFREDGIDGPYVLVINEKRWEELEKKTKGHYPLEEAIKEELEGGEIIKTPKIE

DGLIVNKRGGDFLLVVGQDLSIGYESRNEDSVRLFLYEKFTFLVKNPEAIIRLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_9 

MSFLRREFAPLTEEQWQYIDDRAREIAKNNLYSRKFVDVVPPQGPDAKAYPLGEVKWTSPETAVNKWGER

VTLPFIELRITFELPLWELDELDRGKKNVDLSNLDKATLEFAKREDEVVFYGCEESGVVGLLQIKERTIP

CGDTVEELLAAIKEAIARFKKDGIDGPYVLVINEKKWEELLEKTKGHYPLEEAIKEALEGGEIIKTPYIE

DGLIVNKRGGDFLLHVGQDLSIGYERRTESSVQLFLYERFTFLVKNPEAIILLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_10 

MSFLRREFAPLTKKQWEYIDKRAREIAKNNLYSRKFVDVVPPRGPDATAYPLGEVEEDSPETAVRKWGRR

KTLPFIELRITFDLPLWELDRLDRGEKNVDLSNLDKAVKEFADKEDDVVFYGCKESGVVGLLQLKERTIP

CGDTLEELLAAIKRAVERFKEDGIDGPYVLVINKERWEKILKTTKGHYPAEEKIKEALEGGEIIVTPKIK

DGLIVSKRGGDFLLHVGQDLSIGYLERNEDSVRLFLYEKFTFEVKNPEAVILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_11 

MSFLRREFAPLTEKQWEYIDKRAREIYKNNLYSRKFVDVVPPQGPDATAYPLGEVEWTSPETAVNKWGTR

KTLPFIELRKTFELPLWKLDELDRGEENVDLSNLDKATLEMAKEEDRVVFYGCEESGVKGILQLKERRIP

CGDTFEELLKAIKEAIERFKKDGIDGPYALIINEERWKKILATTKGHYPPEEAVKEALEGGEIIKTPYIK

DGLIVSLRGGDFLLHVGQDLSIGYESRNEDSVKLFLYEKFTFLVKNPEAIILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 
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ProteinMPNN_experimental_screen
_12 

MSFLRREFAPLTEEQWEYIDKRAREIAKKNLYSRKFVDVVPPQGPEARAYPLGEVEWTSPETAVRKWGRR

KTLPFIELRKTFEVPLWELDELDRGKKNVDLSNLDKATLEMAKEEDDVVFYGCKESGVKGILQLKERTIP

CGDTPESLLEAIKKAVEIFKKDGIKGPYVLVINEERWEQYLKQTDGHYPLEEAVKEALEGGEIIKTPRIK

DGLIVSKRGGDFLLHVGQDLSIGYLRRNEKSVELFLYEKFTFLVKNPEAIILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_13 

MDFLRRKFAPLTEKQWEYIDERAREIAKKNLYSRKFVDVVPPRGPDAKAYPLGEVEWDSPETAVNKWGRR

KTLPFIELRKTFSLPLWELDALDRGKKNVDLSNLDKAVLEMAKEEDDVVFYGCEESGVVGLMQLKERTIP

CGDTFEELLEAIKRAVAIFKEDGIDGPYALVINEKRWEEIKKQTKGHYPPEEAVKEALEGGKIIKTPRIE

DGLIVNLRGGDFLLYVGQDLSIGYLRRDKESVELFLYEKFTFKVVNPEAIIRLKWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_14 

MSFLNREFAPLTEKQWEYIDKRAREIYKNNLYSRKFVDVVPPQGPDATAYPLGEVEETSPETAVNKWGTR

KTLPFIELRITFNVPLWELDELDRGKENVNLSNLDKAVKEFADKEDDVVFNGCKESGVKGLLQLKERTIP

CGETFEELLEAIKRAVERFKEDGIDGPYVLVINKELWEKILETTKGHYPPEEAVKEALEGGEIIKTPKIK

DALIVNLRGGDFYLYVGQDLSIGYLSRNEDSVELFLYEKFTFLVKNPEAIILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_15 

MSFLKREFAPLSKKQWEYIDKRAREIAKNNLYSRKFVDVVPPLGPEAKALPLGEVEELSAETDVFKWGRR

KVLPFIELRITFDVPLWELDELDRGKENVDLSNLDKATLEMAKKEDDVVFYGCKESGVTGVLQLKERTIP

CGDTPEDLLAAIKRAIAIFKEDGIDGPYALIINEKKWKELLEKTKGHYPLEERIKEALEGGKIIKTPRIE

DGLIVNLRGGDFLLHVGQDLSIGYESRNKDSVRLFLYEKFTFKVVNPEAVILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

ProteinMPNN_experimental_screen
_16 

MSFLNREFAPLTEKQWEYIDKRAREIYKNNLYSRKFVDVVPPLGPDATAYPLGEIEWVSGEDDVVKWGKR

KTLPFIELRITFSVPLWELDELDRGKENVDLSNLDKATLEFADKEDDVVFNGCKESGVVGLLQLKERRIP

CGDTLESLLAAIKEAVERFKKDGIDGPYVLVINKKRWEQILATAKGHYPPEELVKEALEGGEIIRTDKIE

DGLIVNLRGGDFLLIVGQDLSIGYLRRNEDSVELFLYERFTFLVKNPEALILLNWSHPQFEK 

Section 5.2.1, 
Section 5.2.2 

CmEncap MNKSQLYPDSPLTDQDFNQLDQTVIEAARRQLVGRRFIELYGPLGWEYAAHPLGEVEVLSDENEVVKWGL

RKSLTIPMLYKDFVLYWRDLEQSKALDIPIDFSVAANAARDVAFLEDQMIFHGSKEFDIPGLMNVKGRLT

HLIGNWYESGNAFQDIVEARNKLLEMNHNGPYALVLSPELYSLLHRVHKDTNVLEIEHVRELITAGVFQS

PVLKGKSGVIVNTGRNNLDLAISEDFETAYLGEEGMNHPFRVYETVVLRIKRPAAICTLIDPEEWSHPQF

EK 

Section 5.3.1, 
Section 5.3.2 

7MU1_Qt_E-loop MEFLKRSFAPLTEKQWQEIDNRAREIFKTQLYGRKFVDVEGPYGRGMQSVFNDIFMESHEAKMDFQGSFD

TEVESSRRVNYPLIELRATFTLDLWELDNLERGKPNVDLSSLEETVRKVAEFEDEVIFRGCEKSGVKGLL

SFEERKIECGSTPKDLLEAIVRALSIFSKDGIEGPYTLVINTDRWINFLKEEAGHYPLEKRVEECLRGGK

IITTPRIEDALVVSERGGDFKLILGQDLSIGYEDREKDAVRLFITETFTFQVVNPEALILLKWSHPQFEK 

Section 5.3.1 

 

Table 7.4: Opentron OT-2 Automation Experiment Details 
The aim and protocol of each experiment is shown along with the results and any notes. 
Experiments are numbered in chronological order. 

Experiment/Aim Protocol Colonies? Notes 
Experiment 1 – 
Establish Fully 
Automated 
Protocol 

Run Type IIS reaction in OT-2 thermocycler 
Mix with competent cells 
Heat shock and outgrowth in temperature 
module 
Pipette outgrowth onto agar plates 

N/A Run aborted - thermocycler 
temperatures were set 
incorrectly, needed fixing 

Experiment 2 – 
Update Fully 
Automated 
Protocol 

Same as Experiment 1 but with fixed 
thermocycler settings 
Plating of outgrowth mixtures was attempted 
both with the OT-2 and by hand 

No Pipetting errors when plating 
outgrowth mixture with the 
OT-2 – volume discrepancies 
and air bubbles were seen. No 
liquid was seen deposited onto 
the agar plate so manual 
plating was also attempted. 
No colonies observed even 
when cells were plated 
manually. 

Experiment 3 – 
Manual Plating 
Optimization 

Entire protocol was carried out manually, but 
using the same volumes and conditions as 
used in OT-2 protocols from Experiments 1 
and 2. 
Type IIS reactions assembled, run in benchtop 
thermocycler, mixed with competent cells, 
heat shock and outgrowth (in water bath and 
thermomixer respectively), and then plated in 
varying volumes and dilutions 

Yes Results shown in Figure 5.2.3 
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Experiment 4 – 
Optimizing 
Plating Distance 
and Pipetting 

Plated 10 µl of orange loading dye onto an agar 
plate with the OT-2 at varying distances from 
the agar surface, with or without blowout step 
Labware calibration was performed such that 
the pipette tip was placed at the very surface 
of the agar 

N/A All distance settings appeared 
to work with or without 
blowout, but blowout steps 
gave fewer volume errors 
Pipetting errors occur when 
liquid level runs low in source 
wells 

Experiment 5 – 
Testing the Fully 
Automated 
Protocol with 
new Plating 
Settings 

Same protocol as in Experiment 2 but with 
new plating settings from Experiments 3 and 
4 

No Liquid is transferred to agar 
plate correctly, but no colonies 
were seen 
This indicates a problem with 
thermocycling, heat shock, or 
outgrowth 

Experiment 6 – 
Investigating OT-
2 Heat Shock and 
Outgrowth Steps 
vs Manual 

Manually assembled Type IIS reactions and 
ran in benchtop thermocycler 
Transform reactions as in Experiment 5 with 
the OT-2 

N/A Run aborted after 
thermocycling – Type IIS 
reactions all evaporated from 
the 96 well plate in the 
thermocycler 

Experiment 7 – 
repeating 
Experiment 6 
with plate seals 

Same conditions as Experiment 6 but plate 
was sealed with foil plate seal to prevent 
evaporation 

No Some evaporation still seen 
from plate – foil seals used 
incorrectly 

Experiment 8 – 
Optimizing 
Silicone Oil 
Pipetting with 
the OT-2 

Tested pipetting silicone oil from a reservoir 
into a 96-well plate using the OT-2, and 
optimized settings recommended by the 
manufacturer: 
64.75 µl/s aspiration and dispense rate, 4 µl/s 
blowout rate, withdraw pipette from oil at 1 
mm/s, delay 8 seconds after aspirating or 
dispensing, touch tip on sides of well before 
dispensing liquid aspirated from underneath 
the oil layer 

N/A Settings worked well, with no 
visible volumetric errors, air 
bubbles, or missing liquids 

Experiment 9 – 
Testing Type IIS 
Assembly with 
Silicone Oil Seals 

Same conditions as Experiment 6 but with 
135 µl of silicone oil added on top of Type IIS 
reaction mixtures to prevent evaporation 

No No evaporation seen after 
thermocycling, so issue must lie 
in heat shock, outgrowth, or 
with adding silicone oil to Type 
IIS mixes 

Experiment 10 – 
Establishing a 
Semi-Automated 
Type IIS 
Assembly 
Protocol 

Assemble Type IIS reactions and add silicone 
oil using the OT-2, seal with foil seal 
Run reactions in benchtop thermocycler 
Mix reactions with competent cells using the 
OT-2 
Heat shock in a water bath manually and 
return to OT-2 for recovery at 4 ˚C and 
addition of outgrowth medium 
Seal with breathable plate seal and carry out 
outgrowth in a benchtop thermomixer 

Yes Results shown in Figure 5.2.3 
Despite optimization, 
volumetric errors and air 
bubbles were still seen in some 
Type IIS reactions with silicone 
oil 
Attempts to transfer only the 
aqueous layer of these wells 
into a fresh plate were 
unsuccessful 
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Return to OT-2 for final plating 
 

Experiment 11 – 
Optimizing the 
Semi-Automated 
Type IIS protocol 

Same as Experiment 10 but with no silicone 
oil, only foil seals 

Yes Results shown in Figure 5.2.3 
Detailed protocol in Sections 
2.3.2.4 and 2.4.1 

Experiment 12 – 
Transforming 
Purified Plasmid 
DNA with the 
OT-2 

Transformed pure plasmid stocks into T7-
Express for protein expression, using the same 
OT-2 protocol as in Experiment 11 
(transformation steps only, no DNA assembly 
or thermocycling required) 
Purified plasmid stocks were diluted 5x before 
transformation -amounts of DNA transformed 
range from 47.5 ng to 142.5 ng 
11 plasmids were tested: MGYP-61, MGYP-11, 
MGYP-87, ESM_masked_T_0.5_6073, 
ESM_masked_T_0.5_3423, 
ESM_masked_T_0.5_7372, 
ProteinMPNN_T_0.3_23, 
ProteinMPNN_T_0.5_783, 
ProteinMPNN_T_0.3_813, TmEncap, and 
pSB1C3-FB 

Yes Only 1/11 plasmids gave 
colonies after 24 hours at 37 ˚C, 
and a further 3 plasmids gave 
colonies after another 24 hours 
incubation. 
Colonies were too small and too 
close together, and after the 
second 24 hour incubation 
some colonies had started to 
grow into each other.  

Experiment 13 – 
Optimizing OT-2 
Transformation 
of Purified 
Plasmid DNA 

Same conditions as Experiment 12, but only 
used two plasmids: ESM_masked_T_0.5_7372 
and pSB1C3-FB 
Tested a range of dilutions of the plasmid 
stocks: 10x, 50x, 100x, 200x 
Amounts of DNA transformed range from 4.75 
to 142.5 ng 

Yes All dilutions gave colonies but 
100x dilution gave the best 
number, size, and spacing  of 
colonies 
These conditions were used to 
transform purified plasmid 
DNA for protein expression in 
future experiments 
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Table 7.5: Sanger Sequencing of Designed Encapsulin Sequences 
For each design, Sanger sequencing results are briefly described, and filenames for forward and 
reverse primer sequencing data are provided. Sequencing data files for each forward and reverse 
primer filename (in .ab1, .seq, .scf, and unclipped .seq formats) are available at 
https://github.com/naailkhan28/encapsulin_design/tree/master/experimental_screen/sequencing_
data . “Verified” indicates that sequencing data aligned to the DNA template, and “Incorrect” 
sequencing indicates missing sequence regions, either the Strep-Tag II or other parts of the protein 
coding sequence. “Inconclusive” indicates poor quality Sanger sequencing data, and “N/A (no 
colonies)” means that designs failed to give colonies following site-directed mutagenesis to add the 
Strep-Tag II sequence. 

Design Name Sequencing 
Status 

Sequencing Data Filename  
(Forward Primer) 

Sequencing Data Filename 
(Reverse Primer) 

experimental_screens_esm2_t33
_650M_UR50D_0.1_masking_1 

Incorrect A1_NKK153-A01 A1_NKK160-A01 

experimental_screens_esm2_t33
_650M_UR50D_0.1_masking_2 

Verified B1_NKK153-B01 B1_NKK160-B01 

experimental_screens_esm2_t33
_650M_UR50D_0.1_masking_3 

Verified C1_NKK153-C01 C1_NKK160-C01 

experimental_screens_esm2_t33
_650M_UR50D_0.1_masking_4 

Verified D1_NKK153-D01 D1_NKK160-D01 

experimental_screens_esm2_t33
_650M_UR50D_4_epochs_fine_tu
ned_0.1_masking_5 

N/A (no 
colonies) 

E1_NKK153-E01 E1_NKK160-E01 

experimental_screens_esm2_t33
_650M_UR50D_4_epochs_fine_tu
ned_0.1_masking_6 

Verified F1_NKK153-F01 F1_NKK160-F01 

experimental_screens_esm2_t33
_650M_UR50D_4_epochs_fine_tu
ned_0.1_masking_7 

Verified G1_NKK153-G01 G1_NKK160-G01 

experimental_screens_esm2_t33
_650M_UR50D_4_epochs_fine_tu
ned_0.1_masking_8 

Verified H1_NKK153-H01 H1_NKK160-H01 

ESM-IF_experimental_screen_1 N/A (no 
colonies) 

A2_NKK153-A02 A2_NKK160-A02 

ESM-IF_experimental_screen_2 Verified B2_NKK153-B02 B2_NKK160-B02 
ESM-IF_experimental_screen_3 Verified C2_NKK153-C02 C2_NKK160-C02 
ESM-IF_experimental_screen_4 Incorrect D2_NKK153-D02 D2_NKK160-D02 
ESM-IF_experimental_screen_5 N/A (no 

colonies) 
E2_NKK153-E02 E2_NKK160-E02 

ESM-IF_experimental_screen_6 Verified F2_NKK153-F02 F2_NKK160-F02 
ESM-IF_experimental_screen_7 Inconclusive G2_NKK153-G02 G2_NKK160-G02 
ESM-IF_experimental_screen_8 N/A (no 

colonies) 
H2_NKK153-H02 H2_NKK160-H02 

ESM-IF_experimental_screen_9 Verified A3_NKK153-A03 A3_NKK160-A03 
ESM-IF_experimental_screen_10 Single 

residue 
mutation 
(Gln2 → Ser) 

B3_NKK153-B03 B3_NKK160-B03 

ESM-IF_experimental_screen_11 Verified C3_NKK153-C03 C3_NKK160-C03 

https://github.com/naailkhan28/encapsulin_design/tree/master/experimental_screen/sequencing_data
https://github.com/naailkhan28/encapsulin_design/tree/master/experimental_screen/sequencing_data
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ESM-IF_experimental_screen_12 Incorrect D3_NKK153-D03 D3_NKK160-D03 
ESM-IF_experimental_screen_13 Incorrect E3_NKK153-E03 E3_NKK160-E03 
ESM-IF_experimental_screen_14 Inconclusive F3_NKK153-F03 F3_NKK160-F03 
ESM-IF_experimental_screen_15 Incorrect G3_NKK153-G03 G3_NKK160-G03 
ESM-IF_experimental_screen_16 Verified H3_NKK153-H03 H3_NKK160-H03 
protein_LM_mutated_experimen
tal_screen_1 

Verified A4_NKK153-A04 A4_NKK160-A04 

protein_LM_mutated_experimen
tal_screen_2 

Incorrect B4_NKK153-B04 B4_NKK160-B04 

protein_LM_mutated_experimen
tal_screen_3 

Incorrect C4_NKK153-C04 C4_NKK160-C04 

protein_LM_mutated_experimen
tal_screen_4 

Verified D4_NKK153-D04 D4_NKK160-D04 

protein_LM_mutated_experimen
tal_screen_5 

Verified E4_NKK153-E04 E4_NKK160-E04 

protein_LM_mutated_experimen
tal_screen_6 

Verified F4_NKK153-F04 F4_NKK160-F04 

ProteinMPNN_experimental_scr
een_1 

Incorrect G4_NKK153-G04 G4_NKK160-G04 

ProteinMPNN_experimental_scr
een_2 

Verified H4_NKK153-H04 H4_NKK160-H04 

ProteinMPNN_experimental_scr
een_3 

N/A (no 
colonies) 

A5_NKK153-A05 A5_NKK160-A05 

ProteinMPNN_experimental_scr
een_4 

N/A (no 
colonies) 

B5_NKK153-B05 B5_NKK160-B05 

ProteinMPNN_experimental_scr
een_5 

Verified C5_NKK153-C05 C5_NKK160-C05 

ProteinMPNN_experimental_scr
een_6 

Verified D5_NKK153-D05 D5_NKK160-D05 

ProteinMPNN_experimental_scr
een_7 

Verified E5_NKK153-E05 E5_NKK160-E05 

ProteinMPNN_experimental_scr
een_8 

Verified F5_NKK153-F05 F5_NKK160-F05 

ProteinMPNN_experimental_scr
een_9 

Verified G5_NKK153-G05 G5_NKK160-G05 

ProteinMPNN_experimental_scr
een_10 

N/A (no 
colonies) 

H5_NKK153-H05 H5_NKK160-H05 

ProteinMPNN_experimental_scr
een_11 

Verified A6_NKK153-A06 A6_NKK160-A06 

ProteinMPNN_experimental_scr
een_12 

N/A (no 
colonies) 

B6_NKK153-B06 B6_NKK160-B06 

ProteinMPNN_experimental_scr
een_13 

Verified C6_NKK153-C06 C6_NKK160-C06 

ProteinMPNN_experimental_scr
een_14 

Verified D6_NKK153-D06 D6_NKK160-D06 

ProteinMPNN_experimental_scr
een_15 

N/A (no 
colonies) 

E6_NKK153-E06 E6_NKK160-E06 

ProteinMPNN_experimental_scr
een_16 

N/A (no 
colonies) 

F6_NKK153-F06 F6_NKK160-F06 
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