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ABSTRACT
The problem of selecting the smoothing parameter, or bandwidth, for kernel-based estimators of time-varying coefficients in linear
models with possibly endogenous explanatory variables is considered. We examine automated bandwidth selection by means of
cross-validation, a nonparametric variant of Akaike’s information criterion, and bootstrap procedures based on wild bootstrap and
dependent wild bootstrap resampling schemes. Our simulations show that data-driven selectors based on cross-validation and the
dependent wild bootstrap are the most successful overall in a variety of settings that are relevant in econometrics. Empirical
examples illustrate the practical use of the automated procedures.

1 | Introduction

Structural change and parameter instability are pervasive in rela-
tionships among economic and financial variables. To account for
such instability in cases where change is considered to be rela-
tively smooth rather than abrupt, various models with smoothly
time-varying coefficients have been proposed, along with suit-
able methods for inference on the coefficient path. These include
locally linear models with parameters that vary in a continu-
ous manner according to the values of observable variables (e.g.,
Teräsvirta 1998), models with deterministic coefficients that are
smooth functions of a rescaled time index (e.g., Robinson 1989,
1991; Cai 2007; Zhang and Wu 2012; Chen 2015), and models
with stochastic coefficients evolving as multivariate ARIMA pro-
cesses (e.g., Nicholls and Pagan 1985).

In more recent work, Giraitis et al. (2021) (GKM hereafter) con-
sider linear models in which little structure is imposed on their
time-varying coefficients—the latter may be deterministic or
stochastic, subject only to certain smoothness and boundedness
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conditions. In addition, GKM allows the explanatory variables in
the model to be potentially endogenous, in the sense of being
correlated with the unobservable errors, a setting which, like
that of Chen (2015), is often relevant in econometrics. When a
set of instrumental variables (IV) is available, inference on the
time-varying coefficients may be based on the kernel IV esti-
mators proposed by GKM. The obvious advantage of estimators
based on local smoothing is that they do not rely on parametric
specifications for the time-dependence of the parameters. How-
ever, as is the case with all kernel-based smoothing techniques,
the practical use of kernel IV or least-squares (LS) estimators
requires the choice of a smoothing parameter, known as the band-
width, as well as a choice of a suitable kernel function—although
it is generally accepted that the former choice has by far the
biggest impact on the properties of kernel smoothers in terms of
bias–variance trade-off.

In the context of nonparametric regression with determinis-
tic or random (and exogenous) explanatory variables, several
automated, data-driven bandwidth selection methods have
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been proposed for popular kernel-type estimators such as local
polynomial estimators and estimators of the Nadaraya–Watson,
Priestley–Chao and Gasser–Müller type. Those most com-
monly used are based on cross-validation (CV) methods,
undersmoothing-penalized goodness-of-fit criteria such as,
for example, Akaike’s information criterion (AIC) and Rice’s
𝑇 -criterion, bootstrap resampling methods, and so-called plug-in
rules—a useful overview can be found in Köhler et al. (2014).
However, as already indicated, the properties of these data-driven
bandwidth selection methods have almost exclusively been stud-
ied in regression settings where the explanatory variables are
uncorrelated with or independent of the unobservable errors
(or even deterministic). It is, therefore, of interest to examine
whether automated selectors, which are known to provide
effective bandwidth choices under exogeneity (or fixed-design)
conditions, remain successful in the presence of endogeneity,
and whether the performance of such selectors is affected by the
strength of the correlation between explanatory variables and
errors.

Our objective in this paper is to investigate some of these issues
by considering the performance of several automated bandwidth
selection methods for kernel IV and LS estimators in a gen-
eral setting similar to that in GKM, that is, in linear models
with time-varying coefficients and explanatory variables which
may be endogenous for the parameters of interest. More specif-
ically, we consider automated bandwidth selection by means
of four different methods, namely, ordinary (leave-one-out) CV,
a nonparametric variant of a bias-corrected version of AIC,
and wild bootstrap (WB), and dependent wild bootstrap (DWB)
procedures. The models considered are quite general, having
stochastically varying coefficients, explanatory variables that may
be endogenous, and errors which may be conditionally het-
eroskedastic and/or serially correlated. We find that DWB and,
rather remarkably, ordinary CV provides effective choices of the
bandwidth under a variety of conditions that are relevant in
econometrics. These data-driven selectors provide a useful and
easy-to-implement way to overcome the hurdle of choosing band-
widths in the practical application of kernel IV estimators of
time-varying coefficients like those proposed by Chen (2015)
and GKM.

The remainder of the paper is organized as follows. Section 2
introduces the model and related nonparametric kernel esti-
mators of interest. Section 3 provides a detailed description of
our data-driven procedures for the selection of the bandwidth
parameter for IV and LS estimators. Section 4 provides a simula-
tion study of the small-sample performance of automated band-
width selectors under a variety of data-generating mechanisms.
Section 5 illustrates the practical use of the automated selection
procedures in the context of two empirical applications. Finally,
Section 6 summarizes and concludes.

2 | Model and Estimation

Consider the varying-coefficient linear model given by

𝑦𝑡 = 𝛽′𝑡 𝑥𝑡 + 𝑢𝑡, 𝑡 = 1, 2, . . . , 𝑇 (1)

𝑥𝑡 = Ψ′
𝑡
𝑧𝑡 + 𝑣𝑡 (2)

where 𝑦𝑡 is a scalar variable, 𝑥𝑡 is a 𝑝 × 1 vector of (potentially
endogenous) variables, 𝛽𝑡 is a 𝑝 × 1 vector of coefficients, 𝑧𝑡 is an
𝑛 × 1 vector of exogenous variables (𝑛 ≥ 𝑝), Ψ𝑡 is an 𝑛 × 𝑝 matrix
of coefficients, and 𝑢𝑡 and 𝑣𝑡 are zero-mean random errors (which
may be serially correlated and/or heteroskedastic). As in GKM, 𝑥𝑡
is considered to be endogenous for 𝛽𝑡 when 𝐸(𝑣𝑡𝑢𝑡) ≠ 0 for some
𝑡, whereas exogeneity of 𝑧𝑡 is taken to mean that 𝐸(𝑧𝑡𝑢𝑡) = 0 and
𝐸(𝑧𝑡𝑣′𝑡) = 0 for all 𝑡. The parameters 𝛽𝑡 and Ψ𝑡 may be determin-
istic or stochastic, satisfying suitable boundedness and smooth-
ness conditions (see Giraitis et al. 2014 and GKM for details and
examples).

For the model (1) and (2), the kernel IV estimator of 𝛽𝑡 introduced
by GKM is

𝛽𝑡 =

(
𝑇∑
𝑗=1
𝑏𝐻,|𝑗−𝑡|Ψ̂′

𝑗
𝑧𝑗𝑥

′
𝑗

)−1
𝑇∑
𝑗=1
𝑏𝐻,|𝑗−𝑡|Ψ̂′

𝑗
𝑧𝑗𝑦𝑗 (3)

where 𝑏𝐻,|𝑗−𝑡| are kernel weights, 𝐻 is a bandwidth parameter,
and Ψ̂𝑗 is a consistent estimator of Ψ𝑗 .1 A natural choice for the
latter is the kernel LS estimator

Ψ̂𝑡 =

(
𝑇∑
𝑗=1
𝑏𝐿,|𝑗−𝑡|𝑧𝑗𝑧′𝑗

)−1
𝑇∑
𝑗=1
𝑏𝐿,|𝑗−𝑡|𝑧𝑗𝑥′𝑗 (4)

with bandwidth parameter 𝐿 ≥ 𝐻 . The kernel weights in
Equations (3) and (4) are obtained from a nonnegative ker-
nel function 𝐾(⋅) via 𝑏𝑀,𝑙 = 𝐾(𝑙∕𝑀), for some 𝑀 > 0 such
that 𝑀 → ∞ and 𝑀∕𝑇 → 0 as 𝑇 → ∞. Admissible ker-
nel functions are those satisfying 𝐾(𝑤) ≤ 𝐶∕(1 +𝑤𝑎) and|(d∕d𝑤)𝐾(𝑤)| ≤ 𝐶∕(1 +𝑤𝑎) for 𝑤 > 0 and some 𝐶 > 0 and
𝑎 > 3; examples include 𝐾(𝑤) ∝ exp(−𝑤2∕2), 𝐾(𝑤) ∝ 𝕀(0 ≤ 𝑤 <

1) and 𝐾(𝑤) ∝ (1 −𝑤)𝕀(0 ≤ 𝑤 < 1), where 𝕀(⋅) is the indicator
function.

GKM gives conditions on the dependence, heterogeneity, and
moments of 𝑧𝑡, 𝑢𝑡 and 𝑣𝑡, and on the variation in 𝛽𝑡 and Ψ𝑡,
which guarantee consistency and asymptotic normality of 𝛽𝑡. In
the case where 𝑥𝑡 is exogenous, in the sense that 𝐸(𝑣𝑡𝑢𝑡) = 0 for
all 𝑡, 𝛽𝑡 can also be consistently estimated using the kernel LS
estimator

𝛽𝑡 =

(
𝑇∑
𝑗=1
𝑏𝐻,|𝑗−𝑡|𝑥𝑗𝑥′𝑗

)−1
𝑇∑
𝑗=1
𝑏𝐻,|𝑗−𝑡|𝑥𝑗𝑦𝑗 (5)

(Throughout the paper, 𝐻 is used as a generic notation for the
bandwidth parameter associated with an estimator of 𝛽𝑡, without
implying that 𝛽𝑡 and 𝛽𝑡 share the same bandwidth.)

The key issue that arises in the use of the estimators (3), (4),
and (5) in practice is the selection of reasonable values for the
bandwidth parameters 𝐻 and 𝐿 for a given sample size 𝑇 . The
choice is important because the finite-sample properties of the
estimators can be affected significantly by the bandwidth value.
For example, too small a value for 𝐻 and/or 𝐿 may yield under-
smoothed estimates which have high variance, while too large a
value may result in oversmoothing and large bias. The asymptotic
results in GKM offer little practical guidance beyond the require-
ment that 𝐶1𝑇

(4∕𝜗)+𝜅 ≤ 𝐻 ≤ 𝐿 ≤ 𝐶2𝑇
1−𝜅 for some 𝜅, 𝐶1, 𝐶2 > 0

and 𝜗 > 4 such that 𝐸(‖‖𝜔𝑡‖‖4+𝜗) ≤ 𝐶 < ∞ uniformly in 𝑡, where

2 of 22 Journal of Time Series Analysis, 2025

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12842 by T

est, W
iley O

nline L
ibrary on [21/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



𝜔′
𝑡
= (𝑢𝑡, 𝑣′𝑡 , 𝑧

′
𝑡
) and ‖⋅‖ is the Euclidean norm.2 For practical use,

it is, therefore, desirable to have data-driven rules for choosing
the values of the bandwidth parameters.

3 | Data-Driven Bandwidth Selection

In this section, we discuss different methods for selecting
the bandwidths 𝐿 and 𝐻 that are required for the con-
struction of the kernel IV and LS estimator of 𝛽𝑡. The
data-driven selectors considered are based on CV, AIC, WB, and
DWB methods.

Throughout the remainder of the paper, we consider bandwidths
of the form 𝐿 = 𝑇 ℎ1 and𝐻 = 𝑇 ℎ2 , with 0 < ℎ2 ≤ ℎ1 < 1. For any
ℎ ∈ (0, 1), we use Ψ̂𝑡,ℎ, 𝛽𝑡,ℎ and 𝛽𝑡,ℎ to denote, respectively, the
LS estimator of Ψ𝑡 defined in Equation (4) with 𝐿 = 𝑇 ℎ, the IV
estimator of 𝛽𝑡 defined in Equation (3) with 𝐻 = 𝑇 ℎ, and the LS
estimator of 𝛽𝑡 defined in Equation (5) with𝐻 = 𝑇 ℎ.

3.1 | Cross-Validation

CV is a widely used method for selecting the smoothing param-
eter for nonparametric estimators. The basic idea is to use
part of the data for fitting and the remaining part to estimate
the average squared error of the fitted model under different
bandwidths, and select the bandwidth that produces the best
performance. Automated CV-based bandwidth selectors for
inference in varying-coefficient models have been used by Chen
and Hong (2012), Zhang and Wu (2012), and Chen (2015), among
others, the latter in the context of nonparametric two-stage LS
estimation.

In our IV setting, letting Ψ̂(−𝑡),ℎ be the leave-one-out version of the
LS estimator of Ψ𝑡 given by

Ψ̂(−𝑡),ℎ =

( ∑
1≤𝑗≤𝑇 ,𝑗≠𝑡

𝑏𝑇 ℎ,|𝑗−𝑡|𝑧𝑗𝑧′𝑗
)−1 ∑

1≤𝑗≤𝑇 ,𝑗≠𝑡
𝑏𝑇 ℎ,|𝑗−𝑡|𝑧𝑗𝑥′𝑗

TABLE 1 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
for model (6) with 𝑇 = 100.

Estimator CV AIC WB
DWB

(𝝀 = 2)
DWB

(𝝀 = 4)
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 10)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.084 1.147 1.118 1.110 1.094 1.080 1.068 1.068
𝛽𝑡 1.042 0.871 1.110 1.100 1.080 1.066 1.050 1.050
𝛽𝑡 1.082 1.143 1.119 1.104 1.086 1.076 1.066 1.064

Absolute Median
Deviation

𝛽𝑡 0.245 2.332 0.245 0.257 0.258 0.258 0.258 0.258
𝛽𝑡 0.153 0.151 0.153 0.153 0.153 0.154 0.153 0.154

Coverage 𝛽𝑡 84.556 68.566 83.439 78.670 78.995 79.196 79.318 79.432
𝛽𝑡 71.340 70.627 70.585 71.036 71.313 71.397 71.684 71.817

Optimal Coverage 𝛽𝑡 86.495
𝛽𝑡 78.039

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.091 1.148 1.123 1.114 1.095 1.084 1.072 1.072
𝛽𝑡 1.051 0.886 1.113 1.101 1.079 1.066 1.052 1.052
𝛽𝑡 1.091 1.150 1.136 1.125 1.103 1.087 1.084 1.076

Absolute Median
Deviation

𝛽𝑡 0.221 2.099 0.221 0.237 0.238 0.237 0.236 0.237
𝛽𝑡 0.148 0.386 0.147 0.148 0.148 0.148 0.149 0.149

Coverage 𝛽𝑡 83.006 66.840 82.251 77.255 75.602 77.493 78.029 78.027
𝛽𝑡 70.384 69.982 69.986 69.860 70.192 70.579 70.651 70.795

Optimal Coverage 𝛽𝑡 85.138
𝛽𝑡 77.187

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.114 1.160 1.148 1.137 1.123 1.108 1.093 1.093
𝛽𝑡 1.081 0.881 1.137 1.124 1.105 1.091 1.074 1.074
𝛽𝑡 1.027 1.070 1.066 1.053 1.034 1.018 1.016 1.006

Absolute Median
Deviation

𝛽𝑡 0.204 2.015 0.204 0.217 0.219 0.218 0.218 0.218
𝛽𝑡 0.243 0.242 0.242 0.243 0.243 0.243 0.243 0.243

Coverage 𝛽𝑡 80.993 63.472 80.404 75.568 75.602 76.123 76.334 76.411
𝛽𝑡 48.075 47.376 47.302 47.543 47.960 48.283 48.329 48.552

Optimal Coverage 𝛽𝑡 83.631
𝛽𝑡 50.951
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the CV choice of 𝐿 is 𝐿̃CV = 𝑇 ℎ̃1 , where

ℎ̃1 = arg min
ℎ

{
𝑇∑
𝑡=1

||𝑥𝑡 − Ψ̂
′
(−𝑡),ℎ𝑧𝑡||2

}

In a similar manner, letting 𝛽(−𝑡),ℎ be the leave-one-out version of
the IV estimator of 𝛽𝑡, constructed as

𝛽(−𝑡),ℎ =

( ∑
1≤𝑗≤𝑇 ,𝑗≠𝑡

𝑏𝑇 ℎ,|𝑗−𝑡|Ψ̂′
𝑗,ℎ̃1
𝑧𝑗𝑥

′
𝑗

)−1 ∑
1≤𝑗≤𝑇 ,𝑗≠𝑡

𝑏𝑇 ℎ,|𝑗−𝑡|Ψ̂′
𝑗,ℎ̃1
𝑧𝑗𝑦𝑗

the CV choice of𝐻 is obtained as 𝐻̃CV = 𝑇 ℎ̃2 , where

ℎ̃2 = arg min
ℎ≤ℎ̃1

{
𝑇∑
𝑡=1

|𝑦𝑡 − 𝛽′(−𝑡),ℎ𝑥𝑡|2
}

In the case of the LS estimator 𝛽𝑡, the CV choice of𝐻 is obtained
as 𝐻̂CV = 𝑇 ℎ̂, where

ℎ̂ = arg min
ℎ

{
𝑇∑
𝑡=1

|𝑦𝑡 − 𝛽′(−𝑡),ℎ𝑥𝑡|2
}

𝛽
′
(−𝑡),ℎ being the leave-one-out version of the LS estimator of 𝛽𝑡

given by

𝛽(−𝑡),ℎ =

( ∑
1≤𝑗≤𝑇 ,𝑗≠𝑡

𝑏𝑇 ℎ,|𝑗−𝑡|𝑥𝑗𝑥′𝑗
)−1 ∑

1≤𝑗≤𝑇 ,𝑗≠𝑡
𝑏𝑇 ℎ,|𝑗−𝑡|𝑥𝑗𝑦𝑗

Note that the estimator Ψ̂𝑗,ℎ̃1
used to construct 𝛽(−𝑡),ℎ is based on

the bandwidth chosen by CV. It is also worth remarking that,
although we focus on the popular leave-one-out CV method, it
may be advantageous to construct CV criteria by leaving out more
than one observation, or blocks of consecutive observations, espe-
cially when the data and/or errors are strongly correlated (see,
e.g., Burman et al. 1994; Hall et al. 1995).

3.2 | Information Criterion

Hurvich et al. (1998) and Cai (2007), among others, sug-
gested selecting the bandwidth for smoothing regression meth-
ods by using a nonparametric version of AIC. In our IV set-
ting, an AIC-based procedure can be used sequentially to obtain
data-driven choices of first 𝐿 and then𝐻 .

TABLE 2 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
for model (6) with 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.053 1.081 1.094 1.075 1.065 1.058 1.036 1.036
𝛽𝑡 1.025 0.821 1.085 1.062 1.051 1.043 1.021 1.021
𝛽𝑡 1.047 1.068 1.092 1.064 1.058 1.047 1.039 1.028

Absolute Median
Deviation

𝛽𝑡 0.219 1.718 0.219 0.229 0.230 0.230 0.230 0.229
𝛽𝑡 0.129 0.128 0.128 0.129 0.129 0.129 0.129 0.129

Coverage 𝛽𝑡 87.304 69.345 85.760 81.879 82.322 82.546 82.806 83.424
𝛽𝑡 74.016 73.851 72.837 73.524 73.657 74.010 74.400 74.918

Optimal Coverage 𝛽𝑡 88.283
𝛽𝑡 79.475

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.044 1.075 1.087 1.064 1.056 1.043 1.024 1.024
𝛽𝑡 1.021 0.837 1.080 1.053 1.044 1.033 1.014 1.014
𝛽𝑡 1.046 1.073 1.091 1.065 1.056 1.044 1.037 1.026

Absolute Median
Deviation

𝛽𝑡 0.196 1.641 0.196 0.204 0.204 0.204 0.204 0.204
𝛽𝑡 0.128 0.126 0.127 0.128 0.128 0.128 0.128 0.128

Coverage 𝛽𝑡 86.266 65.980 84.904 81.631 81.777 82.167 82.444 82.911
𝛽𝑡 72.979 72.538 71.802 72.397 72.648 73.033 73.400 73.805

Optimal Coverage 𝛽𝑡 87.079
𝛽𝑡 77.961

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.051 1.077 1.097 1.070 1.062 1.051 1.031 1.031
𝛽𝑡 1.022 0.808 1.086 1.055 1.046 1.035 1.015 1.015
𝛽𝑡 1.010 1.032 1.060 1.026 1.017 1.005 0.999 0.990

Absolute Median
Deviation

𝛽𝑡 0.186 1.804 0.186 0.194 0.194 0.195 0.195 0.195
𝛽𝑡 0.271 0.270 0.270 0.271 0.271 0.271 0.271 0.271

Coverage 𝛽𝑡 84.441 61.000 83.252 80.091 80.258 80.635 80.848 81.265
𝛽𝑡 39.228 38.700 37.767 38.752 39.000 39.422 39.572 39.883

Optimal Coverage 𝛽𝑡 86.012
𝛽𝑡 37.843
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To give a formal description of the procedure, let𝑋 and 𝑋̂ℎ be 𝑝 ×
𝑇 matrices with 𝑡-th column 𝑥𝑡 and Ψ̂

′
𝑡,ℎ
𝑧𝑡, respectively, and𝑄ℎ be

the 𝑝𝑇 × 𝑝𝑇 matrix satisfying vec(𝑋̂ℎ) = 𝑄ℎvec(𝑋), where vec(⋅)
is the vectorization function. The AIC choice of 𝐿 is obtained as
𝐿̃AIC = 𝑇 ℎ1 , where

ℎ1 = arg min
ℎ

{
log

(
𝑇∑
𝑡=1

‖‖‖𝑥𝑡 − Ψ̂
′
𝑡,ℎ
𝑧𝑡
‖‖‖2
)

+
2[tr(𝑄ℎ) + 1]
𝑝𝑇 − tr(𝑄ℎ) − 2

}

and tr(⋅) is the trace function. Next, let 𝑅ℎ be the 𝑇 × 𝑇 matrix
satisfying (𝛽′1,ℎ𝑥1, . . . , 𝛽

′
𝑇 ,ℎ
𝑥𝑇 )′ = 𝑅ℎ(𝑦1, . . . , 𝑦𝑇 )′, where

𝛽𝑡,ℎ =

(
𝑇∑
𝑗=1
𝑏𝑇 ℎ,|𝑗−𝑡|Ψ̂′

𝑗,ℎ1
𝑧𝑗𝑥

′
𝑗

)−1
𝑇∑
𝑗=1
𝑏𝑇 ℎ,|𝑗−𝑡|Ψ̂′

𝑗,ℎ1
𝑧𝑗𝑦𝑗

Then, the AIC choice of𝐻 is 𝐻̃AIC = 𝑇 ℎ2 , where

ℎ2 = arg min
ℎ≤ℎ1

{
log

(
𝑇∑
𝑡=1

|||𝑦𝑡 − 𝛽′𝑡,ℎ𝑥𝑡|||2
)

+
2[tr(𝑅ℎ) + 1]
𝑇 − tr(𝑅ℎ) − 2

}

Note that, as in the CV selection procedure, the estimator Ψ̂
𝑗,ℎ1

used to construct 𝛽′
𝑡,ℎ

is based on a data-driven bandwidth (𝐿̃AIC)
obtained by the same method. The trace of the smoother matrices
𝑄ℎ and𝑅ℎ associated with any given bandwidth ℎ (as well as that
of the smoother matrix 𝑆ℎ below) is typically viewed as the effec-
tive number of parameters involved in the smoothing procedure.

For the LS estimator 𝛽𝑡, the AIC choice of 𝐻 is obtained in an
analogous manner as 𝐻̂AIC = 𝑇 ℎ, with

ℎ = arg min
ℎ

{
log

(
𝑇∑
𝑡=1

|||𝑦𝑡 − 𝛽′𝑡,ℎ𝑥𝑡|||2
)

+
2[tr(𝑆ℎ) + 1]
𝑇 − tr(𝑆ℎ) − 2

}

where 𝑆ℎ is the 𝑇 × 𝑇 matrix satisfying (𝛽′1,ℎ𝑥1, . . . , 𝛽
′
𝑇 ,ℎ
𝑥𝑇 )′ =

𝑆ℎ(𝑦1, . . . , 𝑦𝑇 )′.

3.3 | Bootstrap

The bootstrap approach to bandwidth selection amounts to
choosing a bandwidth which minimizes an appropriate bootstrap

TABLE 3 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
for model (6) with 𝑇 = 500.

Estimator CV AIC WB
DWB

(𝝀 = 15)
DWB

(𝝀 = 22)
DWB

(𝝀 = 32)
DWB

(𝝀 = 45)
DWB

(𝝀 = 62)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.003 1.015 1.054 1.022 1.017 1.004 0.948 0.993
𝛽𝑡 0.994 0.785 1.016 0.989 0.984 0.976 0.971 0.976
𝛽𝑡 1.004 1.014 1.056 1.022 1.013 1.001 0.997 0.992

Absolute Median
Deviation

𝛽𝑡 0.095 0.705 0.100 0.095 0.096 0.096 0.096 0.096
𝛽𝑡 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051

Coverage 𝛽𝑡 94.735 84.199 93.479 93.390 93.453 93.700 93.849 94.022
𝛽𝑡 88.573 88.425 87.354 88.176 88.436 88.700 88.853 88.956

Optimal Coverage 𝛽𝑡 94.880
𝛽𝑡 89.916

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.000 1.015 1.056 1.02 1.01 1.001 0.995 0.990
𝛽𝑡 0.999 0.805 1.016 0.998 0.985 0.985 0.982 0.977
𝛽𝑡 1.002 1.011 1.054 1.018 1.006 0.999 0.993 0.989

Absolute Median
Deviation

𝛽𝑡 0.174 1.379 0.187 0.172 0.173 0.174 0.173 0.173
𝛽𝑡 0.103 0.102 0.103 0.103 0.103 0.103 0.103 0.103

Coverage 𝛽𝑡 89.032 63.708 86.797 86.469 86.788 87.178 87.488 87.565
𝛽𝑡 75.608 75.367 73.178 74.899 75.501 75.907 76.262 76.456

Optimal Coverage 𝛽𝑡 89.262
𝛽𝑡 78.042

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.012 1.022 1.068 1.031 1.021 1.012 1.007 1.003
𝛽𝑡 0.996 0.784 1.015 0.993 0.986 0.982 0.982 0.985
𝛽𝑡 0.988 0.998 1.043 1.003 0.991 0.982 0.979 0.976

Absolute Median
Deviation

𝛽𝑡 0.165 1.513 0.177 0.164 0.165 0.165 0.165 0.166
𝛽𝑡 0.297 0.297 0.297 0.297 0.297 0.298 0.298 0.298

Coverage 𝛽𝑡 87.570 58.534 85.780 85.015 85.322 85.592 85.791 85.920
𝛽𝑡 24.920 24.506 22.783 24.492 24.825 25.114 25.203 25.282

Optimal Coverage 𝛽𝑡 88.171
𝛽𝑡 21.208
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estimator of the average squared error of the fitted model (e.g.,
Faraway 1990; Hall 1990; Hall et al. 1995; González Manteiga
et al. 2004). In our IV setting, such an approach can be employed
to obtain data-driven choices of first 𝐿 and then 𝐻 . To allow
for the possibility that the errors in the model (1) and (2) may
be heteroskedastic or serially correlated, we rely on the WB and
DWB resampling schemes, originally proposed by Wu (1986) and
Shao (2010), respectively. The idea behind such schemes is to
construct of bootstrap errors by perturbing residuals by auxiliary
random variables that are independent of the data; these random
variables may be chosen to be mutually independent (as in WB)
or correlated (as in DWB).

In the case of IV estimation, the selection procedure for 𝐿
involves the following steps:

i. Using 𝐿̃CV = 𝑇 ℎ̃1 as pilot bandwidth, generate pseudo-data
𝑥∗
𝑡

according to

𝑥∗
𝑡
= Ψ̂

′
𝑡,ℎ̃1
𝑧𝑡 + 𝑣̂𝑡𝜂1,𝑡, 𝑡 = 1, 2, . . . , 𝑇

where 𝑣̂𝑡 = 𝑥𝑡 − Ψ̂
′
𝑡,ℎ̃1
𝑧𝑡 and {𝜂1,𝑡} are random variables,

independent of {(𝑦𝑡, 𝑥′𝑡 , 𝑧
′
𝑡
)}, having zero mean and unit

variance. For any ℎ ∈ (0, 1), let Ψ̂
∗
𝑡,ℎ

be the bootstrap ana-
logue of Ψ̂𝑡,ℎ, defined in the same way as the latter but using
(𝑥∗′
𝑡
, 𝑧′
𝑡
) in place of (𝑥′

𝑡
, 𝑧′
𝑡
).

ii. Repeating the previous step 𝐵 times (with 𝐵 suffi-
ciently large), generate copies Ψ̂

∗
𝑡,ℎ,1, . . . , Ψ̂

∗
𝑡,ℎ,𝐵

of Ψ̂
∗
𝑡,ℎ

and obtain the bootstrap choice of 𝐿 as 𝐿̃B = 𝑇 ℎ∗1 ,
where

ℎ∗1 = arg min
ℎ

{
𝐵∑
𝑏=1

𝑇∑
𝑡=1

‖‖‖Ψ̂∗′
𝑡,ℎ,𝑏
𝑧𝑡 − Ψ̂

′
𝑡,ℎ̃1
𝑧𝑡
‖‖‖2
}

Next, given the choice 𝐿̃B, the selection procedure for𝐻 is as fol-
lows:

i. Using Ψ̂𝑡,ℎ∗1 (the LS estimator of Ψ𝑡 with bandwidth 𝐿̃B) and
the pilot bandwidth 𝐻̃CV = 𝑇 ℎ̃2 to construct the estimator

TABLE 4 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
for model (6) with deterministic coefficients and 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 0.974 0.997 0.985 0.957 0.949 0.938 0.933 0.924
𝛽𝑡 0.969 0.741 0.975 0.950 0.942 0.933 0.926 0.917
𝛽𝑡 1.151 1.177 1.174 1.158 1.149 1.135 1.127 1.113

Absolute Median
Deviation

𝛽𝑡 0.093 1.872 0.092 0.093 0.093 0.094 0.095 0.095
𝛽𝑡 0.071 0.070 0.070 0.070 0.071 0.071 0.071 0.071

Coverage 𝛽𝑡 92.417 43.490 92.780 92.660 92.512 92.605 92.693 92.715
𝛽𝑡 85.457 85.692 85.715 85.790 86.055 86.382 86.162 86.613

Optimal Coverage 𝛽𝑡 93.047
𝛽𝑡 89.677

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 0.969 1.000 0.974 0.945 0.938 0.929 0.925 0.915
𝛽𝑡 0.963 0.731 0.966 0.942 0.933 0.926 0.918 0.907
𝛽𝑡 1.160 1.192 1.186 1.164 1.156 1.141 1.135 1.120

Absolute Median
Deviation

𝛽𝑡 0.083 1.996 0.082 0.082 0.083 0.084 0.084 0.085
𝛽𝑡 0.068 0.068 0.068 0.069 0.068 0.069 0.069 0.069

Coverage 𝛽𝑡 91.612 41.932 91.945 91.850 91.822 91.923 91.827 91.838
𝛽𝑡 83.863 83.448 83.617 83.800 84.627 85.117 85.118 85.537

Optimal Coverage 𝛽𝑡 92.465
𝛽𝑡 88.303

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 0.975 1.012 0.979 0.949 0.940 0.930 0.929 0.918
𝛽𝑡 0.965 0.629 0.977 0.944 0.936 0.923 0.921 0.909
𝛽𝑡 1.102 1.130 1.139 1.106 1.097 1.086 1.081 1.072

Absolute Median
Deviation

𝛽𝑡 0.074 2.339 0.074 0.074 0.074 0.075 0.075 0.076
𝛽𝑡 0.114 0.114 0.114 0.114 0.114 0.114 0.114 0.114

Coverage 𝛽𝑡 91.350 54.165 91.625 91.553 91.505 91.455 91.440 91.362
𝛽𝑡 55.648 54.910 54.113 55.728 55.848 56.528 56.537 56.838

Optimal Coverage 𝛽𝑡 92.065
𝛽𝑡 47.106
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𝛽𝑡,ℎ̃2
of 𝛽𝑡, generate pseudo-data (𝑦∗

𝑡
, 𝑥∗

′

𝑡
) according to

𝑦∗
𝑡
= 𝛽′

𝑡,ℎ̃2
𝑥∗
𝑡
+ 𝑢̃𝑡𝜂2,𝑡, 𝑡 = 1, 2, . . . , 𝑇 ,

𝑥∗
𝑡
= Ψ̂

′
𝑡,ℎ∗1
𝑧𝑡 + 𝑣̂𝑡𝜂2,𝑡

where 𝑢̃𝑡 = 𝑦𝑡 − 𝛽
′
𝑡,ℎ̃2
𝑥𝑡, 𝑣̂𝑡 = 𝑥𝑡 − Ψ̂

′
𝑡,ℎ∗1
𝑧𝑡, and {𝜂2,𝑡} are ran-

dom variables, independent of {(𝑦𝑡, 𝑥′𝑡 , 𝑧
′
𝑡
, 𝜂1,𝑡)}, having zero

mean and unit variance. For any ℎ ∈ (0, 1), let 𝛽∗
𝑡,ℎ

be the
bootstrap analogue of 𝛽𝑡,ℎ given by

𝛽
∗
𝑡,ℎ

=

(
𝑇∑
𝑗=1
𝑏𝑇 ℎ,|𝑗−𝑡|Ψ̂∗′

𝑗,ℎ∗1
𝑧𝑗𝑥

∗′
𝑗

)−1
𝑇∑
𝑗=1
𝑏𝑇 ℎ,|𝑗−𝑡|Ψ̂∗′

𝑗,ℎ∗1
𝑧𝑗𝑦

∗
𝑗

ii. Repeating the previous step 𝐵 times, generate copies
𝛽
∗
𝑡,ℎ,1, . . . , 𝛽

∗
𝑡,ℎ,𝐵

of 𝛽∗
𝑡,ℎ

and obtain the bootstrap choice of𝐻
as 𝐻̃B = 𝑇 ℎ∗2 , where

ℎ∗2 = arg min
ℎ≤ℎ∗1

{
𝐵∑
𝑏=1

𝑇∑
𝑡=1

|||𝛽∗′𝑡,ℎ,𝑏𝑥𝑡 − 𝛽′𝑡,ℎ̃2
𝑥𝑡
|||2
}

Notice that, following Davidson and MacKinnon (2010) and
Chen (2015), 𝑢̃𝑡 and 𝑣̂𝑡 are multiplied by the same auxiliary vari-
able 𝜂2,𝑡 to preserve, as much as possible, the correlation between
𝑢𝑡 and 𝑣𝑡 when generating bootstrap data (𝑥∗′

𝑡
, 𝑦∗
𝑡
).

In the case of the LS estimator of 𝛽𝑡, the selection procedure for
𝐻 involves the following steps:

TABLE 5 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
under (9), (10), and (11) with 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.016 1.049 1.062 1.040 1.033 1.022 1.014 0.999

𝛽𝑡 0.996 0.963 1.002 0.981 0.985 0.973 0.972 0.964

𝛽𝑡 1.333 1.377 1.372 1.346 1.343 1.337 1.330 1.318

Absolute Median
Deviation

𝛽𝑡 0.591 2.770 0.688 0.605 0.583 0.610 0.617 0.624

𝛽𝑡 0.256 0.243 0.252 0.253 0.255 0.256 0.256 0.258

Coverage 𝛽𝑡 93.662 79.033 93.015 93.092 93.165 93.255 93.368 93.302

𝛽𝑡 78.803 78.833 78.215 78.590 78.778 78.775 78.917 79.140

Optimal Coverage 𝛽𝑡 94.438

𝛽𝑡 87.100

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.041 1.064 1.085 1.061 1.051 1.041 1.034 1.018

𝛽𝑡 1.022 0.959 1.029 1.021 1.006 1.011 0.990 0.991

𝛽𝑡 1.347 1.377 1.389 1.371 1.363 1.356 1.349 1.340

Absolute Median
Deviation

𝛽𝑡 0.428 2.349 0.467 0.414 0.420 0.423 0.428 0.432

𝛽𝑡 0.220 0.216 0.215 0.216 0.217 0.219 0.219 0.219

Coverage 𝛽𝑡 92.093 72.975 91.468 91.555 91.617 91.687 91.631 91.695

𝛽𝑡 75.103 74.497 74.067 74.523 74.667 74.535 74.848 75.308

Optimal Coverage 𝛽𝑡 92.985

𝛽𝑡 82.180

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.060 1.090 1.106 1.083 1.068 1.064 1.053 1.039

𝛽𝑡 1.040 0.913 1.055 1.047 1.015 1.017 1.009 1.001

𝛽𝑡 1.227 1.266 1.275 1.248 1.238 1.231 1.225 1.209

Absolute Median
Deviation

𝛽𝑡 0.346 2.822 0.379 0.339 0.338 0.340 0.346 0.344

𝛽𝑡 0.569 0.569 0.570 0.570 0.570 0.570 0.569 0.570

Coverage 𝛽𝑡 90.320 61.815 9.467 89.333 89.263 89.420 89.418 89.722

𝛽𝑡 29.240 28.093 27.747 28.457 28.828 28.943 29.335 29.837

Optimal Coverage 𝛽𝑡 91.252

𝛽𝑡 25.215
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i. Using 𝐻̂CV = 𝑇 ℎ̂ as pilot bandwidth, generate pseudo-data
𝑦∗
𝑡

according to

𝑦∗
𝑡
= 𝛽′

𝑡,ℎ̂
𝑥𝑡 + û𝑡𝜂3,𝑡, 𝑡 = 1, 2, . . . , 𝑇

where û𝑡 = 𝑦𝑡 − 𝛽
′
𝑡,ℎ̂
𝑥𝑡 and {𝜂3,𝑡} are random variables, inde-

pendent of {(𝑦𝑡, 𝑥′𝑡)}, having zero mean and unit variance.
For any ℎ ∈ (0, 1), let 𝛽∗

𝑡,ℎ
be the bootstrap version of 𝛽𝑡,ℎ,

obtained by replacing (𝑦𝑡, 𝑥′𝑡) in the definition of 𝛽𝑡,ℎ with
(𝑦∗
𝑡
, 𝑥′
𝑡
).

ii. Repeating the above step 𝐵 times, generate copies
𝛽
∗′

𝑡,ℎ,1, . . . , 𝛽
∗′

𝑡,ℎ,𝐵
of 𝛽∗

𝑡,ℎ
and obtain the bootstrap choice

of𝐻 as 𝐻̂B = 𝑇 ℎ∗ , where

ℎ∗ = arg min
ℎ

{
𝐵∑
𝑏=1

𝑇∑
𝑡=1

|||𝛽∗′𝑡,ℎ,𝑏𝑥𝑡 − 𝛽′𝑡,ℎ̂𝑥𝑡|||2
}

The bandwidth selection procedures based on WB and DWB
differ only in the choice of the correlation structure of the

collections of auxiliary random variables {𝜂𝑖,𝑡} (𝑖 = 1, 2, 3). In
the WB case, we take {𝜂𝑖,𝑡} to be independent  (0, 1) random
variables; thus, the bootstrap errors reflect possible heterogene-
ity in the variance of the original errors. For the DWB, we fol-
low Shao (2010) and Djogbenou et al. (2015) in taking {𝜂𝑖,𝑡} to
be jointly Gaussian with mean zero and covariances 𝐸(𝜂𝑖,𝑡𝜂𝑖,𝑘) =
Λ(|𝑡 − 𝑘|∕𝜆), where Λ(𝑤) = (1 − |𝑤|)𝕀(|𝑤| < 1) is the triangular
kernel function and 𝜆 > 0 is a bandwidth controlling the extent
of dependence (with 𝜆 → ∞ and 𝜆∕𝑇 → 0 as 𝑇 → ∞); hence,
the bootstrap errors reflect possible serial correlation in the
original errors.

It is worth noting that, if heteroskedasticity and serial correla-
tion are not a concern, then the bootstrap errors that are required
to generate 𝑥∗

𝑡
and 𝑦∗

𝑡
may be obtained by resampling from the

empirical distribution of the relevant residuals. For instance,
when selecting the bandwidth𝐻 for 𝛽𝑡, this amounts to choosing
bootstrap errors by sampling independently and uniformly, with
replacement, from the residuals {(𝑢̃𝑡, 𝑣̂

′
𝑡
), 𝑡 = 1, 2, . . . , 𝑇 } after

centering them around their arithmetic mean. The use of such

TABLE 6 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
under (9), (10), and (12) with 𝑑 = 1.2 and 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.078 1.086 1.121 1.098 1.097 1.084 1.075 1.066
𝛽𝑡 1.052 1.006 1.084 1.059 1.064 1.044 1.039 1.030
𝛽𝑡 1.423 1.455 1.453 1.433 1.430 1.424 1.417 1.409

Absolute Median
Deviation

𝛽𝑡 0.852 1.844 0.922 0.826 0.825 0.839 0.836 0.841
𝛽𝑡 0.378 0.373 0.371 0.374 0.373 0.378 0.378 0.381

Coverage 𝛽𝑡 93.965 83.048 93.925 94.185 94.095 94.122 94.148 94.190
𝛽𝑡 82.813 82.687 82.483 82.848 82.625 82.558 82.783 82.926

Optimal Coverage 𝛽𝑡 94.928
𝛽𝑡 88.465

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.069 1.088 1.121 1.092 1.087 1.073 1.066 1.053
𝛽𝑡 1.040 1.019 1.054 1.038 1.031 1.023 1.021 1.010
𝛽𝑡 1.446 1.501 1.487 1.465 1.460 1.448 1.446 1.436

Absolute Median
Deviation

𝛽𝑡 0.656 1.785 0.719 0.628 0.632 0.638 0.644 0.642
𝛽𝑡 0.323 0.309 0.314 0.321 0.320 0.322 0.322 0.325

Coverage 𝛽𝑡 93.302 75.930 92.887 93.102 93.043 93.088 93.215 93.221
𝛽𝑡 9.443 79.412 78.842 78.875 78.945 79.047 79.292 79.397

Optimal Coverage 𝛽𝑡 93.883
𝛽𝑡 84.363

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.062 1.082 1.106 1.079 1.075 1.064 1.054 1.042
𝛽𝑡 1.042 0.941 1.056 1.027 1.027 1.011 1.019 1.008
𝛽𝑡 1.305 1.364 1.362 1.332 1.323 1.317 1.307 1.288

Absolute Median
Deviation

𝛽𝑡 0.580 3.194 0.618 0.557 0.559 0.570 0.570 0.576
𝛽𝑡 0.946 0.941 0.945 0.946 0.945 0.948 0.945 0.947

Coverage 𝛽𝑡 91.383 63.635 91.362 91.192 91.217 91.143 91.128 91.167
𝛽𝑡 26.937 25.493 24.735 25.855 26.250 26.423 26.573 27.348

Optimal Coverage 𝛽𝑡 92.295
𝛽𝑡 19.630
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a resampling scheme is, however, inadvisable when the original
errors may be serially correlated and/or heteroskedastic (and will
not be considered in the sequel).

4 | Monte Carlo Simulations

In this section, the finite-sample performance of various
data-driven bandwidth selectors for the kernel-based LS and IV
estimators 𝛽𝑡 and 𝛽𝑡 is evaluated by means of simulations. The
Monte Carlo’s experiments are based on data-generating pro-
cesses (DGPs) that are variants of those previously used by GKM.
We consider exactly identified and overidentified models, with
errors that may be independent and identically distributed (i.i.d.),
conditionally heteroskedastic, or serially correlated. As it is gen-
erally accepted that the choice of kernel (𝐾) is of secondary
importance compared to the choice of smoothing parameters
(𝐿,𝐻), we use the Gaussian kernel 𝐾(𝑤) = exp(−𝑤2∕2) in all
subsequent computations.

4.1 | Homoskedasticity and Independence

The first set of experiments is based on an exact iden-
tified version of the model (1) and (2) with 𝑛 = 𝑝 = 1,
that is,

𝑦𝑡 = 𝛽𝑡𝑥𝑡 + 𝑢𝑡, 𝑥𝑡 = 𝜓𝑡𝑧𝑡 + 𝑣𝑡, 𝑡 = 1, 2, . . . , 𝑇 (6)

where 𝑇 ∈ {100, 200, 500}. As in GKM, {𝑧𝑡} are i.i.d.  (0, 1) ran-
dom variables, while {𝑢𝑡} and {𝑣𝑡} are such that

𝑢𝑡 = 𝑠𝑒1,𝑡 + (1 − 𝑠)𝑒2,𝑡, 𝑣𝑡 = 𝑠𝑒1,𝑡 + (1 − 𝑠)𝑒3,𝑡 (7)

where {𝑒′
𝑡
= (𝑒1,𝑡, 𝑒2,𝑡, 𝑒3,𝑡)} are i.i.d. Gaussian random vec-

tors, independent of {𝑧𝑡}, having zero mean and identity
covariance matrix. Hence, the strength of endogeneity, as
measured by Corr(𝑢𝑡, 𝑣𝑡) = 𝑠2∕[𝑠2 + (1 − 𝑠)2], is controlled by 𝑠,

TABLE 7 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
under (9), (10), and (12) with 𝑑 = 1.4 and 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.078 1.086 1.121 1.098 1.097 1.084 1.075 1.066

𝛽𝑡 1.052 1.002 1.083 1.056 1.063 1.043 1.040 1.030

𝛽𝑡 1.423 1.465 1.459 1.439 1.432 1.428 1.424 1.415

Absolute Median
Deviation

𝛽𝑡 0.823 1.819 0.892 0.799 0.798 0.811 0.809 0.812

𝛽𝑡 0.366 0.360 0.358 0.360 0.362 0.364 0.366 0.368

Coverage 𝛽𝑡 93.828 82.617 93.722 94.010 93.933 93.950 93.937 94.032

𝛽𝑡 82.425 82.003 81.887 82.352 82.252 82.258 82.452 82.597

Optimal Coverage 𝛽𝑡 94.803

𝛽𝑡 88.358

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.069 1.088 1.121 1.092 1.087 1.073 1.066 1.053

𝛽𝑡 1.040 1.014 1.055 1.037 1.031 1.021 1.021 1.010

𝛽𝑡 1.432 1.502 1.476 1.456 1.447 1.434 1.432 1.422

Absolute Median
Deviation

𝛽𝑡 0.633 1.786 0.690 0.606 0.609 0.615 0.621 0.619

𝛽𝑡 0.314 0.299 0.307 0.312 0.310 0.313 0.313 0.315

Coverage 𝛽𝑡 93.113 75.428 92.730 92.903 92.845 92.905 93.047 93.018

𝛽𝑡 79.300 79.045 78.577 78.677 78.992 79.213 79.207 79.335

Optimal Coverage 𝛽𝑡 93.782

𝛽𝑡 84.190

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.062 1.082 1.106 1.079 1.075 1.064 1.054 1.042

𝛽𝑡 1.043 0.941 1.056 1.029 1.028 1.013 1.019 1.009

𝛽𝑡 1.290 1.364 1.346 1.316 1.307 1.300 1.292 1.274

Absolute Median
Deviation

𝛽𝑡 0.558 3.113 0.591 0.537 0.538 0.549 0.550 0.554

𝛽𝑡 0.911 0.906 0.910 0.910 0.911 0.912 0.912 0.911

Coverage 𝛽𝑡 91.286 62.773 91.210 91.063 91.100 91.032 91.046 91.078

𝛽𝑡 27.308 25.592 25.133 26.062 26.473 26.793 26.923 27.572

Optimal Coverage 𝛽𝑡 92.265

𝛽𝑡 20.165
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with 𝑠 ∈ {0, 0.2, 0.5}. The coefficients {𝛽𝑡} and {𝜓𝑡} vary stochas-
tically as rescaled random walks,

𝛽𝑡 = 𝑇 −1∕2
𝑡−1∑
𝑗=0
𝜉1,𝑡−𝑗 , 𝜓𝑡 = 𝑇 −1∕2

𝑡−1∑
𝑗=0
𝜉2,𝑡−𝑗 (8)

where {𝜉1,𝑡} and {𝜉2,𝑡} are collections of i.i.d.  (0, 1) random
variables, independent of each other and of {(𝑒′

𝑡
, 𝑧𝑡)}.

As noted in the description of the bandwidth selection proce-
dures in Section 3, the same data-driven procedure is used for
the selection of both 𝐿 and𝐻 in the case of the IV estimator (the
only exception being the use of a CV pilot bandwidth in the con-
struction of the IV estimator of 𝛽𝑡 required to generate bootstrap
data). For bootstrap-based selection procedures, the number
of bootstrap replications is 𝐵 = 399. In the case of DWB, we
consider 𝜆 ∈ {2, 4, 6, 8, 10} when 𝑇 = 100, 𝜆 ∈ {6, 8, 12, 16, 32}
when 𝑇 = 200, and 𝜆 ∈ {15, 22, 32, 45, 62} when 𝑇 = 500.3 In
all cases, the relevant objective functions are minimized over

an equispaced grid of 30 points corresponding to bandwidths
ranging in the interval [𝑇 0.2, 𝑇 0.9].

The properties of bandwidth selectors for IV and LS estimators
of 𝛽𝑡 are evaluated using several performance indicators. Specif-
ically, for a kernel-based estimator of 𝛽𝑡, say 𝛽𝑡,ℎ̌ (IV or LS),
with bandwidth 𝑇 ℎ̌ selected by one of the methods discussed
in Section 3, we consider the following performance measures
(based on 𝑅Monte Carlo replications):

i. Average ratio of selected bandwidth to optimal bandwidth,
computed as

𝑅−1
𝑅∑
𝑟=1
𝑇 ℎ̌𝑟−ℎ

opt
𝑟

where ℎ̌𝑟 is the value of ℎ̌ in the 𝑟-th Monte Carlo replica-
tion and ℎopt

𝑟 is the corresponding optimal value; the latter
is obtained as the minimizer of 𝑇 −1∑𝑇

𝑡=1|𝛽𝑡,ℎ − 𝛽𝑡|𝑚, with
𝑚 = 1 and𝑚 = 2 for the IV and LS estimators, respectively.4

TABLE 8 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
under (6) and (13) with 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.016 1.049 1.062 1.040 1.033 1.022 1.014 0.999
𝛽𝑡 1.015 0.813 1.046 1.034 1.025 1.022 1.016 1.003
𝛽𝑡 1.004 1.027 1.052 1.021 1.013 1.002 0.995 0.986

Absolute Median
Deviation

𝛽𝑡 0.222 2.904 0.2447 0.240 0.234 0.239 0.239 0.240
𝛽𝑡 0.127 0.125 0.127 0.127 0.127 0.127 0.126 0.126

Coverage 𝛽𝑡 86.848 68.980 83.685 82.448 82.860 83.163 83.530 84.093
𝛽𝑡 73.460 73.187 71.837 72.708 73.103 73.538 73.823 74.253

Optimal Coverage 𝛽𝑡 88.068
𝛽𝑡 78.518

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.041 1.064 1.085 1.061 1.051 1.041 1.034 1.018
𝛽𝑡 1.026 0.838 1.069 1.053 1.042 1.046 1.030 1.021
𝛽𝑡 1.042 1.079 1.092 1.063 1.051 1.040 1.032 1.023

Absolute Median
Deviation

𝛽𝑡 0.198 2.406 0.216 0.203 0.204 0.203 0.203 0.203
𝛽𝑡 0.125 0.123 0.125 0.126 0.125 0.125 0.125 0.124

Coverage 𝛽𝑡 85.658 66.040 82.773 81.215 81.515 81.960 81.993 82.510
𝛽𝑡 72.427 72.043 70.900 71.645 72.058 72.522 72.903 73.295

Optimal Coverage 𝛽𝑡 86.897
𝛽𝑡 76.903

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.060 1.090 1.106 1.083 1.068 1.064 1.053 1.039
𝛽𝑡 1.050 0.825 1.087 1.075 1.047 1.065 1.047 1.030
𝛽𝑡 1.035 1.072 1.079 1.050 1.040 1.028 1.015 1.010

Absolute Median
Deviation

𝛽𝑡 0.188 2.377 0.202 0.193 0.191 0.192 0.194 0.193
𝛽𝑡 0.269 0.268 0.269 0.269 0.269 0.269 0.269 0.269

Coverage 𝛽𝑡 83.548 60.390 81.018 79.420 79.772 79.770 80.075 80.763
𝛽𝑡 37.960 37.076 36.642 37.466 37.675 38.210 38.488 38.657

Optimal Coverage 𝛽𝑡 85.825
𝛽𝑡 37.280

10 of 22 Journal of Time Series Analysis, 2025

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12842 by T

est, W
iley O

nline L
ibrary on [21/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ii. Average median absolute estimation error of 𝛽𝑡,ℎ̌, com-
puted as

𝑅−1
𝑅∑
𝑟=1

med{|𝛽𝑡,ℎ̌𝑟 − 𝛽𝑡| ∶ 𝑡 = 1, 2, . . . , 𝑇 }

iii. Average coverage rate of 95% two-sided confidence inter-
vals for 𝛽𝑡, computed as

100(𝑇𝑅)−1
𝑇∑
𝑡=1

𝑅∑
𝑟=1

𝕀(|𝛽𝑡,ℎ̌𝑟 − 𝛽𝑡|∕se(𝛽𝑡,ℎ̌𝑟 ) ≤ 1.96)

where se(𝛽𝑡,ℎ̌𝑟 ) is an estimate of the asymptotic standard
deviation of 𝛽𝑡,ℎ̌𝑟 (obtained as in GKM).

All reported simulation results are obtained from 𝑅 = 1,000
Monte Carlo replications.

Tables 1–3 contain results for 𝑇 = 100, 𝑇 = 200 and 𝑇 = 500,
respectively. The data-driven methods are similarly behaved

when selecting the bandwidth for the LS estimator of 𝜓𝑡, with
DWB (with large bandwidth 𝜆) being slightly superior for the two
smaller sample sizes in terms of the ratio of the selected band-
width to the optimal value that minimizes the mean squared esti-
mation error of 𝜓̂ 𝑡. For the IV estimator of 𝛽𝑡, CV outperforms
all other methods in terms of the ratio of the selected bandwidth
to the optimal value that minimizes the mean absolute estima-
tion error of 𝛽𝑡 for 𝑇 = 100, regardless of whether 𝑥𝑡 is exoge-
nous (𝑠 = 0) or endogenous (𝑠 ≠ 0); it is less effective than DWB
(with 𝜆 ≥ 16), but only by a slight margin, when 𝑇 = 200 and
𝑠 ≠ 0, and, together with WB, delivers the best results when 𝑇 =
500. Furthermore, CV bandwidths produce pointwise confidence
intervals for 𝛽𝑡 the average coverage of which is close to the cover-
age associated with the optimal bandwidth, outperforming other
automatically selected bandwidths in this respect for all values of
𝑠 and 𝑇 . It must be pointed out, however, that even the optimal
bandwidth (for the given simulated data) yields confidence inter-
vals, the average coverage of which (labeled “optimal coverage” in
the tables) falls considerably short of the nominal 95% rate, except
when 𝑥𝑡 is exogenous and 𝑇 = 500.5 The AIC-based selector is the

TABLE 9 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
for model (14) with 𝜎𝑡 = 𝜏𝑡 = 1 and 𝑇 = 100.

Estimator CV AIC WB
DWB

(𝝀 = 2)
DWB

(𝝀 = 4)
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 10)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.045 0.662 1.103 1.101 1.099 1.095 1.094 1.094
𝛽𝑡 1.053 0.835 1.117 1.109 1.094 1.082 1.068 1.068
𝛽𝑡 1.084 1.125 1.117 1.108 1.084 1.071 1.065 1.055

Absolute Median
Deviation

𝛽𝑡 0.163 0.225 0.163 0.208 0.208 0.207 0.208 0.208
𝛽𝑡 0.137 0.134 0.137 0.137 0.137 0.137 0.137 0.137

Coverage 𝛽𝑡 88.434 85.768 87.547 74.730 74.908 75.004 74.816 74.853
𝛽𝑡 70.072 70.106 69.659 69.621 70.209 70.357 70.487 70.845

Optimal Coverage 𝛽𝑡 90.414
𝛽𝑡 76.358

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.042 0.725 1.111 1.108 1.107 1.101 1.103 1.103
𝛽𝑡 1.062 0.919 1.123 1.113 1.093 1.083 1.069 1.069
𝛽𝑡 1.079 1.123 1.111 1.103 1.080 1.064 1.059 1.054

Absolute Median
Deviation

𝛽𝑡 0.148 0.202 0.148 0.195 0.196 0.195 0.195 0.195
𝛽𝑡 0.137 0.134 0.137 0.137 0.137 0.137 0.137 0.137

Coverage 𝛽𝑡 87.219 83.904 86.562 72.684 72.642 72.877 72.758 72.613
𝛽𝑡 69.658 69.457 69.279 69.340 69.703 69.907 69.981 70.151

Optimal Coverage 𝛽𝑡 89.251
𝛽𝑡 75.195

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.038 0.766 1.106 1.107 1.105 1.104 1.104 1.104
𝛽𝑡 1.079 0.963 1.141 1.130 1.110 1.100 1.083 1.083
𝛽𝑡 1.038 1.076 1.070 1.059 1.035 1.022 1.017 1.009

Absolute Median
Deviation

𝛽𝑡 0.138 0.191 0.138 0.187 0.187 0.187 0.187 0.188
𝛽𝑡 0.164 0.163 0.163 0.164 0.164 0.164 0.164 0.164

Coverage 𝛽𝑡 85.886 82.506 85.255 70.819 70.835 70.887 70.881 70.794
𝛽𝑡 57.479 57.356 56.935 57.057 57.401 57.670 57.855 57.982

Optimal Coverage 𝛽𝑡 88.073
𝛽𝑡 60.373
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least competitive overall, yielding bandwidths that are lower than
the optimal bandwidth and associated confidence intervals for 𝛽𝑡
which undercover considerably. There is little to choose among
competing methods when considering the average median abso-
lute estimation error of 𝛽𝑡, DWB having a slight advantage and
being more successful, the stronger the correlation between 𝑥𝑡
and 𝑢𝑡 is. It is perhaps noteworthy that DWB, based on relatively
large values of 𝜆 perform well (and generally dominate WB) even
though the errors (𝑢𝑡, 𝑣𝑡) are i.i.d. in the simulations.

Turning to the LS estimator of 𝛽𝑡, the results in Tables 1–3 show
that, for all bandwidth selectors, the average median absolute
estimation error of 𝛽𝑡 is lower than that of the IV estimator
when 𝑥𝑡 is exogenous or endogeneity is weak (𝑠 = 0.2), while the
reverse is true under moderate endogeneity (𝑠 = 0.5). The band-
widths selected by the various methods tend to be somewhat
higher than the optimal values, except for DWB when 𝑇 and 𝜆
are large. As in the IV case, CV and DWB (with 𝜆 that is not
too small) generally provide the most accurate choices relative to
the optimal bandwidth for 𝛽𝑡 when 𝑇 ≤ 200, the former having a

slight advantage when endogeneity is moderately strong, while
AIC is the least successful. Selectors based on CV, AIC and
DWB (with 𝜆 ≤ 32) perform similarly for 𝑇 = 500, CV having
a marginal disadvantage when 𝑠 = 0.5. Undercoverage of con-
fidence intervals for 𝛽𝑡 is once again a problem, regardless of
the bandwidth selector used in the construction of 𝛽𝑡 and of
the sample size. Although inaccuracy of LS confidence inter-
vals is not surprising when 𝑥𝑡 and 𝑢𝑡 are correlated (coverage
rates are uniformly lower than 50% when 𝑠 = 0.5), and the use
of the LS estimator is clearly not recommended in these circum-
stances, the problem is also present when𝑥𝑡 is exogenous and 𝛽𝑡 is
consistent.

As a robustness check, we also consider a design in which the
coefficients in (6) vary deterministically as 𝛽𝑡 = 𝛽(𝑡∕𝑇 ) and 𝜓𝑡 =
𝜓(𝑡∕𝑇 ), where

𝛽(𝑤) = 2𝑤 + exp(−16[𝑤 − 1∕2]2) − 1,

𝜓(𝑤) = (7∕2){exp(−[4𝑤 − 1]2) + exp(−[4𝑤 − 3]2)} − 3∕2

TABLE 10 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
for model (14) with 𝜎𝑡 = 𝜏𝑡 = 1 and 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.0331 0.600 1.097 1.093 1.091 1.087 1.086 1.079
𝛽𝑡 1.034 0.701 1.113 1.087 1.082 1.069 1.062 1.047
𝛽𝑡 1.037 1.059 1.088 1.055 1.047 1.035 1.029 1.016

Absolute Median
Deviation

𝛽𝑡 0.148 0.209 0.148 0.173 0.173 0.173 0.173 0.173
𝛽𝑡 0.117 0.115 0.117 0.117 0.117 0.117 0.117 0.117

Coverage 𝛽𝑡 90.418 89.023 88.734 78.551 78.587 78.747 78.796 78.931
𝛽𝑡 73.619 73.709 72.256 73.016 73.289 73.691 73.914 74.505

Optimal Coverage 𝛽𝑡 91.534
𝛽𝑡 78.519

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.034 0.669 1.104 1.100 1.100 1.096 1.092 1.092
𝛽𝑡 1.034 0.776 1.106 1.080 1.072 1.060 1.041 1.041
𝛽𝑡 1.035 1.057 1.086 1.052 1.043 1.029 1.024 1.015

Absolute Median
Deviation

𝛽𝑡 0.133 0.184 0.133 0.161 0.161 0.162 0.161 0.162
𝛽𝑡 0.112 0.111 0.111 0.112 0.112 0.112 0.112 0.112

Coverage 𝛽𝑡 89.499 87.661 88.060 76.460 76.375 76.435 76.556 76.489
𝛽𝑡 73.135 73.128 71.755 72.531 72.781 73.268 73.469 73.928

Optimal Coverage 𝛽𝑡 90.600
𝛽𝑡 77.465

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.022 0.722 1.098 1.096 1.093 1.094 1.090 1.090
𝛽𝑡 1.045 0.825 1.113 1.086 1.078 1.068 1.050 1.050
𝛽𝑡 0.959 0.980 1.007 0.971 0.960 0.951 0.944 0.938

Absolute Median
Deviation

𝛽𝑡 0.123 0.170 0.123 0.154 0.153 0.207 0.153 0.154
𝛽𝑡 0.175 0.174 0.175 0.175 0.175 0.175 0.175 0.175

Coverage 𝛽𝑡 88.212 85.980 87.147 74.342 74.521 75.004 74.475 74.417
𝛽𝑡 52.795 52.380 51.396 52.400 52.817 53.145 53.390 53.537

Optimal Coverage 𝛽𝑡 89.879
𝛽𝑡 52.805
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These functional forms have been previously used by Cai (2007)
and Chen (2015). The results recorded in Table 4 generally lead
to the same conclusions regarding the relative merits of the
data-driven bandwidth selectors as those obtained from designs
with stochastically varying coefficients, with a slightly improved
performance observed in the case of WB. The most notable dif-
ference is the coverage of confidence intervals for 𝛽𝑡 based on
the IV estimator, which is now much closer to the target nomi-
nal rate for all selectors except AIC (LS-based confidence inter-
vals undercover even when 𝑠 = 0). Although it is unwise to draw
conclusions from a single Monte Carlo design, it seems that deter-
ministic variation in the regression coefficients is less challenging
than stochastic variation in terms of the accuracy of interval esti-
mators of the coefficients.

In sum, although an ordinary CV is sometimes reported to
perform poorly in nonparametric regression settings (see, e.g.,
Härdle et al. 1988), it is found to provide effective choices of
the bandwidth for kernel IV and LS estimators of time-varying
coefficients—at least when performance measures other than

coverage of confidence intervals are considered—both in the
presence and absence of endogeneity. DWB is competitive with
the CV selector and consistently better than AIC (and often WB).

4.2 | Heteroskedasticity and Serial Correlation

To assess the effect of (conditional) heteroskedasticity on the per-
formance of bandwidth selectors, we consider artificial data from
a generalized version of the DGP (6–8) in which the equation for
𝑦𝑡 is replaced by

𝑦𝑡 = 𝛽𝑡𝑥𝑡 + 𝜎𝑡𝜏𝑡𝑢𝑡, 𝑡 = 1, 2, . . . , 𝑇 (9)

with
𝜎𝑡 = [1 + (0.2𝑢2

𝑡−1 + 0.7)𝜎2
𝑡−1]

1∕2 (10)

and {𝜏𝑡} satisfying one of the following:

𝜏𝑡 = 1 for all 𝑡 (11)

TABLE 11 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
for model (14) with 𝜎𝑡 = 𝜏𝑡 = 1 and 𝑇 = 500.

Estimator CV AIC WB
DWB

(𝝀 = 15)
DWB

(𝝀 = 22)
DWB

(𝝀 = 32)
DWB

(𝝀 = 45)
DWB

(𝝀 = 62)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.011 0.519 1.066 1.061 1.054 1.052 1.049 1.049
𝛽𝑡 1.008 0.568 1.102 1.110 1.100 1.104 1.100 1.102
𝛽𝑡 0.904 0.912 0.955 0.918 0.908 0.902 0.897 0.893

Absolute Median
Deviation

𝛽𝑡 0.126 0.210 0.132 0.138 0.138 0.138 0.138 0.138
𝛽𝑡 0.094 0.093 0.093 0.093 0.094 0.093 0.093 0.094

Coverage 𝛽𝑡 92.542 88.379 92.415 88.379 84.563 84.817 84.794 85.023
𝛽𝑡 77.919 77.877 75.399 77.263 77.695 78.156 78.527 78.593

Optimal Coverage 𝛽𝑡 93.203
𝛽𝑡 79.710

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.011 0.587 1.069 1.063 1.061 1.059 1.057 1.054
𝛽𝑡 1.009 0.644 1.081 1.099 1.101 1.104 1.104 1.107
𝛽𝑡 0.922 0.930 0.976 0.935 0.925 0.916 0.915 0.914

Absolute Median
Deviation

𝛽𝑡 0.114 0.180 0.120 0.127 0.128 0.128 0.127 0.128
𝛽𝑡 0.091 0.090 0.091 0.091 0.091 0.091 0.091 0.091

Coverage 𝛽𝑡 91.945 91.348 88.62 82.805 82.811 82.847 82.881 83.004
𝛽𝑡 76.939 76.676 74.349 76.207 76.809 77.279 77.392 77.473

Optimal Coverage 𝛽𝑡 92.703
𝛽𝑡 78.407

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.007 0.643 1.071 1.065 1.064 1.061 1.061 1.060
𝛽𝑡 1.009 0.696 1.065 1.091 1.097 1.099 1.097 1.101
𝛽𝑡 0.894 0.909 0.952 0.903 0.895 0.889 0.889 0.885

Absolute Median
Deviation

𝛽𝑡 0.106 0.160 0.110 0.121 0.121 0.121 0.121 0.122
𝛽𝑡 0.199 0.198 0.198 0.199 0.199 0.199 0.198 0.198

Coverage 𝛽𝑡 91.017 89.652 88.135 80.710 80.860 80.751 80.823 80.673
𝛽𝑡 41.111 40.456 38.500 40.769 41.175 41.355 41.361 41.586

Optimal Coverage 𝛽𝑡 91.667
𝛽𝑡 36.151
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𝜏𝑡 = 1 + 𝑇 −𝑑+(1∕2)|𝜏∗
𝑡
|, 𝜏∗

𝑡
=

𝑡−1∑
𝑗=0

Γ(𝑗 + 𝑑)
𝑗!Γ(𝑑)

𝜁𝑡−𝑗 , 𝑑 ∈ {1.2, 1.4}

(12)

where {𝜁𝑡} are i.i.d.  (0, 1) variables independent of
{(𝑒′

𝑡
, 𝑧𝑡, 𝜉1,𝑡, 𝜉2,𝑡)} and Γ(⋅) is the gamma function. Thus, the

time-varying conditional standard deviation of the noise in
Equation (9) has a stationary GARCH component (𝜎𝑡) and,
under (12), an additional persistent, nonstationary component
(𝜏𝑡) which is a positive function of a rescaled fractionally inte-
grated process of order 𝑑 > 1. These volatility specifications have
been previously used by Chronopoulos et al. (2022).

Table 5 summarizes simulation results under (9–11) when
𝑇 = 200. The performance of data-driven bandwidth selection
methods for the IV estimator 𝛽𝑡 is generally similar to that docu-
mented earlier under homoskedastic designs. CV, WB and DWB
provide the best choices in terms of closeness of the automatically
selected bandwidths to the optimal value and magnitude of the
average median absolute estimation error of 𝛽𝑡. The AIC selector

also performs well, but only when considering deviations of
the selected bandwidth from the optimal value and only for
𝑠 = 0. Interestingly, there is improvement in the coverage of IV
confidence intervals for 𝛽𝑡 compared to the case of i.i.d. errors,
with only the AIC selector delivering coverage rates lower than
90%. Undercoverage is much more substantial in the case of the
LS estimator 𝛽𝑡, even when 𝑥𝑡 is exogenous, and becomes unac-
ceptably large when 𝑠 = 0.5. Under exogeneity (𝑠 = 0) or weak
endogeneity (𝑠 = 0.2), 𝛽𝑡 has lower average median estimation
error than 𝛽𝑡 regardless of the bandwidth selector used; however,
unlike the IV case, no selector delivers values that are close to
the optimal bandwidth.

Qualitatively similar results are obtained under the volatility
specification (12), as can be seen in Tables 6 and 7. Once again,
for all values of 𝑠 and all bandwidth selectors, the presence of
conditional heteroskedasticity is beneficial for the coverage rates
of confidence intervals for 𝛽𝑡 based on the IV estimator, although
AIC is not particularly successful in this respect. The improved
coverage may be due to the fact that the covariance estimator

TABLE 12 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
under (14), (10), and (11) with 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.029 0.611 1.099 1.094 1.093 1.091 1.089 1.084
𝛽𝑡 1.017 0.626 1.092 1.085 1.085 1.080 1.079 1.068
𝛽𝑡 1.203 1.223 1.231 1.213 1.211 1.201 1.194 1.184

Absolute Median
Deviation

𝛽𝑡 0.300 0.440 0.297 0.294 0.294 0.299 0.296 0.297
𝛽𝑡 0.229 0.223 0.225 0.227 0.227 0.227 0.229 0.229

Coverage 𝛽𝑡 95.713 94.178 94.693 92.940 93.006 92.900 92.825 92.841
𝛽𝑡 75.392 75.460 74.810 75.393 75.385 75.778 75.708 76.242

Optimal Coverage 𝛽𝑡 96.408
𝛽𝑡 83.803

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.027 0.677 1.102 1.096 1.095 1.095 1.094 1.092
𝛽𝑡 1.015 0.698 1.078 1.079 1.074 1.075 1.071 1.067
𝛽𝑡 1.139 1.192 1.184 1.158 1.153 1.141 1.134 1.120

Absolute Median
Deviation

𝛽𝑡 0.230 0.318 0.228 0.231 0.232 0.233 0.232 0.234
𝛽𝑡 0.195 0.189 0.191 0.193 0.194 0.194 0.195 0.195

Coverage 𝛽𝑡 94.298 92.738 93.005 89.352 89.280 89.120 89.205 89.048
𝛽𝑡 73.478 72.378 72.600 72.960 72.972 73.493 73.603 74.373

Optimal Coverage 𝛽𝑡 94.743
𝛽𝑡 81.298

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.010 0.723 1.090 1.088 1.086 1.084 1.085 1.082
𝛽𝑡 1.014 0.762 1.068 1.071 1.066 1.066 1.065 1.065
𝛽𝑡 1.061 1.102 1.108 1.060 1.051 1.044 1.044 1.041

Absolute Median
Deviation

𝛽𝑡 0.200 0.272 0.197 0.203 0.204 0.205 0.205 0.207
𝛽𝑡 0.349 0.346 0.348 0.349 0.349 0.349 0.349 0.349

Coverage 𝛽𝑡 92.280 90.570 91.450 86.445 86.290 86.342 86.248 86.115
𝛽𝑡 44.768 43.755 42.963 44.782 45.177 45.567 45.515 45.612

Optimal Coverage 𝛽𝑡 93.538
𝛽𝑡 42.245
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used in the construction of confidence intervals explicitly allows
for heterogeneity in the error variances. As in designs with
𝜏𝑡 = 1, however, heteroskedasticity is found to be challenging for
bandwidth selectors for the LS estimator of 𝛽𝑡, even when 𝑥𝑡 is
exogenous—all data-driven methods deliver bandwidths that are
too high relative to the value that minimizes the mean squared
estimation error of 𝛽𝑡. This is in contrast to the corresponding
results obtained under homoskedasticity, or results obtained
for the IV estimator under heteroskedasticity. Also note that
findings are not sensitive with respect to the order of integration
of the nonstationary component {𝜏∗

𝑡
}, the conclusions reached

for 𝑑 = 1.2 and 𝑑 = 1.4 being similar.6

Next, to investigate the effect of serial correlation in the errors,
we consider a variant of the DGP (6–8) in which

𝑢𝑡 = 𝑠𝑒1,𝑡 + (1 − 𝑠)(1 − 𝜑2)1∕2𝜀𝑡,

𝜀𝑡 = 𝜑𝜀𝑡−1 + 𝑒2,𝑡,

𝑣𝑡 = 𝑠𝑒1,𝑡 + (1 − 𝑠)𝑒3,𝑡 (13)

Thus, for |𝜑| ∈ (0, 1), the autocorrelation structure of {𝑢𝑡} is that
of a causal ARMA(1, 1) process. The results obtained under this
DGP, with 𝜑 = 0.8 and 𝑇 = 200, are collected in Table 8.7

Although leave-one-out CV is often found to be problematic in
nonparametric regression settings with serially correlated errors
(e.g., Hart 1991; Opsomer et al. 2001), deviations from the inde-
pendence assumption do not appear to have an adverse effect
on CV in our varying-coefficients setup. For all values of 𝑠, CV
performs as well as DWB (which explicitly allows for serial corre-
lation) when selecting the bandwidth for the IV or LS estimator
of 𝛽𝑡, yielding bandwidths that are close to the optimal values.
Its performance is also almost identical to that of DWB in terms
of the average median absolute estimation error of the estima-
tors, while AIC is the least successful selector overall. Once again,
the coverage of pointwise confidence intervals leaves much to
be desired, even when the optimal bandwidth is used. It should
be noted, however, that coverage results should be viewed with
caution in this case since confidence intervals are based on an
asymptotic normal approximation to the distribution of 𝛽𝑡 that

TABLE 13 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
under (14), (10), and (12) with 𝑑 = 1.2 and 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.021 0.599 1.086 1.077 1.072 1.066 1.068 1.066
𝛽𝑡 1.013 0.602 1.077 1.068 1.062 1.056 1.057 1.055
𝛽𝑡 1.296 1.337 1.318 1.293 1.285 1.282 1.276 1.276

Absolute Median
Deviation

𝛽𝑡 0.457 0.743 0.452 0.446 0.444 0.447 0.444 0.447
𝛽𝑡 0.329 0.320 0.326 0.332 0.332 0.332 0.332 0.331

Coverage 𝛽𝑡 96.983 95.952 96.617 96.170 96.105 96.105 96.068 96.102
𝛽𝑡 81.027 80.992 80.415 80.975 81.243 81.343 81.517 81.467

Optimal Coverage 𝛽𝑡 97.060
𝛽𝑡 87.383

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.022 0.661 1.093 1.080 1.081 1.078 1.080 1.073
𝛽𝑡 1.019 0.671 1.086 1.072 1.075 1.066 1.068 1.060
𝛽𝑡 1.302 1.333 1.336 1.298 1.295 1.289 1.283 1.277

Absolute Median
Deviation

𝛽𝑡 0.338 0.517 0.331 0.328 0.329 0.329 0.328 0.329
𝛽𝑡 0.273 0.268 0.270 0.272 0.272 0.273 0.275 0.272

Coverage 𝛽𝑡 95.748 94.875 95.310 93.960 93.792 93.957 93.787 93.752
𝛽𝑡 76.213 75.320 74.750 76.063 76.301 76.568 76.410 77.026

Optimal Coverage 𝛽𝑡 96.123
𝛽𝑡 82.751

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.029 0.716 1.106 1.095 1.098 1.096 1.095 1.094
𝛽𝑡 1.018 0.714 1.085 1.073 1.071 1.066 1.067 1.062
𝛽𝑡 1.208 1.252 1.246 1.204 1.195 1.192 1.184 1.185

Absolute Median
Deviation

𝛽𝑡 0.302 0.430 0.286 0.287 0.287 0.288 0.289 0.288
𝛽𝑡 0.594 0.592 0.593 0.595 0.595 0.596 0.595 0.595

Coverage 𝛽𝑡 94.427 93.665 93.833 92.088 91.887 91.860 91.758 91.848
𝛽𝑡 37.513 36.082 36.065 37.483 37.826 38.060 38.175 38.195

Optimal Coverage 𝛽𝑡 95.350
𝛽𝑡 34.012
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is obtained under the assumption that {𝑧𝑡𝑢𝑡} is an uncorrelated
process (cf. Theorem 3ii in GKM).

4.3 | Overidentification

In the final set of experiments, we consider an overidentified ver-
sion of the model (1) and (2) with 𝑛 = 𝑝 + 1 = 2, that is,

𝑦𝑡 = 𝛽𝑡𝑥𝑡 + 𝜎𝑡𝜏𝑡𝑢𝑡, 𝑥𝑡 = 𝜓1,𝑡𝑧1,𝑡 + 𝜓2,𝑡𝑧2,𝑡 + 𝑣𝑡, 𝑡 = 1, 2, . . . , 𝑇
(14)

with 𝜎𝑡, 𝜏𝑡 > 0 (to be specified later). As before, {𝑢𝑡} and {𝑣𝑡} sat-
isfy (7), {𝛽𝑡}, {𝜓1,𝑡} and {𝜓2,𝑡} are generated as independent Gaus-
sian random walks (rescaled by 𝑇 −1∕2), and {𝑧1,𝑡} and {𝑧2,𝑡} are
collections of i.i.d.  (0, 1) random variables independent of each
other and of {(𝑢𝑡, 𝜏𝑡, 𝑣𝑡, 𝛽𝑡, 𝜓1,𝑡, 𝜓2,𝑡)}.

Simulation results under the DGP in Equation (14) with 𝜎𝑡 = 𝜏𝑡 =
1 for all 𝑡 and 𝑇 ∈ {100, 200, 500} are collected in Tables 9–11.
As in exactly identified models with i.i.d. errors, CV and DWB

outperform AIC and WB in the majority of cases in terms of
the ratio of the selected bandwidth for IV and LS estimators of
𝛽𝑡 to the optimal value (although WB becomes more competi-
tive when 𝑇 = 500). CV and WB result in estimates of 𝛽𝑡 that
generally have the lowest median absolute estimation error, for
all values of 𝑠, but the former selector has a clear advantage
when considering coverage of confidence intervals relative to
the coverage associated with the optimal bandwidth value. How-
ever, paralleling earlier findings for an exactly identified model,
coverage rates are uniformly below the 95% target value, espe-
cially so in the case of confidence intervals based on the LS
estimator 𝛽𝑡.

Allowing for conditional heteroskedasticity via the GARCH spec-
ification for 𝜎𝑡 given in Equation (10) and the specifications
for 𝜏𝑡 given in Equations (11) and (12), the results reported in
Tables 12–14 are obtained (with 𝑇 = 200). CV has superior per-
formance in terms of the closeness of the selected bandwidths
to the optimal value for IV and LS estimators of 𝛽𝑡 (followed by
DWB); in the LS case, however, the presence of heteroskedasticity

TABLE 14 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
under (14), (10), and (12) with 𝑑 = 1.4 and 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.021 0.599 1.086 1.077 1.072 1.066 1.068 1.066
𝛽𝑡 1.011 0.602 1.077 1.068 1.063 1.055 1.056 1.054
𝛽𝑡 1.290 1.322 1.309 1.287 1.283 1.279 1.273 1.268

Absolute Median
Deviation

𝛽𝑡 0.447 0.720 0.439 0.432 0.432 0.434 0.432 0.434
𝛽𝑡 0.322 0.315 0.318 0.323 0.323 0.324 0.324 0.323

Coverage 𝛽𝑡 96.960 95.877 96.577 96.066 96.030 95.966 95.958 95.997
𝛽𝑡 80.565 80.717 80.233 80.553 80.747 80.827 81.032 81.164

Optimal Coverage 𝛽𝑡 97.018
𝛽𝑡 86.970

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.022 0.661 1.093 1.089 1.087 1.083 1.085 1.077
𝛽𝑡 1.016 0.672 1.084 1.079 1.075 1.074 1.074 1.063
𝛽𝑡 1.292 1.329 1.329 1.308 1.306 1.293 1.286 1.274

Absolute Median
Deviation

𝛽𝑡 0.331 0.501 0.324 0.317 0.318 0.317 0.318 0.321
𝛽𝑡 0.266 0.262 0.264 0.265 0.266 0.265 0.266 0.266

Coverage 𝛽𝑡 95.697 94.808 95.178 93.883 93.850 93.902 93.678 93.651
𝛽𝑡 76.250 74.862 74.798 75.435 75.483 76.185 76.377 76.945

Optimal Coverage 𝛽𝑡 96.073
𝛽𝑡 82.842

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.030 0.716 1.106 1.104 1.102 1.101 1.099 1.098
𝛽𝑡 1.019 0.716 1.085 1.084 1.082 1.079 1.074 1.068
𝛽𝑡 1.211 1.247 1.250 1.230 1.227 1.212 1.207 1.193

Absolute Median
Deviation

𝛽𝑡 0.295 0.417 0.279 0.278 0.278 0.277 0.279 0.280
𝛽𝑡 0.576 0.573 0.575 0.577 0.577 0.577 0.577 0.577

Coverage 𝛽𝑡 94.358 93.548 93.737 91.832 91.743 91.740 91.677 91.665
𝛽𝑡 37.466 36.565 36.247 36.793 36.777 37.378 37.708 38.000

Optimal Coverage 𝛽𝑡 95.278
𝛽𝑡 34.623
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tends to have a deleterious effect on the accuracy of all selectors.
The data-driven bandwidths yield similar average median abso-
lute estimation errors, with AIC generally being the least suc-
cessful selector in this respect (as well as in terms of bandwidth
accuracy relative to the optimal value). As in exactly identified
models, the coverage of LS confidence intervals leaves much to
be desired even when 𝑠 = 0, while the coverage of IV confidence
intervals is improved when compared to the case of homoskedas-
tic models; CV and WB are the most successful in this respect, the
former delivering coverage that is closest to that associated with
the optimal bandwidth.

Lastly, Table 15 summarizes results when (𝑢𝑡, 𝑣𝑡) are generated
according to (13) and 𝜎𝑡 = 𝜏𝑡 = 1 for all 𝑡. In the presence of
serial correlation, CV remains the most effective method for
selecting bandwidths for the IV estimator that are close to
the optimal values, while DWB has the edge in the case of LS
estimation. Even though CV does better than other methods
in terms of coverage of IV confidence intervals, the figures are
still well below the target nominal value (which is also the case

for the optimal bandwidth). As in exactly identified models,
LS confidence intervals associated with any of the automated
bandwidths undercover substantially even when 𝑥𝑡 is exogenous.

5 | Empirical Examples

In this section, we illustrate the practical use of the automated
selection procedures in the context of two empirical applications.
In these, we consider well-known specifications for the Phillips
curve and for a Taylor policy rule, with coefficients subject to time
variation.

5.1 | Phillips Curve

We first revisit the time-varying version of the backward-looking
Phillips curve analyzed by GKM relating U.S. price inflation to
unemployment. The aim is to compare estimates of the parame-
ters of the model obtained using different data-driven bandwidth

TABLE 15 | Ratio of data-driven bandwidth to optimal, absolute median deviation and pointwise coverage for first-stage LS, IV and LS estimators
under (14) and (13) with 𝜎𝑡 = 𝜏𝑡 = 1 and 𝑇 = 200.

Estimator CV AIC WB
DWB

(𝝀 = 6)
DWB

(𝝀 = 8)
DWB

(𝝀 = 12)
DWB

(𝝀 = 16)
DWB

(𝝀 = 32)

𝑠 = 0 Bandwidth ratio to
optimal

Ψ̂𝑡 1.029 0.611 1.099 1.094 1.093 1.091 1.089 1.084
𝛽𝑡 1.048 0.717 1.164 1.171 1.175 1.176 1.188 1.181
𝛽𝑡 0.957 0.985 1.000 0.968 0.963 0.954 0.950 0.938

Absolute Median
Deviation

𝛽𝑡 0.143 0.194 0.155 0.173 0.173 0.174 0.173 0.173
𝛽𝑡 0.115 0.113 0.115 0.115 0.115 0.115 0.115 0.115

Coverage 𝛽𝑡 90.000 87.888 86.180 78.335 78.398 78.358 78.415 78.628
𝛽𝑡 72.602 72.333 71.347 72.137 72.433 72.730 72.983 73.343

Optimal Coverage 𝛽𝑡 91.317
𝛽𝑡 77.743

𝑠 = 0.2 Bandwidth ratio to
optimal

Ψ̂𝑡 1.028 0.677 1.102 1.096 1.095 1.095 1.094 1.092
𝛽𝑡 1.044 0.803 1.150 1.168 1.174 1.182 1.187 1.193
𝛽𝑡 0.968 0.989 1.014 0.982 0.968 0.962 0.957 0.948

Absolute Median
Deviation

𝛽𝑡 0.129 0.175 0.139 0.160 0.160 0.161 0.161 0.161
𝛽𝑡 0.111 0.110 0.111 0.111 0.111 0.111 0.111 0.111

Coverage 𝛽𝑡 89.097 86.390 85.850 76.137 76.165 76.098 75.942 76.087
𝛽𝑡 71.900 72.210 70.630 71.362 71.810 72.058 72.295 72.483

Optimal Coverage 𝛽𝑡 90.430
𝛽𝑡 76.325

𝑠 = 0.5 Bandwidth ratio to
optimal

Ψ̂𝑡 1.010 0.723 1.090 1.089 1.085 1.087 1.088 1.082
𝛽𝑡 1.036 0.838 1.109 1.146 1.153 1.164 1.174 1.175
𝛽𝑡 0.933 0.959 0.979 0.942 0.934 0.923 0.919 0.912

Absolute Median
Deviation

𝛽𝑡 0.121 0.165 0.128 0.153 0.152 0.153 0.153 0.154
𝛽𝑡 0.174 0.173 0.174 0.174 0.174 0.174 0.174 0.174

Coverage 𝛽𝑡 88.050 84.727 85.648 74.303 74.295 74.256 74.140 74.213
𝛽𝑡 52.877 52.305 51.513 52.577 52.753 53.212 53.330 53.580

Optimal Coverage 𝛽𝑡 89.560
𝛽𝑡 52.195
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TABLE 16 | Selected values ofℎ; the associated bandwidth is𝐻 = 𝑇 ℎ.

h

Method LS IV

CV 0.643 0.899
AIC 0.642 0.871
WB 0.690 0.823
DWB (𝜆 = 42) 0.597 0.853
DWB (𝜆 = 59) 0.643 0.783
DWB (𝜆 = 68) 0.597 0.807
DWB (𝜆 = 76) 0.690 0.877
DWB (𝜆 = 85) 0.620 0.899

selectors. Specifically, we consider the model

Δ𝜋𝑡 = 𝑐𝑡 + 𝛾𝑡Δ𝜋𝑡−1 + 𝛼𝑡Δ𝑈𝑡 + 𝜖𝑡, 𝑡 = 1, 2, . . . , 𝑇 (15)

where 𝜋𝑡 is the rate of price inflation, 𝑈𝑡 is the unemployment
rate, (𝑐𝑡, 𝛾𝑡, 𝛼𝑡) are unknown coefficients, 𝜖𝑡 is a random error,
and Δ is the first-difference operator. The data (obtained from
the FRED database) consist of 𝑇 = 648 monthly observations,
from 1959:1 to 2013:12, on the CPI inflation rate and the unem-
ployment rate. Following GKM, estimates are obtained using
(1,Δ𝜋𝑡−1,Δ𝑈𝑡−1,Δ𝑈𝑡−2,Δ𝑈𝑡−3,Δ𝑈𝑡−4) as the vector of instru-
ments and 𝐾(𝑤) = exp(−𝑤2∕2) as kernel function. As noted
in GKM, a Lagrange multiplier test for fourth-order serial cor-
relation reveals no significant signs of serial correlation in IV
residuals of the model (GKM set 𝐿 = 𝐻 = 𝑇 0.7).

Table 16 reports the bandwidths 𝐻 = 𝑇 ℎ for LS and IV esti-
mators that are selected by means of the data-driven methods

discussed in Section 3. In the case of bootstrap-based selectors,
results are obtained using 𝐵 = 999 bootstrap replications, with
bandwidth 𝜆 ∈ {42, 59, 68, 76, 85} for the DWB.8 While the dif-
ferences between the bandwidth values chosen by the various
procedures do not appear to be substantial, there are some notice-
able differences in the resulting coefficient estimates.

In the LS case, these differences can be seen in Figure 1, which
shows LS estimates of 𝛾𝑡 and 𝛼𝑡, together with corresponding
95% pointwise confidence bands, based on bandwidths obtained
by CV, WB, and DWB (with 𝜆 = 68). Estimates of 𝛾𝑡 based on
the three automatically selected bandwidths are quite similar for
most of the sample, the only exception being a period around
2,000. The same is true for estimates of 𝛼𝑡, with some differences
among the three sets of estimates also observed during the 1980s.
In fact, it is only during the latter period that the coefficient on
Δ𝑈𝑡 appears to be statistically significant (at the 5% level), regard-
less of the bandwidth selector used. Needless to say, these results
should be viewed with caution since LS estimates are inconsis-
tent unless Δ𝑈𝑡 is exogenous in (15). As a matter of fact, this does
not appear to be the case: The time-varying Hausman test of GKM
rejects exogeneity.9

Turning to IV estimation of the parameters of the model (15),
Figure 2 shows IV estimates of 𝛾𝑡 and 𝛼𝑡, and associated 95% point-
wise confidence bands. From the mid-1970s onwards, there is lit-
tle difference between the estimates of either parameter obtained
using the CV, WB, and DWB bandwidth choices, small differ-
ences being evident only early in the sample period. Interest-
ingly, the coefficient on unemployment is statistically significant
(at the 5% level) for all points in the sample, suggesting that a
traditional unemployment-inflation trade-off is supported by the
data, once endogeneity of unemployment is accounted for via the
use of IV.

FIGURE 1 | LS estimates of 𝛾𝑡 and 𝛼𝑡 based on bandwidths selected by CV, WB and DWB (𝜆 = 68).
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FIGURE 2 | IV estimates of 𝛾𝑡 and 𝛼𝑡 based on bandwidths selected by CV, WB and DWB (𝜆 = 68).

5.2 | Taylor Rule

As a second empirical application, we consider a Taylor rule
relating U.S. interest rates to price inflation and the deviation
of output from the economy’s potential supply (output gap).
Econometric formulations of such monetary-policy rules, which
have been found to provide a good empirical descriptions of
the policy behavior of many central banks, typically involve
endogenous covariates and often exhibit structural instability;
see, for example, Clarida et al. (2000) and Carvalho et al. (2021)
(CNT hereafter).

Our model is a varying-coefficient version of the contemporane-
ous Taylor-rule specification analyzed in CNT, that is,

𝑖𝑡 = 𝑐𝑡 + 𝛿𝑡𝜋𝑡 + 𝜃𝑡𝑔𝑡 + 𝜌1,𝑡𝑖𝑡−1 + 𝜌2,𝑡𝑖𝑡−2 + 𝜖𝑡, 𝑡 = 1, 2, . . . , 𝑇
(16)

where 𝑖𝑡 is the nominal interest rate (Federal Funds rate), 𝜋𝑡 is
the rate of price inflation (year-on-year growth rate of the core
PCE price index), 𝑔𝑡 is the output gap (deviation of real GDP
from the potential level estimated by the Congressional Budget
Office), (𝑐𝑡, 𝛿𝑡, 𝜃𝑡, 𝜌1,𝑡, 𝜌2,𝑡) are unknown coefficients, and 𝜖𝑡 is a
random error. The instruments chosen are the same as those used
by Clarida et al. (2000) and CNT, namely the first four lags of 𝑖𝑡,
𝜋𝑡 and 𝑔𝑡, as well as the same lags of the growth rate of the M2
money stock, the growth rate of the all-commodities producer
price index, and the yield spread between 10-year Treasury notes
and 3-month Treasury bills. The data, taken from CNT, comprise
𝑇 = 192 real-time quarterly observations from 1960:1 to 2007:4.

Table 17 reports the bandwidths 𝐻 = 𝑇 ℎ for LS and IV estima-
tors of the coefficients in Equation (16) that are selected using
the data-driven methods described in Section 3 and the Gaussian

TABLE 17 | Selected values ofℎ; the associated bandwidth is𝐻 = 𝑇 ℎ.

h

Method LS IV

CV 0.620 0.597
AIC 0.623 0.610
WB 0.597 0.597
DWB (𝜆 = 2) 0.527 0.690
DWB (𝜆 = 4) 0.690 0.713
DWB (𝜆 = 6) 0.620 0.713
DWB (𝜆 = 8) 0.433 0.668
DWB (𝜆 = 10) 0.620 0.667

kernel function 𝐾(𝑤) = exp(−𝑤2∕2). For selectors based on the
bootstrap approach, the results are obtained from 𝐵 = 999 boot-
strap replications, using bandwidth 𝜆 ∈ {2, 4, 6, 8, 10} for the
DWB. As in the previous empirical example, the bandwidth val-
ues chosen by the various procedures are fairly similar: The
CV-selected bandwidth is approximately 𝑇 0.6 for both LS and IV
estimators, while the corresponding average DWB-selected val-
ues are 𝑇 0.58 and 𝑇 0.69, respectively.

LS estimates of 𝛿𝑡 and 𝜃𝑡, together with corresponding 95% point-
wise confidence bands, based on bandwidths obtained by CV,
WB, and DWB (with 𝜆 = 8), are shown in Figure 3; the peri-
ods associated with different Federal Reserve chairs are also
indicated.10 Coefficient estimates based on the three automati-
cally selected bandwidths are quite similar across the sample. In
the case of 𝛿𝑡, estimates vary more in the post-Miller period than
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FIGURE 3 | LS estimates of 𝛿𝑡 and 𝜃𝑡 based on bandwidths selected by CV, WB and DWB (𝜆 = 8).

FIGURE 4 | IV estimates of 𝛿𝑡 and 𝜃𝑡 based on bandwidths selected by CV, WB and DWB (𝜆 = 8).
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in earlier periods, the higher values being associated with the
late-Volcker and early-Greenspan periods. Estimates of 𝜃𝑡 exhibit
more variation, by comparison, with higher values being associ-
ated with the Burns and early-Greenspan periods. Estimates of
𝜌1,𝑡 and 𝜌2,𝑡 (not shown) also vary considerably over the sample
period, suggesting varying degrees of smoothing of interest-rate
changes—CV-based estimates of the sum 𝜌1,𝑡 + 𝜌2,𝑡 range from
0.25 to 0.88, with higher values associated with the Burns–Miller
period and the mid-to-late Greenspan and Bernanke periods.11

Point estimates of the multipliers 𝛿𝑡∕(1 − 𝜌1,𝑡 − 𝜌2,𝑡) vary between
0.38 and 3.74, and, except for the period 1992:4–1994:4, exceed
unity from 1969:1 onwards, indicating a more complex policy
response to inflation than that suggested by the split-sample
results of CNT.

IV estimates of 𝛿𝑡 and 𝜃𝑡, and associated 95% pointwise confidence
bands, are shown in Figure 4. There is little difference between
estimates of either parameter obtained using the CV, WB, and
DWB bandwidth choices. Estimates are more stable than those
obtained by LS, higher values of the estimated parameters being
generally associated with the Greenspan era. Estimates of 𝜌1,𝑡 and
𝜌2,𝑡 (not shown) also exhibit less variation than their LS coun-
terparts, CV-based IV estimates of 𝜌1,𝑡 + 𝜌2,𝑡 ranging from 0.81
to 0.89 (those of 𝛿𝑡∕(1 − 𝜌1,𝑡 − 𝜌2,𝑡) range from 0.93 to 1.84 and
exceed unity from 1963:3 onwards). Note, however, that the esti-
mated coefficients on 𝜋𝑡 (both IV and LS) are not significantly
different from zero (at the 5% level) in many cases. A possible
explanation for this finding may lie with the undercoverage that
pointwise confidence intervals for time-varying coefficients tend
to have (and their reliance on the assumption that the prod-
uct of the instruments and the errors is serially uncorrelated).
Notwithstanding these observations, the findings suggest grad-
ual changes in the parameters of (16), at least judging by LS point
estimates, which do not always coincide with a change in the
chairmanship of the Federal Reserve. It is important to bear in
mind, however, that the time-varying Hausman test of GKM and
the bootstrap-based variant of Grivas (2023) reject exogeneity for
the entire sample period, and so, LS results should be viewed
cautiously.12

6 | Conclusion

We have considered data-driven methods for selecting the
smoothing parameter for kernel IV and LS estimators of stochas-
tically time-varying coefficients in linear models with explana-
tory variables that may be endogenous. Our simulation findings
have revealed that CV and DWB are effective automated methods,
selecting bandwidths which are close to the optimal values and
yielding coefficient estimators with minimal average estimation
errors. What is more, DWB and, perhaps surprisingly, ordinary
CV work equally well in models with heteroskedastic or seri-
ally correlated errors as they do in models with i.i.d. errors. Our
results provide valuable insights into the effectiveness of different
data-driven methods for bandwidth selection, and can be used to
address an obvious hurdle in the practical application of kernel
estimators of time-varying coefficients in a rich class of models.

A finding which deserves further attention is that, regardless of
the data-driven bandwidth selector used, pointwise confidence
intervals for time-varying coefficients appear to have coverage

rates that are generally lower than the nominal target value. This
difficulty also arises when bandwidth values that are optimal
(in the sense of minimizing the average absolute or quadratic
estimation error) are used and become more challenging in the
presence of homoskedasticity. It would be useful, therefore, to
consider data-driven selectors that produce bandwidth choices
that control effectively, the error in coverage rates of pointwise
confidence intervals, or of simultaneous confidence regions, for
time-varying coefficients. The possibility of constructing such
confidence intervals/regions using appropriate bootstrap approx-
imations to the sampling distributions of the kernel IV and LS
estimators, instead of the asymptotic normal approximations,
would also be worth exploring. These problems will be consid-
ered in detail elsewhere.
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Endnotes
1 This is the estimator denoted 𝛽1,𝑡 in GKM. Under certain conditions

(see Lemma 2 in GKM), it is asymptotically equivalent to the two-stage
local linear estimator of Chen (2015).

2 Based on results from simulation experiments, GKM recommend set-
ting𝐻 = 𝐿 = 𝑇 1∕2.

3 Recall that our choice of auxiliary random variables {𝜂𝑖,𝑡} for DWB
implies that they form a ⌈𝜆 − 1⌉-dependent sequence, where ⌈⋅⌉ is the
ceiling function.

4 The absolute estimation error (𝑚 = 1) is considered in the IV case
because the finite-sample distributions of IV-type estimators tend to
be heavy-tailed due to lack of finite moments.

5 These findings are consistent with those of GKM (for bandwidths
𝐻 and 𝐿 taking the values 𝑇 0.4 or 𝑇 0.5), who also report undercov-
erage that becomes more substantial as the strength of endogeneity
increases.

6 We also considered designs in which the generating mechanism of 𝜎𝑡 in
Equation (10) is replaced by 𝜎𝑡 = (1 + 0.4𝜎2

𝑡−1𝑢
2
𝑡−1)

1∕2, as well as designs
in which 𝜏𝑡 is a deterministic trigonometric function of a rescaled
time index (and 𝜎𝑡 = 1). Since the results are not materially different
from those obtained with the GARCH specification, we do not report
them here.

7 Similar results are obtained for 𝜑 = −0.8.
8 These choices of 𝜆 are of the order 𝑇 1∕3, which is known to be optimal

in certain respects (see Shao 2010).
9 The bootstrap-based version of the test proposed in Grivas (2023) leads

to the same conclusion.
10 Only estimates of the coefficients on inflation and the output gap are

shown in the plot to conserve space, but more detailed results are avail-
able upon request.

11 This is consistent with the finding of CNT that interest-rate pol-
icy smoothing is particularly prominent in the pre-Volcker and
Greenspan–Bernanke periods.

12 For constant-coefficient variants of a Taylor-rule specification like (16),
CNT argue in favor of using LS instead of IV when the contribution of
monetary-policy shocks to the variance of the covariates is not substan-
tial (as tends to be the case in practice).
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