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Optimising queries in real-world situations under imperfect conditions is still a problem that has not
been fully solved. We consider finding the optimal order in which to execute a given set of selection
operators under partial ignorance of their selectivities. The selectivities are modelled as intervals rather
than exact values and we apply various methods from decision theory in order to measure optimality.
On the one hand, we evaluate the different techniques theoretically, showing which axioms of decision
theory they satisfy and for which cases they efficiently provide an optimal solution. On the other hand,
we also conduct an empirical evaluation, illustrating the differences of the approaches in terms of the
relative error to the optimal solution. We demonstrate that a hybrid algorithm combining optimistic
and pessimistic aspects performs best.
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1. Introduction

Although query optimisation in database management systems (DBMSs) has been a topic
of research for decades, there are still important unresolved issues. In a blog post [18], Guy
Lohman highlights errors made in estimating cardinalities as a crucial factor. These kinds
of errors cause optimisers to generate query execution plans that are way off the target in
terms of efficiency. Consequently, an optimiser should try to avoid potentially bad plans
rather than strive for an optimal plan based on unreliable information.

For typical workloads, a DBMS can compile statistical data over time to obtain a fairly
accurate picture. For instance, estimating the selectivities of simple predicates on base re-
lations in a relational database is fairly well understood and can be done quite accurately

*For the purposes of open access, the authors have applied a CC BY public copyright licence to any author
accepted manuscript version arising from this submission.
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[13,15]. However, the situation changes once systems are confronted with very unevenly
distributed data values or predicates that are complex.

Trying to estimate selectivities in dynamic settings, such as data streams [29], or in non-
relational contexts, such as XML databases [27, 34], also poses challenges. It may even be
impossible to obtain any statistical data, because the query is running on remote servers
[33]. Detailed information may also not be available because a user issues an atypical ad-
hoc query or utilises parameter markers in a query. We propose to use techniques from
decision theory for making decisions under ignorance®, meaning that we know what the
alternatives and their outcomes are, but we are unable to assign concrete probabilities to
them [26].

In our approach we propose to build a robust query optimiser that is aware of the un-
reliability of database statistics and considers this during optimisation. When executing a
query, the DBMS encounters a particular instance of concrete parameter values: we call
this a scenario. The problem is that, during the prior optimisation step, the optimiser does
not know which scenario the DBMS will face during plan execution. We propose to use
well-known techniques from decision theory to guide an optimiser in choosing a suitable
plan.

In summary, we make the following contributions:

e We define what it means for an ordering of selection operators to be optimal ac-
cording to the optimism-pessimism rule specified in decision theory.

e Additionally, we prove a number of properties, such as dominance, that help in
optimising plans following the notion of optimism-pessimism.

o As the search space is too large to be traversed exhaustively, we develop a heuristic
for optimising plans according to optimism-pessimism.

e Finally, in an experimental evaluation we show that our heuristic produces plans
that come close to the optimum and are far better than those generated by com-
petitors.

2. Related Work

In the following, we review different approaches for dealing with uncertain parameters
during query optimisation. A common approach of many optimisers is to use the mean or
modal value of the parameters and then find the plan with least cost under the assumption
that this value remains constant during query execution, an approach called Least Specific
Cost (LSC) in [8]. As Chu et al. point out in [8], if the parameters vary significantly, this
does not guarantee finding the plan of least expected cost.

An alternative is to use probabilistic information about the parameters fed into the
database optimiser, an approach known as Least Expected Cost (LEC) [8]. (A discussion
regarding the circumstances under which LEC or LSC is best appears in [9].) In decision-
theoretic terms, we are making decisions under risk, maximising the expected utility. How-

2Sometimes these are also called decisions under uncertainty. We refer to them as decisions under ignorance to
distinguish them from probability-based methods.
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ever, probability distributions for the possible parameter values are needed to make this
approach work, whereas in our case we do not have these prerequisites.

In parametric query optimisation, several plans can be precompiled and then, depend-
ing on the query parameters, be selected for execution [12]. However, if there is a large
number of optimal plans, each covering a small region of the parameter space, this be-
comes problematic. First of all, we have to store all these plans. In addition, constantly
switching from one plan to another in a dynamic environment (such as stream processing)
just because we have small changes in the parameters introduces a considerable overhead.
In order to amend this, researchers have proposed reducing the number of plans at the cost
of slightly decreasing the quality of the query execution [10]. Our approach can be seen as
an extreme form of parametric query optimisation by finding a single plan that covers the
whole parameter space.

Another approach to deal with the lack of reliable statistics is adaptive query process-
ing, in which an execution plan is re-optimised while it is running [4, 6, 16, 20]. It is far from
trivial to determine at which point to re-optimise and adaptive query processing may also
involve materialising large intermediate results. More importantly, this means modifying
the whole query engine; in our approach no modifications of the actual query processing
are needed. A gentler approach is the incremental execution of a query plan [25]. Deciding
on how to decompose a plan into fragments and putting them together is still a complex
task, though.

Estimates based on intervals arise explicitly in [6] and implicitly in [23]. Babu et al. [6]
use intervals to model uncertainty in the accuracy of a single-point estimate. Uncertainty
is represented by a value from O (none) to 6 (very high). Upper and lower bounds for
the single-point estimate are then calculated using the estimate and the uncertainty value.
During optimisation, three scenarios, those using the low estimates, the exact estimates and
the high estimates, are considered. Moerkotte et al. [23] study histograms which provide
so-called g-error guarantees. Given an estimate § for s, the g-error of § is max(s/$,35/s).
An estimate is g-acceptable if its g-error is at most g. So, if an estimate S is g-acceptable,
the true value s lies in the interval 1/¢ X § < s < ¢ X &.

Notions of robustness in query optimisation have been considered in [5, 6, 20, 32]. Bab-
cock and Chaudhuri [5] use probability distributions derived from sampling as well as user
preferences in order to tune the predictability (or robustness) of query plans versus their
performance. For Markl et al. [20], robustness means not continuing to execute to comple-
tion a query plan which is found to be suboptimal during evaluation; instead re-optimisation
is performed. On the other hand, Babu et al. [6] consider a plan to be robust only if its cost
is within e.g. 20% of the cost of the optimal plan. All of the techniques discussed so far
need additional statistical information to work. Wolf et al. [32] introduce a parametric cost
function (PCF) for cardinality or selectivity estimation on edges in query execution plans.
This function measures the cost modelled on one cost parameter, typically the cardinality
or selectivity. For commonly used cost models, PCFs are linear functions and the gentler
their slopes, the more robust a plan is. This is a very interesting way to model robustness,
although it is not used actively in a query optimisation step yet. At the moment it is used to
test the robustness of plans generated by some other process. In summary, however, none
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of the papers above consider robustness in the sense of decision theory.

3. Decision Theory

Generally speaking, decision theory is the theory of rational decision making where a de-
cision maker chooses an act from a set of alternatives. The outcome depends on the state
of the world, which often is only partially known to the decision maker. Each possible state
of the world is also known as a scenario. Any decision matrix can now be represented by
enumerating the possible states/scenarios as a set S : {s1, $2,..., S, and the possible
alternatives as a set A : {a1,az,...,an,}.

3.1. Decisions under Ignorance

Depending on the knowledge of the probabilities for each possible outcome, we can distin-
guish between decisions under risk, ignorance, and uncertainty. Making a decision under
risk means that the decision maker knows the probabilities of the possible outcomes, while
in a decision under ignorance, the probabilities are unknown or non-existent. The term un-
certainty is either used as a synonym for ignorance or as a broader term referring to both,
risk and ignorance. In our work, we focus on decisions under ignorance.

Example 1. Let us look at an example involving executing queries in a database system.
Before being able to execute a query, we have to build a concrete query execution plan.
Usually, there are countless equivalent plans that all produce the same output, albeit at
different levels of quality regarding the efficiency. The quality of an execution plan depends
on the state of the database, e.g. the number of tuples satisfying certain predicates, the
presence (or absence) of indexes, and the size of the available memory. Let s; denote a
database state and a; an execution plan (which is an action available to a decision maker
here). A (hugely simplified) decision matrix may look as follows:

S1 | S2 | 83 | S84 | S5
a | 8 9 6 1 3
as | 6 8 3047
az | 9 | 10| 8 5 8
a4 6 8 7 7 6

This means that running plan a; in scenario s; is better than running plan as, as a1 has a
higher quality level. In scenario s, the situation changes, though: here plan as is better. ¢

3.2. Preference and Dominance

Clearly, a decision maker needs to be able to compare different alternatives in order to
choose one of them. In decision theory, the relation between alternatives is called a prefer-
ence relation or preference ordering.

Definition 1. A weak preference relation, denoted by <, means that given two alternatives
a; and a; with a; < a;, a decision maker considers a; to be at least as preferable as a;.
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Two alternatives a; and a; are considered equivalent if a decision maker is indifferent about
them: a; ~ a;, iff a; = a; and a; = a;. For a strict preference relation, <, the following
must hold: a; < a;, iff a; = a; and a; £ a;.

For certain cases, it is straightforward for a decision maker to choose between alter-
natives. Looking at the decision matrix in Example 1, rationality forbids us to choose a;
over ag, because the latter always leads to a better, or equally good outcome, no matter
which state happens to be the final true state of the world. We say that alternative a3 domi-
nates alternative a;. More concretely, we define the notions of weak dominance and strong
dominance as follows:

Definition 2. Let v(a;, s;) represent the value of alternative a; in state/scenario s, of the
decision matrix. We say that a; weakly dominates a;, if all outcomes under all states for a;
are at least as good as those for a; (i.e, Vk : v(ai, sp) > v(a;, sk).

Definition 3. We say that a; strongly dominates (or strictly dominates) a;, if a; weakly
dominates a; and the value of a; in every state is strictly greater than that of a; (ie.,
VE 2 v(aq, si) > v(ay, sk)).

3.3. Different Strategies

We now discuss some well-known strategies that a decision maker can choose from when
trying to make decisions under ignorance. Basically, a strategy utilises an ordinal utility
function that imposes an order on the different alternatives, representing the preferences of
a decision maker. More formally, let v be a utility function, then for any two alternatives
a; and a;, u(a;) < u(a;), iff a; < a;. Choosing an option then boils down to finding the
alternative that maximises u. We cover the Maximin, Maximax, Optimism-Pessimism, and
Minmax Regret approaches [26].

3.3.1. Maximin

Using the maximin principle, a decision maker maximises the minimal value obtainable
with each action. In other words, if the worst possible outcome of one alternative is better
than that of another, the former should be chosen. Formally, this means the following.

Definition 4. Maximin(A4, S) = max,e4(minges(v(a, s)))

When applying this technique to Example 1, we can see that a4 is chosen, as its worst
result (for scenario s; and s5) is the best among the worst results of all alternatives. This is
a rather pessimistic strategy as it optimises the worst case.

If the worst outcomes of some alternatives are equally good, we would invoke lexical
maximin. In this case, the second-worst outcome acts as a tie-breaker. If this still does not
uniquely determine an alternative, we look at the the third-worst outcome, and so on.
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3.3.2. Maximax

In contrast to the maximin technique, maximax is a rather optimistic approach, trying to
optimise the best case by choosing the alternative that can lead to the best possible outcome.

Definition 5. Maximax(A, S) = max,ec4(maxses(v(a,s)))

Applying this technique to the decision matrix in Example 1 would result in picking
as, as it provides the best possible outcome among all alternatives (for scenario ss).

3.3.3. Optimism-Pessimism

Hurwicz developed the Optimism-Pessimism Rule, also known as the Hurwicz Method or
the Alpha-Index Rule [14]. Here, both, the best and the worst possible outcome of each
alternative are considered and the outcomes are weighted according to our degree of op-
timism, denoted by «.. The degree of optimism takes on values between 0 and 1, where 0
stands for a very pessimistic stance and 1 for a very optimistic one. In fact, setting o to 0
is equivalent to using the maximin strategy, while setting it to 1 is equivalent to maximax.
The parameter « is assumed to be fixed throughout the evaluation of all alternatives.

Definition 6. H, (A, S) = max,ca(a - maxseg(v(a,s)) + (1 — ) - minges(v(a, s)))

Applying the optimism-pessimism rule to our example with a moderately pessimistic
parameter a = 0.2 would lead to the following result:

alternative weighted average result
ax 02-94(1-02)-1 2.6
a2 02-84(1-0.2)-3 4
as 02-104+(1-0.2)-5 6
a4 02-84(1-0.2)-6 6.4

So, a4 would be the correct choice under the optimism-pessimism rule, as it maximises
the weighted average of the most optimistic and most pessimistic result for o = 0.2.

3.3.4. Minmax Regret

The final strategy, using the minmax regret criterion, defines a regret or loss that we expe-
rience by comparing the results of the alternative we picked to the best result that we could
have obtained by picking the best alternative for the scenario we encounter.

Definition 7. The (absolute) regret 7(a;, s;) for an action a; given a scenario s; is defined
as r(a;, s;) = maxqeca(v(a,s;)) —v(a;, s;).
Minimising the maximal regret is choosing the alternative that has the smallest differ-

ence to the best possible outcome when faced with its worst-case scenario. Formally, the
minmax regret or MR, is defined as follows.

Definition 8. MR(A4, S) = minge4(maxses(r(a,s)))
Applying this to Example 1, yields the following results.
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r(s1) | r(s2) | r(s3) | r(s4) | r(s5) | max(r)
a 1 1 2 6 5 6
as 3 2 5 3 1 5
as 0 0 0 2 0 2
aq 3 2 1 0 2 3

The alternative with the smallest maximal regret is as, so it would be chosen under the
minmax regret criterion.

3.4. Discussion

As we have seen in the examples in Section 3.3, the four different strategies draw different
conclusions as to what is considered the best alternative. This unsatisfactory situation led
to research on identifying fundamental principles that a rational decision maker should
generally follow when choosing between alternatives and initiated an axiomatic treatment
of the matter. Unfortunately, there is no universally accepted set of axioms and there are
still controversial discussions about this. Nevertheless, we think that it is a good idea also
to analyse the strategies we introduced earlier from a theoretical viewpoint.

3.4.1. Axiomatisation

Seminal work on the axiomatisation of decision theory was done by von Neumann and
Morgenstern, who proposed four axioms [31]. Later on, Savage, one of the most prominent
researchers in decision theory, formulated six axioms [28]. However, since the approach
by von Neumann and Morgenstern, and to a lesser extent Savage’s work, is mainly based
on probabilistic reasoning, we do not focus on them. We are interested in decisions under
ignorance, meaning we follow an approach based on qualitative reasoning. Nevertheless,
we come back to two of the axioms by von Neumann and Morgenstern that are not proba-
bilistic in nature. Early work in the area of qualitative reasoning was done by Milnor, who
proposed ten axioms [21, 22]. Compared to other axiomatisations, we find ten quite a high
number for key principles and also think that they are not as intuitive as other frameworks.
In fact, in his discussion on decision theory, Suppes mentions that none of the familiar de-
cision theory strategies satisfies all of Milnor’s axioms [30]. We decided to go with the four
axioms proposed by Arrow and Hurwicz [3].

Before introducing the axioms by Arrow and Hurwicz, we briefly discuss two other
axioms that are widely accepted (and were originally proposed by von Neumann and Mor-
genstern [31]):

e Completeness: the (weak) preference relation < defines a total ordering, i.e., for
every a; and a;, a; = aj or a; =X a;, or both. If a; < a; and a; < a;, we say that
a decision maker is indifferent (denoted by a; ~ a;). If a; < a; and a; A a;, then
there is a strict preference for a; (denoted by a; < a;).

o Transitivity: for all a;, a;, ar with a; = a; and a; < ay, it follows that a; < ay.

These two axioms are justified pragmatically [26]. If a decision maker has contradicting
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preferences, e.g., a; < a; and a; < a; (or a; < aj, a; < ag, and ap < a;), then they
could be trapped in an infinite swapping cycle, as there is always a more preferred option
available. P

Arrow and Hurwicz propose four (additional) axioms [3]. Given a set of alternatives A,
each of the strategies discussed previously determines a set of choices A*, containing the
largest elements of A according to the preference relation < we use. Essentially, Maximin,
Maximax, H,, and MR can be seen as a mapping A — A*. Arrow and Hurwicz define
four axioms that a strategy should satisfy (the following description is taken from [11]):

e Axiom AH1: the non-empty intersection of a decision problem, i.e., a set of al-
ternatives, and the set of choices of a larger decision problem, i.e., a larger set
of alternatives, is the set of choices of the former. Formally, if A; C A, and
ASN A # (0, then A¥ = AsNA;.

o Axiom AH2: relabelling alternatives and scenarios does not change the outcome,
i.e., swapping of rows and/or columns in a decision matrix has no impact on <.

e Axiom AH3: deletion of a duplicate scenario does not change the outcome (s; is
a duplicate of s; if v(ag, ;) = v(ax, s;) for all k.

o Axiom AH4:if a; € A* anda; < aj,thena; € A*. If a; ¢ A* and a; =< a;, then
a; ¢ A*.

3.4.2. Analysing the Different Strategies

Having introduced the axioms, we now check how the strategies defined in Section 3.3 hold
up to them. Completeness, transitivity, and axioms AH2 to AH4 are satisfied by all four, as
all of them impose a total order on the set of alternatives and relabelling/deduplication has
no effect. For axiom AH1, the picture looks different. Minmax regret does not satisfy this
axiom. In the following, we provide a counterexample (taken from [11]).

Example 2. Given a decision problem with the decision matrix shown below with A; =
{a1,as, a3}, A} contains a single alternative: a; (the maximal regrets of a1, as, and ag are
26, 45, and 27, respectively).

S1 | S2 | S3
ap | 49 | 70 | 2
as | 4 | 96 | 1
ag | 22 | 76 | 25

We now create a set As = A; U {aq} with a4 having the values 0, 100, 0 for sy, $a,
and ss, respectively. The maximal regrets of a1, as, as, and a4 are now 30, 45, 27, and
49. Consequently, A5 = {as} and A5 N A; = {a3} # A3, violating axiom AHI. After
the introduction of a4, which is far from being optimal, a; has ceased to be the preferred
choice. O

bCoupled with a tiny fee for swapping, it would eventually force a decision maker into bankruptcy. This is called
the money-pump argument.
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What conclusions can we draw from the axiomatic analysis of the strategies? Minmax
regret not satisfying axiom AHI is actually problematic for us. As we will see later, the
query optimisation problem we investigate, the optimal ordering of selection operators,
has a huge number of alternatives. For n operators, there are n! potential query execution
plans, which makes it unrealistic to look at all of them. Violating axiom AHI in this con-
text means that depending on which other (suboptimal) alternatives we consider, this may
have an effect on which query execution plan we choose in the end, which is not accept-
able. Additionally, it turns out that the computation of a solution using minmax regret is
prohibitively expensive. In our previous work we have shown that the problem is (at least)
NP-hard [1, 2]. We suspect that it is even more complex: we conjecture that it might even
be 1’ -complete like some other minmax optimisation problems [17]. This conjecture is
based on our finding that checking a given solution to an instance of the problem seems to
take exponential time. As Ko and Lin have also shown in [17], many of the corresponding
c-approximation problems for IT{'-complete problems are either themselves I14’-complete
or NP-complete. We believe that this makes it unlikely to find good approximation algo-
rithms or heuristics for minmax regret query optimisation. Due to the reasons discussed
above, we do not investigate minmax regret further.

The remaining strategies, maximin, maximax, and optimism-pessimism, all satisfy the
the six axioms introduced in Section 3.4.1, so from an axiomatic viewpoint they are equiva-
lent. Nevertheless, we focus on the optimism-pessimism rule and do not look further at the
maximin and maximax principles as separate alternatives, since the optimism-pessimism
rule subsumes both. Setting o = 0 yields the same result as maximin, while setting o = 1
does so for maximax.

4. Problem Definition and Formalisation

Before defining the problem of ordering selection operators under ignorance, we briefly
introduce the original version of the problem.

Definition 9. Given a relation r containing the tuples 1, to, ..., ¢,,, a selection operator
o with (Boolean) predicate p selects those tuples ¢; from r for which p(t;) is true:

op(r) ={t € r | p(t) = true}

For 1 < i < n, each operator o, has a selectivity s; and a cost ¢;. The selectivity s; € [0, 1]
determines the ratio of tuples in r that pass the filter:

G
ST

¢; € R represents the cost of o, per tuple, i.e., the cost for processing a single input
tuple.

We can apply an arbitrary number of selection operators with different predicates to
relation 7, e.g. 0y, (0p, (0p,())) is a valid query. The result includes all tuples ¢; in r that
satisfy all three predicates, i.e., p1(t;) A p2(t;) A ps(t;) = true. From now on, to declutter
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the notation, we do not mention the predicates explicitly anymore but only use their index,
ie., 0, = 0p,.

Next, we define the concept of a query execution plan containing n selection operators
via the permutations of these operators. Let 7™ be the set of all possible permutations over
1,2,...,n.Form; € ™, m;(i) denotes the i-th element of 7;.

Definition 10. A query execution plan p; is a permutation o (1), 0z, (2);-- -, 0x;(n) Of
the n selection operators. The set of all possible query execution plans is given by

P={p|p=0x1),0x2),--0x(n) such that € 7" }.

The cost of evaluating plan p; is

n—1
Cost(p;) = Qcr(1) + Sx(1)Cr(2) + Sr(1)Sm(2)Cr(3) + -+ + H S7(i)Cr(n))
i=1

n i—1
=l Sx(j) | Ex(i) 1
i=1 \j=1
where (2 is the cardinality of the relation on which we execute the selection operators.
Currently, we make the Attribute Value Independence (AVI) assumption that the selection
predicates are stochastically independent. Extending our approach to situations in which
(some) joint selectivities are known is a topic for future work.

For obtaining the correct answer to the query, it does not matter which of the permuta-
tions we run: all of them produce the same result. However, in terms of the execution time,
they differ. The job of a query optimiser in a database system is to determine the query
execution plan that minimises the costs.

Definition 11. The selection ordering problem is about finding the query execution plan
Pmin € P having the smallest costs, i.e., Vp € P : Cost(pmin) < Cost(p).

If we know exact values for all the selectivities s; (and the costs ¢;), the selection
ordering problems can be solved efficiently, using a ranking scheme devised by Monma
and Sidney for sequencing and job scheduling [24]. For each o;, we compute a

Si4*1

rank(o;) =
ci

and then apply the operators in increasing order of their ranks. This gives us the plan with
minimal costs in O(nlogn) time.

We now move on to the variant of the selection ordering problem where the selectivity
of each operator is only partially defined. In particular, the selectivity of each operator is
known to fall within an interval of values between 0 and 1. Since there is only a partial
order defined on intervals (and not a total order), we cannot simply compute ranks and
order the ranks as before. Instead, we try to find an optimal ordering for the operators by
applying the optimism-pessimism rule. The exact costs of selection operators can also be
unknown, but for the moment we restrict ourselves to partially defined selectivities. Note
that since we try to optimise the costs of query execution plans rather than their general
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level of quality, we are trying to minimise the costs rather than maximising their quality.
Compared to Section 3 the roles of max and min will be reversed.

Definition 12. For the selection ordering problem under partial ignorance, given a set
S = {o1,09,...,0,} of selection operators, each has a selectivity s; defined by a closed
interval, for 1 <4 <n, s, = [s;,5;] with s,,5; € [0,1] and s, < S;, and a cost ¢;.

Depending on their selectivity intervals selection operators may relate to each other in
a special way. Later on we exploit this property in order to optimise selection orders.

Definition 13. Given two selection operators 0;,0; € S, we say that o; dominates o, iff
s; < sjand’s; <5;. The set S of operators is called dominant if for each pair 0,0, € S
it is the case that either o; dominates o or o; dominates o;.

Later on, it will be helpful to consider a special case of dominant sets of operators.

Definition 14. Given two selection operators 0;,0; € S, we say that o; strictly dominates
0, iff s; < s;. A strictly dominant set is defined analogously to a dominant set.

If for two selection operators 0;, 0; € S, neither o; dominates o; nor o; dominates o,
then o; and o; form a nested pair of operators. So, operator o; is nested in 0 if s; < s;
ands; < 8.

Example 3. Let S = {01,02,03} be a set of selection operators, with selectivities s; =
[.2,.8], s2 = [.3,.5] and s3 = [.1, .4]. Operator o3 dominates both ¢ and o2, but does not
strictly dominate either of them. Because o5 is nested in o1, the set S is not dominant. ¢

Definition 15. An assignment of a concrete value to each of the n selectivities is called a
scenario and is defined by a vector = (s1, Sa, ..., S,), with s; € [s;,5;].

Every time we actually run a query, we encounter one scenario. However, during the
optimisation step we are unaware of which scenario we will face. The set of all possible
scenarios can be described by X = {x | x € [s;,51] X [89,52] X + -+ X [$,,, 3]}

As before, a query execution plan p; is a permutation o (1), Ox;(2); - - -, Or; (n) Of the
n selection operators. However, the costs of a plan now depend on the scenario we are
encountering.

Definition 16. The cost Cost(p;,z) of evaluating plan p,; under a given scenario x =
(s1,82,--.,8n) is computed according to Equation (1).

Because we focus on finding an optimal plan according to the optimism-pessimism
rule, we do not need to consider all possible scenarios. Instead, only two scenarios are
relevant: the scenario in which each operator takes its minimum selectivity value (called
the optimistic scenario), and the one in which each operator takes its maximum selectivity
value (called the pessimistic scenario). This is due to the way Arrow and Hurwicz formulate
their axioms AH1 to AH4 (see Section 3.4.1 and [3]) and provides another argument for
choosing the optimism-pessimism rule [11].
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Example 4. Recall the set S = {07, 02,03} of selection operators from Example 3, with
selectivities s; = [.2,.8], so = [.3,.5] and s3 = [.1, .4]. The optimistic scenario is given by
x = (81, 89,83) = (.2,.3,.1), while the pessimistic scenario is given by y = (31, 32,33) =
(.8,.5,.4). One of the 6 possible plans for S is given by plan p; = 010203. Assuming
that 2 and each cost ¢; is set to 1, we can calculate the cost of plan p; under scenario x,
Cost(p1, x), using Equation (1) as follows:

Cost(p1,2) = (1+.2+.2x.3) =1.26

5. Properties

In this section, we prove a number of properties that plans of selection operators satisfy,
when optimised according to optimism-pessimism. In particular, we look at cases that can
be solved optimally in an efficient way (dominant sets) and those that are hard to solve
(nested intervals).

5.1. Dominance

We first introduce some notation which will be helpful in subsequent proofs. Consider a
plan p = (01,09,...,04,). Let Cy(p) = awand C;(p) = o - H; 185, for 1 <i < n.
Similarly, let Co(p) = (1 — «) and C;(p) = (1 — ) - HJ 155, for1 <i < n.SoC,(p)
and C;(p) represent the costs of the i’th operator under the optimistic and pessimistic
scenarios, respectively, also taking into account the degree of optimism «. We can also
write C;(p) = C;_1(p) - s; and C;(p) = C;_1(p) - 3i, for 1 < i < n. Then the cost of p
can be written as

cost(p) = Co(p) + -+ Cp_1(p) + Co(p) + - - + Crn1(p).

Now let R;(p) = C,;(p)/Ci(p), 0 < i < n. Since Ry(p) = /(1 — ), Ro(p) represents
our relative level of optimism at the start of query planning, while R;(p) represents our
relative level of optimism at each position in plan p. The following lemma shows that
R;(p) never increases as ¢ increases.

Lemma 1. For any plan p, R;(p) < R;_1(p), 1 <i < n.

Proof. Consider a plan p and some R;(p), 1 <14 < n. Now

Ri(p) = Cy(p)/Ci(p) = (Ci_1(p) - 5,)/(Ci(p) - 1)
= Ri1(p) - 5;/5i
Since s; < §;, we have that R;(p) < R;_1(p). O

In other words, we get relatively more pessimistic as we move from left to right in any
plan. We first consider the case where we are given a set of dominant selection operators.
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Theorem 1. Let S = {o1,...,0,} be a set of selection operators such that o; dominates
oi+1, 1 <i <n—1(ie, S isa set of dominant operators). Then the optimal plan p for S
is given by p = (01, ...,05).

Proof. We show that sequences of dominant operators satisfy the Adjacent Pairwise In-
terchange (API) property [7], from which the result follows. To prove that the sequences
satisfy the API property, we need to show that, for all operators o; and o; and sequences u
and v, if o; dominates o, then cost((u, 0;,0;,v)) < cost((u,0;,04,v)).

Assume that the sequence u is of length k. Then

cost((u,04,05,0)) = -+ + Cy + Cps; + Cps;s; + - + Cp + CiSi + Ci5i55 + -
while

cost((u,05,04,0)) =+ + Cy + Cps; + Cpsis; + -+ Ch + Cp5j + Cp5i55 + -+
So

cost((u, 0;,04,v)) = cost((u, 0i, 05,v)) = Cy(s; = 5;) + Ck(5; — 5i).

Since o; dominates o, we have that 5; < S; and 5; < 5;. Hence both terms above are
non-negative and cost((u, 0;,0;,v)) < cost((u, 0;,04,v)). |

5.2. Nested intervals

The implications of Theorem 1 are very useful: given a set of dominant operators, we know
how to order operators with selectivity intervals optimally. The hard case is ordering oper-
ators with nested selectivity intervals, which we look at next. We first investigate general
properties of selection operators with nested selectivity intervals and then turn to a special
case, in which all intervals share the same midpoint.

5.2.1. General Properties

Let us write o; £ o to mean that the selectivity interval of operator o; is nested inside that
of operator o;. We say that a set of operators is fully nested if C defines a total order. Let
S = {o1,...,0,} be a fully nested set of operators, with o; C ;41,1 < i <n— 1.If
a = 0, then the plan p = (01, ...,0,) is optimal. We show below additional situations in
which p is optimal. Given «, let 0; <, 0 denote that a(s; — s;) < (1 — a)(5; — 5;).

Lemma 2. Let S = {o1,...,0,} be a fully nested set of operators, with o; T 0,11,
1<i<n—1Io;<gq o1 foreachl < i < n — 1, then the optimal plan for S is
(0’17 N 7O'n).

Proof. We first show that the relation <, is transitive. Let 0; <o 0; and 0 <, 0} for some
1 < 4,7,k < n. From the definition of <, we have that o(s; — §j) < (1-a)(5 —5)
and a(s; — s;,) < (1 — @)(5k — 3;). Adding left- and right-hand sides gives us

afs; — ;) ols; — ) < (L= )55 —5) + (1 — ) (5 — 5;)
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Simplifying yields
als; — 5) < (1—a)(5 — 5)

which is the definition of o; <, 0.

Clearly, relation C is also transitive, so if we assume that o; <, 0,43 foreach1 <17 <
n — 1, we have both o; C 0 and 0; <, 0j, foreach1 <i < j < n.

We now show that plans formed from S satisfy the API property, from which the fact
that (o1, ..., 0,) is the optimal plan for .S follows. To prove this, we need to show that, for
all operators o; and o and sequences of operators u and v, if o; C o, and o; <, 0}, then
cost((u,0;,05,v)) < cost((u,oj,0;,v)).

Assume that the sequence u is of length k. Then

cost((u, 03, 04,v)) = -+ + Cp + Cy5; + Cpsis; + - - + Cp + C15i + C5:55 +
while

cost((u, Tj, T4y v)) = +C, +Qk§j +Qk§i§j + -+ ék +6k§j +€k§i§j +
So

cost((u, 05, 01,0)) — cost((u, 71,75, v)) = Cils; — ;) + Cu(5; — 5.)-
Because 0; C 0, (5; —5;) > 0 while (§j —s,;) <0.So
cost((u,0;,04,v)) — cost((u,04,0;,v)) = C(5; — 5;) — Cp(s; — §j). 2)

If k = 0, the right-hand side of (2) becomes (1 — a)(3; —5;) — a(s; — s,). We assumed
that ; <o, 0, so we have a(s; — s;) < (1 — a)(5; — 3;), and the right- hand side of (2)
must be non-negative.

For £ > 0, Lemma 1 shows that the ratio C';, /ék does not increase as k increases,
and hence the right-hand side of (2) must be non-negative for all k. We conclude that
cost((u, 0;,05,v)) < cost((u,0;,0;,v)) and the API property holds. |

The following notation will be useful in subsequent results. Consider a plan p =
(01,09,...,0,). We first introduce notation for the products of selectivities up to (but
not 1nclud1ng) operator o; in the plan. Let 4, (p) = Hk 1 8y for 1 < i < . Similarly, let
Ai(p) = Hk 1:3k,f0r1 < i< n.Ifi=1,then we define A,(p) = A;(p) = 1.

Next we introduce notation for costs between two operators ¢; and o, where ¢ < j,
inplan p. Let B;;(p) = 1+ 5,41 + 8,41 " Sjq0 + - + Hk_i-u s, forl <i < j < n.
Similarly, let B;j(p) = 1 + 8,41 + Sit1 - Siqa + - + Hk i1 5k for1 < i < j <n.So
if o; and o; are adjacent in p (i.e., j = i + 1), then Ew( ) = Bi(p) =1.

The following theorem provides a general condition under which nested operators can
be swapped in a plan in order to produce a cheaper plan. (Since the A and B terms in the
theorem are equal for both plans p and ¢, we drop the plan from the notation for readability.)

Theorem 2. Let p be the plan (01,...,0i,...,05,...,0y), where o; and o; are nested
operators. Let q be the plan in which o; and o; are swapped. Then cost(p) > cost(q) if
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and only if either (i) 5; > 5; and

(5: — ;) a-A; By
(5,—5) — (1—a)-4 B, 3)

or(ii) s; > s; and
(5 — %) o @ A, 7§@L
(s =s;) ~ (1—a)-A;- By

“

Proof. The cost formulas for plans p and ¢ are as follows:
cost(p) = (1 + X 4518, 18+ +s18,_1+Y)+
1-a)A+U+31---3i15i+--+51---5;_1+ V)
cost(q) = a(l+ X +sy-8,_18;+ -+ 88188418, 1 +Y)+
(1-a)14+U+51---5-15 + - +51-5-15;5141 - 5j—1+ V)
where U, V, X and Y are additional terms. Now

cost(p) — cost(q) = a(A;(s; —5;5) + -+ A(8; —8;)8i41°8j_1) +

(1 —a)(A;i(5 — 55)+--- + A3 — 5)Sit1--S-1)
where A, = s, ---s,_; and A; =3 ---5;_ as defined above. Using the notation Qij and

B;; introduced above, this can be rewritten as

O"Ai'ﬁij'(§i_§j)+(1_a)'zi'§ij'(gi_gj) %)

In case (i) we have 5; > 5;; hence 5; — 5; is non-negative, while s5; — Er is non-positive
since the operators are nested. So we get

(1—a)-A;i-Byj-(5:i—5;) —a-A;- B, - (s; — s;)

L4 " 245
We want this to be non-negative, so we need
(1—a) - Ai-Bij-(5i =5;) 2 a-A; - By - (s; — 5)
Condition (3) then follows by dividing both sides by (s; — s;) and (1 — ) - A; - By, both
of which are positive (assuming « # 1).
In case (ii) we have s, > s n hence s; —s i is non-negative, while s; — 5 is non-positive
since the operators are nested. So formula (5) becomes

a-A; By (s;—s;) —(1—a)- A Bij - (3 — %)

We want this to be non-negative, so we need

a'Ai'Eij'(§i_§j) > (1_0‘)'Ai'Bij'(§j_§i)

Condition (4) then follows by dividing both sides by (s; — s;) and (1 — «) - A; - By, both

of which are positive (assuming o # 1). O

In fact, in conditions (3) and (4) the formulas for the ratios between the selectivities
give the same result because, in each case, both differences are either positive or negative.
So, in a sense, we are only concerned with the absolute values of the differences.
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(If we call the ratio on the left of (3) and (4) the selectivity ratio and the one on the right
the optimism ratio, then the theorem says the following: if the selectivity ratio is greater
than the optimism ratio, then the operator with the smaller maximum selectivity should
appear earlier, while if the selectivity ratio is less than the optimism ratio, then the operator
with the smaller minimum selectivity should appear earlier.)

The problem with the above condition is that it depends on the selectivities of oper-
ators other than o; and o; in the plan. The following corollary of the previous theorem
gives a sufficient condition for swapping operators o; and o, dependent only on « and the
selectivities of o; and o ;.

Corollary 1. Given plansp = (01,...,04,...,0j,...,0y) and q in which o; and o are
swapped, cost(q) < cost(p) if s, > 5; and
(5 —5;) , _« ©)
(§j - 5;) l-a

Proof. In Theorem 2 we established that cost(q) < cost(p) if 5; > 5, and
(i—5) o @ 4By
(§j_§i) a (1_04)'21"31’]'

<

Since it is always the case that A, < A; and B.. < B,;, we have that

bL;; < Dij,
o« , 4By
l—a ™ (1—0&)~Ai~Bij
and the result follows. O

It is instructive to consider a special case in which Corollary 1 can be applied, namely
when all the operators are nested and all have the same midpoint for their selectivity inter-
vals.

Corollary 2. Let S be a set of operators whose intervals each have the same midpoint.
If o < 0.5, then the optimal plan for S has operators ordered in terms of non-decreasing
maximum selectivity.

Proof. If operators s; and s; have the same midpoint, then
(5: —5;)
(§j - 5;)
If o < 0.5, then condition (6) always holds. This means that operators with smaller max-

imum selectivity should appear earlier in an optimal plan, so the optimal plan is one in
which the operators are ordered by non-decreasing maximum selectivity. O

=1.

In the following subsection, we study nested intervals with the same midpoint further,
finding some conditions under which the API property holds.
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5.2.2. Nested intervals with the same midpoint

Let us assume that we are given a set S of operators with associated interval selectivities
such that the midpoint of each selectivity is the same. Given a plan p, recall the definition of
the ratio R;(p), for position ¢ in p, given near the beginning of Section 5.1. The following
lemma shows that, once the ratio R;(p) drops below one in plan p, the remaining operators
in p should be in order of non-decreasing maximum selectivity.

Lemma 3. Let S be a set of m operators whose intervals each have the same midpoint.
Let p be a sequence of 0 < n < m operators such that R, (p) < 1. Then the minimum cost
plan for S which has p as a prefix has the operators in positions n + 1 to m ordered in
terms of non-decreasing maximum selectivity.

Proof. We show that sequences of operators with p as a prefix satisfy the API property,
from which the result follows. To prove that the sequences satisfy the API property, we
need to show that, for all operators o; and o; and sequences u and v (where u has p as a
prefix), if 5; < 5, then cost((u, 0;,0;,v)) < cost((u,0;,04,v)).

Assume that the sequence u is of length £ > n. Then

cost((u,04,05,v)) = +Cp+Cp-5,+C}-3; St A Cr+Ch-5+C-3 2§t
while

cost((u,05,0i,0)) =+ +Cp+Cy-5;+Cp-8;-8;4+ - +Cr+Cr -5+ Cp 55+ -
So

cost((u,05,0,v)) — cost((u,0;,05,v)) = Qk(§j —5;) —|—€k(§j —5).

Since 5; > 3;, (5; — 5;) is positive while (s; — s;) is negative (because of the assumption
that intervals are nested). So

cost((u,05,04,v)) — cost((u,0;,05,v)) = 6k(§j —35) —Ch(s; — gj). 7

Because the intervals have equal midpoints, we know that (5; — 5;) = (s; — ;). Also,
Cy > C,, because R,,(p) < 1 and Lemma 1 ensures the ratio continues to be less than one
for position k. Hence, the difference between the costs given in (7) is positive. O

Note that Corollary 2 above also follows from Lemma 3 by observing that if o < 0.5,
then Ry(p) = /(1 — ) < 1 for any plan p.

For a plan p comprising n operators, the notation R,,(p) denotes the ratio between the
optimistic and pessimistic costs of the last term in p. Given another plan g over the same
operators and with the same degree of optimism «, it should be clear that R, (¢) = R, (p).
Hence, for a set S of n operators, we introduce the notation R,,(.S) to represent the ratio
for the last term of any plan using all the operators in S (but we only allow this notation
where n is the cardinality of S).

Lemma 4. Let S be a set of n > 2 operators, each with the same midpoint, such that
R, (S) > 1. Then the minimum cost plan for S has the operators ordered in terms of
non-decreasing minimum selectivity.
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Proof. The proof is similar to that of Lemma 3 in that we show that sequences of all n
operators from S satisfy the API property (but this time considering minimum selectivities).
So we need to prove that for all operators o; and o; and sequences « and v, such that u,
v, 0; and o; comprise all of the operators in S, if s, < s;, then cost((u,0;,0;,v)) <
cost((u,05,04,v)).

The difference between the costs is the same as in Lemma 3, namely

cost((u, 0j,04,v)) — cost((u,04,05,v)) = Cr(s; — 8;) + Ck(3; — 5).

However, now s; > s;, 0 (s; — s;) is positive while (5; — ;) is negative (because of the
assumption of nested intervals). So

COSt((ua 035,04, ’U)) - COSt((U7 0504, U)) = Qk(ﬁj - §i) - 6k(§i - gj)' ®

Let us denote (u, 0, 0;,v) by p and (u, 0;, 05, v) by g. The costs of the k + m’th terms in
cost(p) and cost(q) are equal for 2 < m < n — k (so including the term for o in p and
that for o; in ¢). Also, by assumption, R, (p) = R,(¢) > 1, and by Lemma 1, R;(p) > 1
and R;(q) > 1,0 <4 < n. Hence, Ri42(p) = Riy2(q) > 1 and Ri(p) = Rr(q) > 1,
and so C}, > C}. Since (s; — s;) = (5; — ;). the difference between the costs given in
(8) is positive. O

Unfortunately, the API property does not always hold, even for fully nested intervals
all with the same midpoint. As « increases from 0.5, operators with wider intervals (larger
maximum selectivity, but smaller minimum selectivity) appear at the beginning of the opti-
mal plans. Through experimentation we have observed that each such optimal plan appears
to comprise two parts: in the first part, operators are ordered by non-decreasing minimum
selectivity, and in the second part by non-decreasing maximum selectivity. In other words,
we start off being optimistic but at some point switch to being pessimistic. However, dis-
covering which operators should appear in the “first part” of an optimal plan seems to be a
difficult problem.

5.3. Maximum error

Let p™ (respectively, p™) be the plan in which the selection operators are ordered by in-
creasing maximum (respectively, minimum) selectivity. For plan p, let Cy(p) (respectively,
C1(p)) denote the cost of p when « has the value 0 (respectively, 1). So, p* is the plan
which minimises Cy, while p™ is the plan which minimises C;.

The equation for the cost of a plan p is:

cost(p) = Cy(p) — a(Cy(p) — C1(p))

As shown in Figure 1, the equations for cost(p™) and cost(p™) must intersect. The value
of « for the intersection point, denoted by o, is given by:

o — Co(p™) = Co(p™)
(Co(p™) — C1(M)) — (Co(p™) — C1(p™))
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Now if we choose plan p™ when o < a* and plan p™ when a > «*, then the maximum
error in the cost is given by:

a*(Cr(p™) = Cr(p™))
Letting Dy = (Co(p™) — Co(p™)) and Dy = (Cy(p™) — C1(p™)), substituting for a*
and reordering terms, we get:
Dqy - Dy
Dy — D,
Example 5. Consider the selection operators o1, 02, and o3 with interval selectivities
[0.3,0.7], [0.2,0.8] and [0.1,0.9], respectively. Note that the operators are nested in this

case. Figure 1 shows the cost of the plans p» = (01, 09,03) and p™ = (03,02,01) as
a changes. In this example, the costs of the two plans are equal when @ = 0.6 and the

maximum error is 0.144. O
2 6[: T T T ]
’ p]M = (01702,03)
—&-p™ = (03,02,01)
2.23"% lower bound |
- —o— max error
S 1.85) .
1.49 + |
1.12 , ‘ ‘

\ \ \ \ .
0 013 025 038 05 063 075 0.88 1
«

Fig. 1: Maximal error in cost between plans p™ and p™

While this technique allows us to bound the error we are making, we cannot achieve re-
sults better than the best plan for the completely optimistic and pessimistic scenario. As we
will see with the introduction of our heuristic in the following section and its experimental
evaluation in Section 7, it is possible to find plans that are better than both.

6. Algorithms

In this section, we describe five algorithms for finding an order (plan) in which to ex-
ecute a given number of selection operators, based on their interval selectivities and an
optimism/pessimism ratio . The five algorithms are as follows:

(1) Optimal: this is a brute-force algorithm that, given «, simply calculates the cost for each
permutation of the operators and returns the plan of minimum cost. As this algorithm
has exponential runtime, it is not practical for large problem instances. We use it in our
experiments on small instances to determine the quality of the other algorithms.
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Algorithm 1.

Input: « and set of operators S = {01,...,0,}
Output: a plan p
p <[]
while p contains fewer than n operators do {
€4 00
for all o; not in p do {
g S\ ({oi} Up)
order g by non-decreasing maximum selectivity
if cost(p o 0; 0 ¢) < c then {
minop <« o;
¢ < cost(poo;oq)
}
}

append minop to plan p

}

return p

Fig. 2: Heuristic plan finding algorithm

(2) Pessimistic: this algorithm simply orders the operators by non-decreasing values of
their maximum selectivities. It is therefore independent of o and is optimal when o =
0.

(3) Optimistic: this algorithm simply orders the operators by non-decreasing values of their
minimum selectivities. It is therefore independent of « and is optimal when o« = 1.

(4) Midpoint: this algorithm calculates the midpoint of the selectivity interval for each
operator and then orders the operators by non-decreasing values of their midpoint se-
lectivities. It is therefore also independent of a.

(5) Heuristic: our heuristic algorithm for finding a plan of minimum cost is shown as
Algorithm 1 in Figure 2 and is described below.

The algorithm starts by trying each operator in turn in the first position of the plan,
with the remaining operators ordered by non-decreasing maximum selectivity values (i.e.,
pessimistically). In each case it calculates the cost of the resulting plan, and chooses for the
first position the operator whose plan has the smallest cost. It then considers each subse-
quent position k£ (2 < k£ < n) in the plan, and repeats this process (each time excluding the
operators already in the first £ — 1 positions). So the algorithm is based on the observations
made at the end of Section 5.2.1.

A naive implementation of Algorithm 1 runs in time O(n?), using O(n?) swaps of
operators and O(n) time to calculate the cost of each plan. However, we can reduce the
time from O(n3) to O(n?) by storing partial plan costs at the start, and then updating them
incrementally and using them to compute the cost of each plan in constant time.



April 9,2025 9:33 WSPC/INSTRUCTION FILE output

Using the Hurwicz Criterion to Optimise Selection Queries Under Partial Ignorance 21

Example 6. Consider the selection operators o1, 02, 03 and o4, with interval selectivities
[0.4,0.6], [0.3,0.7], [0.2,0.8] and [0.1, 0.9], respectively. Our algorithm finds the optimal
plan for this setting for a = 0.5. Indeed, when choosing which operator to place in the first
position, it considers the four plans (o1, 02, 03,04, ), (02,01,03,04), (03,01,02,04), and
(04,01, 02,03), where the third is optimal. O

7. Experimental Evaluation

In this section we provide the results of an empirical study comparing the performance
of the different algorithms mentioned in Section 6, i.e., optimal, pessimistic, optimistic,
midpoint, and our heuristic.

7.1. Set-up

All algorithms were implemented in Python and run on a laptop with 8§ GB of RAM and
four Intel Core 17-6500U processors running at 2.5 GHz. We used two different datasets
for the experiments.

For the first dataset we generated twenty sets of nine selection operators for which the
lower and upper bounds of the selectivities were uniformly distributed in [0, 1]. We call this
dataset ‘rnd’. As most operators within each set dominate each other, it is fairly easy to find
good solutions: according to Theorem 1 we only have to sort them in order of dominance.

For that reason, we generated a second dataset consisting of twenty sets of nine selec-
tion operators. However, for each set the intervals of all the operators were nested. The
values were uniformly distributed in [0, 1] and then assigned to the operators in the follow-
ing way: the first operator was assigned the smallest and largest value, the second operator
the second-smallest and second-largest value, and so on. We call this dataset 'nested’. In
both datasets, ‘rnd’ and ‘nested’, we restricted ourselves to nine selection operators to be
able to run the optimal algorithm as well.

7.2. Results

First, we look at the result for running the algorithms on the dataset ‘rnd’. Figure 3(a) shows
the results for the different algorithms compared to the optimal algorithm by depicting the
relative error. Figure 3(b) looks at the variation of this relative error, showing the standard
deviation of the relative errors.

As expected, the pessimistic algorithm performs worse the higher the value of v and
only achieves an optimal result for « = 0. For the optimistic algorithm it is the other
way around: it only achieves an optimal result for o = 1. Overall, the pessimistic strategy
seems to be the better one of the two. Interestingly, the midpoint strategy is able to obtain
good results for midrange values of a and does worse for the extreme ends. However,
our heuristic is able to stay very close to the optimal result and outperforms all the other
algorithms (except for the optimal one), with an average relative error over the 20 datasets
of at most 0.2%. In fact, the worst relative error of our heuristic we have seen over the 20
datasets and all the different values of « is 2.1%. Only for a-values between 0.7 and 0.8
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Fig. 3: Comparison with optimal algorithm (dataset ‘rnd”)

does the midpoint strategy come close, although its average relative error can be as high
as 4.8% and its maximum relative error as high as 22.9%. Our heuristic also exhibits the
smallest standard deviation for the relative errors, meaning that it outputs good results in
a reliable way. Again, only the midpoint strategy comes close for values of o between 0.7
and 0.8.

Next, we look at the result of running the algorithms on the dataset ‘nested’. Again, we
show the average relative error (in Figure 4(a)) and the standard deviation (in Figure 4(b)).
The general shapes of the curves in Figure 4 are very similar to those found in Figure 3,
meaning that « affects the behaviour of the algorithms in a similar way. However, all al-
gorithms, with the notable exception of our heuristic, perform much worse. In this case,
the worst relative error (rather than the average as shown in Figure 4(a)) of our heuristic
we observed was 1.3%, while that for the midpoint strategy, e.g., was 66.6%. Overall, this
dataset illustrates that a set of non-dominant selection operators is much harder to optimise.
Nevertheless, our heuristic is able to cope well with this kind of situation.

8. Conclusion and Outlook

Even though query optimisation has been studied for decades now, generating efficient
plans for queries is still a challenging problem. One major stumbling block is the estima-
tion of cardinalities. In many cases, it is very difficult to approximate the cardinalities of
intermediate results accurately and the estimation errors lead a query optimiser to pick a
suboptimal plan. Consequently, researchers have started to look into the notion of robust-
ness of query execution plans: Lohman emphasises that it is more important to build robust
query plans than to strive for an unattainable optimal one [19].

In our work we apply concepts of decision theory, which is the study of the reasoning
underlying an entity’s choices. In particular, we are interested in the branch that consid-
ers uncertainty and missing information and apply typical approaches from this area to
query optimisation in order to build more robust plans. We have shown that the optimism-
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Fig. 4: Comparison with optimal algorithm (dataset ‘nested’)

pessimism rule is well-suited to this task and have developed a heuristic that generates
query execution plans very close to the optimal ones under this rule.

For future work we would like to investigate the complexity of the problem further.

At the moment we are neither able to find an exact polynomial-time algorithm for find-
ing optimal plans under the optimism-pessimism rule, nor to prove the NP-hardness of the
problem. Identifying the complexity class could either lead us to an efficient optimal al-
gorithm or give us some indication of which approximation strategies to pursue. Another
potential avenue of research is to extend our work to other operators, such as joins.
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