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Abstract 
 
 
 
CD8+ T cells are key components of the adaptive immune system, playing crucial 
roles in targeting intracellular pathogens and in tumour surveillance. T cell immune 

function is mediated by their surface T cell receptors (TCRs), which bind to 
complexes formed between antigenic peptides and MHC molecules. It is estimated 

that a typical individual has around 108 unique CD8+ T cells. 

  
The sequences of many millions of unique TCRs are known (e.g. from single cell 

sequencing experiments), but in all but a tiny fraction of cases their antigenic targets 
are unknown. This gap between the TCR sequence and TCR function affords a key 

motivation for the research presented in this thesis, which concerns two 
complementary computational prediction tasks. 

  
The first task involved the evaluation of state-of-the-art deep learning tools that 

predict TCR binding to peptide-MHC complexes. This is known to be a challenging 
task, notably because TCR binding is modulated by six flexible loops. Tools were 

retrained in order to address the generalised TCR binding prediction task: can a tool 

predict whether a given TCR will bind to an antigenic peptide not present in the 
dataset used to train the tool? The results demonstrated that only two tools proved 

moderately successful at generalised prediction. A subsequent correlation analysis 
provides useful insights into the factors associated with prediction success or 

failure.   
  

MHC molecules, encoded by HLA alleles, are highly polymorphic and the HLA types 
of the individuals from which TCR data is acquired is rarely known. A TCR is said to 

be HLA-restricted, i.e. it will commonly bind to complexes involving a single type of 
MHC. The second task addressed in this thesis involved designing a transformer-

based deep learning tool for predicting TCR-HLA associations. The tool achieved 

overall AUCs of 0.68 using a standard 10-fold cross validation strategy on a curated 
dataset from all available sources. When the tool was trained on and tested on the 

data curated from different sources, it achieved an overall AUC of 0.76. In both cases 
the HLA alleles were present in both training and test sets. 
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1 Introduction 
 
 
 
The focus of this thesis is on a single type of molecular complex – sometimes known 

as the “immunological synapse”1 – that combines three elements: an MHC class I 

molecule (a type of molecule associated with the nucleated cells of vertebrates); a 
short peptide (of diverse potential origin) bound in a groove on the surface of the 

MHC molecule; and a T cell receptor (TCR) found on the surface of a human CD8+ 
T cell (Figure 1.1).  There are two main research topics, both involving computational 

prediction. The first concerns the prediction of whether a given TCR is likely to bind 
to a given combination of peptide and MHC (pMHC); this is known as the TCR-pMHC 

binding prediction task and is the subject of Chapter 3. The second research topic 
concerns the prediction of whether a given TCR is (primarily or exclusively) 

associated with a particular type of MHC molecule, the latter determined by the HLA 
genes that encode MHC class I;  this is the TCR-HLA associations prediction task 

and is the subject of Chapter 4.  
 
The aim of this chapter is to explain the context of these two prediction tasks from a 
biological perspective. It begins by explaining the broad immunological context 

(section 1.1) before moving on to a detailed consideration of aspects of T-cell 
immunology that are directly relevant to the tasks themselves. The computational 

background to this research is discussed in Chapter 2.    
 

 
1 After a short investigation, it appears the term may first have been used by William Paul and 
Robert Seder (Paul & Seder, 1994), rather than (as suggested by Wikipedia) Michael Dustin. 
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Figure 1.1 Schematic diagram of a TCR-pMHC complex. MHC class I molecules are 
discussed in section 1.2 and peptide-MHC binding in section 1.2.3. TCRs are discussed in 
section 1.3 and TCR-pMHC complexes in section 1.4. (Figure created with BioRender.com 
(based on figure 1 in (Yimo Sun et al., 2021)) 
 

1.1 Immunological Contexts 
 
 

1.1.1 Innate and adaptive immunity 
 
The human immune system has been described as “the most daunting example of 

complexity in biology” excluding the central nervous system (Paul, 2012).  Broadly, 
it can be divided into two major systems: the innate immune system and the adaptive 

immune system. The former is fast but non-specific (i.e. it is not targeted at specific 
pathogens); it includes physical barriers such as the skin and various cells, such as 

macrophages, that engulf and destroy a range of pathogens, such as bacteria. The 
adaptive immune system, on the other hand, is slower to respond, but can target 

specific pathogen and prepare a rapid response against reinfection (an ability known 
as immune or immunological memory). The two systems communicate with each 

other via a “bi-directional flow of information” (McDaniel et al., 2021).  
 
The adaptive immune system is made up of two major types of white blood cells, B 

cells (capable of secreting antibodies) and T cells. Some key aspects of the roles of 
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both B and T cells are broadly similar, namely the ability to recognise specific non-

self-antigens, to contribute to the elimination of the pathogens with which those 
antigens are associated, and to facilitate a memory response to future infections by 

those pathogens. Where they differ is that B cells mainly target whole pathogens or 
their products (such as toxins), whereas T cells target small peptide fragments of 

pathogens.  
 
There are two broad categories of T cells, and this thesis focuses on just one of 

them: CD8+ T cells – also known as cytotoxic T cells, cytotoxic T lymphocytes (CTLs) 
or killer T cells. CD8+ T cells target intracellular pathogens (such as viruses) and 

tumour cells and are associated with a distinct pathway of peptide presentation, the 
MHC class I antigen presentation pathway (see section 1.1.2). The second broad 

category of T cell are known as CD4+ T cells, which includes T follicular helper (Tfh) 

cells (which interact with B cells and facilitate the production of high-affinity 
antibodies)  and regulatory T cells (Tregs) (which help maintain immune tolerance 

by suppressing the activity of other immune cells).  
 
The “CD” in CD4+ and CD8+ stands for “cluster of differentiation” and is the prefix 

used in the naming of important molecules on the surface of immune cells. Both 
CD4+ and CD8+ T cells can be divided into subsets (two such CD4+ subsets were 

mentioned above, Tfh cells and Tregs), but most lie beyond the scope of this thesis 
(for more information about this topic and any of the wider aspects of the immune 

system discussed in this introductory section, see (Murphy & Weaver, 2017)). 
 

1.1.2 The MHC class I antigen presentation pathway 
 
Peptide fragments are presented to CD8+ T cells via the MHC class I (MHC-I) 
antigen presentation pathway. Within all human cells, unwanted proteins are broken 

down by proteasomes. Although standard cytosolic proteasomes produce peptide 
fragments that are presented to CD8+ T cells, the presence of proinflammatory 

cytokines (e.g. interferon γ) or oxidative stress induces the elevated production of 

immunoproteasome, a specialised proteasome that generates short peptides 
(capable of fitting in the MHC-I groove) with a hydrophobic or basic C-terminus 

(favourable for anchoring the peptide in the MHC-I groove’s terminal pocket – see 
section 1.2.2) (Abi Habib et al., 2022).  
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The cleaved peptides are then transported to the endoplasmic reticulum (ER) by 

TAP (Transporter associated with Antigen Processing) proteins, where a subset is 
loaded onto MHC-I molecules. Those that are too long may undergo trimming by an 

enzyme called ERAAP before loading (Murphy & Weaver, 2017). Irrespective of their 
length, not all peptides will be compatible with an individual’s set of MHC-I molecules, 

as discussed below in section 1.2.3.  
 
The peptide-MHC-I is then transported to the cell surface via the secretory pathway, 

where it is available to be sampled by CD8+ T cells. Note that some authors use the 
term T cell epitope to refer to a peptide presented in this way, whereas others reserve 

the term for a peptide that is involved in an active T cell response. The MHC class I 
antigen presentation pathway is summarised in Figure 1.2. 

 
 

Figure 1.2 Schematic overview of the MHC class I antigen presentation pathway. 
Cytoplasmic proteins (both self and non-self) are cleaved into peptides by the proteasome 
(upper/mid-left). The peptides are then transported to the endoplasmic reticulum by 
Tapasin (TAP) and a subset is loaded onto MHC-I molecules (in the presence of 
chaperones) (bottom left/centre). The peptide-MHC complex (pMHC) is transported to the 
cell surface via the Golgi apparatus (right). The pMHC bound to the cell surface is available 
to be sampled by the TCRs of CD8+ T cells (top right). (Figure created with BioRender.com 
based on Figure 1 from (Yewdell et al., 2003).) 
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Most cells present an antigen via MHC-I molecules, whereas professional antigen-

presenting cells (APCs), such as macrophages, express both MHC-I and MHC-II. A 
type of professional APC, called dendritic cells, has a vital role in activating CD8+ T 

cells.   Like macrophages, dendritic cells engulf pathogens that are circulating 
outside cells and hence provide a mechanism for CD8+ T cells to respond to 

extracellular pathogens, a mechanism known as cross-presentation (Colbert et al., 
2020). Cross-presentation is important for anti-tumour immunity (Wculek et al., 2020) 

and vaccine-induced cytotoxic immunity (Lee & Suresh, 2022). CD8+ T cell 
activation will be discussed further in the next section.  
 

1.1.3 CD8+ T cell life cycle and function 
 
Thymocytes are undifferentiated immature T cells that undergo maturation within the 

thymus. Maturation entails passing multiple checkpoints: the thymocyte must 
develop surface T cell receptors (TCRs) that are functional (β-selection), that are 

capable of binding to host MHCs with at least weak affinity (positive selection), and 
that do not bind to self-peptides with high affinity (negative selection). Failure at any 

of these checkpoints leads to the elimination of the cell by apoptosis. Differentiation 
into a CD8+ or CD4+ T cell occurs towards the end of the positive selection phase 

when a cell’s affinity towards MHC class I or class II has been determined (Murphy 

& Weaver, 2017). 
 
Only around 2% of T cells make it through all the checkpoints (Murphy & Weaver, 

2017). Those that do are released into the lymphatic system or bloodstream as a 
naïve T cell. A naïve human CD8+ T cell may persist in the periphery for a decade 

or more (there is a huge variation in the estimated lifespan of both naïve and memory 
CD8+ T cells, as demonstrated by the contents of Table 2 in (De Boer & Perelson, 

2013)).  
 
T cell activation requires one of its TCRs to bind to an antigen in the form of a pMHC 

and a co-stimulatory signal, usually involving the CD28 protein expressed on the T 

cell surface. After activation, T cells undergo clonal expansion and differentiate into 
effector T cells (that immediately contribute to fighting an infection) and memory T 

cells (that are long-lived and provide a rapid response to reinfection via expansion 
and differentiation into effector T cells).  
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After this brief introduction to the human immune system, the MHC class I antigen 

presentation pathway and CD8+ T cell biology, the remainder of this chapter will 
focus on those aspects of MHC-I and CD8+ T cells that have a direct bearing on the 

research presented in chapters 3 and 4. 
 
 

1.2 MHC class I molecules 
 
 

1.2.1 HLA class I alleles  
 
Human MHC molecules are encoded by HLA (Human Leukocyte Antigen) genes on 
chromosome 6, which are among the most polymorphic in the human genome. MHC-

I molecules are divided into three major groups corresponding to three different loci: 

HLA-A, HLA-B and HLA-C. Currently, over 8,000 HLA-A, over 10,000 HLA-B and 
over 8,000 HLA-C are known (Barker et al., 2023) with many more yet to be 

discovered.  
 
It is thought that most individuals are heterozygous at all three loci, with MHC 

heterozygosity known to be advantageous in terms of resistance to infectious 
disease (Penn et al., 2002) and MHC diversity implicated in human mate selection 

(Winternitz et al., 2017). Moreover, it is proposed that having one or more sufficiently 
uncommon HLA alleles is advantageous because pathogens are not under 

(significant) selection pressure to overcome the resistance they confer (Slade & 

McCallum, 1992), although the ways in which pathogens contribute to HLA allelic 
diversity is complicated (Spurgin & Richardson, 2010). 
 
To gain a feel for the extent of sequence variation between HLA class I alleles, 
pairwise sequence alignments were performed using EMBOSS Needle (Madeira et 

al., 2024) using the ⍺1/⍺2 domain sequences (i.e. the region that the peptide and 
TCR interact with) from a common HLA allele in each MHC-I group (sequences 

downloaded from MHC Motif Atlas at http://mhcmotifatlas.org/class1). HLA-A*02:01 
and HLA-B*08:01 both have 181 residues and have 80% sequence identity; HLA-

A*02:01 and HLA-C*01:02 both have 181 residues and have 82% sequence identity.  
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1.2.2 Overview of MHC-I structure 
 
The MHC-I molecule is a heterodimer, with a heavy chain comprising three domains. 
The first two are the ⍺1 and ⍺2 domains, each consisting of an ⍺-helix (around 40 

residues) that	 forms one side of the peptide binding groove and a β-sheet (also 

around 40 residues) that forms part of the groove’s floor. In combination, the ⍺1 
and ⍺2 domains form a groove that (unlike the MHC-II binding groove) is closed at 

both ends and normally accommodates peptides that are eight to ten residues 
long. The ⍺3 domain anchors the MHC molecule in the plasma membrane and 

interacts with the T cell’s CD8 co-receptor. The light chain consists of the protein β2-
microglobulin (β2m), which is positioned next to the ⍺3 domain and contributes to 

MHC expression and stability (Murphy & Weaver, 2017). Ribbon diagrams of a 
complete MHC-I molecule plus a view of the MHC-I groove formed by the ⍺-helices 

and β-sheet of the ⍺1 and ⍺2 domains are shown in Figure 1.3. 

 
 

Figure 1.3 Ribbon diagrams of an example MHC-I molecule (PDB 3PWN). The peptide 
backbone is shown in orange. a Side view showing the three domains of the heavy chain 
(⍺1, ⍺2, ⍺3) and the light chain (β2m). b View from above looking down into the peptide-
binding groove formed by the ⍺1 and ⍺2 domains. (Figure created with BioRender.com 
using Chimera X (Pettersen et al., 2004) 
 
Within the MHC-I binding groove, six distinct pockets have been defined, labelled A 

to F, that accommodate the sidechains of the peptide binding within the groove 
(Saper et al., 1991). Of these, pockets B and F are considered the most important in 
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terms of peptide binding and the stability of the peptide-MHC complex, as they 

accommodate the canonical anchor residues occurring at position 2 (pocket B) and 
at the C-terminal end (pocket F) of the peptide (see, for example, (Harndahl et al., 

2012)).  
 
As noted in section 1.2.1, HLA class I alleles are highly polymorphic. Analysis of the 

location of MHC-I allelic variations performed by Murphy and Weaver (Murphy & 
Weaver, 2017), shows the variations mainly occur at exposed sites within the ⍺1 and 

⍺2 domains, particularly in residues associated with the peptide-binding groove. 
Peptide-MHC-I binding is the topic addressed in the next section. 

A recent search using the IMGT interface (Kaas et al., 2004) suggests2 there are 
nearly 1,000 structures of human MHC class I molecules in the protein data bank 

(PDB), of which just over 30 form part of TCR-pMHC complexes, but most are not 

unique. 

 

1.2.3 Peptide-MHC binding 
 
Peptides bind within the MHC-I groove in an extended conformation. Given that the 
MHC-I’s closed binding groove can naturally accommodate peptides up to a length 

of ten residues, with the two pockets that house a peptide’s primary anchor residues 
at position 2 near the peptide's N-terminus (pocket B) and at the C-terminal end of 

the groove (pocket F), it appears reasonable to assume that MHC-I molecules 
preferentially present peptides of length eight to ten (8-mers, 9-mers and 10-

mers).  However, matters are rather more complex. On the one hand, elution studies 
have shown that 9-mers are much more common than peptides of any other length, 

but 10-mers and 11-mers were more common than 8-mers for four out of five 

common HLA alleles, the exception being HLA-B*51:01 (Trolle et al., 2016). On the 
other hand, large-scale binding affinity experiments carried out by the same authors 

suggested that HLA-B*51:01 has (on average) higher affinity for 8-mers than 9-mers 
and HLA-A*01:01 a higher affinity for 10-mers and 11-mers than for 9-mers. The 

authors explain this apparent discrepancy by arguing that, of the peptides available 
for binding to MHC molecules, 9-mers are more common than peptides of any other 

length (e.g. TAP disfavours the transportation of peptides shorter than 9 residues) 
(Trolle et al., 2016). Peptides longer than 10 residues are accommodated either 

 
2 No attempt was made to verify that all entries in the returned lists were correct. 
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through a reorientation of the ⍺1 helix or by bulging out of the groove (Rudolph et al., 

2006). 
 
Irrespective of their potential preference for peptides of different lengths, differences 

in the pockets within the MHC-I groove determine which peptides can bind. The 
amino acid types that are preferred or deleterious at different positions within the 

binding groove are HLA allele specific. Pockets B and F that accommodate the 
peptide’s anchor residues are generally the most restrictive. For example, nearly all 

peptides that bind to MHC molecules encoded by HLA-A*01:01 have a Tyrosine at 
position 9 (pocket F), whereas HLA-A*02:01 MHCs prefer Valine, Leucine or 

Isoleucine – all large hydrophobic amino acids – at the same position. The extent to 
which the other pockets place restrictions (if any) on the types of permitted amino 

acid is highly variable. This information can be summarised in an MHC binding motif 

(Rapin et al., 2008; Tadros et al., 2022), as shown in Figure 1.4.  
 
Peptide-MHC binding motifs have a bearing not only on the set of peptides capable 

of being presented by a given allelic variant, but also on TCR recognition, as the 
sidechains of residues that are not buried in pockets B and F or tightly constrained 

in their interactions with the MHC molecule are more likely to be TCR-facing (see 
Figure 1.5). 
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Figure 1.4  A contrasting set of MHC binding motifs. a. HLA-A*01:01: nearly all peptides 
have a Tyrosine at position 9, most have negatively charged amino acids (Aspartic Acid 
and Glutamic Acid) at position 3, and there are moderate restrictions at position 2 (mainly 
hydrophobic residues).  b. HLA-A*02:01: most peptides have non-polar hydrophobic amino 
acids at positions 2 and 9 (Valine, Leucine, Isoleucine at position 9 with Methionine 
additionally present at position 2), with weak restrictions at positions 4 and 6. c. HLA-
B*40:01: nearly all peptides have Glutamic Acid at position 2 and hydrophobic amino acids 
at position 9.  d. HLA-B*08:01: most peptides have positively charged amino acids 
(Arginine, Lysine) at position 5, hydrophobic amino acids at position 9, weak/modest 
restrictions at positions 1, 2, 3 and 8. The peptide sequences were downloaded from MHC 
Motif Atlas 3 and the logos were created using WebLogo 4.  

 
3  http://mhcmotifatlas.org/class1 
4  https://weblogo.berkeley.edu/logo.cgi 
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Figure 1.5 Peptide ALGIGILTV binding in the HLA-A*02:01-encoded MHC groove 
(PDB 1JHT). Several residues are MHC-facing, whereas the Isoleucine at position 4, 
Glycine at position 5, Leucine at position 7 and Threonine at position 8 are TCR-facing. . 
(Figure created with BioRender.com using Chimera X (Pettersen et al., 2004), based on 
Figure 7 from (Perez et al., 2022).) 
 
 

1.3 CD8+ TCRs 
 
 

1.3.1 TCR sequence diversity  
 
A single CD8+ T cell has around 105 identical T cell receptors (TCRs) on its surface 

(Schodin et al., 1996), each formed from a pair of protein chains. In around 95% of 
cases, human TCRs are αβTCRs with an α chain encoded by genes in the TRA 

locus and a β chain encoded by genes in the TRB locus. The remainder are γδTCRs 
with chains encoded by the TRG and TRD loci. γδTCRs have been described as a 

“bridge between innate and adaptive immune responses” (Holtmeier & Kabelitz, 

2005) and bind to a diverse set of ligands, rather than just peptides (Vermijlen et al., 
2018); although undoubtedly interesting, they lie outside the scope of this thesis and 

the abbreviation “TCR” refers to an αβTCR throughout. 
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TCR sequences are highly diverse both within and between individuals, attributable 

to several factors. Each TCR chain is encoded by combining gene segments: for the 
α chain, this involves a variable (V), a joining (J) and a constant (C) gene segment; 

and for the β chain a V, a diversity (D), a J and a C gene segment. There are multiple 
gene segments to choose from: the TRA locus that encodes the α chain has 43-45 

V, 50 J and 1 C gene segments; and the TRB locus that encodes the β chain has 
40-48 V, 2 D, 12-13 J and 2 C gene segments.  

(IMGT Gene Number page, accessed  19/09/2024: 
https://www.imgt.org/IMGTrepertoire/LocusGenes/genetable/human/geneNumber.

html). In combining gene segments – a process known as V(D)J recombination – 
nucleotides may be added or removed at the junctions between the gene segments 

(Figure 1.6). Taking these factors together, it is estimated that around 1018 distinct 

TCR chains (α chains plus β chains) are theoretically possible (Murphy & Weaver, 
2017). A final factor contributing to TCR diversity is the pairing of α and β chains, 

which has been described as “almost unconstrained” and “nearly random” 
(Shcherbinin et al., 2020). 
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Figure 1.6 Schematic diagram of V(D)J recombination. Note that individual insertions 
and deletions (within the junction region) are omitted from this figure. a. Schematic showing 
the multiple germline V, D and J gene segments associated with the β chain (the α chain 
has no D segments). b. The number of germline α chain gene segments (TRAV, TRAJ and 
TRAC) and germline β chain gene segments (TRBV, TRBD, TRBJ and TRBC) found in 
humans. c. In forming the β chain, first, a D segment is joined with a J segment. d. The DJ 
segment from c. is then joined to a V gene segment and combined with a constant region. 
e. Schematic of the full TCR showing the location of the gene segments. Six hypervariable 
loops (CDRs), discussed below in section 1.3.2, are annotated. (Figure created with 
BioRender.com ) 
 
Published estimates of the number of unique TCRs (known as species richness) 
within a single individual vary by (at least) an order of magnitude. An early calculation 

concluded that there are around 2.5 x 107 unique TCRs consisting of 106 β chains 
paired, on average, with “at least 25 different α chains” (Arstila et al., 1999).  A more 

recent study concluded that 20 to 35 year-olds have around 108 unique naïve CD8+ 

T cells, dropping to around 5 x 107 or lower in those aged 70 to 85. The diversity 
found in memory CD8+ T cells was around 250- to 500-fold lower (Qi et al., 2014).  

Given that the total number of T cells in a typical individual is estimated to be 1012, it 
is obvious that many T cells have the same TCRs. This is mainly attributable to clonal 

expansion after activation (see section 1.1.3), but it is also evident that some TCR 
sequences are more likely to be created than others. This is clear from the higher 
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prevalence of public β chains in the naïve T cell repertoire than one would expect by 

chance, where a public sequence is usually defined as one found in more than a 
single individual. For example, in a study of four healthy donors with the HLA-

A*02:01 allele, a quarter or more of the naïve β chain repertoire was shared with at 
least one of the other donors (Venturi et al., 2011). These public β chains generally 

occur at greater frequency within the naïve repertoires of the individuals concerned 
and are attributable to a process known as convergent recombination, whereby 

certain underlying properties (e.g. patterns of codon degeneracy) combine with 
differences in the efficiency with which certain recombination events occur (Venturi 

et al., 2011). 
 
The extent of polymorphism within the TCR-encoding genes is poorly understood. 

The 23rd July 2024 IMGT reference sets (available from 

https://www.imgt.org/vquest/refseqh.html) contained 113 TRAV and 147 TRBV 
genes, but recent research involving inferences from T cell repertoire data, in which 

18 TRBV alleles not recorded by IMGT were identified in a dataset of full-length 
sequences from 53 individuals, suggests there is extensive germline variability yet 

to be discovered (Omer et al., 2022).  
 
With regards to the pattern of variability along the length of each TCR chain, the 

most variable sections are the junction regions that span the joins between V and J 
in the α chain and V, D and J in the β chain, the latter being by far the most variable 

region within the entire TCR. The latter corresponds with a feature of vital structural 

and functional importance, that will be introduced in the next section – the CDR3β. 
 

1.3.2 Overview of TCR structure  
 
An ⍺βTCR is a disulphide-bonded heterodimer consisting of an ⍺ and a β chain. Both 

chains have the same structural components: a transmembrane region (ending in a 
short cytoplasmic tail) and two extracellular domains, a constant domain and a 

variable domain (Figure 1.7). The ⍺ and β variable domains are involved in binding 

to the pMHC complex and are, therefore, the key focus for the research presented 
in this thesis. 
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Figure 1.7 Schematic diagram showing a complete membrane-bound TCR protein. 
(Figure created with BioRender.com ) 
 

A key feature of the ⍺ and β variable domains are the presence of six hypervariable 

loops known as CDRs (Complementarity Determining Regions) (Figure 1.8). The 
CDR1s and CDR2s are germline-encoded (CDR1⍺ and CDR2⍺ by the TRAV gene, 

CDR1β and CDR2β by the TRBV gene), and have sequences that are much less 
diverse than the CDR3s, which (as noted in section 1.3.1) span the junction regions 

where multiple genes segments are joined together. The CDR1s and CDR2s from 
both chains are comparatively short, with lengths typically in the range 5-8 residues 

(Wong et al., 2019), whereas both CDR3s are generally longer and more variable in 
length (as expected, given the occurrence of nucleotide insertions and deletions): 6-

18 residues with a mean of 11.7 residues for CDR3⍺, and 7-20 with a mean of 12.7 

for CDR3β (K. Yu et al., 2019). An additional short variable loop of 5 or 6 residues, 
the “non-classical” CDR2.5s located between CDR2 and CDR3 on both chains, 

sometimes make contact with pMHC (Dash et al., 2017). 
 
With the notable exception of CDR3β, CDRs are known to adopt a rather limited 

number of distinct backbone conformations in solved structures, which has led to the 
definition of “canonical classes” of CDR conformation. In a 2019 analysis of over 270 

high-resolution PDB structures, the number of canonical classes identified varied 
between one for CDR1β and seven each for CDR1⍺ and CDR2⍺. However, the 
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situation is more complicated than this suggests. Excluded from the canonical 

classes are structures assigned to “pseudo-classes” containing fewer than three 
unique sequences, and “many cases” have been observed where different structures 

of the same sequence (e.g. both bound and unbound to pMHC) were assigned to 
different classes (Wong et al., 2019). This points to an important property of TCR 

CDRs, namely their flexibility. McMaster et al.'s comparisons of bound and unbound 
TCR loops' quantification in terms of the backbone root mean squared deviation 

(RMSD) show a mean change of 1.69 Å for CDR1⍺, 1.33 Å for CDR2⍺ , and 2.38 Å 
for CDR3⍺. They have also reported a mean change of 0.82 Å, 0.91 Å, and 1.50Å 

for CDR1β, CDR2β, and CDR3β respectively (McMaster, Thorpe, Rossjohn, et al., 
2024).   

Although there are no CDR3β canonical classes, certain conformational constraints 

have been identified at the two ends of the loop (based on earlier analyses of the 
equivalent loop in antibodies, the heavy chain CDR3). Specifically, the so-called 

“torso” – consisting of the first three and last four loop residues – are observed in 
TCRs to adopt an “extended” conformation and rarely the “kinked” or “bulged” 

conformation frequently observed in antibodies (Wong et al., 2019). 
 

 
Figure 1.8 Ribbon diagram showing the TCR complementarity determining regions 
(CDRs), including the non-classical CDR2.5s. The CDR1s are shown in red, the CDR2s 
in yellow, the CDR2.5s in purple, the CDR3⍺ in brown and CDR3β in midnight blue. The 
figure was recreated using Chimera X (Pettersen et al., 2004) based on Figure 4B in 
(Barbosa et al., 2021).  
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1.4 TCR-pMHC complexes 
 
 
This section focuses on key aspects of how TCRs and pMHCs interact to form TCR-

pMHC complexes. Whereas it is evident that many TCRs can bind to the same 
pMHC – indeed, more than half the TCR-pMHC samples collected for the 

benchmarking research presented in Chapter 3 consisted of TCRs binding to a single 
pMHC (involving an immunodominant EBV epitope) – it is also the case that a single 

TCR can bind to many pMHCs. This is the topic of section 1.4.1. The contacts formed 
between TCR and peptide, and between TCR and MHC are considered in section 

1.4.2. Finally, the propensity of TCRs to bind to a single type of MHC molecule 
(known as HLA restriction) is considered in section 1.4.3.  
 
To provide a structural context for these topics, a ribbon diagram of a CD8+ TCR-

pMHC complex is shown in Figure 1.9. 
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Figure 1.9 Ribbon diagram of a CD8+ TCR-pMHC complex (PDB 4JFH (unbound) 
superimposed with bound structure 4JFD). The major components of the MHC molecule 
(encoded by HLA-A*:02:01) are as follows: the heavy chain of 4JFD (⍺1,	⍺2 and ⍺3) 
domains are in green, and the light chain (β2-microglobulin) in cyan. Peptide ELAAIGILTV 
is in magenta. The TCR ⍺ chain for 4JFD is in cornflower blue and  β chain in cyan. 
Unbound PDB complex 4JFH is coloured in grey. It shows the movement between the 
bound and unbound TCR structures. (The figure was recreated using Chimera X (Pettersen 
et al., 2004) based on Figure 2A in (McMaster, Thorpe, Rossjohn, et al., 2024). 
 

1.4.1 TCR cross-reactivity 
 
Given that the number of unique TCRs within a single individual is around 108 (as 

discussed in section 1.3.1) whereas “the simple arithmetic of effective immunity 

requiring the recognition of >1015 potential foreign peptides” (Sewell, 2012), it has 
been argued that near-universal TCR cross-reactivity5 – i.e. the ability of nearly all 

 
5 Other widely used terms are TCR promiscuity, TCR degeneracy and TCR polyspecificity.  
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TCRs to bind to many different pMHC complexes – is a biological necessity.(Mason, 

1998). To quantify the potential extent of a single TCR’s ability to bind multiple 
pMHCs, an experimental study by Wooldridge and co-workers demonstrated that a 

single CD8+ T cell clone was capable of binding to more than one million 10-mers 
bound to HLA-A*02:01-encoded MHC molecules (Wooldridge et al., 2012).  
 
Various factors are known to contribute to TCR cross-reactivity, including: the ability 
of a TCR to change its position (binding register) on the MHC groove and/or its angle 

of binding (Baker et al., 2012); the flexibility of a TCR’s CDRs ((Armstrong et al., 
2008); see section 1.3.2)); the fact that most TCRs form contacts with a limited 

number of TCR-facing peptide sidechains (see Figure 1.6); and the flexibility of the 
pMHC complex (Borbulevych et al., 2009).  
 
It is worth noting the striking contrast between certain cases of TCR cross-reactivity 

versus those of TCR specificity. For example, there are cases where a single TCR 
may bind to peptides that have limited or even no sequence overlap (S. Zhang et al., 

2015), whereas in other cases, a single amino acid change at an anchoring position 
may be sufficient to prevent a TCR from binding. The latter is surprising, as the 

sidechain of an anchoring residue is generally buried in a pocket and therefore 
hidden from the TCR (see section 1.3.2), but Smith and co-workers found an 

example where a TCR failed to bind to an anchor-modified peptide because the 
residue change induced a change to the interactions between TCR and MHC “in 

distant parts of the interface” (Smith et al., 2021).  
 

1.4.2 TCR-peptide and TCR-MHC structural contacts 
 
Although there are some exceptional, “rule-breaking” examples of TCR-pMHC 
complex formation (some of which are documented in (Szeto et al., 2020)), widely 

applicable constraints have been observed about the way that TCRs engage with 
pMHC complexes.  
 
One of the most fundamental constraints is the relative orientation of TCR and 

pMHC. Until comparatively recently, it appeared to be universally the case that TCRs 
bind on top of the MHC binding groove, adopting a diagonal orientation with respect 

to the groove such that the TCR α chain is located towards the N-terminal end of the 
peptide. A 2011 analysis of 61 TCR-pMHC structures concluded that the TCR 
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crossing (or docking) angle varied between 20° and 87° (J. M. Khan & Ranganathan, 

2011). However, a TCR was subsequently discovered that adopts a reversed 

orientation (“a 180° reversed polarity”) compared to all previously observed crossing 

angles; the wider biological significance of reverse docking remains uncertain (Gras 
et al., 2016). An example of a “canonical” TCR footprint superposed on a pMHC-I 

complex is shown in Figure 1.10.  
 

 
Figure 1.10 Footprint of a TCR bound to a peptide-MHC-I complex. HLA-A*02:01- 
encoded MHC molecule (in sky-blue) is presenting immunodominant peptide GILGFVFTL 
(in green), an Influenza A matrix protein (PDB 1OGA). This arguably represents the 
canonical orientation of the TCR with respect to the pMHC complex. The coloured areas 
show the positions of the TCR’s CDRs, with CDR3s (brown) positioned over the peptide 
and the other CDRs - CDR1s (red), CDR2s (yellow) and CDR2.5s (purple) positions over 
the MHC. (Figure created with BioRender.com using Chimera X (Pettersen et al., 2004) 
 
TCR contacts with the peptide are mainly via the CDR3s (the most diverse of the 

CDRs, as explained in section 1.3.2). Owing to the crossing angle of the TCR, both 

CDR3 loops are equally involved in peptide binding with the CDR3α is typically in 
contact with the N-terminal half of the peptide and the CDR3β with the C-terminal 

half of the peptide (McMaster, Thorpe, Rossjohn, et al., 2024). As the more variable 
and typically slightly longer CDR (see section 1.3.2), CDR3β is often assumed to 

make more contacts with the peptide and have the dominant role in determining TCR 
specificity. This is often the case, but CDR3α has been shown to play a dominant 
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role (and CDR3β a “minor” role) in TCRs directed against an immunodominant EBV 

epitope (Gil et al., 2020). 
 
TCR contacts with MHC involve multiple CDRs. The conventional view has been that 

the CDR1s and CDR2s play the dominant role in MHC engagement via contacts with 
the exposed upper surfaces of its α-helices. Given the TCR crossing angle, CDR1α 

and CDR2α mainly engage with the α2-helix, whereas CDR1β and CDR2β mainly 
engage with the α1-helix. However, a mutagenesis study of TCRs binding to an 

immunodominant EBV peptide presented by HLA-B*08:01 demonstrated that the 
CDR1s and CDR2s made minimal energetic contributions to the formation of the 

TCR-pMHC complex, with both the CDR3s combining to dominate the “energetic 
landscape” (Borg et al., 2005). 
 
When considering the individual residues that are involved in making contacts, it is 

worth taking each component of the TCR-pMHC complex in turn. With respect to the 
bound peptides, MHC binding motifs give potentially useful insights into the likely set 

of TCR-facing residues, with positions 2 and 9 (the anchor residues) least likely to 
be involved and the residues towards the middle of the peptide arguably the most 

likely, given that they are potentially in contact with CDRs even if the binding register 
of the TCR is somewhat unusual. With respect to the MHC-I molecule, the exposed 

residues of the MHC α-helices, particularly those on the “top” of the helices (facing 
towards the TCR), are by far the most likely to be in contact with the TCR. Owing to 

the diagonal crossing angle, the patch of TCR-binding residues is liable to be centred 

away from the mid-point of each α-helix, as shown in Figure 1.10. The suggestion 
that three specific MHC-I residues play an essential role in mediating MHC restriction 

(Tynan et al., 2005) has since been substantially discounted (Burrows et al., 2010).  
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1.4.3 HLA restriction 
 
TCRs are said to be “MHC restricted” because they only bind to peptides when 
presented by MHC molecules. (Competing models that seek to explain MHC 

restriction are reviewed in (La Gruta et al., 2018).) But TCRs are also, to a significant 

extent, HLA restricted – that is, a single TCR will commonly bind to MHCs from a 
single HLA allele or a limited number of HLA alleles. Multiple studies have shown 

changes in TCR recognition when the same peptide binds to MHCs from closely-
related HLA class I subtypes that differ by only one or two residues, for example, 

HLA-B*44:05 compared with HLA-B*44:02 and HLA-B*44:03 (Archbold et al., 2009) 
and HLA-B*57:01 compared with HLA-B*57:03 (X. G. Yu et al., 2007). Note that 

these studies do not contradict the observation that TCRs are cross-reactive, as 
published examples of cross-reactivity typically involve multiple peptides binding to 

MHCs encoded by the same HLA allele (see, for example, the Wooldridge study 
cited in section 1.4.1 (Wooldridge et al., 2012)).  
 
However, the proportion of an individual’s TCRs that are HLA restricted is unclear, 

as is the extent to which they are routinely sensitive to minor differences between 
HLA subtypes. In a 2018 analysis of public TCRβ chains from a cohort of 666 healthy 

individuals, the authors identified 28 clusters of co-occurring TCRs, of which 26 were 
deemed HLA-associated (DeWitt et al., 2018). (Note that the authors often found it 

impossible to identify an association with a single HLA allele; they attribute this to 
the fact that certain HLA allele pairs “strongly co-occur across the cohort”, and in a 

subsequent evaluation of CMV-associated chains “did not detect a substantial 
degree of HLA promiscuity”.) The two clusters that were deemed “HLA-unrestricted” 

had distinctive properties, one appearing to consist of mucosal-associated invariant 

T (MAIT) cells that do not interact with pMHC (DeWitt et al., 2018). These results are 
interesting, but it is worth remembering that most TCRs are not public, and public 

TCRs may have sequences that are qualitatively different from those of other TCRs 
(see section 1.3.1). 
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1.5 Discussion 
 
 
To conclude this chapter, it is worth considering some of the key points we have 

learned that have a direct bearing on the research presented later in this thesis 
concerning the prediction of CD8+ TCR-pMHC binding and CD8+ TCR-HLA 

associations. 
 
Firstly, all the key molecular elements – MHC molecules, peptides and TCRs – are 

associated with exceptionally high levels of sequence diversity. The HLA genes that 

encode MHC molecules are among the most polymorphic in the human genome, 
with sequence diversity highest in the residues that form the MHC groove and the 

adjacent surfaces of its α-helices, i.e. those parts of the MHC molecules that are in 
contact with peptides and TCRs (see section 1.2.1). TCR chains are formed by a 

process called V(D)J recombination that is designed to promote sequence diversity 
(section 1.3.1), with sequence diversity highest in the CDRs – especially the CDR3s 

– that form contacts with the pMHC complex (section 1.3.2). Though short and 
somewhat constrained in sequence by the cleavage and trimming preferences of the 

MHC class I antigen presentation pathway (section 1.1.2), the antigenic peptides 
presented by MHC-I molecules are highly variable. In each case (MHC, TCR, 

peptide), there are many new sequences yet to be discovered. 
 
Secondly, there are some important constraints. Certain key components have 
sequence length constraints: MHC ⍺1/⍺2 domains (section 1.2.1), TCR CDRs 

(section 1.3.2), and antigenic peptides (section 1.2.3). There are also structural 
constraints: pMHC complexes are comparatively inflexible (although a degree of 

flexibility on TCR binding is sometimes observed – see section 1.4.1), bound 
peptides of the most frequently observed lengths are held in extended conformation 

(section 1.2.3), and most CDRs adopt a number of distinct conformation that have 
been assigned to canonical classes (see section 1.3.2), although most classes have 

been defined for unbound TCRs.  
 
Finally, it is worth considering the implications of an important question that we are 
currently unable to answer: What proportion of TCR-pMHC complexes exhibit an 

orientation close to that illustrated in Figure 1.10. Even if one ignores “reverse 
polarity” binding, TCR crossing angles in solved structures are not confined to a 

narrow range (see section 1.4.2), but the number of solved TCR-pMHC structures 
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remains small, and there may be a bias towards unusual complexes. If it is the case 

that most TCR-pMHC complexes adopt similar binding geometries, there would likely 
be considerable overlap between the sets of residues involved in forming contacts 

between TCR and pMHC, even if there are no conserved binding motifs. The degree 
to which the prediction tasks addressed in this thesis are tractable is likely to depend 

on the answer to this question. 
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2 Computational Methods 
 
 
 

2.1 Introduction 
 
 
Given a TCR and a peptide-MHC-I complex, what one would like to predict is the 
likelihood that the TCR would be activated by that pMHC and generate an immune 

response. However, in practice, this requires information that is rarely (if 

ever) available concerning matters such as CD28 co-stimulation and signals from 
proinflammatory cytokines, so a more realistic aim is to predict whether the TCR is 

likely to bind to that pMHC. 
 
One can divide approach for tackling this task into two broad categories — structure-

based and sequence-based — although hybrid approaches that combine elements 
of both are feasible, one recent example being DeepAIR, which incorporates 

AlphaFold2 models (see below) with TCR sequence and gene usage information in 
an integrated deep learning framework (Zhao et al., 2023). Both structure-based and 

sequence-based approaches have potential pros and cons, although the balance 

between them is constantly changing as new prediction methods are developed and 
new data becomes available. 	
 
In principle, a structural approach to peptide-MHC-I binding prediction has the 
potential to model the 3D conformations and flexibility of the molecules involved, 

notably the TCR’s CDRs. 	Given separate solved structures of TCRs and pMHC 
complexes, docking methods – both generic protein docking tools (Peacock & Chain, 

2021) and TCR-specific docking tools such as TCRFlexDoc (Pierce & Weng, 2013) 
– have achieved some success in identifying whether and how a given TCR and 

pMHC fit together. However, there are currently only 634 PDB structures containing 
TCRs in the curated STCRDab database (Leem et al., 2018) 

(https://opig.stats.ox.ac.uk/webapps/stcrdab-stcrpred, 09/09/2024), of which 173 are 

human ⍺βTCRs bound to MHC class I molecules with a resolution better than 3.5Å. 
If a structure-based approach is to become broadly applicable, what is needed is a 

way of accurately modelling the structures of TCR and pMHC, and preferably the 
entire TCR-pMHC complex.  
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The 2020 performance of AlphaFold 2 (Jumper et al., 2021) at CASP14 has been 

widely recognised as a transformative moment in the field of protein modelling. In a 
subsequent version called AlphaFold-Multimer (Evans et al., 2021), it was extended 

to handle multi-chain protein complexes. Various attempts have been made to model 
TCRs and/or pMHCs using: these tools themselves, AlphaFold 2 (D. Wu et al., 2024) 

and AlphaFold-Multimer (e.g. (Abanades et al., 2023)); adaptions of both tools, such 
as TCRmodel2 (Yin et al., 2023) and TCRdock (Bradley, 2023); and novel deep-

learning methods specifically designed to model TCRs or MHCs, such as  MHCFold 
(Aronson et al., 2022). A recent survey of such initiatives by McMaster and co-

workers concluded that all these approaches have their limitations, with several 
contributory factors identified, ranging from the lack of appropriate experimental data 

for tool development to the inherent challenges of modelling the weak binding 

affinities and changes in CDR loop conformation that characterise TCR-pMHC 
binding (McMaster, Thorpe, Ogg, et al., 2024) .	
 
The key advantage of sequence-based approaches to the TCR-pMHC binding 
prediction task is the much higher volumes of available data – at least tens of 

thousands of TCR-pMHC complexes with paired TCR ⍺ and β chains (the challenges 
involved in acquiring a clean set of such data with complete TCR sequences is 

discussed in section 3.2.2), the MHC sequences for many thousands of HLA alleles 
and billions of TCR sequences with unknown targets, both paired and unpaired. The 

fundamental challenge for sequence-based approaches is that the formation of TCR-

pMHC complexes entails the engagement of three-dimensional elements involving 
different combinations of residues depending on the complex. In order to make 

accurate predictions, sequence-based approaches are likely to be more tightly 
constrained to tackling complexes that are similar to those in the training set 

compared to structure-based approaches. But the degree of similarity required, 
particularly with modern deep learning approaches, remains an open question, as 

does the extent to which current sequence data is (at least to a useful degree) 
representative of the denser parts of TCR-pMHC space – although it certainly has to 

be acknowledged that, to quote a recent review, we currently have access to “ just a 
minute fraction of the possible sample space of TCR–antigen binding pairs” (Hudson 

et al., 2023). 
 
The research in this thesis focuses on sequence-based methods and is in two parts: 
Chapter 3 covers the benchmarking of several deep learning TCR-pMHC binding 
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prediction methods, and Chapter 4 presents a novel deep learning method for 

predicting TCR-HLA associations. The remainder of this chapter provides: a short 
introduction to other sequence-based methods for TCR-pMHC binding prediction 

(distance metrics, clustering and conventional machine learning in section 2.2); a 
more detailed introduction to deep learning (section 2.3) and transfer learning 

approaches (section 2.4); a discussion of data-related challenges (section 2.5); and 
a brief guide to the computational resources and platforms used in this research 

(section 2.6). 
 
 

2.2 Distance metrics, clustering and machine learning  
 
 
This section sets the context for the introduction to deep learning that follows in 
section 2.3. None of the methods mentioned here features in the benchmarking 

performed in Chapter 3. However, TCRdist3 (section 2.2.1) was used in the 

correlation analyses presented in sections 3.5.2 and 4.5. 
 

2.2.1 Distance metrics and clustering 
 
In clustering approaches to TCR-pMHC binding prediction, TCRs with similar 

characteristics (inferred from sequence similarity) are grouped together based on the 
underlying hypothesis that similar TCRs will bind to similar pMHCs. Several metrics 

have been devised to measure the distance between TCRs. One of the more 

sophisticated methods is TCRdist (Dash et al., 2017), which has since been adapted 
for use in TCRMatch (Chronister et al., 2021) and revised in TCRdist3 (Mayer-

Blackwell et al., 2021). The latter compares the sequences of all the CDRs (including 
the CDR2.5s) belonging to a given pair of TCRs, having pre-trimmed the highly 

conserved N- and C-terminal residues from the CDR3s. Distances are calculated by 
comparing the corresponding CDRs of the two TCRs: substitution penalties are 

awarded using BLOSUM62; insertions are awarded the same high penalty as non-
conservative substitutions; the number of CDR3 penalties is multiplied by a factor of 

three; and the final distance is the sum of all penalties (Mayer-Blackwell et al., 2021). 
 
Various research groups have used TCRdist3 and other distance metrics to build 

clusters of similar TCRs. The authors of TCRdist3 used the metric to identify public 

clusters of TCRs directed against SARS-CoV-2 (Mayer-Blackwell et al., 2021). In 
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another study, TCRs were clustered using a tool called GLIPH2 to identify 

Mycobacterium tuberculosis-specific CD4+ TCRs (Huang et al., 2020).  
 
Although complex distance metrics such as TCRdist3 that have been optimised for 

measuring TCR-specific similarities are potentially useful (indeed, TCRdist3 is used 
in the correlation analyses presented later in the thesis), it is reasonable to assume 

that the relationship between measurements of the distance between TCRs and 
differences in the function of these TCRs is complex and nonlinear. This provides a 

key motivation for using machine learning algorithms to address these challenges.  
 

2.2.2 Machine learning  
 
Machine learning methods have become an increasingly popular way of addressing 
complex biological tasks, including TCR-pMHC binding prediction. (Deep learning is 

a type of machine learning but is considered separately in section 2.3.)  
 
TCR-pMHC binding prediction is commonly treated as a binary classification task 

(“Does a given TCR bind to a given pMHC, true or false?”). Methods are trained 
using labelled data, where each input pattern (a description of a TCR-pMHC 

complex) is paired with the desired output (“binds” or “does not bind”). After training, 

the methods can be used to make predictions for unlabelled data (i.e. the input is 
known but the desired output is unknown).  
 
Two specific machine learning algorithms have been used to address this task: 
random forest (RF) and gradient-boosted trees (GBT). RF (Ho, 1995) tackles a 

classification task by building an ensemble of decision trees. A decision tree is 
essentially a set of conditions arranged in a binary tree (i.e. a tree in which each non-

leaf node has exactly two children), where a condition might be “Is the current HLA 
allele HLA-A*02:01?”, or “Does the current peptide have a Tyrosine at position 9?”. 

After applying many decisions, a prediction is made. A single decision tree will tend 
to overfit to the training data; RF (partially) overcomes this problem by generating 

multiple decision trees from different subsets of the training data and then classifying 

unseen data based on the combined output from this ensemble of trees. The TCR-
pMHC binding prediction tools TCRex (Gielis et al., 2019) and epiTCR (Pham et al., 

2023) use the RF algorithm implemented in the Python library scikit-learn 
(Pedregosa et al., 2011). 
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Whereas each RF decision tree tends to overfit to the training data, GBT methods 

such as XGBoost (Chen & Guestrin, 2016) build shallow trees, each of which 
underfits to the training data. Trees are added sequentially, with each new tree 

trained to address the errors made by the current collection of trees. With GBT, the 
risk of overfitting to the data is associated with the addition of too many trees, rather 

than the individual trees themselves. The TCR-pMHC binding prediction tool SETE 
(Tong et al., 2020) uses the GBT algorithm implemented in scikit-learn and treats 

TCR-pMHC binding prediction as a multi-class problem, rather than binary 
classification (see below). 
 
A key issue for any predictive model applied to the TCR-pMHC binding prediction 
task is to decide how to represent input information about a TCR-pMHC complex, 

and it is here that traditional machine-learning methods have limitations in terms of 

their ability to handle long protein sequences of variable length. Both epiTCR and 
SETE represent a TCR using its CDR3β sequence alone, whereas TCRex adds the 

CDR3⍺ sequence and provides categorical labels for the TCR V and J genes. Only 
epiTCR encodes the epitope sequence; instead, TCRex comes in multiple versions, 

each of them epitope-specific, and SETE treats a limited number of epitopes as 
targets (hence multi-class prediction) and encodes them categorically. Only epiTCR 

incorporates HLA allele information, which is achieved using the fixed-length 
pseudo-sequence approach described in section 3.2.2. Note that categorical 

encoding is appealing here because it can be used to represent long and/or variable 

length data in a concise fixed-length format. However, there is a fundamental 
drawback – all categorical labels are, in effect, equally distant from each other, so all 

information about the similarities between particular categories is lost.  
 
 

2.3 Deep Learning for TCR function prediction 
 
 
Deep learning is a subset of machine learning methods that is based on artificial 
neural networks (ANNs). The building blocks of an ANN are nodes or artificial 

neurons, so named because they are loosely inspired by the neurons of the human 
brain. Nodes are connected by weights. In the simplest form of an ANN, a feed-

forward neural network (FNN), the output of a node is the result of a nonlinear 
function (called the activation function) being applied to the weighted sum of the 
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node’s inputs. Training an FNN is an iterative process whereby a set of input patterns 

with desired outputs (the training set) is presented to the network, the errors in the 
network outputs are calculated, and the weights are adjusted to reduce the total error 

for all patterns, commonly via a process known as backpropagation. 
 
FNNs are one of the most popular architectures in conventional machine learning, 

but also provide the basic architecture for an important type of deep neural network, 
the convolutional neural network (CNN). 
 

2.3.1 Convolutional neural networks 
 
The convolutional neural network (CNN) – can be regarded as the breakthrough 

architecture in deep learning (for the advances made in the field of image 
processing) and has been used in several TCR-pMHC prediction tools, either on its 

own or as a part of a more complex model. The CNN architecture comprises three 
distinct types of layers: a convolutional layer, a pooling layer and a fully connected 

layer. A convolutional layer generates feature maps, each capturing information 
about a particular repetitive feature irrespective of its location (within an image or 

sequence). A pooling layer subsamples the feature maps, thereby reducing the risk 
of overfitting to the training data. A typical CNN may have multiple convolutional 

layers interspersed with pooling layers, after which come one or more fully connected 

layers. The job of the fully connected layers is to make predictions based on the 
features they receive as inputs in much the same way as a conventional FNN.  
 
The most famous applications of CNNs are in image recognition, where the inputs 
comprise a 2-dimensional grid of pixels, each consisting of three values (red, green 

and blue). This has been straightforwardly adapted to handle protein sequences, 
which can be viewed as a 1-dimensional “image” with 20 values (the standard amino 

acids) at each position (equivalent to a pixel). Four of the tools benchmarked in 
Chapter 3 use CNNs: pMTnet (Lu et al., 2021), NetTCR-2.0 and 2.1 (Montemurro et 

al., 2021, 2022) and TEINet (Jiang et al., 2023). 

 
However, CNNs have limitations when handing long protein sequences, as the 

network needs to handle a complete sequence as a single input – big enough to 
accommodate the longest sequence in the dataset; lots of inputs means lots of 

network weights and, in general, the more weights a network has, the more data is 
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needed to reduce the risk of overfitting and the more internal calculations need to be 

performed, increasing training times. In such cases, there is a tendency to adopt a 
more aggressive pooling strategy, which can lead to the loss of useful information. 
 

2.3.2 Recurrent neural networks 
 
An alternative to treating a protein sequence in a similar way to an image is to treat 
it as a series of amino acid residues that one inspects one at a time in a similar way 

to time-series data (e.g. changes in temperature, heart rate or stock prices) or natural 

language (e.g. the words within a sentence). Such an approach has two practical 
advantages: each input is much smaller (i.e. a single residue) and sequences of 

different lengths have no impact on the dimensions of the network. 
 
The basic architecture needed to handle data in this way is called a recurrent neural 

network (RNN), which is essentially the same as an FNN but with an added hidden 
state mechanism – often described as the RNN’s “memory” capability – for storing 

information about previous elements (e.g. amino acids) in the current sequence. 
 
However, a key limitation with a standard RNN is that, as the sequence gets longer, 

the amount of information retained about elements that appeared early in the 

sequences gets smaller. Hence, RNNs are said to have only “short-term memory”, 
whereas it is often important to capture long-range dependencies (e.g. between 

words far apart in a sentence or residues far apart in a protein sequence). The long 
short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is designed to 

address this problem by allowing the network to learn what it needs to remember 
(irrespective of where it occurs within the sequence) and what it can afford to forget. 

ERGO II (Springer et al., 2021) and pMTnet (Lu et al., 2021), two of the TCR-pMHC 
binding prediction tools benchmarked in Chapter 3, incorporate an LSTM. A third 

method, TCellMatch (Fischer et al., 2020), uses a bidirectional gated recurrent unit 
(GRU) model; a bidirectional RNN (Schuster et al., 1997) is one that proceeds 

through the sequence of elements in both directions, and a GRU (Cho et al., 2014) 

can be viewed as a simplified version of an LSTM. 
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Figure 2.1 Deep Learning Architectures. A neural network contains 3 main layers – an 
input layer, a hidden layer and an output layer. a. A simple feed forward network processing 
information in one direction. b. Recurrent Neural Network: An RNN stored the previous 
output in the memory and uses it as in additional input to the next state. c. An LSTM 
maintains a memory state to store important information for all time steps. d. CNN 
architecture: In this the input sequence is first converted into a numerical embedding using  
BLOSUM62 matrix resulting into a 5x20 matrix.  Next the convolution layers use the filters 
to extract the features. It is then passed through pooling layers. A fully connected layer then 
integrates the features and map to the output layer. 
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2.4 Transfer Learning 
 
 

2.4.1 Introduction 
 
As noted in section 2.1, the amount of TCR-pMHC sequence data (tens of thousands 

of samples) is dwarfed by the amount of unlabelled TCR sequence data (billions of 
samples), i.e. data from TCRs where there is no information about their potential 

antigenic targets. Unlabelled TCR sequence data contains a lot of potentially useful 

information about the relationships within and between TCR sequences. 
 
A strategy that enables one to exploit large quantities of unlabelled data is called 

transfer learning, where a preliminary model is trained on bulk unlabelled data (pre-
training) and then repurposed for the main task of interest (fine-tuning). The central 

concept behind transfer learning is that the pre-trained model should learn the 
“underlying grammar” of the domain from the input data. The term “underlying 

grammar” betrays the preeminent application area for transfer learning, namely 
within the field of natural language processing, but the term has also been adopted 

in the biological domain, for example, “we use unlabeled TCR sequences to learn 
the underlying grammar of the naturally occurring TCR sequence space” (K. Wu et 

al., 2021).  
 
Several transfer learning models have been developed that use bulk collections of 
protein sequences, notably ProtTrans (Elnaggar et al., 2021), trained on the Big 

Fantastic Database (BFD) (Steinegger et al., 2019). Two models are of particular 
relevance to this thesis: the TCR-BERT model  (K. Wu et al., 2021), developed using 

a dataset of 88,403 paired TCR sequences, and the STAPLER model (Kwee et al., 
2023) using nearly 160,000 CDR3 sequences and over 180,000 antigenic 9-mers. 
 

2.4.2 Transformers 
 
With long sequences (e.g. of words or amino acids), LSTMs struggle to capture long-

range dependencies because they process them sequentially, one element at a time, 
and encoded information about the whole sequence has to be compressed into a 

fixed-length vector. A transformer (Vaswani et al., 2017) is a deep learning 
architecture that addresses the preceding issues by a) scanning the whole sequence 

at each step and b) by assigning attention weights to tokens (e.g. words or residues) 
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based on their contribution to the transformer’s output (tokenisation is addressed in 

the next section). Several different types of attention mechanisms are possible: self-
attention, which focuses on relationships between tokens within a single sequence; 

cross-attention, which focuses on relationships between different sequences (e.g. 
between sequences from a TCR and an MHC molecule); and multi-head attention, 

which allows multiple dependencies to be captured for a single token. 
 
Several existing transformer-based models are relevant to this thesis. BERT 

(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018), a 
notable state-of-the-art natural language processing (NLP) Transformer model, has 

inspired two BERT-based models that address the TCR-pMHC binding prediction 
problem: TCR-BERT (K. Wu et al., 2021) and TCRBert (Yoo et al., 2024). The 

TPBTE transformer model (J. Wu et al., 2023) incorporates cross-attention between 

a TCR and an epitope in making TCR-pMHC binding predictions. Lastly, ATM-TCR 
(Cai et al., 2022) uses a multi-head attention to predict TCR-pMHC binding affinity. 
 
In this research, I have used a variant of BERT called DeBERTa (He et al., 2020) 
(4.3). DeBERTa uses a so-called “disentangled attention mechanism” whereby each 

token is represented by two vectors, one encoding its position and the other its 
contents. In the present context, this enables the model to work out whether, for 

example, it is the position of a given residue or its amino acid type that is more 
important. 
 

2.4.3 Tokenisation 
 
Tokenisation is the process of converting input data into tokens that are ultimately 

converted into the numerical representation required for the computation to take 
place. Much of this can be automated (e.g. using DeBERTa Tokenizer), but there 

are also choices to be made about what features will be treated as tokens. In the 
present context, the minimal and standard choice is to tokenise the individual amino 

acid residues. However, in this research, additional tokens were created for higher 

level features, notably a separate token for each of the different types of CDR 
(including the CDR2.5s) and for the sequence of the MHC molecule. 
 
More details are given in Appendix 1. 
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2.4.4 Pre-training 
 
The aim of pre-training is to train a model using a large set of unlabelled data (in the 
present context, TCR and MHC sequences) to address a preliminary task; the task 

should be one that will enable the model to learn the properties of the data that will 

subsequently prove beneficial when the model is transferred to the main task of 
interest (in the present context, the prediction of TCR-HLA associations). In this 

research the preliminary task involved using the masked language modelling (MLM) 
technique, which is widely used for training transformer models. Within a given TCR 

or MHC sequence, 40% of the residues were masked at random, and the model 
learned to predict the amino acid types of the masked residues. Such a task 

encourages the model to learn about the relationships between residues at different 
positions and between residues of different amino acid types. 
 
As there are no known associations between TCR and MHC sequences in the 
unlabelled dataset, the model was trained using a single TCR or MHC sequence at 

a time (both TCRs and MHCs are identified by their own domain-specific custom 

tokens). In pre-training, the DeBERTa model uses the Adam optimiser to minimise 
the overall prediction error by adjusting the model parameters.  
 

2.4.5 Fine-tuning 
 
Having pre-trained a model, it can be adapted to address a specific prediction task 
of interest. This involves adding one or more additional layers. For the TCR-HLA 

association prediction task, I used the ‘‘DeBERTaForSequenceClassification” class, 

to add a classification layer. At this stage the model was trained as a cross-encoder, 
with the sequences for the CDRs and MHC concatenated together as a single input. 

Only the new layer underwent modification. 
 
The DeBERTa TCR-HLA association predictor was fine-tuned multiple times on 

different datasets, as described in Chapter 4.  
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2.5 Data-related issues 
 
 
Central to the research presented in this thesis is the creation of a TCR-pMHC 

dataset from public resources, as described in section 3.2, and subsequently 
repurposed for the TCR-HLA associations task, as described in section 4.2. This 

section briefly addresses some underlying issues with TCR-pMHC binding data that 
will have undoubtedly impacted this research. 
 
Most of the collected data was derived from experiments using MHC multimers. Over 
80% of the records stored in VDJdb (Shugay et al., 2018) involved MHC dextramers, 

but the type of MHC multimer is not specified for the records stored in all resources, 

and an unknown proportion of the records in this research will have come from 
experiments using MHC tetramers (the second most common source of records in 

VDJdb). This is problematic because the binding affinity threshold for class I MHC 
tetramers is “significantly higher” (to quote Dolton et al.) than the CD8+ T cell 

activation threshold, implying a bias towards higher-affinity TCRs. This problem does 
not arise with dextramers (Dolton et al., 2014).  
 
A recent review highlights several potential issues with 10x Genomics data, including 
a bias towards high-specificity TCRs and concerns over non-specific binding 

(Hudson et al., 2023). Some 10x data was incorporated in the datasets used here, 
although efforts were made to remove the most unreliable samples from this source 

(see section 3.2.2). 
 
Some resources, such as IEDB (Vita et al., 2019), contain data accumulated over 
decades using a variety of different assays. The relative sensitivity and reliability of 

these different methods is hard to judge, as is the potential bias they may introduce, 
but there is at least one systematic comparison that highlights some of the potential 

issues (Y. Sun et al., 2003).  
 
Apart from issues related to TCR binding affinity, TCR-pMHC binding data is 

associated with several additional biases, notably those concerning the lack of data 
diversity with respect to HLA alleles, epitopes and the sources from which those 

epitopes derive. A recent analysis of various datasets, including some used in this 

research, concluded that they are skewed towards “the 3-6 most common HLA 
alleles” and “a limited number of epitopes, predominantly of viral origin” (Weber et 
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al., 2024). This is indeed reflected in the datasets used in this research, which have 

a strong bias towards a small number of CMV epitopes and two HLA alleles, HLA-
A*02:01 and HLA-A*03:01 (see Figures 3.2 and 4.1). 
 

2.5.1 Negative Data 
 
There is a limited quantity of experimentally validated negative TCR-pMHC binding 
data (i.e. cases where a given TCR is known not to bind to a given pMHC) in public 

resources. Given that some T cell assays have binding affinity thresholds that are 

not sensitive enough to pick up weak CD8+ TCR binders (as noted in the opening 
section of this chapter), there is also a risk that some samples labelled as negative 

are, in fact, undetected positives.  
 
In the absence of sufficient experimentally validated negative data, it is common 

practice to generate negative pairs by randomly mismatching TCRs with pMHCs. 
Given the propensity of TCRs to cross-react (see section 1.4.1), there is clearly a 

risk that any such mismatched pair might in fact be a positive, although the rate at 
which these false negatives occur is assumed to be low.  
 
Two different strategies have been implemented for generating negative data by 

mismatching TCRs with pMHCs. The first involves mismatching TCRs with pMHCs 
drawn exclusively from the positive dataset used for training and testing. Depending 

on the desired ratio of negatives to positives and the epitope imbalance within the 
dataset, creating sufficient negative samples may be problematic. The second 

approach is to randomly select TCRs from a different source. For example, Gao and 
co-workers selected (for a CDR3β-only prediction method) TCRs from the 

repertoires of 587 healthy patients (K. Wu et al., 2021) (Gao et al., 2023). However, 
it has been demonstrated multiple times that this type of approach may artificially 

boost the performance scores of a predictive tool because it is able to learn features 
of the TCR sequences that differ between the positive and negative sets and thereby 

make correct predictions without reference to the peptide (Grazioli et al., 2022; Moris 

et al., 2021).   
 
The first of these strategies was the one adopted for the research presented in this 

thesis (see sections 3.2.3 and 4.2.1). 
  



 51 

2.6 Computational Resources 
 
 

2.6.1 Open-source platforms 
 
The pre-trained models used in this research for TCR function prediction are stored 

on an open-source data science and machine learning platform called Hugging 
Face6 Hub. The platform’s Trainer class was used to train (during both pre-training 

and fine-tuning) the model that was developed for the TCR-HLA associations 

prediction task (see Chapter 4). The Trainer class uses the OPTUNA7 framework for 
hyperparameter optimisation, notably the learning rate and number of training 

epochs.  
 
One key advantage of Hugging Face is that it has an open-source framework called 

Transformers that provides support for transformer model development. It was used 
extensively for the research presented in this thesis.   
 

2.6.2 Cloud computing 
 
Highly complex Natural Language models require significant computational 

resources for building, training and testing. Cloud computing offered on-demand 
access to a shared pool of configurable computing resources and affording a way of  

avoiding the queuing time associated with HPC clusters. During my PhD, I made a 
successful application for an Oracle for Research grant, which allowed me to 

parallelise many of the training tasks and significantly expanded the scope and depth 
of model training and testing. 
  

 
6 https://huggingface.co/ 
7 https://optuna.org/ 
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Table 2.1 Computational resources that were used in this research. 

Name GPUs 
Specification 

TPU Specification Cost 

AWS (Amazon Web 
Services)  

8 x A100 (one of the 
available GPU 
instances) 

- £28/hour 

Birkbeck College 
servers 

8 x NVidia GeForce - - 

Google Research 
TPU Cloud 

- 5 x on-demand 
Cloud TPU v3 
devices; 
5 x on-demand 
Cloud TPU v2 
devices; 
100 preemptible 
Cloud TPU v2 
devices 

30 days free trial 

Oracle For 
Research 

2 x NVIDIA Tesla 
A10 

- £45,000 Grant for 
12 months 
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2.7 Discussion 
 
 
This chapter has set the context for the computational research presented in chapter 

3 and 4. It began by engaging with the broader context: what computational 
approaches can be used to address the TCR-pMHC prediction task and what are 

some of the key challenges? One of those challenges concerns the availability of 
good quality data. This issue is taken up subsequently in section 2.5 and will be 

revisited again in section 3.2. 
 
The other major focus of the chapter was on computational methods – both the 

various strategies used by others to address the TCR-pMHC prediction task (ranging 

from clustering to advanced deep learning strategies), and the DeBERTa-based 
transformer I developed for predicting TCR-HLA associations. Here the main 

motivation has been to explain some key differences between the various 
approaches and to provide a broad rationale for the choices made during this 

research (without going into technical details).  
 
This chapter ends with a brief insight into how access (or, at times, the lack of 

access) to Cloud-based computation resources played a vital role in this research 
which mainly focuses on developing a predictive model to answer one key question 

for TCR-antigen specificity, i.e. Can the given TCR of unknown antigen specificity 
bind to the given pMHC complex?   
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3 Benchmarking TCR-pMHC Binding Prediction 
Tools 

 
 
 

3.1 Introduction 
 
 
In the past few years, many TCR-pMHC binding prediction tools have been released,  
varying in the architectures and algorithms used, in the selection of biological 

features and data encoding strategies. Tool performance is reported (sometimes 
using different evaluation metrics) based on datasets that may vary significantly. 

Importantly, some datasets contain negative data that is associated with 
misleadingly high levels of performance (as discussed in section 2.5.4), and 

evaluations typically involve at least a subset of TCRs that are known to bind to 
pMHC complexes that are present in the training set. Hence, it is not feasible to make 

a useful comparison of the ability of these methods to generalise (i.e. assess their 

ability to predict whether a given TCR will bind to peptides that are not present in the 
training data), from the performance levels reported by the tools’ authors. 
 
In this thesis, the emphasis is firmly on the ability of tools to generalise. Given that 
only a small fraction of antigenic peptides are present in public datasets, the ability 

for a tool to generalise is a key measure of its potential usefulness, as has been 
widely acknowledged (Castorina et al., 2023; Deng et al., 2023; Montemurro et al., 

2022). Considering the vast combinatorial space of potential TCR-pMHC 
combinations, and the various processes that lead in practice to the creation of novel 

antigenic peptides – including the emergence of novel zoonotic diseases (e.g. 

SARS-CoV-2, Ebola, avian influenza), the rapid evolution of certain established viral 
pathogens (e.g. influenza A, HIV, norovirus), and the formation of neoantigens by 

tumour cells – it seems reasonable to assume that the ability to make generalised 
predictions of TCR-pMHC binding will remain an important goal for the foreseeable 

future. Equally, given the complexity of TCR-pMHC interactions and the poor 
coverage of TCR-pMHC space in public datasets suggests, it appears reasonable to 

assume that the ability of tools to generalise is likely to be constrained to regions 
within that space where there is scope to learn what might be termed “transferable 

binding patterns”, although it is unclear how such patterns may be characterised.  
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This chapter focuses on: the sources of data available for tool evaluation and the 

creation of a benchmark dataset (section 3.2); available TCR-pMHC binding 
prediction tools, and the selection of a subset of these tools for benchmarking 

(section 3.3); the choice of cross-validation strategy and performance metrics 
(section 3.4); and the results of the benchmarking exercise together with a 

correlation analysis exploring the relationship between properties of the data and 
predictive performance (section 3.5). But first, it is worth considering what concurrent 

benchmarking efforts have been undertaken in other research. 
 

3.1.1 Other benchmarking initiatives 
 
Several previous comparative assessments of TCR-pMHC binding prediction tools 
have been undertaken, each with important differences to the assessments 

presented here. Arguably the most important of these earlier assessments was the 
ImmRep 2022 community benchmarking initiative, with tool developers invited to 

participate in a workshop, and datasets made available for training and testing. The 
workshop’s aim was to “evaluate and compare the obtained outputs to classify the 

approaches and most importantly, to help identify an ideal dataset and optimal 
evaluation strategies for future follow-up efforts” (Meysman et al., 2023). A total of 

23 prediction models were evaluated during the workshop.  
 
The main difference between ImmRep 2022 and the benchmarking undertaken here 
is that the former focused exclusively on making predictions for TCR-pMHC 

complexes where the peptide is present in the training set (bound to at least one and 
often many distinct TCRs, none of which are present in the test set) – described as 

“the ‘seen’ epitope setting” (Meysman et al., 2023) – whereas the benchmark here 
focuses on generalisation to unseen peptides. Key lessons of the ImmRep 2022 

initiative are described as follows in the Abstract of the key publication arising from 
the workshop: “the use of paired-chain alpha-beta, as well as CDR1/2 or V/J 

information, when available, improves classification obtained with CDR3 data, 

independent of the underlying approach” (Meysman et al., 2023). Although it might 
appear reasonable to assume that these lessons also apply to the performance of 

tools in the “unseen” epitope setting, this should not be taken for granted and 
additional factors are likely to be important, as investigated in this thesis. 
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To my knowledge, only two benchmark evaluations focusing on the generalised 

(unseen peptide) TCR-pMHC binding prediction task have been published so far   
(Grazioli et al., 2022), (Deng et al., 2023) with the former confined to only two 

predictors and the latter confined to the most common HLA allele, HLA-A*02. Further 
information about these existing benchmark studies will be covered later in this 

chapter, but it is worth noting that there is a widespread belief within the field that, to 
quote the authors of one of these recent benchmark evaluations, “modern deep 

learning methods fail to generalize to unseen peptides” (Grazioli et al., 2022); the 
authors of the second such benchmarking study draw the same conclusions (Deng 

et al., 2023).  
 
 

3.2 Benchmark Datasets 
 
 
This section focuses on the creation of benchmark datasets suitable for the 

evaluation of TCR-pMHC binding prediction tools, with an emphasis on their ability 
to generalise to unseen peptides.  
 
Before considering the details, it is worth making two broad points. The first arises 
from the fact that many TCR-pMHC samples available in public databases only 

provide information about the TCR β chain and commonly just the CDR3β. 
Consequently, there is a trade-off between the number of TCR-pMHC samples and 

the amount of information – notably about the TCR – available about each sample. 
On the one hand, given the observations of Meysman and co-workers (quoted in 

section 3.1.1) concerning the predictive improvements observed in the “seen” 
epitope setting with the addition of  information about both TCR chains and all their 

CDRs (Meysman et al., 2023), it appears highly desirable to incorporate such 

information in a benchmark dataset designed to evaluate performance on the harder, 
unseen peptide task.  On the other hand, the performance of machine learning 

algorithms often improves with the amount of training data (up to some problem-
/tool-specific threshold). The decision taken here was to incorporate the maximal 

amount of information about TCRs within the dataset, while also expending a good 
deal of effort to maximise the number of samples by integrating data from multiple 

sources and imputing missing information where possible (as discussed below in 
sections 3.2.1 and 3.2.2). Given the extent of the work involved, the effort was split 



 57 

with a second member of Prof Adrian Shepherd’s research group, Justin Barton; 

decisions about what data to download and how to process it were taken collectively. 
 

Secondly, given that different prediction tools utilise data features in different ways 

(e.g. some represent the MHC molecule within a sample using a categorical 
encoding of its HLA allele name, whereas other encode parts of its amino-acid 

sequence), there is a need for multiple versions of a given benchmark dataset. Some 
of the implications of this are addressed in section 3.2.2, although most of the details 

are deferred until the discussion of benchmark tool selection in section 3.3.  
 

3.2.1 Sources of binding data 
 
The benchmark dataset was created using TCR-pMHC binding data selected from 
five public databases and repositories: VDJdb (Shugay et al., 2018), McPAS-TCR 

(Tickotsky et al., 2017), TBAdb (Wei Zhang et al., 2020), IEDB (Vita et al., 2019), 
and 10x Genomics public datasets (10X Genomics, Pleasanton, CA, USA; 

www.10xgenomics.com/datasets/). Although there is a degree of overlap between 
these databases, each contributed a sufficient number of unique samples to the final 

benchmark dataset to make the inclusion of all four worthwhile. Each resource will 

now be considered in turn.  
 
VDJdb (Shugay et al., 2018) is a curated database of T cell receptor sequences with 

known antigen specificities. It was downloaded on 06/01/2023 from 
https://vdjdb.cdr3.net/ with selection criteria: human TCRs with paired ⍺ and β chains 

associated with MHC I molecules.  
 
TBAdb (Wei Zhang et al., 2020) is a manually curated database containing both 

TCRs and B cell receptors with known antigenic targets that formed a discrete 
deposition within the Pan Immune Repertoire Database (PIRD). It was downloaded 

in its entirety on 05/05/2020 from https://db.cngb.org/pird/. (At the time of writing, 
TBAdb is not available via the preceding link but can be downloaded from 

https://gitlab.com/immunomind/immunarch/-/tree/master/private?ref_type=heads.)  
 
The Immune Epitope Database (IEDB) (Vita et al., 2019) is a large public database 
that stores information about B cell and T cell epitopes derived from experimental 

data. Data was downloaded from IEDB on 15/05/2023 from https://www.iedb.org/ 
with selection criteria: T cell assay data associated with MHC class I linear epitopes, 
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human host and any disease. Both “calculated” data (in which CDR3 locations are 

inferred via an automated analysis of TCR sequences) and “curated” data (in which 
CDR3 locations are assigned manually) were merged to maximise the number of 

complete records. 
 
McPAS-TCR (Tickotsky et al., 2017) is a manually curated database containing 

human and mouse TCR sequences with their respective antigens (associated with 
various pathologies). The most recent update of the database, dated 10th 

September 2022, was downloaded in its entirety from 
https://friedmanlab.weizmann.ac.il/McPAS-TCR/.  
 
From 10x Genomics, four BEAM-T and four multiplex datasets were downloaded on 

19/03/20203 from https://www.10xgenomics.com/datasets, these being the only 
human CD8+ T cell datasets available at that time. All were derived from PBMC 

samples. The BEAM-T datasets were associated with EBV, CMV, influenza and 
SARS-Cov2. The four multiplex datasets were from healthy donors.  
 

3.2.2 Data processing 
 
Prior to combining data from the different sources, the downloaded data was filtered 

and cleaned.  
 
The TBAdb and McPAS-TCR datasets were filtered to include only human TCR with 

paired chains. Some additional TBAdb entries were removed that had missing 
peptide or HLA information. 
 
With respect to the data downloaded from VDJdb, mislabelled samples were 
removed, notably entries that (in spite of the selection criteria applied when the data 

was downloaded) contained MHC allele names that are not associated with human 
class I (notably the mouse allele “H-2Kb” and names containing the class II-specific 

string “DRB”). ⍺ and β chain V gene annotations that contained only the gene name 

(e.g. TRBV10-3) were manually assigned the appropriate allele name (e.g. TRBV10-
3*02) by imputation, for example, by inferences derived from a comparison of the 

available sequence information (notably the sequence forming the start of the CDR3) 
with the canonical TCR reference sequences available from IMGT (Manso et al., 

2022)(URL: https://www.imgt.org/vquest/refseqh.html). 
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With respect to the data downloaded from IEDB, both “calculated” data (in which 

CDR3 locations are inferred via an automated analysis of TCR sequences) and 
“curated” data were merged to maximise the number of complete records, with 

missing values in the “calculated” set (e.g. the V and J alleles of TCR ⍺ and β chains) 
imputed from the “curated” data where possible. For IEDB entries with missing MHC 

information, data from VDJdb, McPAS-TCR, and TBAdb were used to impute the 
relevant MHC allele where possible. In all cases where the imputation of essential 

information proved impossible, the relevant entries were removed from the dataset. 
 
A subset of entries from several resources had MHCs specified only to the allele 

group level (e.g. HLA-A*02). Such MHCs were manually assigned to a specific HLA 
protein level (e.g. HLA-A*02:12) based on MHC-peptide binding data from other 

sources, notably the training set provided with NetMHCpan 4.1 (Reynisson et al., 

2020). Where no such evidence was found, allelic assignments were made to the 
allele that occurs most commonly in global populations according to the Allele 

Frequency Net Database (Gonzalez-Galarza et al., 2020) (e.g. in the case of allele 
group HLA-A*02, the most frequent protein-level allele is HLA-A*02:01).  
 
With respect to the data downloaded from 10x Genomics, cells were filtered to: 
include only productive, high-confidence, full-length ⍺β T cells with completely 

specified V and J genes; and exclude those not containing exactly two distinct TCR 
chain sequences (thereby removing dual-receptor T cells and experimental artefacts 

such as doublets and GEMs without cells). As a final step, the gene expression data 

associated with a given 10x experiment was used as the basis for identifying a 
subset of TCR-pMHC complexes considered to be “binding”, as follows: a given 

TCR-pMHC complex was considered to be “binding” if the associated peptide UMI 
count was greater than three standard deviations higher than the UMI count for the 

experiment’s negative control peptide. (Note that this approach to filtering 10x 
Genomics data, devised by Justin Barton in consultation with other members of Prof 

Shepherd’s research group, is simpler than the subsequently published ITRAP 
method (Povlsen et al., 2023); when applied to the 10x Genomics data used in this 

research, over 98% of the TCR-pMHC complexes selected by the two approaches 
were the same.) 
 
After converting the relevant fields of all datasets into a standardised format, the 

datasets were combined into a single set and duplicates were removed. Two final 
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filters were applied to this combined dataset: the first removed entries with peptides 

shorter than 8 or longer than 12 amino acids, and the second removed records with 
non-standard or ambiguous amino-acid types.  
 
Several of the TCR binding data repositories store only a minimal description of a 
given TCR consisting of its CDR3 sequences and its V and J gene identifiers. 

However, certain TCR-pMHC prediction models require either full-length TCR amino 
acid sequences or complete sets of their CDR sequences. In such cases, the Python 

tool Stitchr (Heather et al., 2018) was used to reconstitute the complete ⍺ and β 
chain amino acid sequences from their minimal descriptions. To specify the CDR1 

and CDR2 start and end residues within a reconstituted sequence, the antibody and 
TCR sequence numbering tool ANARCI (Dunbar & Deane, 2016) was used in 

combination with the CDR positional definitions specified by IMGT (Manso et al., 

2022). 
 
Several TCR-pMHC prediction models require HLA pseudo-sequences of the form 

devised by Nielsen and co-workers at DTU Health Tech to represent the MHC 
components of the TCR-pMHC complexes. Such pseudo-sequences consist of 34 

amino acid residues that are putative contact residues (occurring “within 4.0 Å of the 
peptide in any of a representative set of HLA-A and -B structures with nonamer 

peptides”) and known to be polymorphic (Nielsen et al., 2007).  
 
Finally, an analysis of the remaining samples in the dataset showed that 

approximately 50% of the positive samples were associated with a single human 

cytomegalovirus (CMV) epitope. This was considered undesirable as there was a 
risk that predictors trained on such a dataset would specialise in making prediction 

for this single epitope. Consequently, it was decided to randomly downsample this 
epitope from around 14,000 samples to 4,200. 
 
The final number of positive samples in the dataset was 16,220. The positive 
samples in the benchmark dataset breakdown in terms of epitopes is given in Figure 

3.1, and for HLA alleles in Figure 3.2. For comparison with other benchmark studies, 
the TChard dataset (Grazioli et al., 2022) is much larger, but most of the samples 

are CDR3β only. The Deng dataset (Deng et al., 2023) contains 15,331 positives – 

nearly as many as our own – despite being confined to HLA-A*02. However, whereas 
the Deng dataset only contains CDR3s (paired ⍺ and	β), ours contains full TCR ⍺ 

and	β sequences; in cases where it proved impossible to acquire a full sequence 



 61 

using Stitchr or the boundaries of CDRs 1 and 2 using ANARCI (as described above), 

the sample was removed from our dataset. 
 

 
Figure 3.1 Benchmark dataset: the proportion of positive samples associated with 
different epitopes. The 23 epitopes given their own slices are the ones used for testing 
during cross validation (as described below in section 3.4.1). 
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Figure 3.2 Benchmark dataset: the proportion of positive samples associated with 
different HLA class I alleles. 

 

3.2.3 Negatives data samples 
 
Most of the data sources used for the collection of positive samples (as discussed in 

section 3.2.1) contain few, if any, experimentally-verified negative TCR-pMHC 

samples (i.e. samples where there is experimental evidence that a specific TCR does 
not bind to a particular pMHC complex). As noted earlier (section 2.5.4), using 

negative data from experiments that are distinct from those used to collect the 
positive data, such as negative data derived from the large-scale characterisation of 

T cell binding within a few individuals, is liable to inflate the apparent performance of 
TCR-pMHC binding predictors, as they are capable of learning other distinctive 

features of the negative data (such as the particular combinations of HLA alleles and 
TCR encoding genes of the individuals from which the negative data is drawn). 

Consequently, for this research, negative data was generated from the positive 

dataset by randomly mismatching TCRs with pMHCs, a strategy widely adopted in 
other studies, including the recent Deng benchmark study (Deng et al., 2023). Every 

putative negative sample was screened against all available positive samples to 
exclude, as far as possible, the occurrence of randomly generated positives. 

Nevertheless, there remains a chance that a randomly paired TCR-pMHC will indeed 
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be an (as yet) unknown positive; without a better understanding of TCR cross-

reactivity, the precise risk is impossible to quantify, but presumed to be small (Deng 
et al., 2023). 
 
A second issue is the number of negative samples relative to the number of positives. 
On the one hand, the actual number of negatives (i.e. TCR-pMHC combinations 

where the TCR does not bind to the pMHC) that occur naturally is much greater than 
the number of positives. For this reason, some researchers have used datasets 

where the number of negatives is much higher than the number of positives, although 
the chosen ratio is essentially arbitrary. Examples include the ImmRep 

benchmarking study, which used a positive: negative ratio of 1:5 (Meysman et al., 
2023).   
 
In this research, we have chosen a 1:1 ratio, with each peptide having an equal 

number of positive and negative samples, an approach widely adopted in other 
research including the recent benchmarking paper by Deng and co-workers (Deng 

et al., 2023). This has the advantage that a smaller training set generally implies 
shorter training times – an important consideration given the constraints on access 

to computational resources that applied during this research. In cases (such as here) 
where a single peptide accounts for a large percentage of the positive samples, 

generating a high ratio of negative samples for that peptide becomes problematic.  
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3.3 Benchmark Tool Selection 
 
 

3.3.1 Survey of TCR-pMHC binding prediction tools 
 
In the past few years, more than a dozen TCR-pMHC prediction methods have been 

published, with an additional method – nuTCRacker (Barton et al., 2024 - 
unpublished) – having recently been developed in Prof Adrian Shepherd’s group. In 

terms of the approaches and architectures employed, these methods can be broadly 

categorised as follows (all the nomenclature used here is explained in sections 2.2, 
2.3 and 2.4): 
 

• Decision tree-based methods: epiTCR (Pham et al., 2023), TCRex (Gielis et 
al., 2019) and SETE (Tong et al., 2020); 

• Methods that use recurrent neural networks (including LSTMs): ERGO II 
(Springer et al., 2021), TCellMatch (Fischer et al., 2020) and pMTnet (Lu et 

al., 2021); 

• Methods that use CNNs or Fully Convolutional Networks: pMTnet (Lu et al., 
2021), NetTCR-2.0 and 2.1 (Montemurro et al., 2021, 2022), TITAN (Weber 
et al., 2021), DeepTCR (Sidhom et al., 2021), TEINet (Jiang et al., 2023) and 

TCRAI (Wen Zhang et al., 2021); 

• BERT-based methods: TCR-BERT (K. Wu et al., 2021), TCRBert (Yoo et al., 
2024) and nuTCRacker; 

• Methods that use autoencoders or variational autoencoders: ERGO II 
(Springer et al., 2021), DeepTCR (Sidhom et al., 2021) and pMTnet (Lu et 

al., 2021); 

• Transformer-based methods: ATM-TCR (Cai et al., 2022) , ATMTCR (Fang 
et al., 2022) and tcrformer (A. R. Khan et al., 2023); 

• Miscellaneous other approaches: TCRDist (Dash et al., 2017) uses distance-
based clustering, TITAN (Weber et al., 2021) uses a bimodal neural network 

architecture and TCRGP (Jokinen et al., 2021) is a Gaussian process 
classifier. 

 
Note that some methods use more than one approach (e.g. pMTnet uses an 
autoencoder to train an embedding of TCR sequences and an LSTM to train an 

embedding of pMHCs) and hence appear in more than one of the above categories. 
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Regarding the utilisation of TCR features, most methods use only CDR3β, but others 

have the option of using CDR3⍺ additionally (ERGO II) and/or alternatively (NetTCR; 
DeepTCR), and others require both CDR3s (TCellMatch, TCRAI). TCRGP requires 

a full set of CDRs (i.e. 1, 2, 2.5 and 3 for both ⍺ and β). Some methods incorporate 
TCR V and J gene information categorically (ERGO II, DeepTCR, TCRex, tcrformer), 

whereas nuTCRacker allows whole TCR sequence information to be used.  
 
Most methods omit MHC information altogether, but some incorporate it as a 34 

amino-acid pseudo-sequence (pMTnet, epiTCR, ATMTCR, nuTCRacker), whereas 
ERGO II incorporates it categorically. (For an explanation of HLA pseudo-

sequences, see section 3.2.2). NetTCR takes a different approach: it is restricted to 
making predictions for the most common HLA allele, HLA-A*02:01. 
 
Different approaches have been used to encode sequence information with 

BLOSUM matrices (pMTnet, epiTCR, NetTCR, TITAN, TCellMatch, TCRGP) and 
learned embeddings (ERGO II, TCR-BERT, TCRBert, DeepTCR, TEINet, TCRAI, 

ATM-TCR, ATMTCR, tcrformer,  nuTCRracker) being the most popular. TCRex uses 
the physicochemical properties of amino acids and pMTnet uses Atchley factors 

(Atchley et al., 2005). 
 

3.3.2 Selection of tools for benchmarking 
 
The first TCR-pMHC prediction method on the list for benchmarking was the in-
house tool nuTCRacker (Barton et al., 2024 - unpublished), as gaining an insight into 

the performance of this tool relative to others was a key motivation for this work. In 
choosing additional tools for benchmarking, the key criteria were that the tool had to 

be publicly available in a form that enabled it to be retrained using our own dataset 
and did not involve a lot of additional work. Tools using state-of-the-art deep learning 

approaches were preferred, as were those mentioned favourably in papers other 
than those written by the authors of a given tool. 
 
Each model was first trained and tested on the datasets provided by the authors in 

order to reproduce published results (AUC values), thereby gaining confidence that 
the tool was working correctly, given potential differences in the versions of Python 

and Python libraries being used. However, a small degree of difference from 
published results was tolerated, as the public versions of tools are often subject to 

ongoing refinement leading to minor changes in the levels of performance. 
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What follows is a brief description of each of the six tools used in the benchmark 

evaluation. Note that, as was the case in the recent Deng benchmarking study (Deng 
et al., 2023), no attempt was made to optimise tools with respect to our benchmark 

dataset. No scope for optimising parameters with new data. 
 
A) nuTCRacker  

Publication: (Barton et al., 2024 - unpublished) 
Architecture: DeBERTa transformer 

Input features: full TCR α and β sequences, peptide, MHC represented by pseudo-
sequences (see section 3.2.2); each residue treated as a token. 

Commentary: hyperparameter optimisation performed on pre-trained data, with 

minor fine-tuning performed thereafter using a small amount of labelled data. 
 
B) ERGO II  

Publication: (Springer et al., 2021) 
Architecture: LSTM, autoencoder 

Input features: paired CDR3α and CDR3β sequences encoded using autoencoder; 
putative epitope encoded using LSTM; MHC allele encoded categorically (with, for 

example, HLA-A*02:01 and HLA-A*02 treated as unrelated categories); germline 
gene information (Vα, Vβ, Jα, and Jβ) encoded categorically. 

Commentary: The following tool options were not used: the ability to make 
predictions for CD4+ T cells or without TCR α chain information. The ability to encode 

CDR3 information using an LSTM, which is a published feature of the tool, was not 

available in the version of ERGO II available via a GitHub repo. Non-trivial 
modifications to the ERGO II Python code were made to resolve library 

incompatibilities between those used by the ERGO II code and those installed on the 
Oracle Cloud Infrastructure. 
 
C) NetTCR2.1 
Publication: (Montemurro et al., 2022) 

Architecture: 1D CNN 
Input features: peptide and either a) all 6 CDRs (CDR123) or b) both CDR3s, with 

all sequences encoded using BLOSUM50.  

Commentary: Both the CDR123 and CDR3 versions were evaluated. 
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D) TEINet  

Publication: (Jiang et al., 2023) 
Architecture: autoencoder, fully connected neural network 

Input features: CDR3β and peptide, each encoded using a pretrained autoencoder 
model (TCRpeg) 

Commentary: The following tool option was not used: a dynamic strategy for 
generating negative data.   
 
E) ATM-TCR  
Publication: (Cai et al., 2022) 

Architecture: Two encoders (each with embedding layer and multi-head self-
attention mechanism), linear decoder 

Input features: CDR3β and peptide, each with its own encoder. 

Commentary: none.  
 
F) pMTnet  

Publication: (Lu et al., 2021) 
Architecture: stacked autoencoder, LSTM, deep neural network 

Input features: CDR3β encoded using Atchley factors + stacked autoencoder, 
peptide encoded using BLOSUM50 + LSTM, MHC represented by pseudo-

sequences (see section 3.2.2) and encoded using BLOSUM50 + LSTM. 
Commentary: The output for pMTnet represents a percentile rank of binding strength 

– the smaller the rank, the stronger the predicted binding. In a pre-benchmark 

evaluation using the authors’ own dataset, an AUC of around 0.75 was achieved 
(fairly close to the published AUC for this dataset) using a threshold of 0.5, with <0.5 

representing a “binder”. Hence a threshold of 0.5 was adopted for the subsequent 
benchmark evaluation. 
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3.4 Benchmarking strategy 
 
 

3.4.1 Cross validation 
 
To evaluate the ability of the tools described in section 3.3.2 to generalise (i.e. their 

ability to predict whether a given TCR will bind to peptides that are not present in the 
training data), a leave one group out cross-validation (LOGOCV) strategy was 

adopted. At a given iteration, a single group – consisting of all the positive and 

negative samples associated with a specific peptide – is used for testing, and all the 
remaining samples (none of which contain the chosen peptide) are used for training. 
 
A “full” LOGOCV approach would entail putting each peptide (with associated 
samples) in its own test set for a single iteration. However, many peptides in our 

dataset are associated with very few TCRs. To ensure that a test set peptide has 
sufficient training samples to draw meaningful conclusion about tool performance 

with respect to that peptide, we performed partial LOGOCV; only peptides 
associated with at least 50 TCRs (including both positive and negative) were 

assigned to their own test set. There are 23 such peptides in our benchmark dataset, 
hence the benchmarking strategy entailed a partial LOGOCV assessment with 23 

iterations. 
 

3.4.2 Choice of benchmarking metrics 
 
Strictly speaking, the TCR-pMHC binding prediction problem is not a binary 
classification task. Firstly, binding between a TCR and a pMHC complex is a matter 

of degree, and insofar that a meaningful binding/non-binding threshold can be 
specified, it is context depended (see section 1.4). Secondly, it is commonly the case 

that many different TCRs can bind to a given pMHC and a single TCR can bind to 

different pMHCs (see section 1.4). 
 
Nevertheless, nearly all publications in this field treat the TCR-pMHC prediction 

problem exclusively as a binary classification task evaluated using a dataset of TCR-
pMHC samples, often from diverse experimental sources, individually labelled as 

binders or non-binders with equal confidence; a tool makes predictions for each test 
set sample in turn and the area under the ROC curve (AUC) is calculated. 
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One important exception is the ImmRep study (Meysman et al., 2023), which 

calculated the epitope rank in addition to the standard AUC. For the epitope rank 
metric, a tool is required to make predictions for “every possible epitope seen during 

training”. The epitopes are then ranked according to the strength of their associated 
tool predictions and a score is derived from the position of the true epitope within the 

ranking. 
 
It is not clear that an epitope ranking strategy can be adapted to the unseen peptide 

context that is the focus of this research, as the epitope of current interest will not 
have been seen during training. Here I have followed the standard AUC approach. 

One advantage is that it makes it comparatively easy to perform downstream 
analyses such as the correlation analyses presented in section 3.5.2. It is also worth 

noting that the authors of the ImmRep paper conclude that “epitope ranking mostly, 

but not always follows binary classification performance” (Meysman et al., 2023). 
 
 

3.5 Benchmark Results 
 
 

3.5.1 Generalisation performance of tools 
 
Figure 3.3 shows the summary results for all seven TCR-pMHC binding prediction 
models evaluated in the benchmark. The plot shows ROC curves aggregated across 

all 23 epitopes selected for partial LOGOCV (as described in section 3.4.1), with a 

single AUC score for each tool given in the figure key. Only two methods perform 
notably better than random: nuTCRacker with an AUC of 0.7 and ERGO II with an 

AUC of 0.64. 
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Figure 3.3 Receiver operating characteristic (ROC) curves for seven TCR-pMHC 
prediction models evaluated on all 23 peptides used for partial LOGOCV. 

 
Figure 3.4 shows AUC results for the same set of tools broken down by individual 

peptide. Out of the 23 peptides, nuTCRacker has an AUC over 0.9 for five peptides 
and over 0.7 for nine peptides. The second best-performing tool, ERGO II, has an 

AUC over 0.9 for two peptides and over 0.7 for four peptides. The variation in 
predictive performance for different peptides is striking, as is the partial correlation 

in performance between the two methods: the four best ERGO II AUC scores are for 
peptides on which nuTCRacker scores very highly (AUC >0.9). 
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Figure 3.4 AUC scores for seven TCR-pMHC prediction models broken down by 
peptide. The 23 peptides used in the partial LOGOCV (see section 3.4.1) are listed on the 
x-axis. Each peptide has seven AUC scores associated with it represented by coloured 
bars, one for each prediction model. AUC is on the y-axis, with a dashed horizontal line 
indicating an AUC of 0.5, representing performance no better than random. The 
performance of the two best methods (from Figure 3.3) –  nuTCRacker and ERGO II – is 
shown to vary greatly between peptides but to be partially correlated, with the four best 
ERGO II AUC scores being for peptides on which nuTCRacker scores very highly. 
 

3.5.2 Correlation analysis 
 
As shown in Figure 3.4, the two best performing methods – nuTCRacker and ERGO 

II – both score highly on a small subset of peptides. However, these peptides do not 
appear to have anything in common. For example, GILGFVFTL is a 9-mer binding 

to HLA-A*02:01 associated with over 2,000 binding TCRs in the benchmark dataset, 
whereas RFPLTFGWCF is a 10-mer binding to HLA-A*24:02 associated with only 

61 binding TCRs, and (other than a centrally positioned phenylalanine (F)) they 
share no sequence-level characteristics. A third peptide, KLGGALQAK, binds to 

HLA-A*03:01 and is associated with over 4,000 binding TCRs. Like GILGFVFTL, it 

is a 9-mer with a glycine (G) at position 4. However, the AUC scores for 
KLGGALQAK are little better than random.  

Arguably this should not come as a surprise; if there is an explanation for the different 
levels of predictive accuracy associated with different peptides, we should expect to 

find it in the relationships between the TCR-pMHC complexes in the training and test 
set. To gain insights into the potential factors underpinning the observed differences 
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in prediction accuracy for different peptides in the benchmark dataset, a range of 

properties were selected, each quantifying a distinct aspect of the relationship 
between the training and test data. The properties can be summarised as follows: 

• The size of the training set (this can vary between iterations by over 20% 
because the number of samples associated with different test set peptides is 
highly variable).  

• MHC frequency: the number of training set samples containing MHCs with 
the same HLA allele as that of the pMHC complex in the test set.   

• Peptide similarity: the similarity between the test set peptide and the most 
similar peptide in the training set, as calculated using the BLOSUM62 score. 

• TCR similarity: various properties of the TCR data were explored involving 
combinations of a) one more TCR sequence features (e.g. the CDR3β), with 

similarities calculated using TCRdist3 (Mayer-Blackwell et al., 2021), and b)  
the number of similar training set TCRs to be taken into account. 

 
Having defined a set of properties, the value of a given property was calculated for 

all 23 peptides and the correlation between those values and the corresponding AUC 
scores calculated. Correlograms showing the correlations between selected 

properties and the corresponding AUC scores for nuTCRacker and ERGO II are 
shown in Figures 3.5 and 3.6 respectively. 
 
The correlations in Figure 3.5 suggest that the ability of nuTCRacker to make 
accurate TCR-pMHC binding predictions for a given target peptide depends on the 

training set having a) a sufficient number of samples with the same HLA allele as 
that of the target pMHC, b) at least one peptide that is sufficiently similar to the target 

peptide, and c) a small number of TCRs that are sufficiently similar to those 

associated with the target pMHC. With respect to TCR similarity, correlations for 
CDR3β sequences were notably stronger than for other CDRs, which makes sense 

given CDR3β’s pre-eminent role in forming TCR-peptide contacts. The correlations 
were not particularly sensitive to the number of similar training set CDR3βs that were 

taken into account, but 5 gave slightly higher correlation coefficients than 10 or 20. 
The size of the training set proved irrelevant and has not been plotted.  

This is potentially useful when considering whether nuTCRacker is likely to make 
accurate predictions when making TCR-pMHC binding predictions involving a novel 

peptide, although additional guidance (How many training samples with the same 
HLA allele? How similar does a training peptide need to be? How similar do the TCRs 
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need to be?) would be much more useful. However, given that nuTCRacker gives 

accurate predictions (AUC >0.9) for only five peptides and “reasonable” predictions 
(AUC >0.7) for only nine peptides, my judgement is that an attempt to derive more 

detailed guidance risks overinterpretation – there is simply insufficient data. This is 
even clearer for ERGO II, where the correlations are weaker (Figure 3.6). 
 

 
Figure 3.5 Correlogram showing the correlation between AUC and key measures of 
training/test relationships for nuTCRacker. CDR3b Similarity Top5= the similarity, as 
measured using TCRdist3, between the 5 most similar CDR3β sequences from positive 
samples in the training set to any (non-identical) CDR3β sequence from a positive sample 
in the test set; MHC Size (log) = the log of the number of training patterns having the same 
HLA allele as that of the test set complex; BLOSUM max = the similarity between the test 
set peptide and the most similar peptide in the training set calculated using the BLOSUM62 
matrix. The Pearson correlation coefficient is on the x-axis. These correlations suggest that 
properties of the training/test set relationship associated with each of the three TCR-pMHC 
components contribute to overall prediction accuracy: MHC (MHC Size = 0.46), peptide 
(BLOSUM Max = 0.36) and TCR (CDR3b Similarity Top10= 0.29). 
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Figure 3.6 Correlogram showing the correlation between AUC and various measures 
of training/test relationships for ERGO II. For an explanation of the row labels, see the 
caption to Figure 3.5. The Pearson correlation coefficient is on the x-axis. The correlations 
with AUC are weaker than those for nuTCRacker (Figure 3.5), which is to be expected, 
given that ERGO II makes reasonable predictions (AUC >0.7) for only four of the 23 
peptides.  
 
 
Nevertheless, it is worth returning to the three peptides mentioned at the start of this 

section: GILGFVFTL and RFPLTFGWCF that score highly with both nuTCRacker 
and ERGO II, and KLGGALQAK that scores not much better than random. Table 3.1 

shows the peptide-specific values for the three key properties plotted in the 
nuTCRacker correlogram (Figure 3.5) for each of these peptides, together with an 

additional row showing the most similar peptide in their respective training sets. Here 
it is clear that there are highly similar training set peptides for GILGFVFTL and 

RFPLTFGWCF, but no similar peptide for KLGGALQAK; this represents a plausible 
reason for the disparity in prediction accuracy in these cases. However, other high-

scoring test set peptides do not have very similar peptide in the training set, as 

illustrated by two additional peptides – NLVPMVATV and GLCTLVAML – in Table 
3.1.
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Table 3.1 Key training/test set properties for three peptides of interest. 

Peptide GILGFVFTL RFPLTFGWCF KLGGALQAK NLVPMVATV GLCTLVAML 

BLOSUM Max 39 (45) 62 21 (43) 27 (43)  27 (45) 

MHC Size (log) 9.12 6.58 6.94 9.42 9.43 

MHC HLA-A*02:01 HLA-A*24:02 HLA-A*03:01 HLA-A*02:01 HLA-A*02:01 

Same Peptide Score 45 65 43 43 45 

Similarity Percent with self 86.67 95.38 58.14 67.44 60 
Similar Peptide GILEFVFTL RYPLTFGWCF ELAGIGALTV VPHHVVATV YVFCTVNAL 

 
Note: In the final row, amino acid residues that match the target peptide at a given position are show in red.



 76 

One factor that is shared by six of the nine peptides for which nuTCRacker has AUCs 

over 0.7 (including NLVPMVATV and GLCTLVAML) is their association with HLA-
A*02:01, the most common HLA allele in the dataset. (An additional four, poorly 

predicted test peptides are also associated with HLA-A*02:01.)  
 
 

3.6 Discussion 
 
 
In the benchmarking study presented in this chapter, two tools showed a moderate 
ability to generalise to unseen peptides, with potentially useful levels of prediction 

accuracy (AUC >0.75) being achieved by nuTCRacker in around a third of cases, 
but less than a quarter of cases with ERGO II. This outcome challenges the 

widespread assumption that even “modern deep learning methods” cannot 
generalise (to quote (Grazioli et al., 2022)); in a non-trivial proportion of cases, 

generalisation is possible. Moreover, although two of the most accurately predicted 

test set peptides had, in their corresponding training sets, peptides that differ by only 
a single residue, other well-predicted peptides had no close training set peptides 

(see NLVMVATV and GLCTLVAML in Table 3.1), demonstrating that this is not 
merely a case of marginal levels of generalisation to near-identical samples.  
 
Although nuTCRacker employs state-of-the-art deep learning techniques and utilises 
more TCR features than nearly every other method, this is not true for ERGO II. 

Explaining why these two tools performed better than the others has proved elusive.  
 
The correlation analysis in section 3.5.2 suggests that all three molecular 

components — TCR, peptide and MHC — made contributions to prediction 
accuracy, and that having a training set that contains a few similar TCRs, at least 

one similar peptide and a good number of samples with the same HLA allele is an 

indication that predictions have the potential to be accurate. However, even from the 
small number of contrasting examples shown in Table 3.1, it seems clear that 

different combinations of factors are contributing when accurate predictions are 
made for different unseen peptides. It is likely that there are additional factors that 

have yet to be explored that may provide further insights, for example, the 
relationships between different HLA alleles (e.g. in terms of HLA supertypes (Sidney 

et al., 2008)), or biases within the dataset (e.g. with respect to the number of peptides 
associated with each HLA allele, a topic addressed in section 4.4.4 in a different 



 77 

context). However, it is likely that the various factors are connected in complex ways, 

with the impact on prediction accuracy varying in different parts of TCR-pMHC 
space; it seems unlikely that there are simple and universal insights that have yet to 

be discovered. 
  
In terms of different ways of approaching the research presented here, the 

BLOSUM62 matrix is unlikely to be the optimal way of measuring peptide similarity, 
as it is designed to score alignments between sequences that are evolutionarily 

divergent. A better approach would consider what constraints should be applied to 
the alignment of antigenic peptides, given knowledge about docking footprints and 

how peptides of different length are accommodated in the MHC binding groove. 
  
Finally, given more computational resources, it would be worth exploring the impact 
of using different datasets and different ways of handling the binding/non-binding 

threshold. The “optimal" dataset will be tool dependent, but also vary between 
applications. For example, a tool/dataset combination that performs well when 

ranking the likelihood of TCRs binding to a known pMHC may be poor at repertoire 
annotation. 
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4 Developing a Tool to Predict TCR-HLA 
Associations 

 
 
 

4.1 Introduction 
 
 
The TCR-pMHC prediction task addressed in Chapter 3 makes the implicit 
assumption that the target MHC complexes in the context of the peptide that it 

presents to the TCR, are known in advance – the question is: Which of the available 
TCRs does a given pMHC bind to? However, a common scenario arising from single-

cell repertoire sequencing initiatives is that the TCRs in the repertoire is known, but 
not the pMHCs.  
 
In such circumstances, it is worth getting a feel for the vastness of peptide-MHC 
space that one would theoretically need to explore in order to pin down the pMHC 

target of every TCR in a repertoire. Regarding the likely peptide targets, a T cell 

repertoire will contain a diverse population of long-lived memory cells targeting 
specific peptides within the pathogens that the host has encountered, and most of 

those pathogens are unlikely to have been identified. For example, it is estimated 
that adults catch two or three common colds a year on average, and over 200 viral 

strains have been identified that cause cold symptoms, some of the commonest 
being from widely different regions of the viral taxonomic classification (e.g. 

rhinoviruses and adenoviruses (Mackie, 2003)). With regards to MHC class I, there 
are currently nearly 27,000 HLA-A, -B and -C alleles in the IPD-IMGT/HLA Database 

(Barker et al., 2023) (URL www.ebi.ac.uk/ipd/imgt/hla/index.html, accessed 

07/09/2024) and there may be millions yet to be discovered8. Bearing these points 
in mind, it is easy to see that a strategy capable of reducing the vast combinatorial 

challenges posed by unconstrained peptide-MHC space are likely to be of practical 
benefit when making TCR-pMHC binding predictions in the context of TCR 

repertoires. One such strategy is to predict the likely HLA restriction of a given TCR. 
 

 
8 James Robinson, Senior Bioinformatics Scientist at the Anthony Nolan Research Institute, 
refers to an estimated total of 8 to 9 million HLA-I alleles in an Anthony Nolan blog posting at 
https://www.anthonynolan.org/blog/2017/08/hla-typing-our-lifesaving-research 
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The focus of this chapter is on the development of a tool for predicting the likely MHC 

target of a human CD8+ TCR irrespective of the peptide bound to that MHC 
molecule. This task is formulated in terms of TCR and MHC in isolation by, in effect, 

removing the peptides from TCR-pMHC complexes. Given that TCRs do not bind to 
MHC molecules without a peptide being present, I describe this as the task of 

predicting TCR-HLA associations rather than TCR-MHC binding, although both 
terms are used in the literature (see section 4.1.2). If a TCR is said to “have an 

association” with a particular type of MHC molecule, it implies that the TCR can form 
a TCR-pMHC complex involving that MHC provided the latter has a suitable peptide 

bound within its groove. 
 
In the remainder of this section, I will provide a more detailed introduction to the task 

of predicting TCR-HLA associations (section 4.1.1) and discuss other attempts to 

address it (section 4.1.2), before moving on to consider: the creation of a dataset for 
evaluating a TCR-HLA associations prediction method (section 4.2); explaining the 

tool I built to address the task (section 4.3); the choice of evaluation strategies and 
performance metrics (section 4.4); and the performance of the tool on both “seen” 

and “unseen” HLA types, together with a correlation analysis exploring the 
relationship between properties of the data and predictive performance (section 4.5).  
 

4.1.1 On the prediction of TCR-HLA associations 
 
To gain a sense of the nature and scale of the challenge involved in the prediction 

of TCR-HLA associations, it is worth considering important aspects of the underlying 
biology that shape this task.  
 
When a TCR binds to a pMHC, the number and location of the contacts between the 
TCR and the MHC molecule are very different to those between the TCR and the 

peptide. In brief, the MHC residues that are contact with the TCR are mainly along 
the exposed “top” of the ⍺-domains that form the MHC groove, and multiple CDRs 

are likely to be in contact with the MHC molecule, although the position of the TCR 

with respect to the MHC’s ⍺-domains and which combination of CDRs are involved 
can vary considerably, depending on the orientation of the two molecules (for a more 

detailed discussion, see section 1.4.2). Whereas many TCR-pMHC prediction tools 
focus exclusively on the sequences of the CDR3β and peptide, this is clearly 
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inappropriate from the perspective of TCR-HLA associations. The choice of TCR and 

MHC features for addressing this task is discussed further in section 4.2. 
 
TCRs are, to a significant extent, HLA restricted, i.e. there is a strong tendency for 

TCRs to bind exclusively (or predominantly) to a single type of MHC  molecule  (or 
closely related MHC molecules). The wording in the preceding sentence reflects the 

fact that the extent of HLA restriction is hard to pin down, as a particular TCR may 
only bind to a given MHC molecule when the latter is in complex with one or more 

specific peptides (and there is a near-infinite number of such peptides), and most 
MHC molecules are, as noted earlier, yet to be discovered. Hence, strictly speaking, 

the TCR-HLA associations prediction task (much like the TCR-pMHC binding 
prediction task, as discussed in section 3.4.2) is not a strictly binary classification 

task. However, here I have chosen to treat it as a binary classification task for two 

main reasons: consistency with previous work on this problem (see section 4.1.2); 
and to simplify the correlation analyses presented in section 4.5. 
 
When the topic of TCR-HLA associations is considered from the perspective of TCR 
repertoire annotation, potentially useful constraints may apply. It is reasonable to 

assume that all the TCRs present within a single repertoire will have an association 
with at least one of the MHC molecules expressed by the individual from whom the 

repertoire was collected, given how the T cell thymic selection process works (see 
section 1.1.3). That individual will express MHCs associated with a limited number 

of HLA alleles – one allele (in the homozygous case) or two alleles (in the 

heterozygous case) — for each of the different types of HLA gene, such as HLA-A 
and HLA-B (MHC class I genes are discussed briefly in section 1.2.1). When 

repertoires come from HLA-typed individuals, this limited number of HLA alleles will 
be known. For individuals that have not been HLA-typed, if their ethnic origin is 

known, the most common HLA alleles observed in that ethnic group can be 
ascertained (at least for ethnicities that have been well studied) from the Allele 

Frequency Net Database (Gonzalez-Galarza et al., 2020) 
(www.allelefrequencies.net/hla.asp).  
 
Regarding the target antigen, in cases where pre- and post-vaccination repertoires9 
are available, clonal expansion observed in a post-vaccination sample is often 

 
9 Although a majority of the vaccines are antibody based, there can be an internal CD8+ 
response and that can reduce the risk of disease caused by pandemic viruses (Gilbert, 2013). 
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assumed to have arisen in response to antigens belonging to the pathogen that was 

targeted by the vaccine (although a response to other components of the vaccine, 
or to an unrelated infectious agent, is not uncommon). More generally, it is known 

that individuals who share the same HLA allele may target the same “public” epitope, 
and some of these public epitopes have already been identified. For example, a 

recent study found that all 50 members of a cohort of COVID-19 convalescents 
sharing at least one common HLA-I allele produced T cells that recognised four 

SARS-CoV-2 epitopes, with an additional four epitopes recognised by 80% or more 
of that cohort (Meyer et al., 2023).   
 
Ultimately, the most useful and generally applicable constraint is arguably the fact 
that TCRs from the repertoire of a single individual will have associations with only 

a small number of different MHC molecules – only six “classical” MHC-I molecules if 

the individual is heterozygous with respect to HLA-A, HLA-B and HLA-C – and that 
number is fixed (in contrast to the vast and changing “population” of antigenic 

peptides that TCRs may encounter). Given a sufficiently accurate prediction method, 
it may be feasible to work out an individual’s HLA type computationally. For example, 

if the number of predicted TCR-HLA associations is notably higher for two HLA-A 
alleles, the individual is likely to be heterozygous at this locus and any predicted 

associations involving other HLA-A alleles are likely incorrect. However, in cases 
where the number of predicted TCR-HLA associations is notably higher for only a 

single HLA-A allele, it may be infeasible to distinguish between a homozygous 

individual and one who has a second HLA-A allele that (as is not uncommon) is 
expressed at low levels (for an investigation of differential expression levels of HLA-

A alleles, see (Ramsuran et al., 2015)).  
 

4.1.2 Previous work on predicting TCR-HLA associations 
 
Existing methods that predict TCR-HLA associations can be broadly split into three 

categories: HLA-typing methods, antigen specificity-based methods, and general 

TCR-HLA association methods. 
 
HLA-typing methods focus on predicting the HLA-type of the individual from which a 

TCR repertoire was derived and are deemed to have succeeded if the true HLA-type 
of the individual is predicted correctly irrespective of the number (or proportion) of 

TCR-HLA associations correctly identified. An example is the HLA-typing method 
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developed by Ortega and co-workers, who undertook a large-scale statistical 

analysis of HLA-typed datasets to identify TCR⍺ and TCRβ chains likely to be 
associated with specific HLA alleles, and subsequently created HLA-specific logistic 

regression models to predict whether a given repertoire is associated with particular 
alleles. The authors report an AUC of 0.96 for their TCR β chain models when 

applied to an independent dataset of 46 HLA-typed individuals (Ortega et al., 2024). 
This work overlaps with other research into the occurrence patterns of public TCRs 

(i.e. TCRs found in multiple individuals) – see, for example, the paper “Human T cell 
receptor occurrence patterns encode immune history, genetic background, and 

receptor specificity” (DeWitt et al., 2018). 
 
Methods that focus on the identification of TCR antigen specificity may address HLA 

restriction as a secondary consideration, based on the observation that TCRs 

binding to the same antigen and sharing similar sequences commonly also bind to 
the same MHC molecule. Typically, such methods focus on the identification of 

conserved CDR3 motifs. For example, Glanville and co-workers identified five CD4+ 
TCR antigen specificity groups in 22 Mycobacterium tuberculosis-infected 

individuals of which four were associated with one or two HLA-II alleles (Glanville et 
al., 2017). 
 
The research presented in this thesis fits into the third category of method – those 
that seek to predict TCR-HLA associations without directly considering whether  a 

given TCR is public or has a particular antigenic target. I am aware of two methods 

having been published so far: CLAIRE (Glazer et al., 2022) and DePTH (Liu et al., 
2023). Both are worth considering in some detail. 
 
CLAIRE (Glazer et al., 2022) is a deep learning predictor that uses a pre-trained 
autoencoder and CNN with two convolutional layers to predict CD4+ and CD8+ TCR-

HLA associations given the following input: information about the TCR β chain and 
optional ⍺ chain consisting of the CDR3 sequence plus V and J gene information 

encoded categorically; and the HLA allele encoded categorically. Different versions 
of CLAIRE were developed using different sets of data; the version tested using 

McPAS data achieved an AUC of 0.87, whereas the version tested using VDJdb 
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achieved an AUC of 0.7210. Additional tests that involved applying the different 

versions of CLAIRE to multiple bulk sequence datasets were less successful, with 
nearly all AUCs less than 0.6 and several at or close to 0.5. 
 
DePTH (Liu et al., 2023) is a neural network-based predictor with multiple fully 
connected layers and a separate CNN for handling CDR3 data only. Like CLAIRE, it 

makes predictions for both CD4+ and CD8+ TCR-HLA associations and works with 
the following input: sequences for all six standard CDRs plus CDR2.5 and HLA allele 

pseudo-sequences. DePTH was trained and tested using public TCRs (i.e. TCRs 
found in a minimum of two individuals) from the repertoires of over 600 HLA-typed 

individuals in the CMV study conducted by Emerson and co-workers (Emerson et 
al., 2017), with the HLA associations of the public TCRs determined by a preliminary 

statistically assessment. 6,323 TCR-HLA-I pairs were identified with five times as 

many negatives as positives (the relative HLA frequencies are the same for positives 
and negatives). The authors report an AUC of 0.82 for TCR-HLA associations when 

the HLA is also present in the training set, falling to AUCs of between 0.64 and 0.69 
in “unseen” HLA mode, with DePTH successively retrained with TCR-HLA 

associations for the three most common HLA-I alleles (HLA-B*08:01, HLA-B*07:02 
and HLA-C*07:01) omitted from the training set and used exclusively for testing. 
 
 

4.2 TCR-HLA Associations Datasets  
 
 
This section focuses on the creation of datasets suitable for evaluating the tool I 

developed for predicting TCR-HLA associations (the tool itself is described below in 
section 4.3). 
 

4.2.1 Labelled data sources, filtering and negative data 
 
For this task, the TCR-pMHC binding prediction benchmark dataset described in 

section 3.2 – containing data drawn from five public resources: VDJdb (Shugay et 

 
10 After multiple re-readings of the CLAIRE paper, I remain uncertain what dataset (or datasets) 
were used for training CLAIRE with respect to these two results. On the one hand, it is clear 
that there is a version of CLAIRE trained exclusively on McPAS; on the other hand, it is stated 
that “We used again the McPAS, and enlarged it with the VDJDB dataset”. The latter is shortly 
before the following: “The AUC obtained from the McPAS dataset was significantly better than 
the one from VDJdb (AUC 0.87 versus 0.72; Fig 4).” 
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al., 2018), McPAS-TCR (Tickotsky et al., 2017), TBAdb (Wei Zhang et al., 2020), 

IEDB (Vita et al., 2019), and 10x Genomics public datasets (10X Genomics, 
Pleasanton, CA, USA; www.10xgenomics.com/datasets/) – was repurposed for the 

prediction of TCR-HLA associations. Two major changes were applied to this original 
dataset.  

 
Firstly, peptides were removed from all records. Given that a small proportion [602 

out of 32,000] of the original records contained the same combination of TCR and 
MHC bound to different peptides, this produced a corresponding number of duplicate 

records, which were removed. In 12 cases, two or more TCR-HLA associations were 
found to contain the same TCR bound to different HLAs. Given the decision to treat 

the prediction of TCR-HLA associations as a binary problem, it was decided that, in 

these cases, only one, randomly selected TCR-HLA association would be retained 
in the dataset. (In retrospect, a cleaner solution would have been to simply remove 

all such records.)   
 
A key motivation in this research was to investigate HLA-specific correlations 

(analogous to the analysis of TCR-pMHC binding predictions presented in section 
3.5.2). To ensure that all dataset HLAs have sufficient training samples to draw 

meaningful conclusion about tool performance, only HLAs associated with at least 
40 TCRs in positive samples (implying a minimum of 80 records per HLA when 

negatives are taken into account) were retained. Within the remaining dataset, more 

than 50% of the samples were associated with a single HLA (HLA-A*03:01). These 
were downsampled to bring the number of TCR-HLA-A*03:01 associations close to 

the number for the second most highly represented HLA allele (HLA-A*02:01), 
leaving a total of 18,580 positive records.  
 
In the absence of true negatives, the equivalent strategy to that adopted for the TCR-
pMHC benchmark dataset (see section 3.2.3) was adopted here, with the same 

number of negative records being generated for a given HLA allele as the number of 
positive records associated with that allele, thereby double the total number of 

records to 37,160. After removing the duplicates found in both positive and negative 
records, the final dataset contained 35,890 records. This is what I will call the primary 

dataset. The final proportion of records associated with different HLA alleles in the 

primary dataset is shown in Figure 4.1. This dataset was used for the preliminary 
evaluation of DeepTHAWT’s performance to predict the association between a given 
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TCR and HLA using a standard 10-fold cross validation strategy as described in 

4.4.1. 

 
Figure 4.1 TCR-HLA associations in the primary dataset. The proportion of records 
associated with different HLA class I alleles. 
 
A second evaluation of the tool I developed was performed using non-overlapping 
subsets of the data from the primary dataset, namely VDJdb data for training and 

10x Genomics data for testing. In both cases, HLA-A*03:01 was the most common 
HLA allele and its records were downsampled such that the number of HLA-A*03:01 

records was close to the number of the second most common HLA allele in both 
datasets, HLA-A*02:01. This left a total of 14,319 positive samples in the VDJdb 

training set and 2,979 positive samples in the 10x Genomics test set, with an equal 
number of negatives per HLA in both sets. (Note that the combined total of positive 

records for these two datasets is less than 1,000 records fewer than the total for the 
whole primary dataset. This reflects the comparatively small number of unique 

records available from the other sources that contributed to the primary dataset.)  
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4.2.2 Selection of features based on biological knowledge 
 
As discussed in section 1.4.2, all six “classical” CDRs of a TCR are potentially 
involved in forming contacts with the MHC molecule, as well as the additional 

variable loop located between CDRs 2 and 3 known as CDR2.5 (Dash et al., 2017). 

The sequences of all eight of these CDRs are used as inputs to the TCR-HLA 
associations prediction tool presented in this thesis. The is the same set of TCR 

features chosen by the authors of DePTH (Liu et al., 2023) but differs from the set 
used by CLAIRE (Glazer et al., 2022), for which only CDR3 sequences encoded 

(with V and J gene information encoded categorically).   
 
In the TCR-pMHC binding prediction benchmark dataset, an MHC molecule is 

represented by a pseudo-sequence comprising a set of 34 residues that are 
putatively in contact with the peptide (see section 3.2.2). The same choice is made 

by the authors of DePTH (whereas CLAIRE encodes HLA allele names 
categorically).  However, whereas pseudo-sequences appear a good choice for the 

TCR-pMHC binding prediction task, direct contacts between TCR and MHC 

potentially involve a different and larger set of MHC residues, as discussed in section 
1.4.2. For these reasons, the entire sequences of the MHC α1 and α2 domains were 

selected for the model developed in this research.  
 

4.2.3 Unlabelled TCR data 
 
A key feature of the tool I developed is that it incorporates a pre-trained model of 

unlabelled TCRs, an approach known as transfer learning. (Transfer learning is 

discussed in section 2.4; details of the approach adopted here are given below in 
section 4.3.) To train this model, bulk TCR data was downloaded from two sources: 

iReceptor (Corrie et al., 2018) and 10x Genomics (10X Genomics, Pleasanton, CA, 
USA; www.10xgenomics.com/datasets/). In both cases, data was selected to include 

only productive sequences from human loci TRA or TRB having the CDR3, and V 
and J genes completely specified, with an additional “high confidence” criterion 

applied when downloading data from 10x Genomics. After the removal of duplicates, 
there remained a total of 410,499 TCRs with paired ⍺ + β chains and 24,429,131 

unpaired chains from iReceptor, and 202,094 paired records from 10x Genomics. 

MHC Class I sequences were downloaded from MHC Motif Atlas at 
http://mhcmotifatlas.org/class1 (Figure 4.2). 
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All labelled and unlabelled data was ultimately converted into numerical vectors 
using the Hugging Face Transformers Tokenizer (see section 2.4.3; further details 

are given in Appendix 1). 
 

 
 
Figure 4.2 Schematic Overview for DeepTHAWT Data. The pretraining TCR sequence 
data was collected from iReceptor and 10X Genomics. The MHC sequences were collected 
from MHC motif atlas. The fine tuning paired TCR-MHC data was collected from public 
repositories. 
 
 

4.3 Architectures and Algorithms 
 
 
The DeepTHAWT (Deep learning TCR-HLA Associations predictor With 
Transformer) tool developed to tackle the prediction of TCR-HLA associations 

implements a transfer learning approach (discussed in section 2.4). The most 
important component is the DeBERTa (Decoding-Enhanced BERT with 

Disentangled Attention) architecture (He et al., 2020). A DeBERTa-based 
transformer model was pre-trained using unlabelled TCR data (described above in 

section 4.2.3) and unlabelled MHC data (see below). The training was performed 

using masked language modelling (see section 2.4.4) by randomly masking 40% of 
the residues.  
 
Having developed the pre-trained model, it was available for fine-tuning (i.e. 
undertaking additional training) using a dataset of labelled TCR-HLA associations 
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(see section 4.2.1). At this stage, there is an additional requirement – that the 

associations data is  classified (in this instance a binary classification, i.e. “Is this 
record a real TCR-HLA association?”, true or false, 1 or 0). This is handled using a 

simple neural layer, known as a classification head, with the final binary prediction 
made via the application of the SoftMax function. The DeepTHAWT architecture is 

summarised in Figure 4.3. 
 
The choice of data features incorporated in the final model was based on a 

combination of prior knowledge about the contacts between TCRs and MHC 
molecules and subsequent computational evaluations. In a preliminary assessment 

at the pre-training stage, using full TCRs sequences was deemed impractical given 
available GPU resources, so TCR representation was limited to the eight “non-

classical” CDRs (including both CDR2.5s). In a preliminary evaluation at the fine-

tuning stage, representing MHCs by the complete sequences of their ⍺1 and ⍺2 
domains (downloaded from MHC Motif Atlas at http://mhcmotifatlas.org/class1) 

proved superior to using HLA pseudo-sequences (as described in section 3.2.2 and 
used by DePTH (Liu et al., 2023)). (The final pre-trained model has been saved in 

Shepherd Group’s private Hugging Face repository.)  
 

 
Figure 4.3 Schematic overview of the DeepTHAWT architecture. The model is 
developed using an open source machine learning framework called PyTorch11 which is 
based on Python and the Torch library. It uses the DeBERTa architecture and is 
implemented with Hugging Face Transformer Architecture.  
 
  

 
11 https://pytorch.org/ 
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4.4 Results for the Prediction of TCR-HLA Associations 
using DeepTHAWT  

 
 

4.4.1 DeepTHAWT 10-fold cross validation results 
 
A preliminary evaluation of DeepTHAWT’s performance was undertaken using a 
standard 10-fold cross-validation strategy on the primary dataset (described in 

section 4.2.1). In this evaluation, no attempt was made to prevent HLAs in the test 
sets from being present in the training set – i.e. the evaluation assesses the 

performance of the tool on “seen” HLAs – although no test set TCR was ever present 
in the corresponding training set.  
 
DeepTHAWT achieved an overall AUC of 0.68. This is considerably lower than the 

AUC of 0.82 reported for DePTH (Liu et al., 2023) and the AUC of 0.87 reported for 
CLAIRE on the McPAS dataset (Glazer et al., 2022), but quite close to the 0.72 

achieved by CLAIRE using VDJdb data. As in the case of TCR-pMHC binding 
prediction tools (that pre-empted the benchmarking research of Chapter 3), 

differences in the datasets used for training and testing are likely to be an important 
contributory factor here; indeed, the multiple AUC scores for different datasets 

reported in the CLAIRE paper demonstrate this point (Glazer et al., 2022).  
 
DeepTHAWT’s performance broken down by individual HLAs is shown in Figure 4.4. 

The highest AUC score is for HLA-A*02:01, which accounts for 31.4% of the data, 

whereas the lowest scores are for HLA-A*68:01 and HLA-B*40:01, which account 
for 0.5% and 0.3% of the data respectively (see Figure 4.1). However, the most 

highly represented HLA in the dataset, HLA-A*03:01 (35% of the data), has an AUC 
that might reasonably be described as “average”. Potential explanations for this 

disparity together with an exploration of factors that may contribute to the 
performance differences observed with different datasets is deferred until section 

4.4.4. 
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Figure 4.4 DeepTHAWT AUC scores for the primary dataset (aggregated across the 
10 cross-validation folds) broken down by HLA. Each bar shows the AUC calculated 
from all the predictions involving a given HLA (i.e. not by averaging the per-fold AUCs). 
Each error bar shows the variation in per-fold AUC scores for a given HLA. The three HLAs 
with the largest error bars – HLA-A*68:01, HLA-B*40:01 and  HLA-B*15:01 – have the 
smallest number of records in the dataset, of which the first two also have the lowest AUC 
scores. Proportion of records associated with each HLA are shown in figure 4.1. 
 

4.4.2 DeepTHAWT trained and tested on diWerent datasets 
 
The primary dataset used in the preceding evaluation (section 4.4.1) is highly 
diverse, combining data from five distinct sources: McPAS, VDJdb, TBAdb, IEDB 

and 10x Genomics (see section 3.2.1). To gain a different perspective on 
DeepTHAWT’s performance, it was retrained using only the data from VDJdb – the 

largest contributing source to the primary dataset – and tested on the 10x Genomics 
data.  As noted in section 4.2.1, HLA-A*03:01 (the most common HLA allele in both 

datasets) was downsampled in both the training and test sets. The final train and test 
datasets were checked for overlap, and if any were found, those records were 

removed from the train set.  

With this combination used for training and testing, DeepTHAWT achieved a higher 
AUC score of 0.76. This is much closer to the AUC scores achieved with CLAIRE 

(with McPAS and VDJdb) and DePTH (on a set of public TCRs). DeepTHAWT’s 
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performance on the four HLAs with sufficient data in the 10x Genomics dataset is 

shown in Figure 4.5. These results will be considered with those for the primary 
dataset (section 4.4.1) in section 4.4.4 below.  
 

 
Figure 4.5 HLA-specific AUC scores for DeepTHAWT trained on the VDJdb dataset 
and tested on the 10x Genomics dataset. There is no correlation between predictive 
performance and the number of per-HLA records in either the training or test sets. 
 

4.4.3 Generalisation performance of DeepTHAWT  
 
To test DeepTHAWT’s ability to generalisation to unseen HLAs, an equivalent leave 
one group out cross-validation (LOGOCV) strategy was adopted as previously used 

in the evaluation of TCR-pMHC binding prediction tools (sections 3.4.1 and 3.5.1). 

Here, the primary dataset (see section 4.2.1) was used for the evaluation; at each 
iteration, the TCR-HLA associations involving a single HLA allele were omitted from 

the training set and used exclusively for testing.  
 
DeepTHAWT achieved an overall AUC of 0.50, in other words no better than 

random. This compares with AUCs between 0.64 and 0.69 when DePTH was applied 
to the three most common HLA alleles in its dataset (Liu et al., 2023). The 

performance of DeepTHAWT on individual HLAs is shown in Figure 4.6. The 



 92 

performance on HLA-A*02:01, the second most common HLA allele in the dataset, 

is particularly poor. This will be addressed in the next section. 
 

 
Figure 4.6 Generalised HLA-specific AUC scores for DeepTHAWT trained on the 
primary dataset (LOGOCV strategy). The proximity of most AUC scores to 0.5 reflects the 
overall, poor generalisation performance of the tool, with HLA-A*02:01 (the second most 
common HLA allele in the dataset) a striking and surprising worse-than-random outlier. 
 

4.4.4 Dataset analysis 
 
In this section, I will consider the underlying properties of the TCR-HLA associations 
data that may help to explain the disparities in performance observed between 

CLAIRE (Glazer et al., 2022), DePTH (Liu et al., 2023) and DeepTHAWT for different 
datasets and HLA alleles.  
 
DePTH stands out from the other two methods because it was trained and tested 
exclusively using public TCRs (Liu et al., 2023). It is worth noting that public TCRs 

may have characteristics that make them somewhat easier targets for prediction than 
TCRs in general. For example, it has been observed that public TCRs tend to be 

close to germline with the addition of few nucleotides during the process of V(D)J 
recombination (Venturi et al., 2006); V(D)J recombination is described briefly in 

section 1.3.1).  
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Regarding the data used by CLAIRE (Glazer et al., 2022) and DeepTHAWT, there 

is clearly a non-trivial degree of overlap between their respective datasets, as both 
incorporate data from McPAS and VDJdb. However, DeepTHAWT’s more stringent 

requirements (paired, full-length TCR ⍺ and β chains compared to CLAIRE’s CDR3 
sequence plus V and J gene annotations with ⍺ chain optional) mean that the 

quantity of suitable records is vastly different for the two tools. Hence, it is reported 
that CLAIRE’s VDJdb dataset contained 40,000 distinct TCRs (Glazer et al., 2022), 

whereas the total number of distinct TCRs in the DeepTHAWT primary dataset, 
drawn from five public sources (including VDJdb), is only 18,580 (and – at least 

below a certain, relatively high threshold – additional training data often leads to 
improved performance with machine learning prediction tools).  
 
The disparity in the number of primary dataset samples (equivalent to the number of 

TCRs) per HLA allele has already been summarised in Figure 4.1. In what follows, it 
is useful to bear in mind that, taken together, alleles HLA-A*02:01 and HLA-A*03:01 

account for over 65% of the records in the primary dataset, each with over 30% of 
the total number. Beyond the disparity of TCRs per HLA allele, there is a further 

disparity in terms of the number of unique peptides associated with different alleles. 
More than half of the unique peptides (well over 400) from the original set of TCR-

pMHC complexes (i.e. prior to the removal of the peptides and subsequent removal 
of duplicates) bind to MHC molecules that are encoded by a single HLA allele, HLA-

A*02:01. The distribution of unique peptides between different HLA alleles is shown 

in Figure 4.7. Contrastingly, allele HLA-A*03:01 – associated with the largest number 
of TCRs in the dataset – is only associated with 13 peptides from the original TCR-

pMHC set, and nearly all the HLA-A*03:01-associated TCRs bind in the presence of 
a single peptide, as shown in Figure 4.8. Although peptides are not represented in 

the TCR-HLA association prediction task, peptide diversity is linked to TCR diversity 
– specifically, TCRs binding to the same peptide are more likely to be similar to each 

other than TCRs binding to different peptides.  
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Figure 4.7 The number of unique peptides occurring in TCR-pMHC complexes that 
contributed to the primary dataset broken down by HLA allele. Note that alleles HLA-
A*02:01 and HLA-A*03:01 (columns 2 and 3) have a similar number of records in the 
dataset but are associated with very different numbers of peptides. 
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Figure 4.8 TCR-HLA-A*03:01 associations broken down by peptide. Peptides counts 
are for TCR-pMHC complexes that contributed to the primary dataset having MHC 
molecules encoded by the HLA-A*03:01 allele. Nearly all TCRs bind to peptide 
KLGGALQAK. 
 
One interesting feature of the DeepTHAWT results is that the highest AUC scores 

are for the HLA-A*02:01 allele in both the primary dataset 10-fold cross-validation 
evaluation (section 4.4.1) and the VDJdb (training) / 10x Genomics (test) evaluation 

(section 4.4.2). In both cases, TCR-HLA-A*02:01 associations are present in both 
training and test sets. Yet in the generalised performance (section 4.4.3), the AUC 

score for HLA-A*02:01 (with TCR-HLA-A*02:01 associations present exclusively in 
the test set) was by far the lowest – indeed worse than random (see Figure 4.6). At 

least part of the answer is likely to be that HLA-A*02:01 is special. Firstly, allele group 

HLA-A*02 occurs at high frequencies in most human populations (see the Allele 
Frequency Net Database https://allelefrequencies.net/hla.asp), and HLA-A*02:01 is 

the most common HLA-A*02 allele. Secondly, Blevins and co-workers conclude that 
human TCRs are “enriched in the capacity to engage” a polymorphic, positively 

charged ‘hot-spot’ region” that is “almost exclusive” to the α1-helix of HLA-A*02:01-
encoded MHC molecules (Blevins et al., 2016). This provides a potential rationale 

for the discrepancy in performance: only when HLA-A*02:01 is present in the 
trainings set is a predictor capable of learning about the “almost exclusive” ‘hot-spot’ 
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region. (Whether other HLA alleles are associated with distinctive sequence features 

is unclear.) 
 

Notwithstanding these points, it has not proved possible to pin down the precise 
underlying causes for the poor predictive performance with HLA-A*02:01, which 

remains an unsolved puzzle.  
 
 

4.5 Correlation analysis 
 
 
This section investigates the correlation between the HLA-specific AUC scores of 
DeepTHAWT applied to the primary dataset using 10-fold cross-validation (as 

described in section 4.4.1) and various relationships between the training and test 
data evaluated with respect to each of the HLA alleles. In this case, the AUCs are 

calculated for each HLA allele at each of the ten folds; this was performed using only 

the six most common HLA alleles in order to ensure robust AUC calculation involving 
a sufficient number of test set TCR-HLA associations (i.e. at least 50) for every HLA 

allele. 
 
In summary, the relationships between the HLA-specific test set associations and 

the training set associations were defined with respect to the following properties: 

• The number of HLA-specific training set associations (i.e. TCRs) for the test 
set HLA allele of interest.  

• TCR similarity, which here measures the mean similarity between a) all the 
test set TCRs associated with the HLA allele of interest and b) all the TCRs 

in the corresponding training set. As in the correlation analysis for TCR-
pMHC binding prediction tools, various properties of the TCR data were 

explored involving combinations of: one more TCR sequence features (e.g. 
the CDR3β), with similarities calculated using TCRdist3 (Mayer-Blackwell et 

al., 2021); and the number of similar training set TCRs to be taken into 
account.  

 
Note that, with respect to the number of similar training set TCRs that are taken into 
account, a slightly different strategy was adopted to the one for the correlation 

analysis of TCR-pMHC binding prediction. Here a training set will typically contain 

many TCRs that are similar to those in the test set, as both training and test set 
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contain many TCRs associated with the same HLA allele (this was never the case 

for the nuTCRacker correlation analysis). Moreover, we are interested in the 
potential impact of each CDR on prediction accuracy (e.g. does having similar 

CDR1β sequences in the training set improve prediction accuracy for the HLA alleles 
in the test set?), and certain CDRs are more variable than others. One consequence 

is that many training set TCRs may have identical CDR1, 2 and/or 2.5 sequences to 
ones in the test set, with the proportion of identical sequences varying for different 

combinations of CDR and HLA. In looking for strong correlations, we should expect 
that (perhaps very) different proportions of the most similar sequences will prove 

optimal for different CDRs.    
 
The most highly correlated properties are shown in Figure 4.9. As expected, these 

differ in important respects from those for the nuTCRacker tool applied to the TCR-

pMHC binding prediction problem, for which the key correlations are shown in Figure 
3.5. With respect to TCR similarity, only a single TCR feature – the CDR3β – stands 

out for TCR-pMHC binding prediction, whereas for the prediction of TCR-HLA 
associations, all CDRs (including the non-classical CDR2.5s) are correlated to 

moderate degrees. This is broadly in line with expectations, as the CDR3β plays a 
dominant role in TCR-peptide binding, whereas different combinations of CDRs form 

contacts with the MHC molecule, depending on the mode of binding (see section 
1.4.2).  
 
It is also important that one does not directly interpret differences in the correlation 

values for different CDRs in terms of their relative biological importance for binding 
to the MHC molecule. These correlations between the AUC scores and different TCR 

features are influenced by several factors: by biases in the overall dataset; by the 
distribution of samples within the folds (given more time and resources, it would have 

been interesting to investigate how these numbers vary during additional 10-fold 
cross-validation runs with different random partitioning of the dataset); and by 

correlations between the degree of similarity observed in different features (e.g. if 
two sequences have similar CDR2αs, they are likely to have similar CDR2.5αs 

irrespective of whether either loop is in contact with the MHC molecule).   
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Figure 4.9 Correlogram showing the correlation between AUC and various measures 
of relationship between training data and HLA-specific test data. MHC Size = the 
number of training set records having the same HLA allele as the allele of interest in a 
given fold. For a given type of CDR, Similarity Top x is calculated as follows: firstly, the 
similarity is measured (using TCRdist3) between a) every sequence of that CDR type 
belonging to a given HLA/fold combination and b) every sequence of that CDR type in the 
corresponding dataset; secondly, the similarities are ranked, and the mean of the top x is 
calculated. There are notable correlations with AUC in all cases.  
 
 

4.6 Discussion 
 
 
This chapter has presented a novel transformer-based method, DeepTHAWT, for 
the prediction of TCR-HLA associations. Using repurposed versions of the dataset 

developed for benchmarking TCR-pMHC binding prediction tools (Chapter 3), 

DeepTHAWT achieved AUCs of 0.68 and 0.76 when the same HLAs were present 
in both training and test sets, but no better than random in the generalised, “unseen” 

case (with all records for a given HLA present exclusively in the test set). 
 
While this research was being undertaken, two model were published – CLAIRE 

(Glazer et al., 2022) and DePTH (Liu et al., 2023) – that address the same task using 
different datasets. Both achieved at least one AUC above 0.8 in the “seen” HLA case, 

with DePTH additionally reporting AUCs above 0.6 for three “unseen” HLAs. 
 

Taking the AUCs in isolation, DeepTHAWT appears to be the least successful of the 
three methods. However, as noted in section 4.4.4, CLAIRE was trained on a much 

larger dataset (its TCR feature requirements are less stringent) and DePTH was 
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trained using a dataset of public TCRs that may be somewhat easier targets for 

prediction than TCRs in general. Ultimately, the differences between the datasets 
used to evaluate these tools pose similar issues to those addressed in Chapter 3 for 

TCR-pMHC binding prediction tools – specifically, it is unclear how these tools would 
perform when applied to the same datasets. Even though the task of predicting TCR-

HLA associations is in its infancy, with (so far as I am aware) only three methods 
having been developed to date, it appears we have already reached the point where 

(preferably independent) benchmarking is needed if we are to understand the 
relative merits of different predictive tools.  
 
Both DeepTHAWT and CLAIRE performed rather differently when trained and tested 
on different combinations of dataset. Given the underlying complexities – the 

different proportions of HLA alleles, the different number of peptides bound to 

different MHC molecules, the different ways of measuring the binding of TCR-pMHC 
complexes and setting thresholds, and other potential biases (e.g. towards public 

TCRs or the selection of strong binders) – it is currently not possible to tease out the 
impact of different factors. Going forward, it is likely that the choice of dataset needs 

to be aligned to the intended application. In terms of the application raised at the 
outset of this chapter, namely the annotation of repertoire datasets, it is perhaps 

reasonable to conclude that only DePTH has a potential role to play (subject to 
further testing with different datasets), although one that is limited in terms of the 

number of HLA alleles it is able to make accurate predictions for and with a bias 

towards the annotation of public TCRs.   
 
As yet, no tool is capable of making useful predictions for unseen HLA alleles. 

Whereas it was argued in Chapter 3 that the ability of a TCR-pMHC binding 
prediction tool to generalise is a key measure of its potential usefulness, this is less 

true for the task of identifying the likely HLA associated with a given TCR, as 
(notwithstanding the very large number of HLA alleles discussed in section 4.1) a 

relatively small number of HLAs afford a large population coverage. As tools emerge 
that are capable of making accurate predictions for a relatively small number of very 

common HLA alleles, they are likely to become immediately useful. It is hoped that 
the research presented in this chapter will make a contribution towards this short-

term goal. 
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4.7 Code availability 
 
DeepTHAWT code is hosted on GitHub: https://github.com/TruptiAG/DeepTHAWT. 

The repository contains code for tokenising the data and finetuning the model. All 
the models and datasets are available on our lab’s Hugging Face hub here:  

https://huggingface.co/shepherdgroup. 
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5 Conclusion 
 
 
 

5.1 Main Findings 
 
 
This thesis has addressed    two distinct tasks – the prediction of TCR-pMHC binding 
and the prediction of TCR-HLA associations – using sequence-based computational 

prediction methods. The major findings of this research were as follows.  

Firstly, in the benchmarking study of TCR-pMHC binding predictors presented in 
Chapter 3, it was shown that two tools have a moderate ability to generalise to 

unseen peptides. In particular, it was shown that the new tool nuTCRacker 
(developed in Prof Adrian Shepherd’s group) achieved potentially useful levels of 

prediction accuracy (with an AUC greater than 0.75) in around a third of cases. This 
level of performance challenges the widespread assumption that TCR-pMHC 

binding predictors cannot generalise to unseen peptides. Moreover, although close 
similarities were found between a few of the unseen antigenic peptides and peptides 

in the training set, this was not generally the case.  
 
It is, however, important to remain cautious about the wider significance of these 
results given the inevitable biases of the dataset used to train and test the tools. Key 

biases are towards high-affinity TCRs bound to peptides from a narrow range of 
sources (most commonly viruses) and dominated by a small number of HLA alleles.  
 
A second finding was that, by looking at correlations between a) training/test set 
relationships and b) the corresponding levels of predictive accuracy (in the form of 

AUC scores), it is possible to suggest (in very broad terms) the minimal requirements 
for making accurate predictions, namely that the training set contains: a few similar 

TCRs, with particular reference to their CDR3β sequences; at least one similar 
peptide; and a large number of samples belonging to the same HLA allele. These 

are deliberately tentative conclusions, reflecting an awareness of the risk of over-

interpretation, particularly given the imbalances and biases inherent in the dataset. 
 

A third contribution was the development of a novel transformer-based method, 
DeepTHAWT, for the prediction of TCR-HLA associations. DeepTHAWT achieved 

AUCs of 0.68 and 0.76 when the same HLAs were present in both training and test 
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sets, but no better than random in the generalised, “unseen” case (with all records 

for a given HLA present exclusively in the test set). During the course of my PhD, 
two TCR-HLA association prediction tools were released. Taking all three tools 

together, it is clear that, even when using the same tool, significantly different levels 
of performance have been achieved with different datasets. Consequently, the 

relative merits of the different tools in terms of prediction accuracy is hard to judge.  
 
As with the TCR-pMHC binding predictors nuTCRacker and ERGO II, a correlation 

analysis was performed. As expected, given our knowledge of the contacts formed 
within TCR-pMHC complexes (see section 1.4.2), the analysis suggests that a wider 

set of CDRs make important contributions to the interactions between TCR and MHC 
than those between TCR and peptide.  
 
 

5.2 Limitations and Future Work 
 
 
The research presented in this thesis has several limitations. The first arises from 
the dataset used for tool benchmarking. Some of the limitations are an inevitable 

consequence of the current biases found in available data (for example the strong 
bias towards viral epitopes and a small number of common alleles). Although the 

most striking imbalances were reduced by downsampling (see sections 3.2.2 and 
4.2.1), the datasets used here – and more generally in published research within this 

field – are inherently biased, which means that conclusions need to be drawn 
cautiously and with strong caveats concerning their wider applicability.  
 
Different benchmarked tools had different requirements in terms of input features, 
most notably with respect to TCR sequences. All the samples in the benchmark 

dataset contained the data required by the most demanding tools, which meant that 

some samples that were perfectly sufficient for less demanding tools were filtered 
out. Arguably this put those tools at a disadvantage – they may have performed 

better with more data, and it can be argued that “fewer features, more data” is a 
legitimate design choice, given that access to additional training data may outweigh 

the potential benefits of incorporating additional features. Going forward, it would be 
useful to explore this trade-off explicitly, although the additional computational 

burden cannot be ignored.  
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Bearing in mind the observations in section 2.5 about the bias of certain T cell binding 

assays towards high-specificity TCRs, it would be useful to explore the impact on 
predictive performance. For example, to what extent does the inclusion of data 

derived from MHC tetramers in the training set degrade a tool’s ability to make 
predictions for (less biased) MHC dextramer-derived samples? However, given that 

there are likely to be other differences between tetramer and dextramer samples 
(e.g. their respective HLA allele distributions), and given the general lack of data and 

modest levels of tool performance, it may be infeasible to devise a convincing 
investigation.  
 
Regarding the analysis of results, the sub-optimality of BLOSUM62 as a means of 
measuring peptide similarity has already been noted; an alternative that takes into 

account context-specific constraints (discussed briefly in section 3.5) may be worth 

investigating. In the current analyses, HLA alleles are treated categorically, with the 
correlation between AUC, and the number of training MHC samples belonging to 

exactly the same HLA allele as the test sample MHCs, being one of the strongest 
correlations with both tasks. To take into account relationships between different but 

related HLA alleles, an additional “MHC supertype size” could be calculated that 
represents the number of training set MHCs that belong to the same HLA supertypes 

(Sidney et al., 2008) as those of the test samples. 
 
Finally, given the involvement of multiple CDRs in the formation of TCR-HLA 

associations, it may be worth investigating whether there is a correlation between 

predictive performance and the number of training/test set TCRs sharing the same 
(or a subset of the same) CDR canonical classes (see section 1.3.2). A method for 

predicting the CDR canonical classes from a TCR sequence has already been 
developed (Wong et al., 2019). 
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5.3 Final Thoughts 
 
 
At this point, it is worth taking a broader perspective. If the community working in this 

field wishes to make more than slow, incremental progress, it seems reasonable to 
conclude that several fundamental issues will need to be addressed. We need much 

better datasets, and the most efficient way to achieve this would be via high-quality 
experiments targeted at known gaps in the current pool of available data (for 

example, with respect to non-viral epitopes and less common HLA alleles). To 
properly understand which predictive strategies are most effective, there need to be 

regular, independent benchmarking efforts covering the main tasks of interest and 
involving multiple datasets. There also needs to be better communication between 

sequence-based and structure-based researchers, as the most effective future 

strategies are likely to involve both.  
 
However, any consideration as to what resources the preceding initiatives might 

require lies firmly outside the scope of this thesis.  
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Appendix 1 
 
 
 
DeepTHAWT Data Encoding 
 
 
The input data is encoded using Hugging Face Transformers’ Tokenizer (2.4.3). It 
tokenises the input sequences and converts the tokens to their corresponding IDs 

using a pre-training vocabulary. For example, the input data for CDRs has a 

vocabulary consisting of the letters for each amino acid residue and its 
corresponding ID. (e.g. "A": 5,"C": 6,"D": 7,"E": 8…etc). It also has four unique tokens 

for padding [PAD] (padding is needed when the sequences are of different lengths), 
a separator [SEP] between two CDR sequences,  a unique token [UNK] for unknown 

amino acids and a special token [CLS] inserted at the beginning of the input 
sequence that stands for classification. The vocabulary also has user-defined and 

domain-specific custom tokens. The tokens used for this task are:  [cdra1], [cdra2], 
[cdra25], [cdra3], [cdrb1], [cdrb2], [cdrb25], [cdrb3], [mhc]. These tokens are 

used to separate the CDR sequences from each other.  
 
The tokenizer is selected to match the pre-trained model being used for the task, as 
this ensures that the input sequences are split in the same way as those in the pre-

training corpus and uses the same vocabulary. The tokeniser used for this task was 
the DeBERTa (Decoding-enhanced BERT with disentangled attention) tokenizer.  Of 

the two available options – either a complete Python implementation (Slow version), 
or a Fast version –  the “Fast” version was used. The fast version speeds up the 

tokenisation process using batch tokenisation and has additional methods that map 
the original string (in this case a sequence of amino acids) with the token index. This 

aids the reconstruction of the original “text” (in this case a set of CDR sequences) 
for visualisation and debugging purposes.  
 
After parsing the input, the tokenizer returns a dictionary where input_ids are indices 

corresponding to each token in the sequence (Figure A1).  
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Figure A1 Tokenisation. The first line shows the input sequences consisting of a CDR1a, 
a CDR2a , a CDR1b and a CDR2b, interspersed with the domain-specific custom tokens 
[cdra1], [cdra2], [cdrb1] and [cdrb2]. (The CDR3 and MHC sequences are not shown in the 
figure.) The input_ids are the indices for corresponding tokens. The first token, ID 2, 
represents the start of sequence token [CLS], and token ID 3  represents the end of 
sequence token [SEP]. All other tokens are for the amino acids in the CDR sequences and 
the domain-specific custom tokens, for example token ID 28 is for the token [cdra1] and 
token ID 20 is for amino acid ‘S’. 
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