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ABSTRACT
We consider the relationship between stock prices, volatility and consumer sentiment. The analysis is based on a new multivariate
model defined as a time-varying mixture of dynamic models in which contemporaneous relationships among variables are allowed
and the mixing weights have a threshold-type structure. We discuss issues related to the stability of the model and the estimation
of its parameters. Our empirical results show that consumer sentiment significantly affects the S&P 500 price–dividend ratio and
market volatility in at least one of the model’s two regimes, which are associated with endogenously determined low and high
consumer sentiment.
JEL Classification: C32, C51, G12

1 | Introduction

Whether consumer and/or investor sentiment have predictive
power for macroeconomic and financial variables, or their effects
are already incorporated in such variables, are questions of
long-standing interest in the economics and finance literature.
Many studies have documented significant impacts of measures
of sentiment on stock prices, consumer spending and economic
growth (see, inter alia, Ludvigson [1], Baker and Wurgler [2],
Schmeling [3], Stambaugh et al. [4], Shen et al. [5]). There is also
evidence that the impact of sentiment is asymmetric, in the sense
that sentiment affects economic and financial variables in dif-
ferent ways during optimistic ‘high-sentiment’ periods and pes-
simistic ‘low-sentiment’ periods (see, e.g., Desroches and Gos-
selin [6], Chen [7], Shen et al. [5]).

Empirical studies of the role of sentiment typically rely on econo-
metric models in which measures of sentiment are included as
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covariates, the marginal effect of which on the response vari-
able of interest (e.g., stock prices) may be assessed conditionally
on other relevant covariates (e.g., market volatility). Such mod-
els are often static specifications, a rather unsatisfactory choice
given that interactions between the response variable and the
covariates are unlikely to be solely contemporaneous. Correct
dynamic specification, therefore, in the absence of which the
interpretation of the model and statistical inferences drawn from
it are problematic, typically necessitates the use of autoregressive
and/or distributed lag structures.

Beyond these considerations, the possibility that the parame-
ters of the model may not be the same in high-sentiment and
low-sentiment periods adds to the appeal of multiple-regime
specifications in which different regimes represent states of
nature associated with different sentiment levels. Within such a
framework, one may think of the regime prevailing at each point
in time as being chosen with a probability that is determined as
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a function of some appropriate set of variables contained in the
conditioning set relative to which the conditional distribution of
the response variable is defined. In consequence, the conditional
distribution in question takes the form of a mixture of distribu-
tions with time-varying mixing weights. Although there are vari-
ous possible candidates for the probability-determining variables
(e.g., those that optimise a suitable goodness-of-fit criterion), past
values of a measure of sentiment are a natural choice when sen-
timent is viewed as the factor with which different regimes are
associated.

Nevertheless, considerable care needs to be taken when estimat-
ing the parameters of models in which the regime-determining
probabilities are functions of variables other than lagged
responses. As Pouzo et al. [8] demonstrated, the common prac-
tice of relying on limited-information methods which ignore the
generating mechanism of the variables that drive the evolution of
the regime-determining probabilities is flawed and likely to result
in biased and inconsistent parameter estimates. Valid statistical
inference in such settings typically requires joint modelling of all
relevant observable variables.

Our approach in this paper aims to address all three impor-
tant modelling and inferential issues discussed in the previ-
ous paragraphs: correct dynamic specification, identification of
economically interpretable regimes, and consistent and precise
estimation of unknown parameters. Our starting point is the
observation that relationships among variables such as the stock
price–dividend ratio (or stock returns), market volatility and con-
sumer/investor sentiment may reasonably be expected to be dif-
ferent in high-sentiment and low-sentiment periods. Therefore,
we argue in favour of analysing such relationships using a non-
linear dynamic model in which regimes associated with low and
high sentiment are determined endogenously, depending on the
probability that some unobservable threshold value for a senti-
ment measure is exceeded.

Importantly, we adopt an explicitly multivariate approach in
which all observable variables of interest are jointly modelled.
More specifically, we use a multivariate mixture of autoregres-
sive distributed lag models in which the mixing weights are
time-varying and have a threshold structure similar to that
of Dueker et al. [9]. This means that the regime (associated
with a component of the mixture) that prevails at each date
is determined by the (conditional) probability that the val-
ues of a regime-determining variable exceed or are smaller
than an unspecified threshold value. The regime-determining
variable in our setting, with which economically interpretable
regimes can be associated, is a measure of consumer sen-
timent, thus distinguishing between periods of high and
low sentiment.

The proposed multivariate model is a conditional model, in the
sense that it allows for contemporaneous relationships among
the variables of interest, in addition to dynamic interactions, but
it is not a partial model since none of the variables is treated
as unmodelled/exogenous. It may be viewed as either a recur-
sively identified dynamic structural model or a by-product of
conditioning operations in a multivariate mixture autoregressive
model with parameters which specify a recursive Granger-causal
ordering of the variables of interest. Importantly, the conditional

specification has a threshold structure that is economically mean-
ingful, in the sense that the regimes associated with the compo-
nents of the mixture are directly related to high and low consumer
sentiment. Moreover, the parameterisation of the model allows
inferences about the short-run and long-run role of sentiment in
the stock market to be made.

We discuss how local stability of the model may be analysed and
consider estimation of unknown parameters by the method of
maximum likelihood (ML). A simulation study demonstrates that
likelihood-based inferential procedures are accurate in samples
of sizes that are typical in many applications, provided a com-
plete model for all observable stochastic variables is specified.
Treating one of the variables as exogenous and specifying a partial
model for the generating mechanism of the remaining variables
conditional on the unmodelled variable (as is frequently done in
the empirical setting of interest here) is costly. Such an approach
results in severely biased parameter estimates and hypothesis
tests which reject incorrectly with unacceptably high probability.
What is more, these difficulties are likely to be more pronounced
the larger is the sample size. Our results parallel those of Pouzo
et al. [8], who investigated the consequences of model misspec-
ification in a general multiple-regimes setting (which includes
many types of mixture autoregressive models as special cases).
As noted earlier, their findings also highlighted the importance
of using full-information estimation methods when the variables
that determine the probability of regime changes are not strictly
exogenous.

Finally, the conditional mixture model is used to examine the
low-frequency relationships between U.S. stock prices, market
volatility and consumer sentiment. More specifically, we con-
sider how the relationship between the S&P 500 price–dividend
ratio and stock market volatility may be affected by different
economic conditions characterised by high and low consumer
sentiment, as measured by the well-known Index of Consumer
Sentiment published by the University of Michigan. Our find-
ings suggest that consumer sentiment has significant predictive
power for both stock market volatility and the price–dividend
ratio—while consumer sentiment affects market volatility when
the economic outlook is pessimistic, it has a significant impact on
the price–dividend ratio during high-sentiment periods. By con-
trast, consumer sentiment is found to have no significant effect
on the price–dividend ratio in a model that treats market volatil-
ity as an unmodelled variable, highlighting the pitfalls of relying
on partial models.

The rest of the paper is organised as follows. The basic
idea behind multivariate models with mixture autoregres-
sive dynamics is briefly discussed in Section 2. Section 3
introduces a multivariate dynamic conditional model with a
threshold-type, time-varying mixture structure, examines its sta-
bility properties, and considers ML estimation of its parameters.
Section 4 reports the results of simulation experiments that assess
the finite-sample properties of the ML estimator and of related
statistics in the complete model and in a partial model that treats
one variable as unmodelled. Section 5 investigates the relation-
ship between the price–dividend ratio in the U.S. stock market, a
measure of the volatility of the market, and consumer sentiment.
Section 6 summarises and concludes.
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2 | Mixture Autoregressive Models

To convey the basic idea behind models with mixture autore-
gressive dynamics, consider a two-component, multivariate mix-
ture autoregressive model for a𝑑-dimensional time series {𝒘𝑡, 𝑡 =
1, 2, . . . }, 𝑑 ⩾ 1, formulated as

𝒘𝑡 =

{
𝒘0,𝑡, with probability Λ(𝒘𝑡−1) =∶ Λ𝑡,

𝒘1,𝑡, with probability 1 − Λ𝑡,
(1)

with

𝒘𝑖,𝑡 ∶= 𝒄𝑖 +
𝑝∑

𝑗=1
𝑨𝑖,𝑗𝒘𝑡−𝑗 + 𝚺1∕2

𝑖
𝜺𝑡, 𝑖 = 0, 1, (2)

and 𝒘𝑡−1 ∶= (𝒘′
𝑡−1, . . . ,𝒘

′
𝑡−𝑝)

′, for some integer 𝑝 ⩾ 1. Here, Λ
is a real-valued function on the 𝑝𝑑-dimensional real space ℝ𝑝𝑑

whose range is contained in the interval [0, 1], {𝜺𝑡} are indepen-
dent, identically distributed 𝑑-dimensional random vectors with
zero mean and identity covariance matrix, with 𝜺𝑡 independent
of {𝒘𝑠, 𝑠 < 𝑡} for all 𝑡, and 𝒄𝑖, 𝚺𝑖 and 𝑨𝑖,𝑗 (𝑖 = 0, 1; 𝑗 = 1, . . . , 𝑝)
are fixed parameters (with 𝚺𝑖 symmetric and positive definite).1
Hence, the conditional distribution function of𝒘𝑡 given {𝒘𝑠, 𝑠 <

𝑡} is the mixture Λ𝑡𝐹𝜺(𝚺
−1∕2
0 {𝒘𝑡 −𝒎0,𝑡}) + (1 − Λ𝑡)𝐹𝜀(𝚺

−1∕2
1 {𝒘𝑡 −

𝒎1,𝑡}), where 𝐹𝜺 is the distribution function of 𝜺𝑡 and 𝒎𝑖,𝑡 ∶=
𝒄𝑖 +

∑𝑝

𝑗=1𝑨𝑖,𝑗𝒘𝑡−𝑗 , 𝑖 = 0, 1.

Various mixture autoregressive models can be obtained by dif-
ferent choices of the time-varying mixing weights Λ𝑡. A class of
weights that is particularly relevant for our purposes is that con-
sidered in Dueker et al. [9] and Dueker et al. [10]. Such mixing
weights imply that, at each date 𝑡, the probability that determines
which of the two autoregressive components is chosen is given
by the normalised conditional probability (given 𝒘𝑡−1) that the
latent components 𝒘0,𝑡 and 𝒘1,𝑡 are below/above some thresh-
old values. For example, assuming the noise 𝜺𝑡 is Gaussian, the
mixing weights may be specified as

Λ𝑡 =
Φ𝑑(𝚺

−1∕2
0 {𝒘∗ −𝒎0,𝑡})

Φ𝑑(𝚺
−1∕2
0 {𝒘∗ −𝒎0,𝑡}) + [1 − Φ𝑑(𝚺

−1∕2
1 {𝒘∗ −𝒎1,𝑡})]

, (3)

where𝒘∗ is a𝑑-dimensional location parameter andΦ𝑑 is the dis-
tribution function of the 𝑑-variate normal distribution with zero
mean and identity covariance matrix.2 Another possibility is to
define Λ𝑡 in terms of the conditional probability (given 𝒘𝑡−1) of
a linear function 𝒂′𝒘𝑖,𝑡 taking values smaller/greater than 𝒂′𝒘∗,
for some 𝑑-dimensional nonzero vector 𝒂, so that

Λ𝑡 =
Φ(𝒂′{𝒘∗ −𝒎0,𝑡}∕{𝒂′𝚺0𝒂}1∕2)

Φ(𝒂′{𝒘∗ −𝒎0,𝑡}∕{𝒂′𝚺0𝒂}1∕2) + [1 − Φ(𝒂′{𝒘∗ −𝒎1,𝑡}∕{𝒂′𝚺1𝒂}1∕2)]
, (4)

with Φ ∶= Φ1. When 𝑑 ⩾ 2, more general threshold structures
that yield mixture models with 𝑑2 components may also be con-
sidered, as in Dueker et al. [10]. Specifications of this type are
well-suited to applications in which the probability of a state
of nature (associated with a component of the mixture) prevail-
ing depends on the values of the variables being modelled rel-
ative to unspecified threshold values. A threshold structure for
time-varying mixing weights is also at the centre of the condi-
tional mixture model that will be discussed in the next section.

Other time-varying mixing weights Λ𝑡 that have been used in the
literature include, among others: Λ𝑡 = [1 + exp(−ℎ(𝒘𝑡−1))]−1 (for

𝑑 = 1), where ℎ is a real-valued affine function on ℝ𝑝 (Wong and
Li [12]); Λ𝑡 = [1 + exp(−ℎ̃(||𝒘𝑡−1

||1∕2))]−1, where ℎ̃ is an increas-
ing, real-valued affine function on ℝ and ||𝒘𝑡−1

|| is the one-norm
of 𝒘𝑡−1 (Bec et al. [13]); Λ𝑡 = 𝜆𝜁𝑝𝑑,0(𝒘𝑡−1)∕[𝜆𝜁𝑝𝑑,0(𝒘𝑡−1) + (1 −
𝜆)𝜁𝑝𝑑,1(𝒘𝑡−1)], for some 0 < 𝜆 < 1, with 𝜁𝑝𝑑,𝑖, 𝑖 = 0, 1, being
the density function of a 𝑝𝑑-dimensional random vector
(𝒗′

𝑖,𝑡
, . . . , 𝒗′

𝑖,𝑡−𝑝+1)
′ such that {𝒗∗

𝑖,𝑡
} obeys a 𝑑-variate, causal,

𝑝th-order autoregressive model with intercept 𝒄𝑖, coefficients
𝑨𝑖,1, . . . ,𝑨𝑖,𝑝, and Gaussian noise having mean zero and covari-
ance matrix 𝚺𝑖 (Kalliovirta et al. [14]). Unlike specifications such
as (3) and (4), or variations thereof, these mixing weights are not
consistent with the threshold interpretation that is natural in our
context.

3 | Dynamic Mixture Model With
Threshold-Type Weights

Motivated by the empirical setting highlighted in Section 1,
involving the relationship between stock prices, volatility and
consumer sentiment, we consider in the sequel a trivariate mix-
ture model with threshold-type mixing weights analogous to
those described in the previous section. Unlike conventional mix-
ture autoregressive models, our model also allows for contem-
poraneous interactions among the three variables and takes the
form of a mixture autoregressive distributed lag model. To the
best of our knowledge, such models with threshold-type mixing
weights have not been considered in the literature before.3

We begin by explaining how such a dynamic conditional system
can be obtained from a trivariate mixture autoregressive model,
the coefficients of which satisfy appropriate identification restric-
tions, and discuss a specification of the mixing weights which
is natural and economically interpretable in the context of our
empirical setting. The stability properties of the multivariate mix-
ture model are then investigated and estimation of the parameters
of the model is considered. For the sake of clarity and for ease
of presentation, we focus on a model with a first-order dynamic
structure, but higher-order dynamics can be accommodated in a
straightforward manner.

3.1 | Model

Consider a trivariate time series {𝒘𝑡 = (𝑦𝑡, 𝑥𝑡, 𝑧𝑡)′, 𝑡 ⩾ 1} satisfy-
ing a mixture autoregressive model of the form

𝒘𝑡 =

{
𝒄0 +𝑨0𝒘𝑡−1 + 𝚺1∕2

0 𝜺𝑡, with probability 𝐺𝑡,

𝒄1 +𝑨1𝒘𝑡−1 + 𝚺1∕2
1 𝜺𝑡, with probability 1 − 𝐺𝑡,

(5)

where {𝜺𝑡} are independent Gaussian random vectors with zero
mean and identity covariance matrix, 𝒄0 and 𝒄1 are vectors of
intercepts, 𝑨0 and 𝑨1 are upper triangular coefficient matrices,
𝚺0 and 𝚺1 are symmetric, positive definite matrices, and 𝐺𝑡 is
a continuous function (to be specified later) of one or more of
the components of 𝒘𝑡−1 that takes values in [0, 1]. The restric-
tions implied by the triangularity of 𝑨0 and 𝑨1 may be viewed
as identifying restrictions that specify a recursive Granger-causal
ordering of the three variables. No triangularity or diagonality
requirements are imposed on 𝚺0 and 𝚺1.

3 of 12

 14680084, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12682 by T

est, W
iley O

nline L
ibrary on [21/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



By a standard conditioning argument applied to each of the two
components of (5), a recursive, multivariate conditional mixture
model may be obtained. This is defined by

𝒘𝑡 =

{
(𝑦0,𝑡, 𝑥0,𝑡, 𝑧0,𝑡)′, with probability 𝐺𝑡,

(𝑦1,𝑡, 𝑥1,𝑡, 𝑧1,𝑡)′, with probability 1 − 𝐺𝑡,
(6)

where, for 𝑖 = 0, 1,

𝑦𝑖,𝑡 ∶= 𝜇𝑖
𝑦 + 𝛽𝑖𝑦𝑥𝑥𝑡 + 𝛽𝑖𝑦𝑧𝑧𝑡 + 𝜙𝑖

𝑦𝑦𝑦𝑡−1 + 𝜙𝑖
𝑦𝑥𝑥𝑡−1 + 𝜙𝑖

𝑦𝑧𝑧𝑡−1 + 𝜎𝑖𝜂𝜂𝑡, (7)

𝑥𝑖,𝑡 ∶= 𝜇𝑖
𝑥
+ 𝛽𝑖

𝑥𝑧
𝑧𝑡 + 𝜙𝑖

𝑥𝑥
𝑥𝑡−1 + 𝜙𝑖

𝑥𝑧
𝑧𝑡−1 + 𝜎𝑖

𝜐
𝜐𝑡, (8)

𝑧𝑖,𝑡 ∶= 𝜇𝑖
𝑧
+ 𝜙𝑖

𝑧
𝑧𝑡−1 + 𝜎𝑖

𝑧
𝜉𝑡. (9)

Here, {𝒆𝑡 ∶= (𝜂𝑡, 𝜐𝑡, 𝜉𝑡)′} are independent Gaussian random vec-
tors, with zero mean and identity covariance matrix, such that 𝒆𝑡
is independent of {𝒘𝑠, 𝑠 < 𝑡} for all 𝑡, and the parameter 𝜽𝑖 ∶=
(𝜇𝑖

𝑦
, 𝛽𝑖

𝑦𝑥
, 𝛽𝑖

𝑦𝑧
, 𝜙𝑖

𝑦𝑦
, 𝜙𝑖

𝑦𝑥
, 𝜙𝑖

𝑦𝑧
, 𝜎𝑖

𝜂
, 𝜇𝑖

𝑥
, 𝛽𝑖

𝑥𝑧
, 𝜙𝑖

𝑥𝑥
, 𝜙𝑖

𝑥𝑧
, 𝜎𝑖

𝜐
, 𝜇𝑖

𝑧
, 𝜙𝑖

𝑧
, 𝜎𝑖

𝑧
)′, with

𝜎𝑖
𝜂
, 𝜎𝑖

𝜐
, 𝜎𝑖

𝑧
> 0, is a function of the parameters of (5).4

The model is completed by specifying the time-varying mixing
weights 𝐺𝑡 as

𝐺𝑡 =
Φ({𝑧∗ − 𝜇0

𝑧
− 𝜙0

𝑧
𝑧𝑡−1}∕𝜎0

𝑧
)

Φ({𝑧∗ − 𝜇0
𝑧
− 𝜙0

𝑧
𝑧𝑡−1}∕𝜎0

𝑧
) + [1 − Φ({𝑧∗ − 𝜇1

𝑧
− 𝜙1

𝑧
𝑧𝑡−1}∕𝜎1

𝑧
)]
, (10)

where 𝑧∗ is an (unknown) location parameter. Hence, at any date
𝑡, there are two possible regimes corresponding to the compo-
nents of the model governed by the parameters 𝜽0 and 𝜽1. The
mixing weights 𝐺𝑡 and 1 − 𝐺𝑡 represent the (conditional) prob-
ability of 𝒘𝑡 being generated by the component governed by 𝜽0
and 𝜽1, respectively, and are such that

𝐺𝑡 =
Pr(𝑧0,𝑡 ⩽ 𝑧∗|𝑧𝑡−1)

Pr(𝑧0,𝑡 ⩽ 𝑧∗|𝑧𝑡−1) + Pr(𝑧1,𝑡 > 𝑧∗|𝑧𝑡−1)
,

and
1 − 𝐺𝑡 =

Pr(𝑧1,𝑡 > 𝑧∗|𝑧𝑡−1)
Pr(𝑧0,𝑡 ⩽ 𝑧∗|𝑧𝑡−1) + Pr(𝑧1,𝑡 > 𝑧∗|𝑧𝑡−1)

.

The parameter 𝑧∗ acts, therefore, as a threshold, in the sense that
the regime governed by 𝜽0 (𝜽1) is more (less) likely to prevail at
each date 𝑡 when, conditional on the value of 𝑧𝑡−1, the probabil-
ity of the value of 𝑧𝑡 associated with (𝜇0

𝑧
, 𝜙0

𝑧
, 𝜎0

𝑧
) not exceeding

𝑧∗ is high, or the probability of the value of 𝑧𝑡 associated with
(𝜇1

𝑧
, 𝜙1

𝑧
, 𝜎1

𝑧
) exceeding 𝑧∗ is low.

It is important to note that the specification of the mixing weights
in (10) as a function of only 𝑧𝑡−1 is motivated by the observation
that in many empirical settings, including the one considered
in Section 5, economically interpretable regimes can be charac-
terised in terms of the conditional probability that the implied
value of one of the variables under consideration is above/below
some threshold value. This is a useful way of addressing the dif-
ficult problem of regime identification in multivariate mixture
models with threshold-type mixing weights that may potentially
depend on many variables. In such models, it is desirable to
define mixture components (regimes) in terms of threshold struc-
tures which can be justified on economic grounds and which,
given the data constraints often encountered in practice, imply

a computationally manageable number of components. Failing
to do so in large-dimensional mixture models can give rise to
results that lack a coherent economic interpretation as well as
robustness. In our empirical setting, it is natural to consider con-
sumer sentiment as the sole driving variable for the time-varying
mixing weights. The two components of the mixture are, corre-
spondingly, associated with high-sentiment and low-sentiment
regimes.5 More generally, a sensible strategy will be to rely on
economic reasoning to determine what an appropriate compo-
nent/threshold structure may be in the context of the specific
modelling problem under consideration.

Another point to note is that, in the recursive dynamic system
defined in (6) to (10), the equations for 𝑦𝑡 and 𝑥𝑡 have a mixture
autoregressive distributed lag structure, while the equation for
𝑧𝑡 is a pure mixture autoregressive scheme. This structure is the
result of assuming that the conditional distribution of 𝒘𝑡 given
𝒘𝑡−1 is that implied by a trivariate mixture autoregressive model
with triangular coefficient matrices. Alternatively, however, the
system (6) to (10) could be directly specified and viewed as a
recursively identified dynamic structural model. In the context
of the empirical setting discussed in Sections 1 and 5 (with 𝑦𝑡, 𝑥𝑡
and 𝑧𝑡 representing the stock price–dividend ratio, stock market
volatility and a measure of consumer sentiment, respectively), the
parametrization of the model is such that the two components are
economically interpretable (as high and low sentiment regimes).
The structural model could also be expressed in reduced form as
a mixture autoregressive model like (5).

3.2 | Stability

In view of the recursive structure of the model and of the fact
that the mixing weights depend solely on 𝑧𝑡−1, the stability of the
model may be analysed by considering the stability of the dynam-
ics of {𝑧𝑡} first. Then, under suitable conditions, it is reasonable to
expect local stability of the trivariate model to be inherited from
that of {𝑧𝑡} around some point of long-run equilibrium.

Local stability of the generating mechanism of {𝑧𝑡} may be exam-
ined by considering a noiseless version of it, often called the skele-
ton (see Tong [15]). The latter is defined here as

𝑧𝑡+1 = 𝐾(𝑧𝑡), 𝑡 ⩾ 0,

where 𝐾 is the function on ℝ defined by

𝐾(𝑢) ∶= 𝐺(𝑢)(𝜇0
𝑧
+ 𝜙0

𝑧
𝑢) + {1 − 𝐺(𝑢)}(𝜇1

𝑧
+ 𝜙1

𝑧
𝑢), 𝑢 ∈ ℝ,

with

𝐺(𝑢) ∶=
Φ({𝑧∗ − 𝜇0

𝑧
− 𝜙0

𝑧
𝑢}∕𝜎0

𝑧
)

Φ({𝑧∗ − 𝜇0
𝑧
− 𝜙0

𝑧
𝑢}∕𝜎0

𝑧
) + [1 − Φ({𝑧∗ − 𝜇1

𝑧
− 𝜙1

𝑧
𝑢}∕𝜎1

𝑧
)]
.

A fixed point of 𝐾 , said to be an equilibrium (or stationary) point
for {𝑧𝑡}, is any real number 𝑧𝑒 such that 𝑧𝑒 = 𝐾(𝑧𝑒). Hence, as
discussed in Dueker et al. [9] and Dueker et al. [11], local stability
at a fixed point 𝑧𝑒 may be assessed by considering the first-order
Taylor expansion of 𝐾 about 𝑧𝑒, that is,

𝐾(𝑢) = 𝑧𝑒 + 𝐾̇(𝑧𝑒)(𝑢 − 𝑧𝑒) + (
(
𝑢 − 𝑧𝑒

)2),
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where

𝐾̇(𝑧𝑒) ∶=
𝑑𝐾

𝑑𝑢
(𝑧𝑒) = 𝜙1

𝑧
+ (𝜙0

𝑧
− 𝜙1

𝑧
)𝐺(𝑧𝑒)

+ {𝜇0
𝑧
− 𝜇1

𝑧
+ (𝜙0

𝑧
− 𝜙1

𝑧
)𝑧𝑒}𝐺̇(𝑧𝑒),

𝐺̇(𝑧𝑒) ∶=
𝑑𝐺

𝑑𝑢
(𝑧𝑒) = −

{𝜙0
𝑧𝜑(𝜏0)[1 − Φ(𝜏1)]∕𝜎0

𝑧} + {𝜙1
𝑧𝜑(𝜏1)Φ(𝜏0)∕𝜎1

𝑧}

{Φ(𝜏0) + 1 − Φ(𝜏1)}2 ,

𝜏𝑖 ∶= (𝑧∗ − 𝜇𝑖
𝑧
− 𝜙𝑖

𝑧
𝑧𝑒)∕𝜎𝑖

𝑧
, 𝑖 = 0, 1,

𝜑 is the standard normal density function, and (
(
𝑢 − 𝑧𝑒

)2) is a
quantity that is asymptotically bounded by

(
𝑢 − 𝑧𝑒

)2 in magni-
tude as 𝑢 tends to 𝑧𝑒. If |𝐾̇(𝑧𝑒)| < 1, then 𝑧𝑒 is an attracting fixed
point for 𝐾 and the equilibrium at 𝑧𝑒 is locally stable.

Next, given an equilibrium point 𝑧𝑒, the implied equilibrium val-
ues 𝑥𝑒 and 𝑦𝑒 for {𝑥𝑡} and {𝑦𝑡}, respectively, can be obtained by
exploiting the recursive structure of the system. More specifically,
in view of (6) to (10), we have

⎡⎢⎢⎢⎣
𝑏11 𝑏12 𝑏13

0 𝑏22 𝑏23

0 0 𝑏33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑦𝑒

𝑥𝑒

𝑧𝑒

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜇0
𝑦
𝐺(𝑧𝑒) + 𝜇1

𝑦
{1 − 𝐺(𝑧𝑒)}

𝜇0
𝑥
𝐺(𝑧𝑒) + 𝜇1

𝑥
{1 − 𝐺(𝑧𝑒)}

𝜇0
𝑧
𝐺(𝑧𝑒) + 𝜇1

𝑧
{1 − 𝐺(𝑧𝑒)}

⎤⎥⎥⎥⎦,
where

𝑏11 ∶= 1 − 𝜙0
𝑦𝑦
𝐺(𝑧𝑒) − 𝜙1

𝑦𝑦
{1 − 𝐺(𝑧𝑒)},

𝑏12 ∶= −(𝛽0
𝑦𝑥

+ 𝜙0
𝑦𝑥
)𝐺(𝑧𝑒) − (𝛽1

𝑦𝑥
+ 𝜙1

𝑦𝑥
){1 − 𝐺(𝑧𝑒)},

𝑏13 ∶= −(𝛽0
𝑦𝑧
+ 𝜙0

𝑦𝑧
)𝐺(𝑧𝑒) − (𝛽1

𝑦𝑧
+ 𝜙1

𝑦𝑧
){1 − 𝐺(𝑧𝑒)},

𝑏22 ∶= 1 − 𝜙0
𝑥𝑥
𝐺(𝑧𝑒) − 𝜙1

𝑥𝑥
{1 − 𝐺(𝑧𝑒)},

𝑏23 ∶= −(𝛽0
𝑥𝑧

+ 𝜙0
𝑥𝑧
)𝐺(𝑧𝑒) − (𝛽1

𝑥𝑧
+ 𝜙1

𝑥𝑧
){1 − 𝐺(𝑧𝑒)},

𝑏33 ∶= 1 − 𝜙0
𝑧
𝐺(𝑧𝑒) − 𝜙1

𝑧
{1 − 𝐺(𝑧𝑒)}.

Consequently,

𝑥𝑒 =
𝜇0
𝑥
𝐺(𝑧𝑒) + 𝜇1

𝑥
{1 − 𝐺(𝑧𝑒)} + [(𝛽0

𝑧
+ 𝜙0

𝑥𝑧
)𝐺(𝑧𝑒) + (𝛽1

𝑧
+ 𝜙1

𝑥𝑧
){1 − 𝐺(𝑧𝑒)}]𝑧𝑒

1 − 𝜙0
𝑥𝑥
𝐺(𝑧𝑒) − 𝜙1

𝑥𝑥
{1 − 𝐺(𝑧𝑒)}

,

and

𝑦𝑒 =
𝜇0
𝑦
𝐺(𝑧𝑒) + 𝜇1

𝑦
{1 − 𝐺(𝑧𝑒)} + [(𝛽0

𝑦𝑥
+ 𝜙0

𝑦𝑥
)𝐺(𝑧𝑒) + (𝛽1

𝑦𝑥
+ 𝜙1

𝑦𝑥
){1 − 𝐺(𝑧𝑒)}]𝑥𝑒

1 − 𝜙0
𝑦𝑦
𝐺(𝑧𝑒) − 𝜙1

𝑦𝑦
{1 − 𝐺(𝑧𝑒)}

+
[(𝛽0

𝑦𝑧
+ 𝜙0

𝑦𝑧
)𝐺(𝑧𝑒) + (𝛽1

𝑦𝑧
+ 𝜙1

𝑦𝑧
){1 − 𝐺(𝑧𝑒)}]𝑧𝑒

1 − 𝜙0
𝑦𝑦
𝐺(𝑧𝑒) − 𝜙1

𝑦𝑦
{1 − 𝐺(𝑧𝑒)}

,

provided |𝑏11𝑏22𝑏33| > 0. The equilibrium point (𝑦𝑒, 𝑥𝑒, 𝑧𝑒)
is locally stable whenever |𝐾̇(𝑧𝑒)| < 1, |𝜙0

𝑦𝑦
𝐺(𝑧𝑒) + 𝜙1

𝑦𝑦
{1 −

𝐺(𝑧𝑒)}| < 1 and |𝜙0
𝑥𝑥
𝐺(𝑧𝑒) + 𝜙1

𝑥𝑥
{1 − 𝐺(𝑧𝑒)}| < 1.

As a simple numerical illustration of the preceding analysis, con-
sider the model defined by equations (6) to (10) with the param-
eter values contained in Table 1. (Here and in all subsequent
tables, the headings ‘Below Threshold’ and ‘Above Threshold’
refer to the regimes governed by 𝜽0 and 𝜽1, respectively.) The
values of the parameters are chosen so as to obtain a clear sep-
aration of the two regimes and a unique attracting fixed point

TABLE 1 | Parameter values used in the stability and Monte Carlo
exercises: 𝜙𝑖

𝑎𝑏
(𝛽𝑖

𝑎𝑏
) is the regime-𝑖 coefficient on the lagged (contempo-

raneous) variable 𝑎 in the equation for variable 𝑏; 𝜙𝑖
𝑏
, 𝜇𝑖

𝑏
and 𝜎𝑖

𝑏
are the

regime-𝑖 autoregressive coefficient, intercept and noise standard devia-
tion, respectively, in the equation for variable 𝑏.

Below threshold Above threshold

Equation for 𝒚𝒕
𝜇0
𝑦

−0.70 𝜇1
𝑦

0.80
𝛽0
𝑦𝑥

−0.70 𝛽1
𝑦𝑥

0.50
𝛽0
𝑦𝑧

−0.78 𝛽1
𝑦𝑧

0.40
𝜙0
𝑦𝑦

0.39 𝜙1
𝑦𝑦

0.27
𝜙0
𝑦𝑥

0.47 𝜙1
𝑦𝑥

0.29
𝜙0
𝑦𝑧

0.73 𝜙1
𝑦𝑧

−0.19
𝜎0
𝜂

1.08 𝜎1
𝜂

0.55

Equation for 𝒙𝒕
𝜇0
𝑥

0.50 𝜇1
𝑥

0.10
𝛽0
𝑥𝑧

−0.35 𝛽1
𝑥𝑧

0.51
𝜙0
𝑥𝑥

0.08 𝜙1
𝑥𝑥

0.09
𝜙0
𝑥𝑧

0.14 𝜙1
𝑥𝑧

0.03
𝜎0
𝜐

0.32 𝜎1
𝜐

0.07

Equation for 𝒛𝒕
𝜇0
𝑧

−0.10 𝜇1
𝑧

0.40
𝜙0
𝑧

0.77 𝜙1
𝑧

0.67
𝜎0
𝑧

0.27 𝜇1
𝑧

0.22

Threshold

𝑧∗ −0.22

for the skeleton of {𝑧𝑡}. In this case, there is a unique equi-
librium point (𝑦𝑒, 𝑥𝑒, 𝑧𝑒) = (0.749, 0.153, 0.029), which is a point
of local stability since 𝐾̇(𝑧𝑒) = 0.93, 𝜙0

𝑦𝑦
𝐺(𝑧𝑒) + 𝜙1

𝑦𝑦
{1 − 𝐺(𝑧𝑒)} =

0.30 and 𝜙0
𝑥𝑥
𝐺(𝑧𝑒) + 𝜙1

𝑥𝑥
{1 − 𝐺(𝑧𝑒)} = 0.09. We shall consider

this parameter configuration further in the simulation experi-
ments in Section 4.

Lastly, a few remarks on the global stability/stationarity of the
model are worth making. Noting that the noise 𝜉𝑡 in (9) is Gaus-
sian and the mixing weights 𝐺𝑡 in (10) are a continuous, pos-
itive function of 𝑧𝑡−1, {𝑧𝑡} can be shown to be a 𝑉 -uniformly
ergodic (and hence geometrically ergodic) Markov chain on ℝ,
for the function 𝑉 defined by 𝑉 (𝑢) ∶= 1 + |𝑢|𝑟 for 𝑢 ∈ ℝ and
any 𝑟 > 1, provided max{|𝜙0

𝑧
|, |𝜙1

𝑧
|} < 1; furthermore, {𝑧𝑡} has a

unique stationary distribution with finite moments of all orders
(cf. Carvalho and Skoulakis [16]).6 Therefore, if the distribution
of the initial value 𝑧0 is the stationary distribution, then {𝑧𝑡} is
a (globally) stationary process. Interestingly, however, results in
Bec et al. [13] suggest that geometric ergodicity of {𝑧𝑡} can hold
under the weaker requirement that only one of the parameters𝜙0

𝑧

and𝜙1
𝑧

has absolute value less than one, with no restriction placed
on the other.7 Nevertheless, it should be pointed out that analo-
gous ergodicity results do not necessarily hold for the trivariate
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process {𝒘𝑡} satisfying (5) and (10)—even if stability restrictions
are imposed on both components of the mixture model. The rea-
son is that the mixing weights in (10) are a function of 𝑧𝑡−1 and
not of all three variables in 𝒘𝑡−1. In this case, geometric ergodic-
ity of {𝒘𝑡} typically requires the spectral radius of at least one
of the coefficient matrices 𝑨0 and 𝑨1 to be less than one and
each element of 𝑨0 that is associated with (𝑦𝑡−1, 𝑥𝑡−1) to equal
the corresponding element of 𝑨1 (cf. Bec et al. [13]).8 The latter
requirement, which permits only the coefficients on 𝑧𝑡−1 to differ
across the two mixture components, is restrictive and unlikely to
hold in general. Bearing in mind that conditions of this type are
generally sufficient, but not necessary, for geometric ergodicity
and global stationarity, an analysis of the skeleton of the model
can provide useful insights into its local stability characteristics
about potential equilibrium points.

3.3 | Estimation

The parameters of the model defined by equations (6) to (10)
can be estimated by the ML method. With 𝜽 ∶= (𝜽′0,𝜽

′
1, 𝑧

∗)′,
the log-likelihood function corresponding to observations
𝒘0,𝒘1, . . . ,𝒘𝑇 from the model (conditional on 𝒘0) takes
the form

(𝜽) ∶=
𝑇∑
𝑡=1

ln
(
𝐺𝑡𝑓0,𝑡 + (1 − 𝐺𝑡)𝑓1,𝑡

)
, (11)

where 𝐺𝑡 is given in (10) and

𝑓𝑖,𝑡 ∶= (2𝜋)−3∕2(det𝑺 𝑖)−1∕2

× exp
(
− 1

2
{𝑩𝑖𝒘𝑡 − 𝝁𝑖 −𝑫 𝑖𝒘𝑡−1}′𝑺−1

𝑖
{𝑩𝑖𝒘𝑡 − 𝝁𝑖 −𝑫 𝑖𝒘𝑡−1}

)
,

for 𝑖 = 0, 1. Here,

𝑩𝑖 ∶=
⎡⎢⎢⎢⎣
1 −𝛽𝑖

𝑦𝑥
−𝛽𝑖

𝑦𝑧

0 1 −𝛽𝑖
𝑥𝑧

0 0 1

⎤⎥⎥⎥⎦, 𝑫 𝑖 ∶=
⎡⎢⎢⎢⎣
𝜙𝑖
𝑦𝑦

𝜙𝑖
𝑦𝑥

𝜙𝑖
𝑦𝑧

0 𝜙𝑖
𝑥𝑥

𝜙𝑖
𝑥𝑧

0 0 𝜙𝑖
𝑧

⎤⎥⎥⎥⎦,
𝑺 𝑖 ∶= diag((𝜎𝑖

𝜂
)2, (𝜎𝑖

𝜐
)2, (𝜎𝑖

𝑧
)2), 𝝁𝑖 ∶= (𝜇𝑖

𝑦
, 𝜇𝑖

𝑥
, 𝜇𝑖

𝑧
)′.

Maximisation of the function (11) with respect to 𝜽 yields the
ML estimator 𝜽̂ of 𝜽. Under conventional regularity conditions,
𝜽̂ is a consistent estimator for the true value of 𝜽, say 𝜽∗, and
𝑇 1∕2𝑱 (𝜽∗)1∕2(𝜽̂ − 𝜽∗) is asymptotically normal, as 𝑇 tends to
infinity, with zero mean and identity covariance matrix, where
𝑱 (𝜽∗) ∶= −plim𝑇→∞𝑇

−1(𝜕2
∕𝜕𝜽𝜕𝜽′)(𝜽∗).9 In practice, the aver-

age observed information −𝑇 −1
̈(𝜽̂) may be used in place of

𝑱 (𝜽∗), where ̈(𝜽̂) ∶= (𝜕2
∕𝜕𝜽𝜕𝜽′)(𝜽̂), and inference on 𝜽 be

based on the approximate normality of 𝜽̂, with mean 𝜽∗ and
covariance matrix {−̈(𝜽̂)}−1. In the next section of the paper,
we use Monte Carlo methods to assess the quality of such
large-sample asymptotic approximations.

4 | Monte Carlo Simulations

In this section, simulation methods are used to explore the
finite-sample properties of the ML estimator and related test
statistics in the class of models under consideration. In partic-
ular, we are interested in the properties of the ML estimator in a
fully specified three-equation model and in a partial model which
excludes one of the equations.

4.1 | Experimental Design and Simulation

The model defined by Equations (6) to (10) is used as the
data-generating mechanism in the Monte Carlo experiments,
with the same parameter values as those used in the numerical
analysis in Section 3.2 (see Table 1). The sample sizes selected,
that is, 𝑇 ∈ {100, 200, 400, 800, 1600, 3200}, are representative of
data sets that are typically used in empirical work (samples of
3200 or more observations are not uncommon in studies using
weekly or daily data). In all experiments, 50 + 𝑇 data points for
𝒘𝑡 are generated, starting with 𝒘0 = (−0.9, 0.7,−0.22)′, but only
the last 𝑇 of these points are used for inference in each Monte
Carlo replication in order to attenuate the effect of initial values.

The ML estimate 𝜽̂ ∶= (𝜽̂
′
0, 𝜽̂

′
1, 𝑧

∗)′ of the 31-dimensional
parameter 𝜽 associated with the three-equation model
in (6) to (10) is obtained via direct maximisation of the
log-likelihood function given in (11) by means of the
Broyden–Fletcher–Goldfarb–Shanno quasi-Newton method
(an analogous procedure is used in the case of a two-equation
partial model discussed later). Starting points for the iterations
of the numerical optimization algorithm are obtained from
a grid of seven values for each parameter (including the true
value), with those points that result in the highest value of the
log-likelihood function being ultimately selected.10 Since ML
estimation is computationally costly, especially in the context of
simulations, 1000 Monte Carlo replications per experiment are
carried out.

4.2 | Complete Model

For each of the parameters associated with the equation for 𝑦𝑡,
Table 2 reports: (i) the Monte Carlo estimate of the finite-sample
bias of the ML estimator of the parameter; (ii) the ratio of
the finite-sample standard deviation of the estimator to its esti-
mated standard error obtained from {−̈(𝜽̂)}−1 (averaged across
Monte Carlo replications); (iii) the rejection frequency of a 𝑡-type
two-sided test of the null hypothesis that the parameter equals
its true value, using the 0.975 standard-normal quantile as crit-
ical value. Corresponding results for the parameters associated
with the equations for 𝑥𝑡 and 𝑧𝑡 are reported in Tables 3 and 4,
respectively.

The ML estimator exhibits modest bias only in the case of a
small number of parameters and for the smallest of the sam-
ple sizes considered. Even for these parameters, however, bias
is a decreasing function of the sample size and becomes negligi-
ble for 𝑇 ⩾ 200. In addition, estimated standard errors obtained
from the observed information matrix provide accurate approx-
imations to the sampling standard deviation of the ML estima-
tors, especially in samples of 200 or more observations. Encour-
aging results are also obtained in the context of hypothesis
testing: the deviation of the estimated rejection probabilities of
tests from the nominal 0.05 level rarely is substantial enough
to make the tests unattractive for application when 𝑇 ⩾ 200. In
summary, the overall pattern of the simulation results is in accord
with conventional ML asymptotic theory, although it does sug-
gest that at least 200 observations are typically needed before
large-sample approximations provide an accurate guide for
inference.
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TABLE 2 | Equation for 𝑦𝑡 in complete model.

Below threshold Above threshold

𝑻 𝝁0
𝒚

𝜷0
𝒚𝒙

𝜷0
𝒚𝒛

𝝓0
𝒚𝒚

𝝓0
𝒚𝒙

𝝓0
𝒚𝒛

𝝈0
𝜼

𝝁1
𝒚

𝜷1
𝒚𝒙

𝜷1
𝒚𝒛

𝝓1
𝒚𝒚

𝝓1
𝒚𝒙

𝝓1
𝒚𝒛

𝝈1
𝜼

Bias

100 −0.077 0.037 0.018 −0.052 −0.112 −0.195 −0.060 −0.088 0.091 −0.008 −0.161 −0.193 0.155 −0.114
200 −0.007 −0.038 0.007 −0.028 −0.025 −0.130 −0.031 −0.013 0.039 0.002 −0.058 −0.022 0.076 −0.054
400 −0.034 0.039 0.002 −0.009 −0.001 0.021 −0.011 0.001 0.007 −0.015 −0.042 −0.014 0.060 −0.026
800 0.036 −0.028 −0.001 −0.006 0.002 −0.011 −0.007 −0.004 0.010 0.002 −0.021 −0.024 0.012 −0.012
1600 −0.012 0.016 0.001 −0.005 −0.004 −0.006 −0.003 −0.005 −0.006 −0.002 −0.012 −0.015 0.002 −0.004
3200 −0.003 0.000 0.002 −0.003 −0.016 −0.004 −0.002 −0.002 0.004 −0.003 −0.010 −0.011 0.011 −0.003

Ratio of sampling standard deviation to estimated standard error

100 1.033 1.062 1.097 1.044 1.051 1.065 1.141 1.253 1.180 1.255 1.240 1.226 1.220 1.221
200 1.043 1.052 1.009 0.997 1.024 1.033 1.063 0.983 0.973 1.068 1.074 1.072 1.034 1.085
400 1.020 1.017 0.993 0.998 0.998 1.017 1.054 0.991 1.042 0.997 1.017 1.016 1.010 1.006
800 0.958 0.990 1.029 1.036 0.989 1.009 0.990 0.993 0.991 1.013 0.982 1.001 0.981 1.026
1600 0.956 0.943 0.965 0.991 0.941 0.991 0.988 1.021 0.993 1.030 0.991 0.989 1.024 1.020
3200 1.000 0.994 0.983 0.981 0.992 0.974 1.010 0.993 1.011 1.031 1.025 0.977 1.001 0.998

Test rejection frequency (nominal level 0.05)

100 0.063 0.067 0.082 0.073 0.064 0.066 0.163 0.107 0.091 0.119 0.110 0.107 0.109 0.253
200 0.071 0.077 0.060 0.060 0.074 0.068 0.116 0.081 0.076 0.094 0.068 0.078 0.090 0.143
400 0.065 0.067 0.048 0.057 0.059 0.061 0.075 0.057 0.058 0.055 0.058 0.067 0.049 0.084
800 0.069 0.071 0.045 0.056 0.045 0.082 0.054 0.054 0.045 0.059 0.042 0.034 0.047 0.071
1600 0.047 0.038 0.037 0.053 0.041 0.057 0.057 0.047 0.051 0.057 0.046 0.055 0.049 0.063
3200 0.053 0.050 0.047 0.050 0.059 0.044 0.054 0.044 0.052 0.052 0.059 0.047 0.047 0.058

Note: Results from Monte Carlo experiments discussed in Section 4. The Monte Carlo design can be found in Table 1.

4.3 | Partial Model

In a second set of experiments, we consider ML estimation of the
parameters of the equations for 𝑦𝑡 and 𝑧𝑡 in a partial model which
does not include the equation for 𝑥𝑡. The data-generating mech-
anism used is the same as that described in Section 4.1.

Results for the ML estimators of parameters associated with the
equations for 𝑦𝑡 and 𝑧𝑡 are summarised in Tables 5 and 6, respec-
tively. It is immediately obvious that the consequences of treating
𝑥𝑡 as an unmodelled variable are rather severe. In sharp contrast
to the results obtained from the complete three-equation model
(cf. Table 2), many parameters of the equation for 𝑦𝑡 are now esti-
mated with substantial bias. What is more, bias increases with
the sample size for the estimators of some parameters. In cases
where the average estimated parameter values deviate consider-
ably from the corresponding true value, the simulation-estimated
level of a test for the hypothesis that the parameter equals its
true value is, unsurprisingly, considerably larger than the nom-
inal 0.05 level. Moreover, these level distortions increase with the
sample size, rendering tests manifestly unreliable. Such severe
over-rejection is evidently associated more with the bias of coeffi-
cient estimators than with that of estimated standard errors; with

a few exceptions, the inaccuracy of standard errors obtained from
the observed information matrix is fairly modest.

The cost of not utilizing the information contained in the
equation for 𝑥𝑡 is not quite so high when estimating the param-
eters of the equation for 𝑧𝑡. Results for the ML estimator of
these parameters are generally good for samples of more than
400 observations. For smaller sample sizes, however, inference
based on the two-equation partial model is less accurate than
inference based on the complete three-equation model, the dif-
ferences being particularly striking in the case of the threshold
parameter 𝑧∗.

In summary, the simulation evidence demonstrates that, despite
the recursive nature of the system, focusing on the equations for
𝑦𝑡 and 𝑧𝑡 alone is perilous. Even if only the parameters of the
equations for 𝑦𝑡 and 𝑧𝑡 are of interest, joint estimation of these
parameters together with those of the equation for 𝑥𝑡 is required
in order to ensure that ML estimates have desirable statistical
properties and inference is accurate. The equation for 𝑥𝑡 contains
useful information about the variation of parameters between the
two regimes and the mixture structure of the dynamics of the
three variables. Ignoring this information by focusing on a model
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TABLE 3 | Equation for 𝑥𝑡 in complete model.

Below threshold Above threshold

𝑻 𝝁0
𝒙

𝜷0
𝒙𝒛

𝝓0
𝒙𝒙

𝝓0
𝒙𝒛

𝝈0
𝝍

𝝁1
𝒙

𝜷1
𝒙𝒛

𝝓1
𝒙𝒙

𝝓1
𝒙𝒛

𝝈1
𝝍

Bias

100 0.009 −0.005 0.000 0.043 −0.063 0.024 −0.070 −0.339 −0.234 −0.083

200 0.040 0.000 −0.003 0.012 −0.029 0.005 −0.006 −0.171 −0.064 −0.041

400 0.026 −0.001 −0.007 −0.032 −0.011 0.006 0.002 −0.067 0.003 −0.018

800 −0.012 0.000 0.000 0.013 −0.004 0.002 0.005 −0.035 0.015 −0.011

1600 0.005 0.000 −0.003 −0.014 −0.002 0.003 0.001 0.001 0.019 −0.006

3200 0.008 0.000 −0.001 −0.006 0.000 −0.001 −0.001 0.002 −0.003 −0.003

Ratio of sampling standard deviation to estimated standard error

100 1.072 1.045 1.099 1.047 2.507 1.154 1.187 1.140 1.144 1.149

200 1.004 0.994 1.005 1.009 2.517 1.065 1.063 1.034 1.074 1.046

400 1.012 1.023 1.027 1.021 1.035 1.012 1.024 0.948 0.999 1.033

800 1.011 0.975 1.044 1.013 1.050 0.974 0.999 0.993 0.968 1.005

1600 1.036 0.971 1.044 0.984 0.987 0.999 1.016 0.948 0.993 0.969

3200 0.992 1.003 0.978 1.013 0.972 1.003 1.002 0.989 1.001 0.974

Test rejection frequency (nominal level 0.05)

100 0.063 0.067 0.075 0.059 0.118 0.104 0.089 0.103 0.082 0.180

200 0.050 0.057 0.052 0.049 0.098 0.070 0.073 0.067 0.074 0.116

400 0.053 0.060 0.054 0.052 0.086 0.055 0.067 0.049 0.062 0.079

800 0.055 0.044 0.062 0.052 0.068 0.049 0.056 0.069 0.069 0.068

1600 0.059 0.039 0.058 0.055 0.051 0.058 0.046 0.042 0.046 0.052

3200 0.049 0.049 0.047 0.049 0.044 0.052 0.044 0.049 0.050 0.061

Note: Results from Monte Carlo experiments discussed in Section 4. The Monte Carlo design can be found in Table 1.

that treats 𝑥𝑡 as an unmodelled or exogenous variable, condition-
ally on which the generation process of (𝑦𝑡, 𝑧𝑡) may be analysed,
has a clear deleterious effect on the accuracy of inferential pro-
cedures. Such findings are analogous to those reported in Pouzo
et al. [8] for a large class of Markov regime-switching models
with time-varying transition probabilities (which includes mix-
ture autoregressive models as a special case).

5 | Consumer Sentiment and the Stock Market

The possibility of a causal role for consumer sentiment in driving
observed changes in stock prices has a long history in economics
and finance (see, inter alia, Keynes [20], Fisher and Statman [21],
Case et al. [22], Shiller [23]). Our aim in this section is to exam-
ine whether movements in the price–dividend ratio, which may
be thought of as a proxy for movements in expected future divi-
dend payments, are affected by a measure of consumer sentiment
once market volatility is taken into account.11 More specifically,
using an index of consumer sentiment as a signal for the state the
economy is in, we estimate the parameters of a two-component
mixture model for the price–dividend ratio, market volatility
and consumer sentiment with a threshold-type structure which
reflects high and low sentiment. Within this framework, we also
examine the implications of treating volatility as an unmodelled
variable (as is often the case in the empirical literature). In light of
the simulation results reported in Section 4.3, the omission of the
volatility equation from the system is likely to affect estimates for
the price–dividend equation significantly since volatility is used
as a covariate in the latter equation and volatility dynamics may

TABLE 4 | Equation for 𝑧𝑡 in complete model.

Below the threshold Above the threshold

T 𝒛∗ 𝝁0
𝒛

𝝓0
𝒛

𝝈0
𝒛

𝝁1
𝒛

𝝓1
𝒛

𝝈1
𝒛

Bias

100 −0.016 −0.031 −0.037 −0.019 0.007 −0.058 −0.046

200 0.010 −0.032 −0.012 −0.013 0.023 −0.035 −0.020

400 0.000 −0.004 −0.009 −0.007 0.003 −0.013 −0.010

800 0.001 −0.016 −0.004 −0.004 0.008 −0.007 −0.004

1600 0.004 −0.002 −0.002 −0.002 0.007 −0.004 −0.002

3200 −0.002 0.000 −0.002 −0.001 −0.002 −0.001 −0.002

Ratio of sampling standard deviation to estimated standard error

100 1.003 1.104 1.047 0.964 1.114 1.042 1.088

200 1.034 1.019 1.054 1.029 1.093 1.016 1.044

400 1.060 1.036 1.025 0.986 1.054 1.021 1.048

800 0.969 1.000 0.998 1.011 1.039 1.026 1.050

1600 0.997 0.971 1.007 0.989 1.008 1.035 1.036

3200 0.976 0.991 1.037 1.047 0.972 1.011 0.990

Test rejection frequency (nominal level 0.05)

100 0.055 0.057 0.078 0.062 0.078 0.060 0.120

200 0.065 0.041 0.065 0.065 0.070 0.060 0.075

400 0.065 0.057 0.064 0.055 0.062 0.064 0.073

800 0.042 0.044 0.055 0.056 0.060 0.058 0.066

1600 0.051 0.043 0.047 0.051 0.048 0.063 0.059

3200 0.046 0.052 0.060 0.062 0.049 0.051 0.049

Note: Results from Monte Carlo experiments discussed in Section 4. The Monte Carlo design can be found in Table 1.

be reasonably expected to be different depending on whether a
high-sentiment or low-sentiment regime is more likely to prevail.

5.1 | Data

Our empirical analysis is based on monthly data for: (i) the
price–dividend ratio for the S&P 500 stock index (𝑦𝑡), computed
as the ratio of the index to the associated cumulative nominal
dividends over the past 12 months (obtained from Welch and
Goyal [25]);12 (ii) the 3-month moving average of the market vari-
ance risk premium for the returns on the S&P 500 index (𝑥𝑡),
using the definition and data of Zhou [26];13 (iii) the 12-month
change in the Index of Consumer Sentiment (𝑧𝑡) published by the
Survey Research Center of the University of Michigan.14 These
variables are part of the set of predictor variables used by Lansing
et al. [27] in their analysis of the predictability of excess returns.
The data cover the period from March 1990 to December 2009
(238 observations in total for each time series).15 The time series
of the market variance risk premium and the change in consumer
sentiment are rescaled, with the maximum value normalised to
unity; this does not affect results beyond the rescaling of esti-
mated coefficients.16

5.2 | Empirical Results

Table 7 contains ML estimates of the parameters of the com-
plete model defined in (6) to (10), together with correspond-
ing estimated standard errors. In the price–dividend equation,
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TABLE 5 | Equation for 𝑦𝑡 in partial model.

Below threshold Above threshold

𝑻 𝝁0
𝒚

𝜷0
𝒚𝒙

𝜷0
𝒚𝒛

𝝓0
𝒚𝒚

𝝓0
𝒚𝒙

𝝓0
𝒚𝒛

𝝈0
𝜼

𝝁1
𝒚

𝜷1
𝒚𝒙

𝜷1
𝒚𝒛

𝝓1
𝒚𝒚

𝝓1
𝒚𝒙

𝝓1
𝒚𝒛

𝝈1
𝜼

Bias

100 −1.908 1.192 0.100 −0.074 0.014 −0.210 −0.172 1.379 0.057 −0.627 −0.205 −0.013 −0.004 −0.239
200 −2.499 1.513 0.068 −0.046 0.346 −0.255 −0.075 1.314 0.201 −0.623 −0.093 0.098 0.067 −0.115
400 −3.285 2.097 0.048 −0.009 0.515 −0.094 −0.021 1.239 0.292 −0.648 −0.062 0.130 0.194 −0.043
800 −3.832 2.413 0.037 −0.006 0.599 −0.280 0.009 1.196 0.332 −0.617 −0.032 0.115 0.155 −0.005
1600 −4.110 2.608 0.033 −0.002 0.648 −0.277 0.026 1.161 0.350 −0.612 −0.015 0.116 0.171 0.018
3200 −4.253 2.707 0.030 0.001 0.659 −0.288 0.033 1.137 0.381 −0.609 −0.007 0.121 0.208 0.027

Ratio of sampling standard deviation to estimated standard error

100 1.042 0.559 0.620 0.572 0.215 0.239 1.138 1.227 1.176 1.197 1.262 0.959 1.032 1.487
200 2.184 1.550 0.994 1.047 1.069 1.073 1.293 1.250 1.109 1.245 1.111 1.088 1.021 1.224
400 1.947 1.483 0.950 0.940 0.956 0.976 1.155 1.126 1.045 1.035 1.007 0.967 0.939 1.072
800 1.517 1.281 0.946 0.956 0.950 0.874 1.053 1.112 0.976 0.937 0.962 0.899 0.910 1.078
1600 1.175 1.000 0.917 0.830 0.882 0.662 0.925 1.083 0.864 0.787 0.916 0.882 0.968 0.989
3200 1.096 1.051 0.938 0.881 0.930 0.780 0.970 1.034 0.888 0.920 0.999 0.937 0.926 0.976

Test Rejection Frequency (Nominal Level 0.05)

100 0.599 0.345 0.131 0.145 0.157 0.135 0.319 0.609 0.230 0.437 0.196 0.152 0.169 0.490
200 0.674 0.475 0.083 0.089 0.127 0.099 0.210 0.686 0.161 0.407 0.091 0.092 0.094 0.288
400 0.785 0.722 0.062 0.045 0.138 0.085 0.162 0.763 0.127 0.410 0.085 0.082 0.074 0.176
800 0.909 0.874 0.081 0.064 0.260 0.145 0.101 0.899 0.142 0.572 0.060 0.065 0.065 0.107
1600 0.947 0.932 0.096 0.051 0.447 0.120 0.135 0.965 0.211 0.846 0.044 0.057 0.100 0.119
3200 0.986 0.983 0.135 0.048 0.716 0.124 0.241 0.989 0.424 0.983 0.052 0.061 0.131 0.200

Note: Results from Monte Carlo experiments discussed in Section 4. The Monte Carlo design can be found in Table 1.

the estimate of the impact multiplier 𝛽0
𝑦𝑥

is negative and sig-
nificant, implying a negative effect of volatility on stock prices
in the regime associated with pessimistic times, that is, when
the ex ante probability of the index of consumer sentiment
being below the threshold value is relatively high. The long-run
multiplier of volatility is positive in both regimes, reflecting the
well-known mean–variance trade-off. Moreover, the estimate of
𝛽1
𝑦𝑧

is positive and significant, suggesting that consumer senti-
ment directly affects stock prices in optimistic times, that is, when
the sentiment indicator is likely to exceed the threshold value.
This result is in line with the results obtained in Otoo [28]. The
results also show the importance of allowing for dynamics in the
price–dividend equation, with lagged values of at least two of
the variables having statistically significant coefficients in both
regimes. Consumer sentiment is found to have a significant con-
temporaneous effect on volatility when the former is likely to be
below the threshold, but the long-run effect is small. Finally, the
mixture autoregressive equation for consumer sentiment implies
a clear separation of the two regimes.

The time-varying mixing weights 𝐺𝑡 implied by the estimated
parameters are shown in Figure 1, along with time series of
the three variables. As seen in the top panel, the growth of the
price–dividend ratio is inversely related to the sentiment indica-
tor, suggesting a separation of regimes consistent with the fitted

model and supporting the hypothesis that consumer sentiment
affects stock prices and returns. The bottom left panel shows that
volatility is higher when the economic outlook is not particularly
good (i.e., when 𝐺𝑡 is large), while the bottom right panel shows
that the mixing weights 𝐺𝑡 move, as expected, inversely with the
index of consumer sentiment 𝑧𝑡 since higher values of the latter
are associated with a better economic outlook.

Finally, Table 8 reports ML estimation results for a partial model
which excludes the volatility equation. There are substantial dif-
ferences between these estimates and those presented in Table 7
for the complete model. The first notable difference is that
the estimated threshold value changes sign and increases from
−0.3401 to 0.1875. As a consequence, the time-varying mixing
weights and estimated dynamics in each regime are very differ-
ent. In the price–dividend equation, estimates of some param-
eters change substantially in magnitude compared to the com-
plete model. For example, the estimated value of the impact
multiplier of the price–dividend ratio with respect to volatil-
ity in the high-sentiment regime (𝛽1

𝑦𝑥
) increases from −10.4918

to −4.0135. What is more, neither contemporaneous nor lagged
sentiment appear to have a statistically significant effect on the
price–dividend ratio in either of the two regimes. The differences
in the estimated parameters of the consumer sentiment equation
in the complete and partial models are smaller by comparison.
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FIGURE 1 | Mixing function and data.

TABLE 6 | Equation for 𝑧𝑡 in partial model.

Below threshold Above threshold

𝑻 𝒛∗ 𝝁0
𝒛

𝝓0
𝒛

𝝈0
𝒛

𝝁1
𝒛

𝝓1
𝒛

𝝈1
𝒛

Bias

100 −0.420 0.326 −0.052 −0.041 −0.126 −0.056 −0.080

200 −0.265 0.241 −0.026 −0.025 −0.054 −0.033 −0.042

400 −0.144 0.152 −0.019 −0.012 −0.019 −0.014 −0.023

800 −0.052 0.036 −0.005 −0.006 0.006 −0.009 −0.009

1600 0.003 0.007 −0.002 −0.002 0.008 −0.004 −0.003

3200 0.018 −0.005 −0.001 −0.002 0.014 −0.003 −0.001

Ratio of sampling standard deviation to estimated standard error

100 1.289 0.681 0.734 1.160 0.671 0.726 1.063

200 1.362 1.104 1.084 1.225 1.073 1.033 1.043

400 1.336 1.059 1.003 0.962 1.010 0.960 1.078

800 1.148 0.960 0.916 0.921 0.958 0.960 1.049

1600 0.952 0.943 0.992 0.954 0.896 0.939 0.991

3200 0.987 0.993 1.014 0.996 0.931 0.973 0.975

Test rejection frequency (nominal level 0.05)

100 0.312 0.136 0.120 0.138 0.151 0.121 0.201

200 0.271 0.112 0.097 0.103 0.083 0.080 0.144

400 0.208 0.086 0.079 0.070 0.070 0.052 0.110

800 0.133 0.049 0.048 0.050 0.064 0.059 0.091

1600 0.084 0.052 0.055 0.055 0.052 0.045 0.063

3200 0.075 0.052 0.058 0.055 0.048 0.046 0.051

Note: Results from Monte Carlo experiments discussed in Section 4. The Monte Carlo design can be found in Table 1.

Such results are not very surprising and are entirely consistent
with the findings from the Monte Carlo experiments discussed
in Section 4.3. As pointed out there, results from a partial model
should be interpreted very cautiously as they are likely to be
unreliable.17

6 | Summary

In this article, we have considered the role of consumer sentiment
in stock markets. More specifically, we have focused on some
questions that have attracted attention in the literature, namely
whether the effect of consumer sentiment is already incorporated
in stock prices, whether consumer sentiment may be regarded
as a variable with which different economic regimes are associ-
ated, whether financial variables such as stock prices/returns and
volatility are simultaneously affected by consumer sentiment,
and how to account for such joint relationships.

To answer these questions, we have considered a mixture of mul-
tivariate dynamic models with time-varying mixing weights. The
latter have a threshold-type structure so that the (normalised con-
ditional) probability that the implied value of a specific variable
(consumer sentiment, in our setting) is below/above a threshold
determines which component of the mixture (or regime) is cho-
sen at each date. We have discussed the stability properties of
such a model and ML estimation of its parameters. Monte Carlo
experiments have demonstrated that likelihood-based inference
is accurate in sample sizes typical in applications, provided the
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TABLE 7 | ML parameter estimates for complete model (standard
errors in parentheses): 𝜙𝑖

𝑎𝑏
(𝛽𝑖

𝑎𝑏
) is the regime-𝑖 coefficient on the lagged

(contemporaneous) variable 𝑎 in the equation for variable 𝑏; 𝜙𝑖
𝑏
, 𝜇𝑖

𝑏
and 𝜎𝑖

𝑏

are the regime-𝑖 autoregressive coefficient, intercept and noise standard
deviation, respectively, in the equation for variable 𝑏.

Below threshold Above threshold

Price–dividend ratio (𝑦)

𝜇0
𝑦

−1.2314 (2.0668) 𝜇1
𝑦

0.5060 (0.5673)
𝛽0
𝑦𝑥

−4.1047 (2.3223) 𝛽1
𝑦𝑥

−10.4918 (4.4356)
𝛽0
𝑦𝑧

0.2996 (1.5834) 𝛽1
𝑦𝑧

1.2586 (0.6094)
𝜙0
𝑦𝑦

0.9957 (0.0260) 𝜙1
𝑦𝑦

0.9801 (0.0110)
𝜙0
𝑦𝑥

7.4692 (2.4047) 𝜙1
𝑦𝑥

13.9885 (4.1716)
𝜙0
𝑦𝑧

0.2226 (1.7368) 𝜙1
𝑦𝑧

−0.8931 (0.6064)
𝜎0
𝜂

3.2559 (0.3035) 𝜎1
𝜂

1.6411 (0.1103)

Market volatility (𝑥)

𝜇0
𝑥

0.1202 (0.0483) 𝜇1
𝑥

0.0130 (0.0054)
𝛽0
𝑥𝑧

−0.1778 (0.0879) 𝛽1
𝑥𝑧

0.0015 (0.0124)
𝜙0
𝑥𝑥

0.7173 (0.0947) 𝜙1
𝑥𝑥

0.9240 (0.0249)
𝜙0
𝑥𝑧

0.1745 (0.0950) 𝜙1
𝑥𝑧

0.0011 (0.0127)
𝜎0
𝜓

0.1755 (0.0162) 𝜎1
𝜓

0.0322 (0.0023)

Consumer sentiment (𝑧)

𝜇0
𝑧

−0.0916 (0.0498) 𝜇1
𝑧

0.0254 (0.0196)
𝜙0
𝑧

0.8025 (0.0715) 𝜙1
𝑧

0.7407 (0.0563)
𝜎0
𝑧

0.3016 (0.0318) 𝜎1
𝑧

0.2181 (0.0141)
𝑧∗ −0.3401 (0.0718)

TABLE 8 | ML parameter estimates for partial model (standard errors
in parentheses): 𝜙𝑖

𝑎𝑏
(𝛽𝑖

𝑎𝑏
) is the regime-𝑖 coefficient on the lagged (con-

temporaneous) variable 𝑎 in the equation for variable 𝑏; 𝜙𝑖
𝑏
, 𝜇𝑖

𝑏
and 𝜎𝑖

𝑏

are the regime-𝑖 autoregressive coefficient, intercept and noise standard
deviation, respectively, in the equation for variable 𝑏.

Below threshold Above threshold

Price–dividend ratio (𝒚)

𝜇0
𝑦

1.5134 (0.8355) 𝜇1
𝑦

−2.7734 (0.7429)
𝛽0
𝑦𝑥

−5.3104 (1.6200) 𝛽1
𝑦𝑥

−4.0135 (3.0259)
𝛽0
𝑦𝑧

0.5729 (1.1979) 𝛽1
𝑦𝑧

0.4441 (0.6497)
𝜙0
𝑦𝑦

0.9578 (0.0131) 𝜙1
𝑦𝑦

1.0535 (0.0141)
𝜙0
𝑦𝑥

6.0238 (1.8019) 𝜙1
𝑦𝑥

9.2113 (2.9583)
𝜙0
𝑦𝑧

−0.3800 (1.2426) 𝜙1
𝑦𝑧

−0.3720 (0.5402)
𝜎0
𝜂

2.2703 (0.1661) 𝜎1
𝜂

1.1996 (0.1446)

Consumer sentiment (𝒛)

𝜇0
𝑧

−0.0582 (0.0258) 𝜇1
𝑧

0.1570 (0.0445)
𝜙0
𝑧

0.8629 (0.0442) 𝜙𝑧
1 0.4840 (0.0853)

𝜎0
𝑧

0.2109 (0.0164) 𝜎1
𝑧

0.2424 (0.0243)
𝑧∗ 0.1875 (0.1086)

complete system is used. Treating one variable (volatility, in
our setting) as an unmodelled conditioning variable has severe
adverse effects on the accuracy of inferential procedures.

An analysis of the relationship between the S&P 500
price–dividend ratio, volatility and consumer sentiment using
the proposed model has illustrated its practical usefulness. The
model identifies two regimes associated with above-threshold
and below-threshold values of consumer sentiment, with the
latterhaving predictive power and a significant effect on both the
price–dividend ratio and volatility, at least in the short run.
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Endnotes
1 Here and elsewhere, 𝑸1∕2 denotes the symmetric, positive definite

square root of a symmetric, positive definite matrix 𝑸. Unless other-
wise indicated, all vectors are presented as column vectors.

2 Note that, for 𝑑 = 1, (3) reduces to the specification used in Dueker
et al. [9]. Also note that, although conditional Gaussianity is used as a
convenient assumption in much of what follows, non-Gaussian distri-
butions with a continuous density function may be considered instead.
Dueker et al. [11], for instance, considered distributions belonging to
the Student-𝑡 family and, in the univariate case, replaced Φ𝑑 in (3) with
the distribution function of a (rescaled) Student-𝑡 distribution.

3 In a univariate context, Wong and Li [12] considered mixture autore-
gressions (with logistic-type mixing weights) that may also include a
distributed lag of strictly exogenous variables.

4 It is perhaps worth pointing out that uncorrelatedness and Gaussianity
of the components of 𝒆𝑡 are not additional assumptions but a conse-
quence of the conditioning operations in the context of (5).

5 By comparison, a more general threshold structure of the type con-
sidered in Dueker et al. [10] would result in a trivariate conditional
mixture model with 9 components and 138 parameters.

6 For a definition and discussion of these concepts of ergodicity of
Markov chains, the reader is referred to Douc et al. [17, Ch. 15].

7 This parallels results for stochastic-unit-root and Markov-switching
autoregressive processes, for which stability within all regimes is
not necessary for geometric ergodicity and global stationarity (e.g.,
Gourieroux and Robert [18], Stelzer [19]).

8 It should be noted that such results are obtained in Bec et al. [13] for
a special case of mixture autoregressive models like (5) in which inter-
cepts are zero and the noise covariance matrices are identical across
regimes.

9 Typical (high-level) conditions include identifiability of the model,
compactness of the parameter space to whose interior 𝜽∗ belongs, non-
singularity of lim𝑇→∞ 𝑇 −1Var[(𝜕∕𝜕𝜽)(𝜽∗)], asymptotic normality of
𝑇 −1∕2(𝜕∕𝜕𝜽)(𝜽∗), and uniform convergence of 𝑇 −1(𝜕2

∕𝜕𝜽𝜕𝜽′) in a
neighbourhood of 𝜽∗ (cf. Dueker et al. [10]). The framework of Pouzo
et al. [8] may also be used to establish consistency and asymptotic
normality of 𝜽̂, exploiting the fact that their general setting includes
mixture autoregressive models as special cases.

10 We note that estimation results appear to be robust with respect to the
choice of starting values.

11 This is in line with specifications that allow for mean–variance
trade-off (e.g., Yu and Yuan [24]).

12 Updated data are available at https://sites.google.com/view/agoyal145.
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13 The data are available at https://sites.google.com/site/
haozhouspersonalhomepage.

14 The data are available at http://www.sca.isr.umich.edu/tables.html.
15 The end-date of the sample period is chosen so as to exclude post-2009

developments (e.g., proximity of interest rates to the zero lower bound,
Covid-19) whose potential effects on stock prices are not directly
related to those discussed in our empirical application. Such dis-
tinct periods could be accommodated by including additional com-
ponents/regimes in the mixture model, along the lines of Dueker
et al. [10]. This, however, would complicate the structure of the model
unnecessarily and divert attention from the modelling and inferential
issues highlighted in Section 1, on which we wish to focus.

16 Before considering multivariate conditional mixture models for
(𝑦𝑡, 𝑥𝑡, 𝑧𝑡), we tested for neglected nonlinearity (of unknown form) in
a single-regime version of (6) to (9) using a general portmanteau-type
test. Specifically, we carried out a likelihood-ratio test of the hypothesis
that (𝑦2

𝑡−1, 𝑥
2
𝑡
, 𝑧2

𝑡
), (𝑥2

𝑡−1, 𝑧
2
𝑡
) and 𝑧2

𝑡−1 have zero coefficients when added
to the right-hand side of the equations for 𝑦𝑡, 𝑥𝑡 and 𝑧𝑡, respectively
(these test variables were selected so as to avoid collinearity problems).
The 𝑃 -value of the test is 0.0197, suggesting that there is strong evi-
dence against the linear specification.

17 A logistic analogue of the model (6) to (10) can be obtained by replacing
the mixing weights in (10) with𝐺𝑡 = [1 + exp(−𝛾{𝑧𝑡−1 − 𝑧∗})]−1, 𝛾 > 0.
The local stability properties of such a model can be analysed using the
approach outlined in Section 3.2, with 𝐺(𝑢) = [1 + exp(−𝛾{𝑢 − 𝑧∗})]−1

and 𝐺̇(𝑧𝑒) = 𝛾 exp(−𝛾{𝑧𝑒 − 𝑧∗})∕[1 + exp(−𝛾{𝑧𝑒 − 𝑧∗})]2. As is the
case with our model, it is important that the parameters of the com-
plete three-equation system be estimated jointly when utilizing these
mixing weights; otherwise, results will be unreliable. ML estimates
of the parameters of the logistic threshold specification based on our
data are qualitatively similar to those reported in Table 7, although the
time-varying mixing weights implied by these estimates are somewhat
different from those shown in Figure 1. The full set of results is avail-
able upon request.
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