Birkbeck

UNIVERSITY OF LONDON

BIROn - Birkbeck Institutional Research Online

Awofeso, Christine and Greaves, Patrick and Lachish, Oded and Levi, Amit
and Reidl, Felix (2025) Testing $C_k$-freeness in Bounded Admissibility

Graphs. In: International Colloquium on Automata, Languages, and
Programming, 9-11 Jul 2025, Aarhus, Denmark.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/55595/

Usage Guidelines:

Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.



https://eprints.bbk.ac.uk/id/eprint/55595/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Testing C.-freeness in Bounded Admissibility
Graphs

Christine Awofeso &
Birkbeck, University of London, UK

Patrick Greaves &
Birkbeck, University of London, UK

Oded Lachish =
Birkbeck, University of London, UK

Amit Levi &

University of Haifa, Haifa, Israel

Felix Reidl =
Birkbeck, University of London, UK

—— Abstract

We study Ci-freeness in sparse graphs from a property testing perspective, specifically for graph

classes with bounded r-admissibility. Our work is motivated by the large gap between upper and
lower bounds in this area: Ci-freeness is known to be testable in planar graphs [4], but not in graphs
with bounded arboricity for k > 3 [7]. There are a large number of interesting graph classes that
include planar graphs and have bounded arboricity (e.g. classes excluding a minor), calling for a
more fine-grained approach to the question of testing C-freeness in sparse graph classes.

One such approach, inspired by the work of Nesetril and Ossona de Mendez [11], is to consider
the graph measure of r-admissibility, which naturally forms a hierarchy of graph families A; D
As D ... D Asx where A, contains all graph classes whose r-admissibility is bounded by some
constant. The family .4; contains classes with bounded arboricity, the class A~ contains classes like
planar graphs, graphs of bounded degree, and minor-free graphs. Awofeso et al. [3] recently made
progress in this direction. They showed that Cys- and Cs-freeness is testable in Az. They further
showed that Cy-freeness is not testable in A|j/2)—1 and conjectured that Ci-freeness is testable in
A|k/2)- In this work, we prove this conjecture: Cp-freeness is indeed testable in graphs of bounded
| k/2|-admissibility.

2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro
Keywords and phrases Property Testing, Sparse Graphs, Cycle, Admissibility

Digital Object Identifier 10.4230/LIPIcs.ICALP.2025.104

1 Introduction

Finding a k-cycle (Cy) as a subgraph is a fundamental problem in graph theory with
applications in network analysis, bioinformatics, and theoretical computer science. Given
a graph G = (V, E), the goal is to detect cycles of exactly k vertices. Various algorithmic
approaches have been proposed, including combinatorial search techniques [9], matrix-based
methods using spectral graph theory [2], and more recent advancements leveraging graph
sparsification and algebraic techniques [12, 5].

In this paper, the focus is on a variation of this problem, where access to the input
algorithm is through an oracle that answers queries of the sort: “What is the degree of
vertex v?”, “What is the i-th neighbour of the vertex v?”, and “are the vertices v and v
neighbours?”. The goal in this variation is to determine whether a graph is Cy-free (it does
not have a subgraph isomorphic to Cy), given the size of the input graph and oracle access
to the graph, using the minimal possible number of queries.

? C. Awofeso, P. Gre.aves, A. Levi, O Lachish and F. Reidl;
37 icensed under Creative Commons License CC-BY 4.0
52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025).

Editors: Keren Censor-Hillel, Fabrizio Grandoni, Joel Ouaknine, and Gabriele Puppis; Article No. 104;
pp. 104:1-104:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:cawofe01@student.bbk.ac.uk
https://orcid.org/0009-0000-3550-1727
mailto:p.greaves@bbk.ac.uk
https://orcid.org/0009-0007-0752-0526
mailto:o.lachish@bbk.ac.uk
https://orcid.org/0000-0001-5406-8121
mailto:alevi@cs.haifa.ac.il
https://orcid.org/0000-0002-8530-5182
mailto:f.reidl@bbk.ac.uk
https://orcid.org/0000-0002-2354-3003
https://doi.org/10.4230/LIPIcs.ICALP.2025.104
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

104:2

Testing C';-freeness in Bounded Admissibility Graphs

A deterministic algorithm of this type, for determining whether a graph is C-free, may
require a number of queries that is at least linear in the size of the graph. Therefore, to
reduce the number of queries, an alternative approach is to require the algorithm only to
distinguish between graphs that are Cj-free and those that are far from being Cj-free, which
means that they require the removal of many edges to become Cy-free. The algorithm is
also allowed to be probabilistic and is only required to produce the correct answer with high
probability. Observe that if the algorithm is required to be error-free when the input graph
is Ck-free (as is the case with the algorithm presented here), it must explicitly identify a
C}, subgraph to conclude that the graph is not C-free, essentially solving the C} detection
problem for inputs that are far from being Cj-free.

This relaxation of requirements is captured by the framework of property testing. In this
framework, the problem described above is referred to as testing Cy-freeness. A central goal
is to show that the number of queries required for testing Cy-freeness, when the input is
restricted to graphs from a specific family, is independent of the size of the input graph, yet
may depend on the parameters of the class and the distance parameter (which is a fixed
parameter provided with the input) that governs the ‘farness‘ of the input from Cj-freeness.
If such an algorithm exists for some family of graphs, then we say that Cy-freeness is testable
for this family.

The results in this work focus on testing Cj-freeness for sparse graph families, specifically
those with a bounded average degree. This line of research was initiated in the seminal work
of Goldriech and Ron [8] who showed that the query complexity of testing Cy-freeness in
graphs with maximum degree d is O(d*). Although that result was promising, Alon et al. [1]
later showed that the query complexity testing triangle-freeness (Cs-freeness) in graphs with
constant average degree is ©(y/n), where n is the number of vertices in the input graph.

This raised the question of whether C-freeness has a better query complexity in families
of graphs that are strict subsets of graphs with a bounded average degree. Czumaj et al. [4]
showed that the more general property of H-freeness (i.e. graphs that don’t have a subgraph
isomorphic to H) is testable in planar graphs, which implies that C-freeness is also testable
in this setting. Subsequently, Levi [10] showed that the special case of triangle-freeness is
testable for graphs with bounded arboricity, a superset of planar graphs. However, Eden
et al. [7] recently showed that this does not extend to larger cycles: testing Cy-freeness
and Cs-freeness has query complexity Q(n'/4) in graphs of bounded arboricity, and testing
Cy-freeness for k > 6 has query complexity Q(n'/?). This left open the question of which
(strict) subsets of classes with bounded arboricity still allow testing of Cy-freeness.

Awofeso et al. [3] recently presented results in this direction. They considered a hierarchy
of sparse graph classes defined by the r-admissibility measure, which was first introduced by
Dvordk [6] and plays an important role in the study of sparse classes [11, 14]. We postpone the
rather technical definition to the next section; for now let us note that graphs of bounded 1-
admissibility are equivalent to graphs of bounded arboricity, and graphs whose r-admissibility
is bounded for any integer r include many well-known sparse classes such as planar graphs,
graphs with bounded genus, graphs of bounded degree and graphs excluding a (topological)
minor. Consequently, if we define A,. as the family of all graph classes whose r-admissibility is
bounded by some constant, then we have an infinite hierarchy of classes A; D As D ... D Ax
between graphs of bounded arboricity (A;) and classes whose r-admissibility is bounded
for any value of 7 (Aw, also known as bounded expansion classes [11]). Note that all these
inclusions are proper, for example, the class (") consisting of all cliques with every edge is
replaced with a length r path, is contained in A4, but not in A, ;.

In this hierarchy, Awofeso et al. [3] showed that testing C4- and Cs-freeness is possible



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

in Ao, the graphs with bounded 2-admissibility. They supplement this with a lower bound,
which shows that for all > 4 the number of queries required for Cy, 4 1-freeness testing and
Cs,-freeness testing of classes in A,._ is polynomial in the size of the input graph. The two
results lead them to conjecture that Cs,.- and Co,41-freeness should be testable for classes in
A, i.e. classes with bounded r-admissibility.

In this work, we complete the picture and prove the following.

» Theorem (Informal). For any integer r > 1, there exists a testing algorithm for Ca,.-freeness
and Co,11-freeness of bounded r-admissible graphs with query complezity depending only on
r,p and the proximity parameter €, where p is the bound on the r-admissibility bound.

We prove the theorem for Co,y;-freeness, but a minor (and slightly simpler) version of our
proof implies the same result Cs,-freeness. We also provide the lower bounds that do not
appear in [3]. Specifically, that for every r» > 2, Cy,.-freeness and Cy,.1-freeness are not
testable in bounded (r — 1)-admissible graphs.

Techniques and their relation to existing work

The results in this paper are derived from the classical property tester for Cy-freeness in
bounded-degree graphs. The tester selects a small initial random subset of the vertices of a
graph that is far from being Cj-free; then, with sufficiently high probability, one of these
vertices participates in a Cj subgraph of the input graph (a subgraph of the input graph
that is isomorphic to Cf). Since the input graph has a bounded degree, starting a “bounded
range” breadth-first search (BFS) from each one of the vertices in the initial set of vertices
will result in the discovery of a Cj subgraph with sufficient probability. If this event occurs,
then the graph is rejected and, otherwise, it is accepted. Clearly, this algorithm will always
accept a Cy-free graph.

Suppose that we tried to use a variation of this tester on a graph with a bounded average
degree, where the latter bound is provided as part of the input. We call this variation
pseudo-BFS (PBFS). To guarantee that the PBFS’s query complexity remains low, the
algorithm first computes some + that depends only on the given average degree and then
behaves like the bounded-degree tester until it encounters a vertex with a degree greater than
v (a heavy vertez). When this occurs, the search only includes a size v randomly selected
subset of the vertex’s neighbours. If the PBFS initiates a search on a vertex that is part of a
C} and this C} contains at most one heavy vertex, then the PBFS will uncover all vertices
of said Cy. However, if a C} contains at least two non-neighbouring heavy vertices, then the
PBFS might not find all the vertices of this Cy copy with sufficiently high probability since
it only sees a small random subset of a heavy vertex’s neighbours. The lower bound result is
based on this scenario.

This raised the question of whether the PBFS approach still works if we impose more
restrictions than just the bounded average degree. In [3] it was shown that Cy-freeness is
testable in As using PBFS as the testing algorithm. The technique involves showing that
if the input graph has bounded 2-admissibility and is far from being Cj-free, then with
sufficiently high probability the PBFS will start its search in a vertex that belongs to a
Cy4 with at most two heavy vertices and the crucial insight is that these two heavy vertices
necessarily have a large joint neighbourhood of non-heavy vertices—meaning that if the
PBFS locates one of these joint neighbours, it will immediately find both heavy vertices in the
next step and two steps later a Cy will be detected with high probability. This technique is
sufficient to establish testability of C7-freeness in 3-admissible graphs, but not for Cs-freeness
in 4-admissible graphs. The reason is that a Cg might contain two heavy vertices of distance

104:3

ICALP 2025



104:4

N,R,[k]

zPy

graph property,
far, close

Property tester

Testing C';-freeness in Bounded Admissibility Graphs

exactly four, which means that these paths include vertices that are not neighbours of either
of the heavy endpoints, a case that is not covered by this technique.

We model our approach on [3] by using a process called trimming. That is, given an
input graph G that is far from being Cj-free, we carve out a subgraph G of G by removing
just enough edges from G to ensure that G has some required structural properties and is
still far from being Cy-free (with some changes to the “farness” parameter). The graph G
is only used for the analysis of our algorithm. Specifically, it is shown that if G has a Cj
subgraph and one of its vertices is detected when our algorithm runs on G, then with high
probability, a Cj-subgraph will be detected.

The main tools used here are various structural properties of graphs with bounded
admissibility. For example, a graph G with bounded r-admissibility admits a total ordering
< of its vertex set V(G) such that every heavy vertex v € G can only reach a bounded
number of heavy vertices u < v via paths of length at most r. This allows us to enforce that
in the trimmed graph G, if such a path of length at most r between v and v exists, then
there must be a large number of such paths in G and therefore also in G (since otherwise
they would have been removed from G).

2 Preliminaries

We use N for the set of integer numbers, R for the set of real numbers, RT for the set of
positive reals. For an integer k, we use [k] as a shorthand for the set {1,2,...,k}. For integers
k1 and ko such that ky < ko we use [k1, ko] as a shorthand for the set {ki, k1 +1...,k} and
(k1, ko] as a shorthand for the set {ky + 1,k1 +2,...,k}. For a graph G, we use V(G) and
E(G) to refer to its vertex and edge set, respectively. All graphs considered in this work are
simple undirected graphs. The degree of a vertex v € V(G), denoted degq(v), is the number
of edges incident on v. N(v) is the set of neighbours of the vertex v. The distance between
two vertices u,v € V(G) is denoted distg(u,v). The distance between a vertex u € V(Q)
and a subset V' C V(G), is the minimum of distg (u,v) over every v € V.

For sequences of vertices x125 . . . ¢ (and in particular, paths), we use the shorthand z; P,
to represent the sequence, and use length(z1Pxy) to denote the length of the corresponding
path. In addition, we use Pz, (or x1P) to refer to a subsequence of x1Pxz,. All paths
considered in this work are simple paths. Though paths here are undirected, we often treat
them as directed by specifying a start and end vertex.

Property testing

A graph property (or simply property) P is a class of graphs closed under isomorphism. We
say that a graph G has the property P if G € P.

We say that a graph G with n vertices and at most m edges is e-far from P if at least
em edge modifications are required to make the graph have the property. Otherwise, we say
that it is e-close to P.

» Definition 1. A property tester for a property P of graphs is a randomized algorithm T
that receives as input parameters n,m € N, € > 0 and oracle access to a graph G with n
vertices and at most m edges. If the graph G is e-far from P, then T rejects with probability
at least 2/3. If the graph G € P, then T accepts with probability 1 (if the tester has one-sided
error) or with probability at least 2/3 (if the tester has two-sided error).

In this work, we consider the setting of sparse graphs where the oracle access to G is
defined as follows.



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

» Definition 2 (Sparse graph oracle). Given a graph G, a sparse graph oracle can answer the
following queries for vertices u,v € V(G):

The degree degq(v) of a vertex v (degree query).

The ith neighbour of v in G (neighbour query).

Whether {u,v} is an edge in G (adjacency query).

By combining these queries, the whole neighbourhood of a vertex v can be revealed by us-
ing 14+degq(v) queries. The oracle returns the special symbol ‘1’ when asked a query without
sensible answers, e.g. when asked to return the i-th neighbour of a vertex v with degq(v) < 1.

In this paper, we consider a particular set of graphs (which will be defined later on) for
the property of Cj-freeness. That is, a graph that does not have a subgraph isomorphic to
C). We refer to the problem as Cj-freeness. We call a graph Cy-free if it is contained in the
Ci-freeness property.

In further sections, we use the term knowledge-graph to refer to the graph that includes
all the vertices and edges revealed by the algorithm queries.

3 Graph admissibility

We start this section by presenting the definitions required for defining when a graph is
(p, r)-admissible. Afterwards, we provide the actual definition and a structural lemma for
(p, r)-admissible graphs. Then, we explain why this lemma is critical and provide an extra
definition and two more structural claims.

An ordered graph is a pair G = (G, <) where G is a graph and < is a total order relation
on V(G). We write <g to denote the ordering of G and extend this notation to derive the
relations <g, >g, >G-

To define r-admissibility we need the following ideas and notations.

» Definition 3. Let G = (G,<) and v € V(G). A path vPz is r-admissible in G if
length(vPx) < r, © <g v and ming,ecpw >g v (where the minimum is with respect to the
ordering in G). That is, the path goes from v to x using only vertices w such that w >g v
and x satisfy v >g x.

» Definition 4. For every integer i > 0 we let Targeté;(v) be the set of all vertices in
u € V(G) such that uw <g v and u is reachable from v via an r-admissible path vPu of length
at most i. We omit the subscript G when it is clear from context.

» Definition 5. An r-admissible path packing is a collection of paths {vP;x;}; with joint
root v and the additional properties that every path vP;x; is r-admissible and the subpaths P;x;
are all pairwise vertex-disjoint. In particular, all endpoints {x;}; are distinct. We write
ppg(v) to denote the mazimum size of any r-admissible path packing rooted at v.

Examples of 2- and 3-admissible path packings are depicted in Figure 1.

» Definition 6 (Admissibility). The r-admissibility of an ordered graph G, denoted adm,.(G)
and the admissibility of an unordered graph G, denoted adm,.(G) are!

dm,.(G) = e d adm,(G) = min adm,(G),
adm, () = maxppg(v) and  adm,(G) Gg(nG)am()

where w(Q) is the set of all possible orderings of G.

! Note that some authors choose to define the admissibility as 1 + max,ecg ppg (v) as this matches with
some other, related measures.

104:5

Cl-freeness

Knowledge-graph

G, ordered graph

r-admissible path

Target

(r, G)-admissible
path packing

PPg

adm,(G),
adm-(G)

ICALP 2025



104:6

Admissibility
ordering

(p, r)-admissible,
adm,-bounded

Testing C-freeness in Bounded Admissibility Graphs

1) [0

i _

-
- -
E >
G largetq (z

y 3 //
largety ()

Figure 1 An example of a maximum 2-admissible (left) and 3-admissible path packing for a
vertex z in an ordered graph G. The order is depicted by the height of the vertices, with the
exception of the blue vertices who appear before x in G and whose relative ordering is not important
here.

If G is an ordering of G such that adm,(G) = adm,.(G), then we call G an admissibility
ordering of G. The 1-admissibility of a graph coincides with its degeneracy, and therefore
such orderings are easily computable in linear time. For r > 2, an optimal ordering can also
be computed in linear time in n if the class has bounded expansion, i.e. if the graph class has
bounded admissibility for every r (see [6]).

Now we are ready to define the set of graphs we consider for testing Cs,1-freeness.

» Definition 7. We say that a graph G is (p,r)-admissible if adm, (G) = p. Note that by
definition, if a graph G is (p,r)-admissible, it is also (p,r')-admissible for all v <r. We
call a graph class adm,-bounded if all of its members are (p,r)-admissible for some finite
value p.

We state the following fact regarding (p,r)-admissible graphs.
» Fact 8. If G is (p,r)-admissible, then |E(G)| < p-|V(G)|.

The next lemma is a well-known structural result for admissible graphs. This lemma is
the critical component of the result of this paper.

» Lemma 9. Let G = (G, <) be such that adm,.(G) = p, then for every v € V(G), and
h € [r] we have |Target:(v)| < p(p — 1)"~1.

We refer the reader to [3] (Proposition 3) for a proof.

Lemma 9, is the structural property of bounded admissibility graphs that enables the
result in this paper. To understand the importance of the above lemma, fix ¢ > 0 and
suppose that we have a (2,2) admissible graph G with ordering G = (G, <). Suppose also
that G is e-far from being C4-free and all the Cy-subgraphs in it have exactly two vertices
of degree 2 and 2 vertices of degree 16n'/2/e. Let Q be the set of degree 16n'/2 /e vertices
and let W be the set of degree 2 vertices. Consider any ordering < placing the vertices in
Q@ before the vertices in W. For an example of such a graph see Section 7. Note that that
graph is not (2,2)-admissible, however, a (2, 2)-admissible graph with such attribute exists.
Suppose that we create a new graph G from G by doing the following: (i) for every u € @
and v € N(u) we remove uv if u >g v, and (ii) for every u € @ and v, such that u >¢ v, if
there exists a maximum set of less than n'/2/(16¢) edge disjoint paths uwo in G, then we
remove all the edges in these paths from G.



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

It is easy to see that in (i) at most two edges are removed for every vertex in Q). So, after
the removal of all these edges G is still far from Cjy-freeness. Regarding (ii) it can be shown,
using Lemma 9, that after (i), for every u € @Q there are at most 4 vertices in v € V(G)
such that u >¢ v and u and v are connected by a path of length 2. This, along with some
accounting, implies that after (ii), far fewer than €|FE(G)| edges were removed from G to
obtain G. Thus, G is ¢/2-far from being Cy-free.

Now, since G is ¢/2-far from being Cy-free, because of the type of Cys it has, a constant
portion of the vertices of W are in such Cy. So, an algorithm that randomly selects a few
vertices from the graph, with high probability, will pick one of these vertices. Suppose that
this was the algorithm described in the introduction. Once a vertex from W in a Cy-subgraph
of G is selected, its neighbours z,y € @ are discovered. Now, since in G, = and y are
connected by a path of length 2, z and y have many common vertices (at least n'/2/(16¢))
and hence the algorithm will discover one of them with high probability. This will lead to
the discovery of a C4-subgraph in G.

This technique cannot be generalized beyond k = 7, since for k£ > 7 the Cj-subgraphs
may include more complicated subpaths. To deal with this issue, we need the following
definition.

» Definition 10. Let G = (G,<). A path uLv is a chain if for every w € v(uL), we have
w >g V.

» Proposition 11. Let r,p € N, G = (G, <) be such that adm,(G) = p, uLv be an r-
admissible path in G, x € L and y € {u,v}. The subpath ©L'y of uLv is a chain.

Proof. By the definition of an r-admissible path for every z € L', we have z >¢ maxg{u, v}
and, in particular, z >g maxg{u,v}. Thus, by definition, L'y is a chain. <

Lemma 9 describes how sets of vertices reachable through r-admissible paths from a fixed
start vertex are bounded by a function of adm,(G) and r. We can obtain a comparable
bound for the more general cases where the vertices are now reachable via chains:

» Lemma 12. Letp,r € N, £ € [r] and G be an ordered (p, r)-admissible graph. Let Py, ..., P;
be a collection of chains of length at most ¢ that all start at the same vertex x € G and each
end with a verter smaller than © under <g.

Then the set W := {ming P;};c[y which contains the respective minima, under <g, of

each of the above paths has size at most p’“2.

Proof. Let Vo, := {y € V(GQ) | y <g =}, and s = max;epy |V (F;) N V<y|. That is, s is the
maximum number of vertices of V., in a path P;. Next, we show by induction that the
set {ming P;};cpy) has size at most p"*, since s < £ this implies the lemma.

For s = 0 the statement becomes vacuous, so consider s = 1. This is the case that for
every i € [t], the only vertex of P; smaller than z is its other end point. Since all paths P,
are r-chains the set of these endpoints is a subset of Targetg (z). Therefore, by Lemma 9,
[{ming P;}!_;| < p(p—1)"~! < p” which provides us with the inductive base.

Assume that the statement holds for all s < s, where s < ¢, and all collections Q1, ..., Qp
of r-chains of length < £, such that for every ¢ € [h], @, starts at the vertex z € G and ends
at some vertex smaller than z under <g, and |V(Q;) N V.,| < s’

Let P = {P;}!_; and for every i € [t], let y; € V(P;) be such that y; <g z and
P, = zL;y;R;, where |V(zL;y;) N Vey,| = 1. According to the base of the induction
(i} <"

104:7

chain

ICALP 2025



104:8

braid, full-braid

length, ends

Nadir

d-weak, 0-strong

o-braids

Testing C';-freeness in Bounded Admissibility Graphs

Pick a vertex y € {y; }!_; and let P, be the collection of all the paths y; R; such that y; = y.
Since y <g x, every path in P, is a subpath of a path in P, we can conclude that for every
yR € Py, we have |V (yR)NV,| < s. Thus, by the induction assumption, [{ming P}pep,| <
p"~1. Finally, by construction, we have [{ming P}pep| < p” - |[{ming P}pep,| <p™. =

4 Nadirs and Braids

» Definition 13. For every pair of vertices u,v € V(G), a braid is a set of edge-disjoint
r-admissible paths each having v as the start vertex and u as the end vertex, and all having
the same length. A braid is a full-braid if the number of paths it has is mazimum.

We use a tilde on an upper case letter to denote a braid, for example B. In addition, we use
the following notations for paths L and braids B:
|B| is the number of paths in B.
length(B) is the length of the paths in B.
ends(B), is an order pair (v,u) where v is the start vertex of every path in B, and u is
the end vertices of every path in B and otherwise it is undefined.

» Definition 14. The nadir of a path uLv, denoted nadir(uLv), is the vertex x € V(L) such
that for every y € V(L) we have y >g . The nadir of a braid B, denoted nadir(B) is the
set {nadir(ulv)},;,cp-

» Definition 15. Let B be a braid and § > 0, a vertex v € nadir(B) is 6-weak for B, if
the mazimum size of a braid B' C B such that nadir(B’) = {v} is at most degs(v)/d and
otherwise it is d-strong for B.

» Definition 16. For every 6 € N, a braid D is a d-braid if every vertex in nadir(D) is
0-weak for D.

» Proposition 17. Let r,p € N, G = (G, <) be such that adm,(G) = p, uLv an r-admissible
path in G, x € L and y = nadir(uLv). Then, x > y and the subpath xL'y of uLv is a chain.

Proof. By the definition of an r-admissible path for every z € L', we have z >¢ nadir(uLv).
Thus, by definition, x >g y and L’y is a chain. |

» Lemma 18. Let p,r € N, £ € [r] and G be an ordered (p,r)-admissible graph and
u,v € V(G) such that u >g v. If there exists a braid B such that ends(B) = (u,v),
length(B) < r and |nadir(B)| > 2r2 - p"", then there exists a braid B' C B such that
|B’| > 2r and the only vertices that are shared between the paths of B' are u and v.

Proof. Let B* C B where for every = € nadir(B*), there exists exactly one path uLv such
that 2 = nadir(uLv). By assumption, |[B*| > 2r-p"". Let W be the set of all vertices in the
paths of B* except u and v.

We first argue that every vertex w € W can be contained in at most pr2 members of B*.
To that end, assume that w is contained in members uLqv, ... ,uLv € B*. Let x1,...,2; be
the respective nadirs of these subgraphs under G, so z; := nadir(uL;v). For every i € [t],
let wL}xz; be a subpath of uL;v. Since each of the paths uLjv,...,ulsv is r-admissible,
by Proposition 17, all the paths wL{z1,...,wLiz; are chains. We can therefore invoke
Lemma 12 on the paths wLiz1,...,wLiz; to conclude ¢ < prz. Thus, w can be contained in
at most pr2 members of B*.

It follows immediately that every path in B* shares vertices that are not u or v with at
most 7 - pr2 other paths of B*. Consequently, a simple greedy selection process can construct
the claimed braid B’ such that |B’| > 2r. <



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

5 Trimming

In this section, we present the procedure that we refer to as trimming. It is important to

note that the trimming procedure is used only for the analysis of the algorithm we present.

This is the reason that trimming can read the entire input graph.

Trimming receives as input a graph G that is (p,r)-admissible, an ordering G and the
parameters p,r € N and +,6 € RT. From now on, in this section, assume that these
parameters are fixed. Trimming creates a subgraph G of G that has a number of properties
that are essential for the analysis of our algorithm. For example, with the right choice of
parameters, if G is e-far from Cy, 1 1-freeness, then G is ¢/2-far from Cy,11-freeness; for
every v,u € V(G), if there exists an full-braid B in G such that ends(B) = (v,u) and
length(B) < r, then |B| > degg(v)/7. Note that the choice of degg (v) and not degg (v), in
the last inequality, is crucial for our proof to work and that G is (p, r)-admissible since it is
a subgraph of G.

The trimming procedure

Initialize G to be equal to G and repeat the following steps until each one does not result in

any edge removal:

1. For every distinct v € V(G), u € Target%(v), £ € [r], and full-braid B in & such that
length(B) = ¢ and ends(B) = (v,u), if | B| < degg(v)/7, then all the edges participating
in the paths of B are removed from E(G) .

2. For every distinct v € V(QG), u € Targetl(v), £ € [r], and d-braid D in G such that
length(D) = ¢ and ends(D) = (v, u), if |D| < degq(v)/7, then all the edges participating
in the paths of D are removed from E(G).

Next, we show that the graph G created by using the trimming process is far from being
C’ng—free.

» Lemma 19. Let p,r €N, € >0, v € RT, and G be a (p,r)-admissible graph that is e-far
from Copy1-freeness. If v > 8rp” /e, then the graph G created by trimming G with parameters
p, r and vy, s €/2-far from Capi1-freeness and (p,r)-admissible.

Proof. Note first that G is a subgraph of G since it was created from G by taking a copy of
G and removing specific edges from it. So, to prove the claim, we only need to show that at
most €| E(G)|/2 edges have been removed from G to obtain G. Since G is e-far from being
Co,41-free, this implies the claim.

Trimming step (1). For every v € V(G) and u € Targetg(v), the maximum number of
edges removed in this step is at most the number of edges in the paths of a full-braid B such
that length(B) = £ and |B| < degy(v)/v. Thus, for every such v and u at most r degg(v) /7y
edges are removed from G. By Lemma 9, |Targetg (v)| < p”, and therefore the total number
of edges removed in this step is at most 3, v (g 7" degq(v)/v < (€/8) 22, cv () dega(v) =
€| E(G)|/4, where the inequality follows since v > 8rp”/e.

Trimming step (2). The proof is the same as the previous step. |

» Proposition 20. Let v,u € V(G) be such that u >g v and assume that G was created by
trimming with parameters r,p € N and v,8 € RT. Then

1. ifuww € BE(G) then degy(u) <7,

2. if G has an r-admissible path uLv, then there exists a full-braid B in G such that

ends(B) = (u,v), length(B) = length(uLv) and |B| > degg(u)/v, and

104:9

Trimming

ICALP 2025



104:10 Testing Ci-freeness in Bounded Admissibility Graphs

Assumptions &3

3. if G has an r-admissible path uLv, and there does not exist a B in G such that
nadir(B) = nadir(uLv), ends(B) = (u,v), length(B) = length(uLv), |B| > degs(v)/9,
then there exists a 6-braid D in G such that ends(D) = (u,v), length(D) = length(uLv)
and | D| > degg (v)/7.

Proof. (1) By definition, the braid B that contains only the pass vu is a full-braid, such
that ends(B) = vu and length(B) = 1. Since |B| = 1 < degg(v) /7, the edge vu is removed
from G during step 1 of Trimming.
(2) The proof follows directly from the definition of a full-braid and Step (1) of trimming.
(3) The proof follows directly from Step (2) of trimming.

<

6 The main algorithm

Algorithm 1

Input: 7,p € N, e € RT, oracle access to a graph G, and |V (G)]

1 Compute the values of &1, & and &3
2 Set S=10
3 Repeat &; times // Selection Loop
4 add to S a u.a.r selected vertex of V(G)
5 fori=1,2,...,& do // Quter Loop
6 | SetS =10
7 for v € S do // Middle Loop
8 Query the degree of v
9 if degy(v) < &5 then
10 L Query the identity of all neighbours of v and add them to S’
11 else
12 Repeat &3 times // Inner Loop
13 select independently and u.a.r k € [degq(v)]
14 query the identity of the k’th neighbour of v and add it to S’
15 Set S =SUS’
16 if the knowledge-graph has a Cyyy1-subgraph then
17 L return REJECT

18 return ACCEPT

We refer to the loop on line 3 of Algorithm 1, as Selection Loop, to the loop on line 5 of
Algorithm 1, as Quter Loop, to the loop on line 7 as middle loop and to the loop on line 12
as Inner Loop. In all of this section, G is a (p, r)-admissible graph G with n vertices, G is
an ordering of G, Gisa subgraph of G obtained by trimming with the parameters r,p € N,
v,6 € RT and when we use the parameter {3 we assume that it is a multiple of 2r. Note
that by Fact 8, Algorithm 1 receives a bound on the number of edges implicitly, since the
value of p is part of its input.

The following lemma follows directly from Algorithm 1.



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

» Lemma 21. The query complezity of Algorithm 1 is O(&; - £5°).

In this section, we use the term knowledge-graph to refer to the subgraph of G that is
discovered by queries of Algorithm 1.

6.1 Proof overview of the main theorem

Bounding the query complexity of Algorithm 1 and proving that it returns ACCEPT given a
Co,41-free input graph is rather simple. The challenge is to prove that Algorithm 1 returns
REJECT with probability at least 2/3 on an input graph that is (p, r)-admissible and e-far
from being Co,11-free. This is the focus of this subsection; suppose that Algorithm 1 is given
as input p,r € N, € > 0, oracle access to a (p,r)-admissible graph G that is e-far from being
Co,p41-free.

The proof is divided into three phases: (i) showing that, with high probability, Algorithm 1
discovers a set of vertices D in some Co,1-subgraph H of G, such that every path in H that
does not include a vertex from D has a length of at most r. (ii) showing that if (i) occurred,
then with high probability, all the vertices of a Cy,..1-subgraph H' of G are discovered;
and (iii) showing that if (ii) occurred, then with high probability, the knowledge-graph
includes a Cq,41-subgraph. Note that since G is a subgraph of G, this implies that, with
high probability, a Cs,41-subgraph H' of G is discovered. We next further explain each
phase starting with (iii), proceeding to (i), and ending with (ii).

(iii) The knowledge-graph includes all the vertices of a Cy,.y1-subgraph H' of G. By (1) of

Proposition 20, every edge wv in E(H') is incident to a vertex with degree at most v in G.

Thus, line 9 of Algorithm 1 ensures that the edge uv is discovered.

(i) By using (1) of Proposition 20, it is shown that a significant portion of the vertices
in G are such that: degs(x) < 7, z is in some Cy,1-subgraph H of G, disty (z,y) = r,
where y is the smallest vertex in H according to G. The value of &; is set so that with high
probability a vertex such as z is discovered. As in (iii), both of a’s neighbours in H will also
be discovered. Now, notice that x and y are selected so that the shorter path in H between
x and y is a chain of length r. Since H is in @, so is the chain above. Thus, by Lemma 23
(appears later), with high probability, y will also be discovered. Thus, a set of vertices as D
above is discovered with high probability. The formal proof appears later in Lemma 24.
(i) Suppose that a set of vertices like D above was discovered by Algorithm 1 and H is
the Csg,41-subgraph of G such that D C V(H). Note that if we can ensure that, with
high probability, we find a vertex w such that D U {w} satisfies the same attributes as D
(though not necessarily with the initial subgraph H), then we are guaranteed that, with high
probability, all the vertices of some C5,. 1 subgraph of G will eventually be discovered.

Let y be the smallest vertex in V(H) \ D according to G. Assume that y is on a subpath
uLwv of H such that V(uLv) N D = {u,v}. If y <g maxg{u, v}, then, as in (i), there exists a
chain of length at most r in G between one of the vertices u and v and the vertex y. By the
same reasoning as in (i), with high probability this vertex is discovered. Next, we describe
what happeuns if y >g maxg{u,v}.

Suppose that u >g v. If there exists a braid B such that |B| > degg(u)/d and y =
nadir(B), then by future choice of the value of &3, with high probability, a vertex v’ € N (v)
and one of the paths in B is selected. The fact that y = nadir(B) ensures that there exists
a chain of length at most r in G between v and v, containing the vertex y. As in (i),
this ensures that y is discovered with high probability. This is proved later on formally in
Lemma 25. Hence, it remains to deal with the case that a braid like B does not exist.

The nonexistence of a braid like B implies that there exists a d-braid D such that

104:11

knowledge-graph

ICALP 2025



104:12 Testing Ci-freeness in Bounded Admissibility Graphs

|D| > degg(u)/v. Notice that according to the definition of a d-braid, this implies that
| nadir(D)| > §/~. The value of § is selected to be significantly higher than +, thus ensuring
that | nadir(D)| is sufficiently large. Using a similar proof to the previous case with some
significant extra work and the help of a sufficiently large value of {3, it is shown later
in Lemma 26, that eventually a sufficiently large portion of the vertices in nadir(D) are
discovered. Once this happens, we are guaranteed by Lemma 18, that there are paths
uLqv,...,ulsv in G such that the L; are vertex-disjoint. This implies that one of these
paths together with H includes a Cs,-subgraph H' of G such that D U {y'} € V(H’),
where 3 is the nadir of the path, and DU {y’} satisfies the same attributes as D. The formal
proof for this case appears later in Lemma 27.

6.2 Proof of the main theorem

» Lemma 22. Let 7 < & and S be the set of all vertices of an Ca,41-subgraph of G. If
&3 > v and all the vertices of S are in the knowledge-graph at the end of iteration T of Outer
Loop, then with probability 1, at the end of iteration T of Outer Loop, the knowledge-graph is
not Copy1-free.

Proof. Let H be a Cy.11 subgraph of G and let wv € E(H), be such that u >g v and
uv € E(G) By Proposition 20, degx(u) < . Thus, according to Inner Loop, if both u
and v are in the knowledge-graph at the end of iteration 7 of Outer Loop, then because
&3 > v with probability 1, at the end of iteration 7 of Outer Loop, the edge wv is also in the

knowledge-graph. The same applies to all other edges. <

» Lemma 23. Let ( € [r], pos(f) = 6(1 — 1), 7 < & — £ and u,v € V(G) be such that
u >g v. Assume that there exists a chain uLv in G such that length(uLv) = €. If u is in
the knowledge-graph at the end of iteration T of Outer Loop, then with probability at least
1 — pas(f), at the end of iteration T + £ of Outer Loop, v is also in the knowledge-graph.

Proof. We proceed by induction on the value of ¢. Suppose that £ = 1. Thus, v and v are
neighbours in G and therefore, by Proposition 20, degs(u) < 7. Thus, according to the
contents of Outer Loop, with probability 1, at the end of iteration 7 4+ 1 of Outer Loop, v is
also in the knowledge-graph.

Assume by induction that the lemma holds for every chain L in G, where length(L) < £.
Let z be the closest vertex to u in uLv such that x <g u and let uL’z be a subpath of uLv.
By construction, for every h € uL’, we have h >g = and therefore uL’x is an r-admissible
path in G.

Suppose that x # v. As 1 < length(ulL'z) < ¢, according to the induction assumption,
given that u is in the knowledge-graph at the end of iteration 7 of Outer Loop, with probability
at least 1 — length(uL’x)(1 —y~1)%, at the end of iteration 7 + length(uL’x) of Outer Loop,
x is also in the knowledge-graph.

Let zL*v be a subpath of uLv. Since xL*v is a subpath of uLV, we conclude that
length(xL*v) < £. Thus, by the induction assumption, given that x is in the knowledge-
graph at the end of iteration 7 + length(ulL’xz) of Outer Loop, with probability at least
1 — length(zL*v)(1 —y~1)%, at the end of iteration 7 + £ of Outer Loop, the vertex v is
also in the knowledge-graph. Consequently, together with the previous, given that u is
in the knowledge-graph at the end of iteration 7 of Outer Loop, with probability at least
1 — (length(uL'z) +length(zL*v))(1 —y~1)% =1 —£(1 —y~ 1), at the end of iteration 7 + £
of Outer Loop, the vertex v is also in the knowledge-graph.



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

Suppose that z = v. By definition, uLv is an r-admissible path in G. Therefore, by
Proposition 20, G has a full-braid B, such that ends(B) = (u,v) and length(B) = £.

Since there are at least deg(u)/vy edge-disjoint paths in B, at least degq(u)/v of the
neighbours of the vertex u are in one of the paths of B. Thus, according to the contents of
Inner Loop, given that u is in the knowledge-graph at the end of iteration 7 of Outer Loop,
with probability at least 1 — (1 —~y~1)%  at the end of iteration 7+ ¢ of Outer Loop, a vertex
y adjacent to w in a path of B is also in the knowledge-graph.

Let uyL”v, be the specific r-admissible path of B that includes y. By Proposition 11,
yL7v is a chain. Since length(yL"v) = £ — 1, by the induction assumption, given that y is in
the knowledge-graph at the end of iteration 7 4+ 1 of Outer Loop, with probability at least
1— (£ —1)(1 =y~ 1%, at the end of iteration 7 + ¢ of Outer Loop, the vertex v is also in the
knowledge-graph. Consequently, in this case, given that u is in the knowledge-graph at the end
of iteration 7 of Outer Loop, with probability at least 1—(14+£—1)(1—y~1)% = 1—£(1—y~ 1),
at the end of iteration 7 + ¢ of Outer Loop, the vertex v is also in the knowledge-graph. <«

» Lemma 24. Let poy(r) = paog(r) + (1 — ep/(27))§'. If G is e-far from Coyy1-freeness, then
with probability at least 1 —pgy(r), at the end of iteration v of Outer Loop the knowledge-graph
includes a set of vertices D, such that for some Co,y1-subgraph H OfCATv we have D C V(H)
and for every path uLv in H, where D NV (uLv) = {u,v}, we have length(uLv) < r.

Proof. Let T be the set of all vertices € V(G) such that degs(z) <. For every Cap41-
subgraph H of G let anchor(H) be the vertex in V(H) such that for every y € V(H) we
have y >¢ anchor(H), and let stern(H) be an arbitrary vertex in V(H) NT such that
dist 7 (anchor(H),stern(H)) = r. Let K be the set of all vertices = such that x = stern(H)
for some Co,41-subgraph H of G.

Let H be an arbitrary Ca,i-subgraph of G. stern(H) exists since there are exactly
two vertices z € V(H) such that disty (anchor(H),z) = r, they are neighbours in G and
therefore, by Proposition 20, at least one of them is in 7T'.

We first show that, with probability at least 1 — (1 — ep/(27))%!, after Selection Loop and
prior to the first iteration of Outer Loop, the set S of Algorithm 1 includes a vertex from K.
Afterwards, we show that if the above occurred, then with probability at least 1 — pog(r), at
the end of iteration r of Outer Loop, the knowledge-graph includes a set D as required.

Suppose that we removed from G every edge adjacent to a vertex in K, then by construc-
tion, the graph we get is Cy,41-free. Since, by Lemma 19, G is €/2-far from being Cy,41-free
it holds that | K|y > enp/2. Thus, according to Selection Loop, with probability at least
1 — (1 —ep/(27))%, after Selection Loop and prior to the first iteration of Outer Loop, the
set S of Algorithm 1 includes a vertex from K.

Suppose that H is a Co,.41-subgraph of G and that v = stern(H) is set S of Algorithm 1
after Selection Loop and prior to the first iteration of Outer Loop. Let D be the set of
vertices that includes v, v’s neighbours in H and anchor(H). We note that the set D satisfies
the requirements of the lemma.

According to the Inner Loop, with probability 1, at the end of the first iteration of
Outer Loop, the neighbours of v in H will also be in the knowledge-graph. By construction
v >g anchor(H) and G has a chain of length r whose end-vertices are v and anchor(H). By
Lemma 23, with probability at least 1 — pa3(r), at the end of iteration r of Outer Loop,
the knowledge-graph includes the vertex anchor(H). Applying a union bound finishes the
proof. <

» Lemma 25. Let (€ [r], 7 € &a— 1, pos(f) = (1—6"1)% — (1 —~~1)%, and u,v,w € V(Q)
be such that uw >g v. Suppose that there exists a braid B in G such that nadir(B) = w,

104:13

ICALP 2025



104:14 Testing Ci-freeness in Bounded Admissibility Graphs

ends(B) = (u,v), length(B) = ( and |B| > degs(v)/d. If u is in the knowledge-graph at
the end of iteration T of Outer Loop, then with probability at least 1 — pg5(¢), at the end of
iteration T + £ of Outer Loop, w is also in the knowledge-graph.

Proof. Since |B| > degs(v)/d, by the same reasoning as in Lemma 23, if u is in the
knowledge-graph at the end of iteration 7 of Outer Loop, then with probability at least
1—(1—6"1% at the end of iteration 7 + 1 of Outer Loop, the knowledge-graph includes a
vertex y that is adjacent to u in a path of B. Assume that y #+ nadir(B) = w, since otherwise
we are done. Let vyL'u, be the specific r-admissible path of B that includes y. Let yL*w we
a subpath of vyL’'u. By Proposition 17 y >g w and yL*w is a chain.

Using the same reasoning as in Lemma 23, if u is in the knowledge-graph at the end of
iteration 7 + 1 of Outer Loop, then with probability at least 1 — (£ — 1)(1 —y~1)% at the
end of iteration 7 + 1 of Outer Loop, the knowledge-graph includes w. An application of a
union bound concludes the proof. |

» Lemma 26. Let £ € [r], u,v inV(G) and pas(€) = £(5/(8v%))(1 —~ 1) +eiﬁ. Assume
that G has a §-braid D such that ends(D) = (v,u), length(D) = £, and |D| > degq(v)/y.
Assume also that v is in the knowledge-graph at the end of iteration T < & — £ of Outer
Loop. With probability at least 1 — pgg(€), at the end of iteration T + £ of Outer Loop, the
knowledge-graph also includes a size v/ (86%) subset of nadir(D).

Proof. Let S’ C Ng(v) be the set of all vertices adjacent to v in a path of D. The following
analysis is for iteration 7 + 1 of Outer Loop.

For every i € [£3], let S; be the set of all vertices of S’ that are in the knowledge-graph at
the end of iteration i of the inner loop, and let W; = (S;, nadir(D), F') be a bipartite graph
such that xy € F if and only if x € S;, y € nadir(ﬁ) and there exists a path L* in D such
that € V(L") and y = nadir(L*). Also, let Y be the size of a maximum matching in We,.

We show first that if Y > §/(842), then with probability at least 1 —£(5/(872))(1—~~1)%,

at the end of iteration 7 + ¢ of Outer Loop, the knowledge-graph includes at least 6/(8v?)
s

vertices from nadir(D). Afterwards, we show that with probability at least 1 — e 16°, we
have Y > §/(8v?), which together with the previous implies the lemma.

Suppose that Y > 6/(842), and let M C F be a size §/(8y%) matching in W,. For every
edge xy € M, where z € S and y € nadir(]f?)7 the braid D has an r-admissible path «L*v in
D such that z € V(L*) and y = nadir(L*). By Proposition 17 the subpath zL"y of uL*v is a
chain in G. Thus, by Lemma 23, for every edge xy € M, if x is in the knowledge-graph at the
end of iteration 7 + 1 of Outer Loop, then with probability at least 1 — £(1 —y~1)% at the
end of iteration 7 + £ of Outer Loop, the vertex y is also in the knowledge-graph. Thus, by
the union bound, given that Y > §/(872), with probability at least 1 —£(5/(872))(1 —~~1)%s,
the knowledge-graph includes at least 6/(872) vertices of nadir(D).

Now, we show that, with probability at least 1 — 67#7 at the end of iteration 7 + £ of
Outer Loop, Y > 6/(87?). We use martingales for this purpose.

For every i € [¢3], let X; be the identity of the neighbour of v selected in iteration i of
Inner Loop, and let W; = (S;, nadir(D), F;) be a bipartite graph such that S; = {X;}izy
and zy € F; if and only if 2 € S;, y € nadir(D), 2 >¢ y and G has a chain zLy such that
length(zLy) < ¢.

For every i € [&3], let Y; be the size of a maximum matching in W; minus the size of
a maximum matching in W;_; and Y’ = Z;Z(IQV) E[Y;]. Since & > &/(27), by using the
linearity of expectation, we have E[Y] > E[Y’]. Next, we show that for every ¢ € [6/(27)],
we have E[Y;] > 1/(27). Together, with the above, this implies that E[Y’] > 6/(4+?).



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

Fix j € [2,&3], and M;_; to be a maximum matching in W,_;. Note that if X, is a
vertex in S that is not in W;_; and there exists a vertex y € nadir(D), such that y is not
in M;_; and G has a chain xLy such that length(zLy) < ¢, then W} has an edge that does
not share a vertex with any edge in M;_; and therefore Y; = 1. We next lower bound the
probability that this happens.

By the definition of a d-braid, for every y € nadir(D), there are at most degg(u)/d
paths in D. So, if we remove from D all the the paths in which the vertices of V(M;_1) N
nadir(D) participate, then we removed from D at most j - degs(u)/6 < (§/27) - degg(u) /6 =
degq(u)/(27) edges. Thus, after the removal of these edges the resulting braid D’ includes
at least degq(u)/(2v) paths. So, the probability that a vertex selected in Inner Loop will
be in one of the paths of D’ is at least 1/(2v). Note that if this event occurs for some
i €[2,8/(27)], then Y; — Y;_; = 1. Thus, we conclude that, indeed, for every i € [6/(27)], we
have E[Y;] > 1/(27).

We use the vertex exposure martingale to show that with sufficiently high probability
the maximum matching in the random graph W := W¢, is sufficiently large. We reveal the
whole graph W, iterating over ¢ = 1,...,0/(27), and for every i € [§/(27)] we reveal the

identity of X; and the identities of its neighbours in W and the edges of W incident on Xj.

For every t € [0/(27)], we let Z; = E[Y' | X¢,...,X1] and let Zy = E[Y”].
We note that for every t € [§/(27)], we have |Z;y1 — Z;| < 1 since Z;4; has only one
fixed vertex more than Z;. Thus, by the Azuma Hoeffding tail bound, with probability at

2(8/(8%2)2 s

least 1 —e~ ~ 9/ =1—¢ 1643 , we have |Z5/(2,),) — Zo‘ < 6/(8’}/2) This implies that with
probability at least 1 — eiﬁ, we have Y > §/(87?). <

» Lemma 27. Let 7 € [, — r2], H a Cayy1-subgraph of G and D C V(H) such that every
subpath of H that does not include vertices from D has length at most r. If §/(87?) > 2r? pr,
and all vertices of D were in the knowledge-graph at the end of iteration T of Outer Loop,
then with probability at least 1 — 2r - max{p23(¢), p25(£), p2s(f)}, at the end of iteration T+ r?

N

of Outer Loop, all the vertices of some Capy1-subgraph of G are in the knowledge-graph.

Proof. We shall show that if all vertices of D are in the knowledge-graph at the end of
iteration 7 of Outer Loop, then with probability at least 1 — max{pa3(¢), p25(£), p26(€)}, at
the end of iteration 7 + £ of Outer Loop, the knowledge-graph also includes a vertex w’ such
that D U {w'} are all vertices of some Cy,,-subgraph of G (not necessarily H). By the
union bound, this implies the lemma.

Let w € V(H) \ D be such that for every y € V(H)\ D we have y >¢ v. Let u,v € D be
such that u >g v and the path uLv in H satisfies V(L) N D = 0.

Suppose first that w <g v, by construction the path vL'w of H is a chain of length at
most 7 in G. Thus, by Lemma 23, with probability at least 1 — pa3(¢), at the end of iteration
T + £ of Outer Loop, the knowledge-graph also includes w. Note that D U {w} C V(H).

Assume now that w >g u, then by the definition of a nadir, w = nadir(uLv). Suppose also
that there exists a braid B in G such that nadir(B) = w, ends(B) = (u,v), length(B) < r
and |B| > degg(v)/6. By Lemma 25, with probability at least 1 — pos(¢), at the end of

iteration 7 + £ of Outer Loop, w is also in the knowledge-graph. Note that DU {w} C V(H).

Finally, suppose that there does not exist a braid B in G such that nadir(B) = w,
ends(B) = (u,v), length(B) < r and |B| > degq(v)/d. Then, by (3) of Proposition 20, there

exists a d-braid D such that ends(D) = (u,v), length(D) < length(uLv) and |D| > degq(v) /7.

By Lemma 26, with probability at least 1 — pog(€), at the end of iteration 7 + £ of Outer
Loop, the knowledge-graph also includes a size §/(87?) subset W of nadir(D). Since we
assumed that 0/(8y2) > 2r2 - p", by Lemma 18, the graph G includes a braid D' c D

104:15

ICALP 2025



104:16

before and after
netghbourhood,
NG (), NF(w),

AT (@), AT (©)

Testing C';-freeness in Bounded Admissibility Graphs

such that nadir(D’) ¢ W, |D’| > 2r and the only vertices that are shared between the
paths of D’ are u and v. Thus, D’ has a path uL*v such that length(uL*v) = length(D),
nadir(uL*v) € W, V(L*) NV (H) C {nadir(uL*v)}. Consequently, H together with uL*v
includes a Cy,41-subgraph H' of G, such that D U {nadir(uL*v)} C V(H'). <

» Theorem 28. Given oracle access to a Copy1-free graph, Algorithm 1 returns “ACCEPT”.
Let p,r € N and e € RY. There exist values for &1, & and &3, that depend only on p,r and €
for which the following holds: on input p,r and e, oracle access to a graph G and |V (G)|,
Algorithm 1 computes the values of £&1, &2 and &, and if G is (p,r) admissible and e-far from
being Coyy1-free, with probability at least 2/3, Algorithm 1 returns “REJECT”. The query
complexity of Algorithm 1 depends only on p,r and €.

Proof. The first part of the claim follows from the fact that Algorithm 1 returns “REJECT”
only if its knowledge-graph is not Cy,1-free. Since the knowledge-graph of Algorithm 1
is a subgraph of the input graph, then it will not return “REJECT” if the input graph is
Co,41-free.

So, suppose that G is (p,r) admissible and e-far from being Cy,.1-free. Let v = [16rp” /¢],
d= 256r2pr273, & = [167/(ep)], & =2 + 7+ 1 and & = 12yr. The last part of the claim
follows from Lemma 21, since &1, & and &3 depend only on p,r and e.

Let G be the graph created by Trimming with parameters v and §. Since v > 8rp” /¢, by
Lemma 19, G is €¢/2-far from being C,.11-free.

Since, G is €/2-far from being Cy,11-free, by Lemma 24, with probability at least

L—r(1—~"1% — (1 —ep/(27))% > 19/20

(the inequality follows because & = [16/(ep)] and & = 12vdr), at the end of iteration
r of Outer Loop, the knowledge-graph includes a set of vertices D, such that for some
Co,41-subgraph H of G we have D C V(H) and every subpath of H that does not include a
vertex from D has length at most 7.

By Lemma 27, given that a set of vertices such as D is in the knowledge-graph at the
end of iteration r of Outer Loop, with probability at least

1—-2r-max{r(1—7~ 1), (15L& 4+ (r—1) (1—y 1%, 7(6/(872)) 1=y~ )& +e 7 } > 19/20

(the inequality follows because v = [16rp” /€] and & = 12y67r), at the end of iteration r2 +r
of Outer Loop, all the vertices of some Cy,.11-subgraph of G are in the knowledge-graph.
By Lemma 18, if at the end of iteration r2 + r of Outer Loop all the vertices of some
Co,41-subgraph of G are in the knowledge-graph, then at the end of iteration & = 72 +r+1
of Outer Loop, the knowledge-graph is not Co,11-free.
The previous three observations imply that, in this case, Algorithm 1 rejects with
probability at least 2/3. |

7 Lower bounds for testing (5, ;-freeness in (2,7 — 1)-admissible
graphs for r > 2

For this section we need some extra notation. For an ordered graph G we write N (u) == {v €
N(u) | v <g u} for the before neighbourhood and N (u) == {v € N(u) | v >¢ u} for the after
neighbourhood of a vertex u € G. We also use degg (u) := |Ng (u)| and degd (u) = |NZ (u)|,
as well as A~ (G) = max, g degg (v) and AT (G) = max,ecc degg (u). We omit the subscript
if the context implies it.



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

» Theorem 29. For every integers p,r > 2 and sufficiently large n € N, every two-sided
property tester for Co,y1-freeness has query complexity Q(n'/*), on (2,7 — 1)-admissible
input graphs of size n.

The following proofs are for testing Cy-freeness in (2, 1)-admissible graphs. In the end,
we explain how this implies the above theorem.

We prove the lower-bound theorems using Yao’s minimax principle [13], which allows us
to prove lower bounds for randomized property testers in the following manner.

In the theorem for the one-sided error case, we show that there exists a distribution
D over input graphs that are 1/4-far from Cy-freeness which further satisfy the following
property: every deterministic one-sided property-tester for Cy-freeness—when given the
parameters n, oracle access to a random graph picked from D—with probability at least 2/3
its knowledge-graph will not have a Cy-subgraph after using up to n'/4 /16 queries. Since a
one-sided property tester can only accept if its knowledge-graph has a Cy-subgraph and must
reject with probability at least 2/3, the above implies that it has query complexity Q(nl/ 4.

In the theorem for the two-sided error case, we design two distributions Dp, Dar over
(2,1)-admissible graphs. The support of Dp is over Cy-free graphs, and the support of Dy,
graphs is over graphs that are 1/6-far being Cy-free. These distributions are constructed
so that any two-sided deterministic error tester that uses o(n'/4) queries, has a very low
probability of computing which one of the two distributions is the origin of the input graph.
If such a property tester rejects a graph from Dy with probability at least 2/3, then it
accepts graphs from Dp with probability strictly less than 2/3.

We now define the graph T™ that is used to construct the distribution D and later, with
some modifications, Dp and Dys. For every n € N, we define T" to be the graph that
consists of the following vertices and edges: V(T™) is the union of two sets Q = [v/n] and
W = ([vn] x [vn]) \ {(i,9) }ic;ym)- E(T™) consists of all edges {{u, (u,v)} |u € Q, (u,v) €
WU {{u,(v,u)}|ueQ,u) € Wi

We sample a graph from D by applying a random permutation of the names of the
vertices in ) and the same for the names of the in W.

» Proposition 30. For every n € N, the graph T™ is (2,1)-admissible and 1/6-far from
Cy-freeness.

Proof. To see that T is (2, 1)-admissible, pick an arbitrary ordering T™ of the vertices of
T™ where all the vertices of W are larger than all the vertices of . Clearly A~ (T™) < 2, so
every vertex in T participates in at most two 1-admissible paths.

For every pair of vertices u,v € @, T™ has exactly one Cy4 that includes both vertices.

We note that all these Cy subgraphs are edge disjoint and E(T™) is the union of all their
No

edges. So, to turn 7™ into a Cy-free graph, at least ( o ) edges must be removed from T".

Since (2, 1)-admissible graphs have less than 2n edges, for a large enough value of n, T™ is
1/6-far from being Cy-free. <

In order to simplify the proofs, we will make the following assumptions about the oracle:
if the algorithm queries the identity of a vertex v € N(u) for u € Q, then it also receives
the identity of v’s neighbour that is different from u (since v € W it has degree two) for the
price of one query. Similarly, if it queries the neighbour of a vertex v € W, it receives the
identity of both of v’s neighbours. Furthermore, we let the algorithm know all degrees (and
thus the sets @ and W) in advance. Therefore, we can assume that the algorithm never asks

for edges between vertices u, v if either u,v € @ or u,v € W and never uses degree queries.

Thus, we may also assume that algorithm uses only adjacency queries between a vertex in w

104:17

Tn

ICALP 2025



104:18 Testing Ci-freeness in Bounded Admissibility Graphs

TN, Tp

and a vertex in Q). In the case that the algorithm asks such a query between the vertices
u € W and v € @ and that uv exists, then we also give the algorithm the identity of the
second neighbour of W. Since all these modified queries provide at least as much information
as queries in the original setting, the lower bound naturally applies to the latter.

» Theorem 31. For every sufficiently large integer n € N, every one-sided property tester
for Cy-freeness of admy -graphs on n vertices has query complexity Q(n'/*).

Proof. Fix T to be an arbitrary deterministic one-sided property tester for Cy-freeness and
suppose that it receives as input n, p = 2, ¢ > 0 and oracle access to a random graph
generated by D.

For i € [t], let p; be the probability that after ¢ queries the knowledge-graph does not
contain a Cy subgraph conditioned on the event that the same holds after i — 1 queries, where
the probabilities are over the choice of the input graph according to D. The probability that
after t queries T’s knowledge-graph does not contain a Cy is szl pi- Thus, to conclude the
proof, we only need to show that for ¢ < n'/4/16 and every i € [t], we have p; > 1 — 2i/\/n,

since this implies that
2i 2t \* 212
;> 1- = 1- == 1—22) >2/3.

Q]p—.g{]( ) (- F) ()

Let G;_1 be the knowledge-graph after i — 1 queries and suppose that G;_; does not
contain a C4. Note that after a neighbour query at most 3 vertices are added to the
knowledge-graph, one of degree 2 and two of degree y/n. The same holds for adjacency
queries. Therefore, G;_1 contains at most 2(i — 1) vertices from the set () and at most i — 1
vertices of the set W.

Observe that for every v € V(G;) N W, all edges incident on v are in E(G;). So, the only
type of queries that can result in GG; not being Cy-free are:

a neighbour query to one of the vertices in V(G;_1)N@Q that returns a vertex in W\V(G;_1)

and a vertex in V(G;—1) N Q,

a neighbour query to a vertex in W\ V(G,_1) that returns two vertices in V(G;_1) N Q,

and

an adjacency query with a vertex in V(G;—1) N @ and a vertex in W \ V(G;_1) that

returns a vertex in V(G;—1) N Q.

The probability that the first case does not occur is at least 1 — 2(¢i — 1)/4/n. The probability
that the second case does not occur is at least 1 — 4(i — 1)?/n, which is strictly larger
than 1 — 2i/y/n, when i < ¢. Finally, the probability that the third case occurs is at least
1—2(i —1)/(n — 4/n), which is strictly larger than 1 — 2i/+/n, when i < ¢. <

We now define the graphs 77 and T3 and the distributions Dp and Dar. TR consists of two
disjoint copies of the graph T™, and we distinguish the vertices of the copy with a prime (e.g.
i’ and W'). We construct T% by first setting T = Tx and then for every distinct ¢, j € [y/n],
we remove from TF the edge {i, (4,5)} and {¢/, (¢,7')} and add the edges {3, (¢',j')} and
{#,(i,7)}. We sample a graph from Dp by applying a random permutation of the names of
the degree-y/n vertices and doing the same for the names of the degree-two vertices. The
distribution Dy is defined in the same way.

Note that here we also set @Q to be the set of all degree \/n vertices and W to be the rest
of the vertices. for a two sided-error algorithm we make the same assumptions on the queries
as we did for a one-sided error algorithm.



C. Awofeso, P. Greaves, A. Levi, O. Lachish and F. Reidl

» Proposition 32. For every n € N, the graphs TR and T§ are (2,1)-admissible. Moreover,
TR is 1/6 far from Cy freeness, and Tg is Cy free.

Proof. The proof of the first part of the claim follows from Proposition 30. For the second
part, note that in 7™ all the C, subgraphs are of the form (4, (4,75), 7, (4,%),%). Thus, when
we constructed T35 from Ty, we “disconnected” all the Cys that were in T3, and we did not
introduce any new Cjys. <

» Theorem 33. For every sufficiently large integer n € N, every two-sided property tester
for Cy-freeness of admi-bounded graphs on n vertices has query complexity Q(n1/4).

Proof. Fix 7T to be an arbitrary deterministic two-sided property tester for Cy-freeness and
suppose that it receives as input n, p = 2, € > 0 and oracle access to a random graph
generated by selecting u.a.r. one of the distributions Dp and Das and then selecting a graph
according to the chosen distribution.

Next, we show that, given that the input is selected from only one of the two distributions,
with probability at least 9/10 the answers that are vertices of degree \/n were drawn one
by one u.a.r. without returns (after a vertex is drawn, it cannot be drawn again) from the
vertices of degree y/n. The same applies to vertices of degree 2.

This means that 7, with probability 9/10, will behave exactly the same way, regardless of
whether the input was drawn from Dp or Das. So, if given an input that is drawn from Dy,
T rejects, with probability at least 2/3, then with probability at least 2/3 — 1/10 it rejects
an input that is drawn from Dp, that is, it accepts such an input with probability strictly
less than 2/3. This is a contradiction to 7 being a property tester, since it must reject an
input drawn from Dys with probability at least 2/3 and must accept an input drawn from
Dp with probability at least 2/3.

We note that to prove this, we only need to show with probability at least 9/10, every
query T uses returns only vertices that are not already in its knowledge-graph. The proof
follows the exact same lines as in the one-sided case. |

Fix r to be an integer larger than or equal to 2. To get the one-sided error lower bounds for
Cy, freeness and Co, freeness (2,r — 1)-admissible for graphs work by creating a new graph
T™ from the graph T as follows:

For Cy,, for every vertex (z,y) € W, where W is as in the construction of T, replace

the edge between (z,y) and min{z, y} with a path of length r — 1.

For Ca,41, for every vertex (z,y) € W, where W is as in the construction of 77, if

x < y replace the edge {z, (z,y)} with a path of length  and otherwise replace the edge

{y, (z,y)} with a path of length r — 1.

Note that the graph created according to the first item is (2, — 1)-admissible and has cycles
of length 2r where the graph 7™ had cycles of length 4. The graph created according to the
second item is also (2,7 — 1)-admissible and has cycles of length 2r + 1 where the graph 7"
had cycles of length 4.

To obtain the lower two-sided error lower bound for Cs,. freeness and Cy, 41 freeness of
(2,7 — 1) admissible graphs, apply the same changes used for originally constructing these
graphs, to construct the new T and T from T with the following change: treat the paths
that were added to T™ as if they were edges. Thus, Theorem 29 holds.

—— References

1 N. Alon, T. Kaufman, M. Krivelevich, and D. Ron. Testing triangle-freeness in general graphs.

SIAM Journal on Discrete Mathematics, 22(2):786-819, 2008.

104:19

ICALP 2025



104:20 Testing Ci-freeness in Bounded Admissibility Graphs

10

11

12

13

14

N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17(3):209-223, 1997.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl. H-freeness testing in graphs of bounded
r-admissibility. In 42nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2025, March 47, 2025, Jena, Germany, volume 327 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2025.

A. Czumaj and C. Sohler. A characterization of graph properties testable for general planar
graphs with one-sided error (it’s all about forbidden subgraphs). In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1525-1548. IEEE, 2019.

M. Dalirrooyfard, T. D. Vuong, and V. V. Williams. Graph pattern detection: Hardness for
all induced patterns and faster non-induced cycles. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pages 1167-1178, 2019.

Z. Dvoradk. Constant-factor approximation of the domination number in sparse graphs.
European Journal of Combinatorics, 34(5):833-840, July 2013.

T. Eden, R. Levi, and D. Ron. Testing c_k-freeness in bounded-arboricity graphs. In
K. Bringmann, M. Grohe, G. Puppis, and O. Svensson, editors, 51st International Colloguium
on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia,
volume 297 of LIPIcs, pages 60:1-60:20. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik,
2024.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 406-415, 1997.

D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal on
Computing, 4(1):77-84, 1975.

R. Levi. Testing triangle freeness in the general model in graphs with arboricity O(y/n). In
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 93:1-93:13.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

J. Nesetfil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms, volume 28
of Algorithms and Combinatorics. Springer, 2012.

V. Vassilevska and R. Williams. Finding, minimizing, and counting weighted subgraphs. In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 455-464,
2009.

A. C.-C. Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th
Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222-227. IEEE
Computer Society, 1977.

X. Zhu. Colouring graphs with bounded generalized colouring number. Discrete Mathematics,
309(18):5562-5568, 20009.



	1 Introduction
	2 Preliminaries
	3 Graph admissibility
	4 Nadirs and Braids
	5 Trimming
	6 The main algorithm
	6.1 Proof overview of the main theorem
	6.2 Proof of the main theorem

	7 Lower bounds for testing C2r+1-freeness in (2,r-1)-admissible graphs for r2

