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Abstract
Our concern is the data complexity of answering linear monadic datalog queries whose atoms in the
rule bodies can be prefixed by operators of linear temporal logic LTL. We first observe that, for data
complexity, answering any connected query with operators ⃝/⃝− (at the next/previous moment)
is either in AC0, or in ACC0 \AC0, or NC1-complete, or L-hard and in NL. Then we show that
the problem of deciding L-hardness of answering such queries is PSpace-complete, while checking
membership in the classes AC0 and ACC0 as well as NC1-completeness can be done in ExpSpace.
Finally, we prove that membership in AC0 or in ACC0, NC1-completeness, and L-hardness are
undecidable for queries with operators ♢/♢− (sometime in the future/past) provided that NC1 ̸= NL
and L ̸= NL.
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1 Introduction

We consider monadic datalog queries, in which atoms in the rule bodies can be prefixed by
the temporal operators ⃝/⃝− (at the next/previous moment) and ♢/♢− (sometime in the
future/past) of linear temporal logic LTL [17]. This query language, denoted datalog ⃝⋄

m , is
intended for querying temporal graph databases and knowledge graphs in scenarios such
as virus transmission [25, 45], transport networks [28], social media [38], supply chains [46],
and power grids [37]. In this setting, data instances are finite sets of ground atoms that are
timestamped by the moments of time they happen at. The rules in datalog ⃝⋄

m queries are
assumed to hold at all times, with time being implicit in the rules and only accessible via
temporal operators. We choose LTL for our formalism rather than, say, more expressive
metric temporal logic MTL [30, 1] because LTL has been a well established query language
in temporal databases since the 1990s (see [39, 41, 14, 32] and the discussion therein on point
versus interval-based query languages), also suitable in the context of temporal knowledge
graphs as recently argued in [19].
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(a) Hostels h1, h2, h3, h4 on days 1, 2, 3, 4.
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(b) Predicate Success inferred by the program π1.

Figure 1 Illustrations for the query (π1, Success).

▶ Example 1. Imagine a PhD student working on a paper while hostel hopping. However,
finishing the paper requires staying at the same hostel for at least two consecutive nights. Bus
services between hostels, which vary from one day to the next, and hostel vacancies are given
by a temporal data instance with atoms of the form busService(a, b, n) and Vacant(a, n),
where a, b are hostels and n ∈ N a timestamp (see Fig. 1 for an illustration). The following
datalog ⃝⋄

m query (π1,Success) finds pairs (x, t) such that having started hopping at hostel x
on day t, the student will eventually submit the paper:

π1 : Success(X)← Vacant(X) ∧⃝busService(X,Y ) ∧⃝Success(Y ),
Success(X)← Vacant(X) ∧⃝Vacant(X).

It is readily seen that answering this query is NL-complete for data complexity. If, however,
we drop the next-time operator ⃝ from π1, it will become equivalent to Vacant(X). The next
query (π2,Promising) simply looks for pairs (x, t) with x having vacancies for two consecutive
nights some time later than t:

π2 : Promising(X)← ♢Vacant42Nights(X),
Vacant42Nights(X)← Vacant(X) ∧⃝Vacant(X).

This datalog ⃝⋄
m query can be equivalently expressed as the two-sorted first-order formula

∃t′
(
(t < t′) ∧Vacant(x, t′) ∧Vacant(x, t′ + 1)

)
,

where x ranges over objects (hostels) and t, t′ over time points ordered by <. Formulas in
such a two-sorted first-order logic, denoted FO(<), can be evaluated over finite data instances
in AC0 for data complexity [26]. ⌟

Our main concern is the classical problem of deciding whether a given temporal mon-
adic datalog query is equivalent to a first-order query (over any data instance). In the
standard, atemporal database theory, this problem, known as predicate boundedness, has
been investigated since the mid 1980s with the aim of optimising and parallelising datalog
programs [27, 16]. Thus, predicate boundedness was shown to be undecidable for binary
datalog queries [24] and 2ExpTime-complete for monadic ones (even with a single recursive
rule) [15, 8, 29].

Datalog boundedness is closely related to the more general rewritability problem in
the ontology-based data access paradigm [11, 3], which brought to light wider classes of
ontology-mediated queries (OMQs) and ultimately aimed to decide the data complexity of
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answering any given OMQ and, thereby, the optimal database engine needed to execute that
OMQ. Answering OMQs given in propositional linear temporal logic LTL is either in AC0, or
in ACC0 \AC0, or NC1-complete for data complexity [40], the classes well known from the
circuit complexity theory for regular languages. For each of these three cases, deciding whether
a given LTL-query falls into it is ExpSpace-complete, even if we restrict the language to
temporal Horn formulas and atomic queries [31]. The data complexity of answering atemporal
monadic datalog queries comes from four complexity classes AC0 ⫋ L ⊆ NL ⊆ P [16, 15].

Our 2D query language datalog ⃝⋄
m is a combination of datalog and LTL. It can be seen as

the monadic fragment, without negation and aggregate functions, of Dedalus0, a language
for reasoning about distributed systems that evolve in time [2]. It is also close in spirit to
temporal deductive databases, TDDs [13, 12], extending their monadic fragment with the
eventuality operator ♢. The main intriguing question we would like to answer in this paper
is whether deciding membership of 2D queries in, say, AC0 can be substantially harder than
deciding membership in AC0 of the corresponding 1D monadic datalog and LTL queries.

With this in mind, we focus on the sublanguage datalog ⃝⋄
lm of datalog ⃝⋄

m that consists of
linear queries, that is, those that have at most one IDB (intensional, recursively definable)
predicate in each rule body. While the full language inherits from TDDs a PSpace-complete
query answering problem (for data complexity), we prove that linear queries can be answered
in NL. By datalog ⃝

lm and datalog⋄lm we denote the fragments of datalog ⃝⋄
lm that only admit

the ⃝/⃝− and ♢/♢− operators, respectively. All of our queries are assumed to be connected
in the sense that the graph induced by the body of each rule is connected. These fragments
retain practical interest: as argued in [15], atemporal datalog programs used in practice tend
to be linear and connected. For example, SQL:1999 explicitly supports linear recursion [20],
which together with connectedness is a common constraint in the context of querying graph
databases and knowledge graphs [35, 42], where the focus is on path queries [21, 23].

It is known that deciding whether a linear monadic datalog query can be answered
in AC0 is PSpace-complete [15, 43] (without the monadicity restriction, the problem is
undecidable [24]). The same problem for the propositional LTL fragments of datalog ⃝

lm and
datalog ⃝⋄

lm is also PSpace-complete [31].
Our main results in this paper are as follows:
Answering datalog ⃝⋄

lm queries is NL-complete for data complexity.
It is undecidable whether a given datalog⋄lm-query can be answered in AC0, ACC0, or
NC1 (if NC1 ̸= NL); it is undecidable whether such a query is L-hard (if L ̸= NL).
Answering any connected datalog ⃝

lm-query is either in AC0 or in ACC0 \AC0, or NC1-
complete, or L-hard – and anyway it is in NL.
It is PSpace-complete to decide whether a connected datalog ⃝

lm-query is L-hard; checking
whether it is in AC0, or in ACC0 \AC0, or is NC1-complete can be done in ExpSpace.

(Note that dropping the past-time operators ⃝− and ♢− from the languages has no impact on
these complexity results.) Thus, the temporal operators ⃝/⃝− and ♢/♢− exhibit drastically
different types of interaction between the object and temporal dimensions. To illustrate the
reason for this phenomenon, consider first the following datalog ⃝

lm-program:

G(X)← A(X) ∧⃝R(X,Y ) ∧⃝D(Y ), (1)
D(X)← ⃝D(X), (2)
D(X)← B(X). (3)

Suppose a data instance consists of timestamped atoms A(a, 0), R(a, b, 1), B(b, 5). We obtain
G(a, 0) by first applying rule (3) to infer D(b, 5), then rule (2) to infer D(b, 4), D(b, 3), D(b, 2),
and D(b, 1), and finally rule (1) to obtain G(a, 0). Rules (2) and (3) are applied along the
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31:4 Deciding the Data Complexity of LTL Monadic Datalog Queries

timeline of a single object, b, while the final application passes from one object, b, to another,
a. To do so, we check whether a certain condition holds for the joint timeline of a and b,
namely, that they are connected by R at time 1. However, if we are limited to the operators
⃝/⃝−, the number of steps that we can investigate along such a joint timeline is bounded by
the maximum number of nested ⃝/⃝− in the program. Therefore, there is little interaction
between the two phases of inference that explore the object and the temporal domains.
In contrast, rules with ♢/♢− can inspect both dimensions simultaneously as, for example,
the rule

G(X)← ♢R(X,Y ) ∧D(Y ). (4)

In this case, inferring G(a, 0) requires checking the existence of an object b satisfying D(b, 0)
and R(a, b, ℓ) at some arbitrarily distant moment ℓ in the future. Given that our programs
are monadic, the predicate ♢R(X,Y ) cannot be expressed using operators ⃝/⃝− only.

Our positive results are proved by generalising the automata-theoretic approach of [15]. As
a by-product, we obtain a method to decompose every connected datalog ⃝

lm-query (π,G) into
a plain datalog part (πd, G) and a plain LTL part (πt, G), which are, however, substantially
larger than (π,G), so that the data complexity of answering (π,G) equals the maximum
of the respective data complexities of (πd, G) and (πt, G). This reinforces the “weakness of
interaction” between the relational and the temporal parts of the query when the latter is
limited to operators ⃝/⃝−. We also provide some evidence that, in contrast to the atemporal
case, the automata-theoretic approach cannot be generalised to the case of disconnected
queries. The undecidability of the decision problem for datalog⋄lm-queries is proved by a
reduction of the halting problem for Minsky machines with two counters [33].

The paper is organised as follows. In Section 2, we give formal definitions of data instances
and queries, and prove that every temporal monadic datalog query can be answered in P,
and in NL if it is linear. In Section 3, we show that checking whether a given query with
operator ♢ or ♢− has data complexity lower than NL is undecidable. Section 4 considers
datalog ⃝

lm-queries by presenting a generalisation of the automata-theoretic approach of [15],
which is then used in Section 5 to provide the decidability results. We conclude with a
discussion of future work and our final remarks in Section 6. Detailed proofs can be found in
the full version of this paper [4].

2 Preliminaries

A relational schema Σ is a finite set of relation symbols R with associated arities m ≥ 0. A
database D over a schema Σ is a set of ground atoms R(d1, . . . , dm), R ∈ Σ, m is the arity of
R. We call di, 1 ≤ i ≤ m, the domain objects or simply objects. We denote by ∆D the set of
objects occurring in D. We denote by |D| the number of atoms in D. We denote by [a, b] the
set of integers {m | a ⩽ m ⩽ b}, where a, b ∈ Z. A temporal database D over a schema Σ is a
finite sequence ⟨Dl, Dl+1 . . . , Dr−1, Dr⟩ of databases over this schema for some l < r, l, r ∈ Z.
Each database Di, l ⩽ i ⩽ r, is called the i’th slice of D and i is called a timestamp. We
denote [l, r] by tem(D). The size of D, denoted by |D|, is the maximum between |tem(D)|
and max{|Dl|, . . . , |Dr|}. The domain of the temporal database D is

⋃
l≤i≤r ∆Di and is

denoted by ∆D. A homomorphism from D as above to D′ = ⟨Dl′ , Dl′+1 . . . , Dr′−1, Dr′⟩ is a
function h that maps ∆D ∪ [l, r] to ∆D′ ∪ [l′, r′] so that R(d1, . . . , dm) ∈ Dℓ if and only if
R(h(d1), . . . , h(dm)) ∈ D′

h(ℓ).
We will deal with temporal conjunctive queries (temporal CQs) that are formulas of the

form Q(X) = ∃Uφ(X,U), where X,U are tuples of variables and φ, the body of the query,
is defined by the following BNF:
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φ ::= R(Z1, . . . , Zm) | (φ ∧ φ) | Oφ (5)

where R ∈ Σ and Z1, . . . , Zm are variables of X ∪ U , and O is any of ⃝,⃝−,♢ and ♢−

(the operators ⃝/⃝− mean “at the next/previous moment” and ♢/♢− “sometime in the
future/past”). For brevity, we will use the notation On, O ∈ {⃝,♢}, for a sequence of n
symbols O if n > 0, of |n| symbols O− ∈ {⃝−,♢−} if n < 0, and an empty sequence if n = 0.
We call X the answer variables of Q. To provide the semantics, we define D, ℓ |= φ(d1, . . . , dm)
for ℓ ∈ Z and d1, . . . , dm ∈ ∆D as follows:

D, ℓ |= R(d1, . . . , dm) ⇐⇒ ℓ ∈ [l, r] and R(d1, . . . , dm) ∈ Dℓ (6)
D, ℓ |= φ1 ∧ φ2 ⇐⇒ D, ℓ |= φ1 and D, ℓ |= φ2 (7)
D, ℓ |= ⃝φ ⇐⇒ D, ℓ+ 1 |= φ (8)
D, ℓ |= ♢φ ⇐⇒ D, ℓ′ |= φ for some ℓ′ > ℓ (9)

and symmetrically for ⃝− and ♢−. Given a temporal database D, a timestamp ℓ ∈ Z, and a
query Q(X) = ∃Uφ(X,U), we say that D, ℓ |= Q(d1, . . . , dk) if there exist δ1, . . . , δs ∈ ∆D
such that D, ℓ |= φ(d1, . . . , dk, δ1, . . . , δs), where k = |X|, s = |U |.

The problem of answering a temporal CQ Q is to check, given D, ℓ ∈ tem(D), and
d̄ = ⟨d1, . . . , dk⟩, whether D, ℓ |= Q(d̄). Answering temporal CQs is not harder than that for
non-temporal CQs. Indeed, we show that any Q is FO(<)-rewritable in the sense that there
exists an FO(<)-formula ψ(X, t) such that for all ℓ and d̄ as above D, ℓ |= Q(d̄) whenever
ψ(d̄, ℓ) is true in the two-sorted first-order structure SD, whose domain is ∆D ∪ tem(D), and
where R(d̄, ℓ) is true whenever D, ℓ |= R(d̄) and (ℓ < ℓ′) is true whenever ℓ < ℓ′ (see [5] for
details). It follows by [26] that the problem of answering a temporal CQ Q is in AC0.

We outline the construction of the rewriting. Let Q(X) = ∃Uφ(X,U). The main issue
with the construction is that temporal subformulas of φ, say ♢κ, may be true for d̄ at
ℓ ∈ tem(D), because D, ℓ′ |= κ(d̄) for ℓ′ ̸∈ tem(D). Had that not been the case, we could
construct the rewriting for Q straightforwardly by induction of φ. To overcome this, let N
be the number of temporal operators in φ. We use a property that for all tuples d̄ of objects
from ∆D and subformulas κ of φ, we have

D, r +N + 1 |= κ(d̄) ⇐⇒ D, ℓ |= κ(d̄) for all ℓ > r +N

D, l −N − 1 |= κ(d̄) ⇐⇒ D, ℓ |= κ(d̄) for all ℓ < l −N (10)

Thus, for any subformula κ(Z) of φ, we construct, by induction, the formulas ψκ(Z, t) and
ψi
κ(Z) for i ∈ [−N − 1, . . . ,−1] ∪ [1, . . . , N + 1], so that for any D, tem(D) = [l, r], and any

objects d̄ ∈ ∆|Z|
D ,

D, ℓ |= κ(d̄) ⇐⇒ SD |= ψκ(d̄, ℓ) for ℓ ∈ [l, r],
D, (r + i) |= κ(d̄) ⇐⇒ SD |= ψi

κ(d̄) for 1 ⩽ i ⩽ N + 1,
D, (l + i) |= κ(d̄) ⇐⇒ SD |= ψi

κ(d̄) for −N − 1 ⩽ i ⩽ −1.

For the base case, we set ψR(Z, t) = R(Z, t) and ψi
R(Z) = ⊥. For an induction step, e.g.,

ψ−1
⃝κ(Z) = ψκ(Z,min), ψN+1

⃝κ (Z) = ψN+1
κ (Z), ψi

⃝κ(Z) = ψi+1
κ (Z) for all other i, and finally

ψ⃝κ(Z, t) = ∃t′((t′ = t + 1) ∧ ψκ(Z, t′)) ∨ ((t = max) ∧ ψ1
κ(Z)). Here, min and max are

defined in FO(<) as, respectively, <-minimal and <-maximal elements in tem(D) ((t′ = t+1)
is FO(<)-definable as well). The required rewriting of Q is then the formula ∃Uψφ(X,U, t).

▶ Proposition 2. For a temporal CQ Q(X1, . . . , Xk), checking D, ℓ |= Q(d1, . . . , dk) is in
AC0 for data complexity.

ICDT 2025



31:6 Deciding the Data Complexity of LTL Monadic Datalog Queries

In the non-temporal setting, a body of a CQ (a conjunction of atoms), can be seen as a
database (a set of atoms). We have a similar correspondence in the temporal setting, for
queries without operators ♢ and ♢−. Indeed, observe that ⃝a(φ1 ∧ φ2) ≡ ⃝aφ1 ∧⃝aφ2 and
⃝⃝−φ ≡ ⃝−⃝φ ≡ φ. Hence we can assume that any temporal CQ body is a conjunction
of temporalised atoms of the form ⃝kR(Z1, . . . , Zm). Given a temporal CQ Q of this form,
let l be the least and r the greatest number such that ⃝lR(Z) and ⃝rR′(Z ′) appear in Q,
for some R,R′, Z and Z

′. Let DQ be a temporal database whose objects are the variables
of Q, and tem(D) equals [l, r] if 0 ∈ [l, r], [0, r] if 0 < l, and [l, 0] if r < 0. Furthermore, let
R(Z) ∈ Dℓ whenever ⃝ℓR(Z) is in Q, ℓ ∈ tem(D). Then we can, just as in the non-temporal
case, characterise the relation |= in terms of homomorphisms:

▶ Lemma 3. For any temporal CQ Q(X1, . . . , Xk) without ♢ and ♢−, D, ℓ |= Q(d1, . . . , dk)
if and only if there is a homomorphism h from DQ to D such that h(Xi) = di, 1 ⩽ i ⩽ k, and
h(0) = ℓ.

2.1 Temporal Datalog
We define a temporalised version of datalog to be able to use recursion in querying temporal
databases. We call this language temporal datalog, or datalog ⃝⋄. A rule of datalog ⃝⋄ over
a schema Σ has the form:

C(X)← O∗R1(U1) ∧ · · · ∧ O∗Rs(Us) (11)

where Ri and C are relation symbols over Σ and O∗ is an arbitrary sequence of temporal
operators ⃝,⃝−,♢ and ♢−. The part of the rule to the left of the arrow is called its head
and the right-hand side – its body. All variables from the head must appear in the body.

A program is a finite set of rules. The relations that appear in rule heads constitute its
IDB schema, IDB(π), while the rest form the EDB schema, EDB(π). A rule is linear if its
body contains at most one IDB atom and monadic if the arity of its head is 1. A program π

is linear (monadic) if so are all its rules. We say that the program is in plain datalog if it
does not use the temporal operators and in plain LTL if all its relations have arity 1 and
every rule uses just one variable. Recursive rules are those that contain IDB atoms in their
bodies, other rules are called initialisation rules. The arity of a program is the maximal arity
of its IDB atoms.

Our results are all about connected programs. Namely, define the Gaifman graph of
a temporal CQ to be a graph whose nodes are the variables and where two variables are
connected by an edge if they appear in the same atom. A rule body is connected if so is
its Gaifman graph, and a program is connected when all rules are connected. The size of
a program π, denoted |π|, is the number of symbols needed to write it down, where every
relation symbol R ∈ EDB(π)∪ IDB(π) is counted as one symbol, and a sequence of operators
the form Ok is counted as |k| symbols.

When a program π is fixed, we assume that all temporal databases that we work with
are defined over EDB(π). So let π be a program and D a temporal database. An enrichment
of D is an (infinite) temporal database E = ⟨Eℓ⟩ℓ∈Z over the schema EDB(π) ∪ IDB(π) such
that ∆E = ∆D and for any R ∈ EDB(π) and any ℓ ∈ Z, R(d1, . . . , dm) ∈ Eℓ if and only if
R(d1, . . . , dm) ∈ Dℓ. Thus, the only EDB atoms in E are those of D, but E “enriches” D
with various IDB atoms at different points of time. We say that E is a model of π and D if (i)
E is an enrichment of D; and (ii) for any rule C(X)← ψ(X,U) of π, E |= C(X)← ψ(X,U),
i.e., for all ℓ ∈ Z and any tuples d̄ ∈ ∆|X|

E , δ̄ ∈ ∆|U |
E , E , ℓ |= ψ(d̄, δ̄) implies E , ℓ |= C(d̄). We

write D, π, ℓ |= C(d̄) if for every model E of π and D it follows that E , ℓ |= C(d̄).
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A datalog ⃝⋄ query is a pair (π,G), where π is a datalog ⃝⋄ program and G an IDB atom,
called the goal predicate. The arity of a query is the arity of G. Given a temporal database D,
a timestamp ℓ ∈ tem(D), a tuple (d1, . . . , dk) ∈ ∆k

D and a datalog ⃝⋄ query (π,G) of arity k,
the pair ⟨(d1, . . . , dk), ℓ⟩ is a certain answer to (π,G) over D if D, π, ℓ |= G(d1, . . . , dk). The
answering problem for a datalog ⃝⋄ query (π,G) over a temporal database D is that of
checking, given a tuple (d1, . . . , dk) ∈ ∆k

D, and ℓ ∈ tem(D), if ⟨(d1, . . . , dk), ℓ⟩ is a certain
answer to (π,G) over D. We use the term “complexity of the query (π,G)” to refer to the
data complexity of the associated answering problem, and say, e.g., that (π,G) is complete
for polynomial time (for P) or for nondeterministic logarithmic space (NL) if the answering
problem for (π,G) is such.

Our main concern is how the data complexity of the query answering problem is affected
by the features of π. The following theorem relies on similar results obtained for temporal
deductive databases [13, 12] and temporal description logics [6, 7, 22].

▶ Theorem 4. Answering (monadic) datalog ⃝⋄ queries is PSpace-complete for data com-
plexity; answering linear (monadic) datalog ⃝⋄ queries is NL-complete.

Proof (Sketch). For full datalog ⃝⋄, PSpace-completeness can be shown by reusing the
techniques for temporal deductive databases [13, 12]. However, we prove that a linear query
can be answered in NL. Indeed, fix a linear query (π,G). Without loss of generality, we
assume that temporalised IDB atoms in rule bodies of π have the form ⃝kC(Y ), where
|k| ⩽ 1 (the cases of ♢/♢− and consecutive ⃝/⃝− can be expressed via recursion). Given a
temporal database D, tuples of objects c and d from ∆D, and ℓ ∈ Z, we write C(c)←ℓ,k D(d)
if π has a rule C(X)← φ(X,Y , U) ∧⃝kD(Y ) such that D, ℓ |= ∃Uφ(c,d, U). Analogously,
we write C(c)←ℓ if there is an initialisation rule C(X)← φ(X,U) and D, ℓ |= ∃Uφ(c, U).
Then, given a linear datalog ⃝⋄ query (π,G), we have D, π, ℓ |= G(d) if and only if G = C0,
d = c0, and there exists a sequence

C0(c0)←k0 C1(c1)←k1 · · · ←kn−1 Cn(cn) (12)

such that Ci ∈ IDB(π), tuples ci are from ∆D, ℓ0 = ℓ, ℓi+1 = ℓi + ki for 0 ≤ i < n,
Ci(ci) ←ℓi,ki Ci+1(ci+1), and Cn(cn) ←ℓn . Let tem(D) = [l, r]. Using property (10), we
observe that a rule C(c) ←ℓ,k D(d) either holds or does not hold simultaneously for all
ℓ > r+N , where N is the number of temporal operators in π, and, similarly, for all ℓ < l−N .
Now, consider a sequence (12) and ℓ, where all ℓi > r+N (the case for ℓ < l−N is analogous).
Any loop of the form Ci(ci)←ki

· · · ←kj−1 Cj(cj) in it with Ci(ci) = Cj(cj) can be removed
as long as in the resulting sequence

C0(c0)←k0 C1(c1)←k1 · · · ←ki−1 Ci(ci)←kj
Cj+1(cj+1) · · · ←kn−1 Cn(cn),

the sum of all kt remains ≥ 0. This allows us to convert any sequence (12) to a sequence
with the same C0 in the beginning, the same Cn in the end, and where all ℓi do not exceed
ℓ + O(|IDB(π)| · |∆D|a), for a equal to the maximal arity of a relation in IDB(π). This
means that, for ℓ ∈ tem(D), we can check D, π, ℓ |= G(d) using timestamps in the range
[l − O(|π| · |∆D|a), r + O(|π| · |∆D|a)]. Clearly, the existence of such a derivation can be
checked in NL. ◀

However, individual queries may be easier to answer than in the general case. Since
datalog ⃝⋄ combines features of plain datalog and of linear temporal logic, its queries can
correspond to a variety of complexity classes. Recall, for example, queries (π1,Good) and
(π2,Satisfactory) from Section 1, the first of which is hard for logarithmic space (L-hard) and
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the second lies in AC0, the class of problems decidable by unbounded fan-in, polynomial size
and constant depth boolean circuits. Furthermore, by using unary relations and operator ⃝,
one can simulate any regular language, giving rise to queries that lie in ACC0, the class
obtained from AC0 by allowing “MOD m” gates, or are complete for NC1, the class defined
similarly for bounded fan-in polynomial circuits of logarithmic depth. Intuitively, the
problems in AC0, ACC0, and NC1 are solvable in short (constant or logarithmic) time on a
parallel architecture; see [40] for more details.

In the remainder of the paper we focus on deciding the data complexity for the linear
monadic fragment of datalog ⃝⋄, denoted datalog ⃝⋄

lm . It is well-known that a plain datalog
query can be characterised via an infinite set of conjunctive queries called its expansions [34].
We define expansions for datalog ⃝⋄

lm and use them as the main tool in our (un)decidability
proofs.

2.1.1 Expansions for Linear Monadic Queries
Let π be a datalog ⃝⋄

lm program and Q(X) be a unary temporal conjunctive query with a
single answer variable and containing a unique IDB atom, say D(Y ), from π. Let P (X) be
another temporal conjunctive query with a single answer variable, and let P ′(Y ) be obtained
from P (X) by substituting X by Y and all other variables with fresh ones. A composition of
Q and P , denoted Q ◦ P , has the form of Q with D(Y ) substituted with P ′(Y ). We note
that the variables of Q remain present in Q ◦ P and X is an answer variable of Q ◦ P . If P
contains an IDB atom and K(X) is another temporal conjunctive query, the composition
can be extended in the same fashion to (Q ◦ P ) ◦K, and so on. Note that, up to renaming
of variables, (Q ◦ P ) ◦K and Q ◦ (P ◦K) are the same queries, so we will omit the brackets
and write Q ◦ P ◦K.

Expansions are compositions of rule bodies of a program π. Let B1, B2, . . . , Bn−1 be such
that Bi is the body of the recursive rule:

Ci(X)← Ai(X,Y, U1, . . . , Umi) ∧ ⃝kiCi+1(Y ), (13)

and Bn is the body of an initialization rule

Cn(X)← B(X,V1, . . . , Vmn
). (14)

The composition B1 ◦ · · · ◦ Bn is called an expansion of (π,C1), and n is its length. The
set of all expansions of (π,C1) is denoted expand(π,C1). Moreover, let Γr

π be the set of
all recursive rule bodies of π and Γi

π be the set of all initialization rule bodies. Then
each expansion can be regarded (by omitting the symbol ◦) as a word in (Γr

π)∗Γi
π, and

expand(π,C1) as a sublanguage of (Γr
π)∗Γi

π. Adopting a language-theoretic notation, we will
use small Latin letters w, u, v, etc. to denote expansions. To highlight the fact that each
expansion is a temporal conjunctive query with the answer variable X, we sometimes write
w(X) ∈ expand(π,C).

It is a direct generalization from the case of plain datalog [34] that D, π, ℓ |= C(d) if and
only if there exists w(X) ∈ expand(π,C) such that Dℓ |= w(d).

3 Undecidability for Queries with ♢

Our first result about deciding the complexity of a given query is negative.

▶ Theorem 5. It is undecidable whether a given datalog⋄lm-query can be answered in AC0,
ACC0, or NC1 (if NC1 ̸= NL). It is undecidable whether the query is L-hard (if L ≠ NL).
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The proof is by a reduction from the halting problem of 2-counter machines [33]. Namely,
given a 2-counter machine M we construct a query (πM , G) that is in AC0 if M halts and
NL-complete otherwise.

Recall, that a 2-counter machine is defined by a finite set of states S = {s0, . . . , sn},
with a distinguished initial state s0, two counters able to store non-negative integers, and
a transition function Θ. On each step the machine performs a transition by changing its
state and incrementing or decrementing each counter by 1 with a restriction that their values
remain non-negative. The next transition is chosen according to the current state and the
values of the counters. However, the machine is only allowed to perform zero-tests on counters
and does not distinguish between two different positive values. Formally, transitions are
given by a partial function Θ:

S × {0,+} × {0,+} → S × {−1, 0, 1} × {−1, 0, 1}. (15)

Let sgn(0) = 0 and sgn(k) = + for all k > 0. A computation of M is a sequence of
configurations:

(s0, a0, b0), (s1, a1, b1), (s2, a2, b2) . . . (sm, am, bm), (16)

such that for each i, 0 ⩽ i < m, holds Θ(si, sgn(ai), sgn(bi)) = (si+1, ε1, ε2) and ai+1 = ai+ε1,
bi+1 = bi + ε2. We assume that a0, b0 = 0 and Θ is such that ai, bi ⩾ 0 for all i. We call
m the length of the computation. We say that M halts if Θ(sm, sgn(am), sgn(bm)) is not
defined in a computation. Thus, M either halts after m steps or goes through infinitely many
configurations.

Let M be a 2-counter machine. We construct a connected linear query (πM , G) using the
operator ♢ only, such that its evaluation is in AC0 if M halts, but becomes NL-complete
otherwise. The construction with the operator ♢− instead of ♢ is symmetric.

We set the EDB schema Σ = {T,U1, U2} of three relations which stand for “transition”,
“first counter update”, and “second counter update”, respectively. Intuitively, domain elements
of a temporal database represent configurations of M , and role triples of T , U1 and U2,
arranged according to certain rules described below, will play the role of transitions. A
sequence of nodes connected by such triples will thus represent a computation of M . Our
program πM will generate an expansion along such a sequence, trying to assign to each
configuration an IDB that represents a state of M , which will be possible while the placement
of the connecting roles on the temporal line follows the rules of Θ. If the machine halts, there
is a maximum number of steps we can make, so the check can be done in AC0. If M does
not halt, however, it has arbitrarily long computations, and the query evaluation becomes
NL-complete.

Here are the details. A configuration (s, a, b) is represented by an object d and three
timestamps ℓ0, ℓ1, ℓ2 such that ℓ1 = ℓ0 + a and ℓ2 = ℓ0 + b. The values of the counters a and
b are indicated, respectively, by existence of connections U ℓ1

1 (d, d′) and U ℓ2
2 (d, d′) to some

object d′ that is supposed to represent the next configuration in the computation. For the
transition to happen, we also require T ℓ0(d, d′). Given a computation of the form (16), the
corresponding computation path is a pair (⟨d0, . . . , dn⟩, ℓ0), where for each i, 0 ⩽ i < n, there
are T ℓ0(di, di+1), U ℓ0+ai

1 (di, di+1), and U ℓ0+bi
2 (di, di+1) in the database, with an additional

requirement that a0 = b0 = 0. Two types of problems may be encountered on such a path. A
representation violation occurs when an object has more than one outgoing edge of type T ,
U1, or U2. A transition violation of type (si, α, β) is detected when there are two consecutive
nodes di, di+1, α = sgn(ai), β = sgn(bi), and Θ(si, α, β) ̸= (si+1, ai+1 − ai, bi+1 − bi). The
program πM will look for such violations. It will have an IDB relation symbol Si per each state
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si of M . The initialisation rules allow to infer any state IDB from a representation violation,
and the IDB Si from a transition violation of type (si, α, β). The recursive rules then push
the state IDB up a computation path following the rules of Θ and tracing “backwards” a
computation of M . Once πM infers the initial state IDB at a position with zero counter
values, we are done. It remains to give the rules explicitly.

We use a shortcut ♢∗ to mean a “reflexive” version of ♢, i.e. ♢∗φ ≡ ♢φ∨φ. Clearly, every
rule ♢∗ can be rewritten to an equivalent set of rules without it. We need the rules:

Si(X)← ♢∗RV (X), 0 ⩽ i ⩽ n RV (X)← T (X,Y ) ∧ ♢T (X,Z) (17)
RV (X)← U1(X,Y ) ∧ ♢U1(X,Z), RV (X)← U2(X,Y ) ∧ ♢U2(X,Z) (18)

to detect representation violations. For transition violations, we first define IDBs NEε
c , where

c ∈ 1, 2 stand for the respective counter and ϵ ∈ {−1, 0, 1} stands for the change of that
counter value in a transition. Each NEε

c detects situations when a correct transition was not
executed, e.g. having ϵ = −1, the timestamps ℓ and ℓ′ that are marked by an outgoing Uc in
consecutive configurations satisfy ℓ− 1 > ℓ′, ℓ = ℓ′, or ℓ < ℓ′, which they should not. The
rules are the following:

NE−1
c (Y )← Uc(Y,Z) ∧ Uc(X,Y ) NE−1

c (Y )← Uc(Y, Z) ∧ ♢♢Uc(X,Y ) (19)
NE−1

c (Y )← Uc(X,Y ) ∧ ♢Uc(Y, Z) NE1
c (Y )← Uc(Y,Z) ∧ Uc(X,Y ) (20)

NE1
c (Y )← Uc(Y, Z) ∧ ♢Uc(X,Y ) NE1

c (Y )← Uc(X,Y ) ∧ ♢♢Uc(Y,Z) (21)
NE0

c (Y )← Uc(Y, Z) ∧ ♢Uc(X,Y ) NE0
c (Y )← Uc(X,Y ) ∧ ♢Uc(Y,Z) (22)

for c ∈ {1, 2}. Then, again, any state can be inferred from a violation:

Si(X)← ♢∗NEε1
1 (Y ) ∧ ♢αU1(X,Y ) Si(X)← ♢∗NEε2

2 (Y ) ∧ ♢ βU2(X,Y ) (23)

for each transition Θ(si, α, β) = (sj , ε1, ε2), and for all ε1, ε2 when Θ(si, α, β) is not defined.
Finally, we require

Si(X)← T (X,Y ) ∧ ♢αU1(X,Y ) ∧ ♢ βU2(X,Y ) ∧ Sj(Y ), (24)
G(X)← S0(X) ∧ U1(X,Y ) ∧ U2(X,Y ). (25)

This finalises the construction of (πM , G). Any expansion of (πM , G) starts with the body
of the rule (25) and then continues by a sequence of bodies of the rules of the form (24)
and ends with a detection either of a representation violation, defined by (17) – (18), or
of a transition violation, defined by (23). If M halts in m steps, it is enough to consider
expansions containing no more than m bodies of (24). Thus, in this case (πM , G) is in AC0.
If, on the contrary, M does not halt, we can use expansions representing arbitrarily long
prefixes of its computation for a reduction from directed reachability problem, rendering the
query NL-hard.

▶ Lemma 6. If M halts, (πM , G) is in AC0. Otherwise, it is NL-hard.

4 Automata-Theoretic Tools for Queries with ⃝

From now on, we focus on queries that use operators ⃝ and ⃝− only. In this section, we
develop a generalisation of the automata-theoretic approach to analysing query expansions
proposed in [15]. In Section 5 we use this approach to study the data complexity of this kind
of queries.
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(a) Expansions: double arrows represent the rela-
tion R, single arrows – the relation S.
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(b) A homomorphism (dashed arrows) from an ex-
pansion of length 3 to its own prefix of length 2.

Figure 2 Illustrations for the query {(26), (28)}, G) of Example 7.

Recall from Section 2.1.1 the definitions of composition and expansion of rule bodies,
alphabets Γr

π and Γi
π, and the language expand(π,G) ⊆ (Γr

π)∗(Γi
π). We observe that for any

sequence of rule bodies B1, . . . , Bn−1 ∈ Γr
π and Bn ∈ Γi

π the compositions B1 ◦ · · · ◦ Bn−1
and B1 ◦ · · · ◦ Bn are well-defined. They are words in the languages (Γr

π)∗ and (Γr
π)∗(Γi

π),
respectively. Note that B1◦· · ·◦Bn is a temporal CQ over schema EDB(π), while B1◦· · ·◦Bn−1
is that over EDB(π) ∪ IDB(π), since it contains the IDB atom of Bn−1. For w ∈ (Γr

π)∗(Γi
π),

Dw is defined as the (temporal) database corresponding to (temporal) CQ w, while for
w ∈ (Γr

π)∗ we define Dw as the database corresponding to the CQ obtained from w by
omitting the IDB atom. For either w, Dw is over the schema EDB(π). Having that, we
define the language accept(π,G) ⊆ (Γr

π)∗ ∪ (Γr
π)∗(Γi

π) of all words w ∈ (Γr
π)∗ ∪ (Γr

π)∗(Γi
π)

such that Dw, π, 0 |= G(X).
Plain datalog queries are either in AC0 (called bounded), or L-hard (unbounded), and a

criterion of unboundedness can be formulated in language-theoretic terms [15]: a connected
linear monadic plain datalog query (π,G) is unbounded if and only if for every k there is
w ∈ expand(π,G), |w| > k, such that its prefix of length k is not in accept(π,G).

▶ Example 7. The query (π,G), where π is given by the following plain datalog rules, is
unbounded.

G(X)← R(X,Y ) ∧ S(Y,X) ∧G(Y ) (26)
G(X)← A(X) (27)

However, if we substitute the rule (27) with another initialisation rule

G(X)← S(X,Y ) ∧ S(Y, Z) (28)

it becomes bounded because for every w ∈ expand(π,G), |w| > 2 its prefix of length 2 is in
accept(π,G). To see this, consider the expansions of the query, i.e., expand({(26), (28)}, G)
given in Figure 2.

The authors of [15] construct finite state automata for languages expand(π,G) and
notaccept(π,G), the complement of accept(π,G), and use them to check their criterion in
polynomial space. Our goal is to generalise this technique to the temporalised case. However,
we can not use finite automata to work directly with sequences of rule bodies, since the
language accept(π,G), in the presence of time, may be non-regular, as demonstrated by the
following example.

▶ Example 8. Consider a program

G(X)← R(X,Y ) ∧G(Y ) G(X)← A(X) ∧⃝G(X)
G(X)← P (X) ∧⃝−G(X) G(X)← P (X) ∧R(Y,X).
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(a) The temporal database Dw for w =
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(b) The temporal database Dw for w =
B2
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2B5

3B2B1 of Example 9.

Figure 3 Expansions of datalog ⃝
m queries.

Denote its rule bodies B1(X,Y ) = R(X,Y )∧G(Y ), B2(X) = A(X)∧⃝G(X), and B3(X) =
P (X) ∧ ⃝−G(X), and the composition w = B1B2B2B3B3B3. The composition w is in
accept(π,G), and the corresponding database Dw is given in Figure 3a. In general, a
composition of the form B1B

n
2B

k
3 is in accept(π,G) if and only if n < k, which, by a simple

application of the pumping lemma, is a non-regular language.

To overcome this, we introduce a larger alphabet and define more general versions of
the languages expand(π,G) and accept(π,G) to regain their regularity. Recall that every
composition w of rule bodies gives rise to a temporal database Dw. Instead of working with
w, we use an exponentially larger alphabet Ω = 2Γr

π∪Γi
π∪{⊥,⊤} to describe Dw as a word and

define analogues of expand(π,G) and accept(π,G) over that alphabet. Consider a recursive
rule

D(X)← ⃝k1R1(U1) ∧ · · · ∧⃝ksRs(Us) ∧⃝kE(Y ), (29)

where E(Y ) is the unique IDB atom in the rule body and ki, k ∈ Z. We call such a rule
horizontal if X = Y and vertical otherwise. In a composition w ∈ (Γr

π)∗ ∪ (Γr
π)∗Γi

π, a vertical
(horizontal) segment is a maximal subword that consists of vertical (respectively, horizontal)
rule bodies. For every composition w we define the description [w] ∈ Ω∗ of the respective
database Dw as follows. Let w = x1y1x2y2 . . . xnyn, where xi are vertical segments and yi are
horizontal segments, with x1 and yn possibly empty. For each xi = B1 . . . Bn we set [xi] to be
the sequence {B1} . . . {Bn} of singleton sets, each of which contains a vertical rule body. For
each yi = B1 . . . Bn, we construct [yi] in n steps, as follows. Recall that Bj , 1 ⩽ j < n, has
the form Aj(X,U) ∧⃝mjD(X), where D(X) is the unique IDB atom in Bj . Let ℓ1 = 0 and
ℓj =

∑j−1
i=1 mi for j ≤ n. Intuitively, ℓj is the moment of time where the body Bj lands in the

composition B1 ◦ · · · ◦Bn. Let ℓ′
1, . . . , ℓ

′
s be the ordering of the the numbers in the set {ℓj}n

j=1
in the increasing order. We set, αℓ′

k
to be {Bj | ℓj = ℓ′

k} for ℓ′
k ∈ {ℓ1, ℓn}; {Bj | ℓj = ℓ1}∪{⊥}

for ℓ′
k = ℓ1 ̸= ℓn; {Bj | ℓj = ℓn} ∪ {⊤} for ℓ′

k = ℓn ̸= ℓ1; and {Bj | ℓj = ℓ1} ∪ {⊤,⊥} for
ℓ′

k = ℓ1 = ℓn. Additionally, we set αk = ∅ for k ∈ [ℓ′
1, ℓ

′
s] \ {ℓ′

1, . . . , ℓ
′
s}. Now we take [yi] = α.

Finally, [w] = [x1][y1] . . . [xn][yn]. We use the symbol Λ to refer to letters of [w]. We
call letters of the form {B}, where B is a vertical rule body, vertical letters, and the rest
– horizontal letters. Consequently, we can speak of vertical and horizontal segments of [w],
meaning maximal segments composed of vertical (respectively, horizontal) letters only.

Intuitively, [w] describes Dw, which can be seen as composed of Dx1 ,Dy1 , . . . ,Dxn ,Dyn ,
described by [x1], [y1], . . . , [xn], [yn], respectively. The symbol ⊥, representing a vertical line
meeting a horizontal one, marks the point in time where Dxi is connected to Dyi , while the
symbol ⊤, analogously, shows where Dyi

is connected to Dxi+1 .
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▶ Example 9. Recall the rule bodies of Example 8 and consider the composition w =
B2

1B
2
2B

5
3B2B1. The corresponding Dw is depicted in Figure 3b. Then x1 = B2

1 , y1 = B2
2B

5
3B2,

x2 = B1 and y2 is empty. Thus, [w] is equal to

{B1}{B1}{B2}{⊤, B3}{B3}{⊥, B2, B3}{B2, B3}{B3}{B1} (30)

Not every word over Ω correctly describes a temporal database. This motivates the
following definition: α ∈ Ω∗ is correct if (i) every symbol Λ is either a singleton (standing for
a vertical rule body) or a set of horizontal rule bodies, with a possible addition of ⊥,⊤, and
(ii) every horizontal segment of α preceded by a vertical segment contains exactly one ⊥, and
every horizontal segment followed by a vertical one – exactly one ⊤. A correct word α ∈ Ω∗

describes a temporal database Dα similarly to how [w] describes Dw. Formally, break α into
vertical/horizontal segments χ1υ1 . . . χnυn. For a vertical segment χi = {B1} . . . {Bn}, set
Qχi

= B1 ◦ · · · ◦Bn. For a horizontal segment υi = Λ1 . . .Λs, let Λj⊥ be the one containing
⊥ and Λj⊤ – containing ⊤. Then Qυi

is the conjunction of rule bodies from υi, where
each B ∈ Λj is prefixed by ⃝j−j⊥ , plus, if i ̸= n, an IDB atom ⃝j⊤−j⊥D(X). Finally, set
Dα = DQα

for Qα = Qχ1 ◦Qυ1 ◦ · · · ◦Qχn
◦Qυn

. This Qα will be also useful further.
We are now ready to define languages over Ω that will be useful to study the data

complexity of our queries. Let Accept(π,G) be the language of correct words α such that
Dα, π, 0 |= G(X), with X ∈ ∆Dα , and NotAccept(π,G) be its complement. We need to define
the language of expansions over the alphabet Ω that we will use together with the language
NotAccept(π,G) to formulate a criterion for L-hardness similar to the one of [15]. It would be
natural to take the language of expansions as {[w] | w ∈ expand(π,G)}. However, it is harder
to define an automaton recognising such a language than it is for the language of [w]s as above
where each horizontal letter [w]i may be extended (as a set) with arbitrary “redundant” rule
bodies, and each horizontal segment may be extended, from the left and right, by “redundant”
horizontal letters. For example, we will include into the language of expansions the word
{B1}{B1}{B3}{B2, B3}{⊤, B3}{B2, B3}{⊥, B2, B3}{B2, B3}{B3}{B1} alongside (30). It
turns out that the latter language works for our required criteria as good as the former one.
Formally, if α, β ∈ Ω∗, we write α ≼ β if α = x1y1 . . . xnyn and β = x1y

′
1 . . . xny

′
n, where xi

are vertical segments and yi, y
′
i are horizontal segments, and if yi = a1 . . . am, y′

i = b1 . . . bs,
then there is k ⩾ 0 such that m+k ⩽ s and aj ⊆ bj+k, 1 ⩽ j ⩽ m. We define Expand≼(π,G)
to be the set of correct words α ∈ Ω∗ such that [w] ≼ α for some w ∈ expand(π,G).

It is important for our purposes that these languages are regular. For Expand≼(π,G),
the rules of the program π may be naturally seen as transition rules of a two-way automaton
whose states are the IDBs of π (plus a final state). The initial state is the one associated
with G, and the final state is reached by an application of an initialisation rule.

▶ Lemma 10. For any datalog ⃝
lm-query (π,G), the language Expand≼(π,G) is regular.

The case of NotAccept(π,G) is more involved. Generalising from [15], for an automaton to
recognise if α ∈ NotAccept(π,G) it suffices to guess (by nondeterminism) an enrichment E of
Dα, and check that E is a model of π and that E does not contain the atom G(X). Moreover,
since π is connected, for E to be a model it is enough that every piece of E of radius |π|, in
terms of Gaifman graph, satisfies all the rules. The idea is to precompute the answer for each
such piece and encode them in the state-space of the automaton. The problem, specific to
the temporalised case, is that enrichments are infinite in the temporal dimension. To resolve
this, we observe that there are still finitely many EDB atoms in E . Since, once again, π is
connected, to check that rules with EDBs are satisfied it is enough to consider only those
pieces of E that contain an EDB atom. For the rest of the rules, it suffices to check if such a
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finite piece can be extended into an infinitely in time to give a model of π. The rules without
EDBs can be seen as plain LTL rules, so we can employ satisfiability checking for LTL to
perform this check.

▶ Lemma 11. For any datalog ⃝
lm-query (π,G), the language NotAccept(π,G) is regular.

▶ Corollary 12. For any datalog ⃝
lm-query (π,G), the language Accept(π,G) is regular.

5 Decidability for Connected Linear Queries with ⃝

We use the automata introduced in the previous section to prove a positive result.

▶ Theorem 13. (i) Every connected datalog ⃝
lm query is either in AC0, or in ACC0 \AC0,

or NC1-complete, or L-hard. (ii) It is PSpace-complete to check whether such a query is
L-hard; whether it belongs to AC0, ACC0, or is NC1-complete can be decided in ExpSpace.

We first deal with (i). Intuitively, L-hardness is a consequence of the growth of query
expansions in the relational domain. If this growth is limited, the query essentially defines a
certain temporal property, which can be checked in NC1. Formally, given a word α ∈ Ω∗, we
define the height(α) as the number of vertical letters in α. Then, we call a query vertically
unbounded if for every k there is a word α ∈ Accept(π,G), height(α) > k, such that every
prefix of α of height k is in NotAccept(π,G). Otherwise, the query is called vertically bounded.

Vertically unbounded queries can be shown to be L-hard by a direct reduction from the
undirected reachability problem. Namely, take the deterministic automata for NotAccept(π,G)
and Accept(π,G), supplied by Lemma 11 and Corollary 12, and apply the pumping lemma
to obtain words ξ, υ, ζ, γ such that height(υ) > 0, ξυiζ ∈ NotAccept(π,G) and ξυiζγ ∈
Accept(π,G), for all i ⩾ 0. Then, given a graph G and two nodes s, t, use copies of Dυ to
simulate the edges of G, and attach Dξ to s and Dζγ to t. Thus, you will obtain a temporal
database DG , where DG , π, 0 |= G(s) if and only if there is a path from s to t.

▶ Lemma 14. If a query is vertically unbounded, then it is L-hard.

Observe that D, π, ℓ |= G(d) whenever D, ℓ |= Qα(d) for some α ∈ Accept(π,G). If D, ℓ |=
Qα(d), then x1, y1, . . . , yn, xn, the vertical and horizontal segments of α, appear in D, starting
from d at time ℓ. Expand yi to y′

i, the ≼-maximal horizontal segment fitting in D, and let
β = x1y

′
1 . . . xny

′
n. Then β ∈ Accept(π,G) and D, ℓ |= Qβ(d). Thus, to check D, π, ℓ |= G(d),

it suffices to find vertical segments of some α ∈ Accept(π,G), taking ≼-maximal horizontal
segments, and check that β ∈ Accept(π,G). If (π,G) is vertically bounded, there are finitely
many vertical segments of interest. Finding vertical segments, as well as extracting ≼-maximal
horizontal ones, can be done by an AC0 circuit.

▶ Lemma 15. If (π,G) is vertically bounded, then the data complexity of (π,G) coincides
with that of checking membership in Accept(π,G), modulo reductions computable in AC0.

Recall that Accept(π,G) is a regular language, so checking membership in it is either in AC0,
or ACC0 \AC0, or NC1-complete [40]. This settles the part (i) of Theorem 13: a query is
either vertically unbounded and thus L-hard, or vertically bounded and thus belongs to one
of the three classes mentioned above.

It remains to address the part (ii) of Theorem 13. By a careful analysis of the proof of
Lemma 11 one can show that NotAccept(π,G) is recognised by a nondeterministic automaton
of size 2poly(|π|). Further, checking whether its language belongs to AC0, ACC0 \AC0, or
is NC1-complete, can be done via the polynomial-space procedure developed in [31]. Thus,
given a vertically bounded query, its data complexity can be established in exponential space.
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For the vertical boundedness itself, note that substituting Accept(π,G) with
Expand≼(π,G) in the respective definition preserves all the results proven so far. For
Expand≼(π,G), we can get from Lemma 10 an exponential-size one-way automaton. Check-
ing that the query is vertically unbounded can be done in nondeterministic space logarithmic
in the size of the automata for Expand≼(π,G) and NotAccept(π,G), as it boils down to
checking reachability in their Cartesian product.

▶ Lemma 16. Checking if a connected datalog ⃝
lm query is vertically bounded is in PSpace.

For the lower bound, we show that checking boundedness is already PSpace-hard for
connected linear monadic queries in plain datalog. In fact, PSpace-hardness was proved
in [15] for program boundedness of disconnected programs. A program π is called bounded
if (π,G) is bounded for every IDB G in π. We were able to regain the connectedness of π
by focusing on query boundedness (also called predicate boundedness) instead. The idea
combines that of [15] with that of Section 3: define an IDB F that slides along a computation,
this time of a space-bounded Turing machine, looking for an erroneous transition.

▶ Lemma 17. Deciding boundedness of connected linear monadic queries in plain datalog is
PSpace-hard.

Lemmas 14 and 15 bring us to an interesting consideration: to understand the data
complexity of a given query one should analyse its behaviour in the relational domain
separately from that in the temporal domain. This can be given a precise sense as follows.

▶ Proposition 18. For every connected datalog ⃝
lm query (π,G) there exist a plain datalog

query (πd, G) and a plain LTL query (πt, G), such that:
1. (π,G) is vertically bounded if and only if (πd, G) is bounded;
2. if (π,G) is vertically bounded then its data complexity coincides with that of (πt, G).

Technically, both πd and πt are obtained by simulating the deterministic automaton
A(π,G) for the language Accept(π,G) provided by Corollary 12. In both programs, the IDBs
correspond to the states of A(π,G) and EDBs to the letters of Ω. For πt these EDBs are
unary and all the rules are horizontal, so that the expansions unwind fully in the temporal
domain. In the case of πd, the EDBs are binary and every vertical transition of A(π,G)
is a step by a binary relation, while the horizontal transitions are skipped (thus, vertical
boundedness becomes just boundedness). In both programs, initialisation rules correspond
to A(π,G) reaching an accepting state.

We conclude this section with a consideration on disconnected queries. In [15], decid-
ing boundedness is based on the fact that accept(π,G) remains regular even when π has
disconnected rules. This is not the case for datalog ⃝

lm, as can be seen from the following
example.

▶ Example 19. Consider the program π of four rules:

G(X)← A(X) ∧⃝D(X) D(X)← ⃝D(X)
D(X)← R(X,Y ) ∧⃝−B(Y ) ∧⃝−D(Y ) D(X)← A(Y ) ∧B(X)

Let B1 = A(X) ∧ ⃝D(X), B2 = ⃝D(X), and B3 = R(X,Y ) ∧ ⃝−B(Y ) ∧ ⃝−D(Y ).
Then B1B

n
2B

m
3 ∈ accept(π,G), and, consequently, {⊥, B1}{B2}n{⊤}{B3}m ∈ Accept(π,G),

whenever m > n ⩾ 1. This property is not recognisable by any finite state automaton.
For more general classes of automata suitable to recognise accept(π,G) or Accept(π,G) in
the disconnected setting, the properties that are to be checked along the lines of [15], such
as language emptiness or finiteness, become undecidable. Therefore, disconnected queries
possibly require a different approach for analysing the data complexity.
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6 Conclusions and Future Work

We have started investigating the complexity of determining the data complexity of answering
monadic datalog queries with temporal operators. For linear connected queries with operators
⃝/⃝−, we have generalised the automata-theoretic technique of [15], developed originally
for plain datalog, to establish an AC0/ACC0/NC1/L/NL classification of temporal query
answering and proved that deciding L-hardness of a given query is PSpace-complete, while
checking its membership in AC0 or ACC0 can be done in ExpSpace. As a minor side product,
we have established PSpace-hardness of deciding boundedness of atemporal connected linear
monadic datalog queries. Rather surprisingly and in sharp contrast to the ⃝/⃝− case, it
turns out that checking (non-trivial) membership of queries with operators ♢/♢− in the above
complexity classes is undecidable. The results of this paper lead to a plethora of natural and
intriguing open questions. Some of them are briefly discussed below.
1. What happens if we disallow applications of ♢/♢− to binary EDB predicates in datalog⋄lm-

queries? We conjecture that this restriction makes checking membership in the above
complexity classes decidable. In fact, this conjecture follows from a positive answer to
the next question.

2. Can our decidability results for datalog ⃝
lm be lifted to datalog ⃝

m -queries? Dropping the
linearity restriction in the atemporal case results in the extra data complexity class, P,
and the higher complexity, 2ExpTime-completeness, of deciding boundedness. The upper
bound was obtained using tree automata in [15], and we believe that this approach can be
generalised to connected datalog ⃝

m -queries in a way similar to what we have done above.
3. On the other hand, dropping the connectedness restriction might turn out to be trick-

ier, if at all possible, as shown by Example 19. Finding a new automata-theoretic
characterisation for disconnected datalog ⃝

lm-queries remains a challenging open problem.
4. A decisive step in understanding the data complexity of answering queries mediated by a

description logic ontology and monadic disjunctive datalog queries was made in [9, 18] by
establishing a close connection with constraint satisfaction problems (CSPs). In our case,
quantified CSPs (see, e.g., [47]) seem to be more appropriate. Connecting the two areas
might be beneficial to both of them.

5. In the context of streaming data, it would be interesting to investigate the data complexity
classes and the complexity of recognising them for datalogMTL-queries [10, 36, 44].
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