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Abstract  

The required actions to solve many everyday motor problems are not 

immediately apparent. How do children discover these hidden demands? Exploration 

was assessed in 24- to 56-month-olds (n = 47; 26 girls) by tracking how children 

touched a tablet screen to open “virtual cabinets” with different locks. Children were 

strategic explorers. Hypothesis-driven exploration increased with age by first 

focusing on the appropriate area (“hypothesis” about where to act) and then on the 

appropriate action (“hypothesis” about how to act). Even when children did not 

hypothesize about where and how to solve the problem, they showed more directed 

than random exploration, and directed exploration increased with age. However, 

children did not generalize exploration of hidden demands from one problem to 

another. 
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Introduction 

Young Children Are Avid Explorers 

Motor exploration is essential for the development of functional behavior. 

Young children have limited knowledge about how things work because they have 

limited experience solving everyday problems like how to slide open a cabinet latch, 

twist open a container lid, grasp the handle of a tool, or fit an object into an aperture. 

Without observing more knowledgeable others or being told what to do, children 

must perform a variety of exploratory movements to discover where and how they 

should act to solve motor problems. For example, where is the closure on the 

cabinet, and how does the latch operate? 

Developmental research is replete with illustrations of how infants and young 

children use visual and manual exploration to acquire knowledge and reduce 

uncertainty about their environment (Adolph & Robinson, 2015). For example, infants 

and young children explore objects by squeezing, fingering, rotating, and transferring 

objects from hand to hand, and by manipulating objects in relation to surfaces or 

other objects (Belsky, Goode, & Most, 1980; Bourgeois, Khawar, Neal, & Lockman, 

2005; McCarty, Clifton, & Collard, 2001; Palmer, 1989; Soska & Adolph, 2014). 

Although children often perform such exploratory actions with no explicit goal 

imposed (Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Oudeyer, Baranes, & Kaplan, 

2013), nongoal-directed exploration can sometimes reveal what actions are possible. 

And in doing so, exploration informs a rich internal representation of the world that 

can be later used to guide goal-directed action (Kosoy et al., 2020; Schulz, 2012). 

Indeed, nongoal-directed exploration at an earlier age can be used to solve motor 

problems such as tool use at a later age (Kahrs, Jung, & Lockman, 2012; Lockman, 

2000; Lockman & Kahrs, 2017). Moreover, nongoal-directed exploration plays an 

important role in facilitating higher-level cognition about how things work in the world 

(Gerson & Woodward, 2013; Sommerville, Woodward, & Needham, 2005; 

Woodward, Sommerville, & Guajardo, 2001). 

Hidden Area and Action Demands 

For some tasks—even novel motor problems—visual information for where 

and how to act is readily available. For example, children can immediately see that 

they must turn their hand to grasp a tilted rod (Lockman, Ashmead, & Bushnell, 

1984), scrunch their hand to poke a finger into an aperture (Ishak, Franchak, & 



Adolph, 2014), or rotate a block to fit it into a shape sorter (Jung, Kahrs, & Lockman, 

2015; Jung, Kahrs, & Lockman, 2018; Ossmy, Han, Cheng, Kaplan, & Adolph, 

2020). However, many everyday motor problems require non-obvious actions in a 

particular area of the object (Norman, 1999, 2013). The “where” and “how” for the 

solution must be discovered by active visual-manual exploration (Albrechtsen, 

Andersen, Bodker, & Pejtersen, 2001; Gaver, 1991; Hartson, 2003). The initial 

solution is “hidden.” Touch-latch cabinets are a prime example. The cabinet door 

stays shut via a ratchet and spring mechanism on the back of the door and opens 

with a firm press on the location housing the mechanism. For the uninitiated (even 

adults), the critical area and action are not obvious because the face of the cabinet 

has no visible latch and the pressing action is not specified. Likewise, many 

containers, shower fixtures, and doors present similar challenges (Norman, 2013). 

How do children discover hidden areas and actions? With nongoal-directed 

exploration, problem demands can be so buried that children fail to recognize what 

they did if they eventually solve the problem—indeed, they are likely to fail to 

recognize the “problem.” With goal-directed exploration, children intend to bridge the 

gap between what they already know and what they need to know to achieve a goal. 

Thus, children purposefully attempt to open the cabinet door or container by 

exploring and testing multiple solutions until they discover the location of the critical 

area and how to act on it.  

Developmental Changes in Exploring Hidden Demands 

Out of all possible areas and actions, how do children hone in on the right 

ones? In principle, hidden demands will be discovered for certain if children try every 

possible action in every possible area. However, exploring every combination of 

areas and actions—either systematically or randomly—is grossly inefficient. The 

number of possibilities is simply too large.  

Instead, exploration must be guided toward the target area and action to 

reduce the search space. But what guides children’s exploration of problems with 

hidden demands? Many everyday problems—opening containers with twist-off or 

pull-off lids or pouches with zipper closures—seem simple, but children can solve 

them only if they actively explore the relevant area and required actions. In these 

tasks, children show an age-related progression in exploratory behaviors (Rachwani, 

Kaplan, Tamis‐LeMonda, & Adolph, 2021; Rachwani, Tamis-LeMonda, Lockman, 



Karasik, & Adolph, 2020). Toddlers’ exploration is guided by the readily available 

visual information and affordances (e.g., rotating or banging the container, squishing 

and pulling the sides of the pouch). Such non-directed exploration may provide new 

haptic information about the object that can guide children to the target area of the 

search space (the edges of the container lid or the wiggly zipper tab). At older ages, 

children exhibit goal-directed exploration by immediately honing in on the target 

area, which further narrows the search space by drawing children toward the target 

actions (twisting the lid back and forth or pulling the zipper tab at various angles), 

which in turn generates haptic information, until children finally implement the 

successful solution (twisting the lid repeatedly to the left or pulling the zipper tab at 

the appropriate angle). 

Current Study 

To deepen our understanding of how children learn to solve motor problems 

with hidden demands, we assessed how children solve such motor problems with no 

haptic information to guide their exploration. We hypothesized that children improve 

with age by attempting to discover where they should act before attempting to 

discover how they should act. That is, children learn to look for the hidden area first 

and then look for the hidden action demands. This is because knowing the area 

narrows down the possible actions, but without the target area to guide them, the 

number of possible actions is extremely large. For example, identifying the target 

area as the cabinet lock or container lid eliminates those actions not afforded by 

manipulating the lock or lid. 

To test this hypothesis, we encouraged children to open “virtual cabinets” as a 

model system to characterize developmental and real-time changes in exploration. 

As in Pelz & Kidd (2020), we documented age-related changes in how children 

touched a tablet screen. This fine-grained quantification of children’s exploration 

patterns has better temporal and spatial accuracy compared to experiments in a real, 

physical environment that rely on general descriptions of the action and area (e.g., 

pressing the lid, banging the container). Critically, children’s only haptic feedback 

with the tablet came from touching the flat screen, regardless of their selected 

exploratory area or action. Nothing in the physical properties of the screen guided 

children toward the target area or action. The tablet had no constraints on what 



areas could be explored and children experienced no physical costs or tangible 

rewards for their actions. 

With our virtual cabinets (Figure 1A), children had to open a virtual “lock” to 

liberate a cartoon animal visible behind a transparent window on the face of the 

cabinet. There were two possible locks (slider to the left or slider to the right; Figure 

1B). Each child started with one of the locks for 6 trials, and then the lock switched 

and the child attempted to open the new lock for another 6 trials. Thus, the exact 

demands for area and action in this motor problem were hidden. The target area and 

target action had very strict tolerance limits (Figure 1D). Touches had to start and 

end at specific locations on the lock (see green lines in Figure 1D); if not, the door 

remained closed. Moreover, the required movement was arbitrary (sliding to the left 

or right), and the visual information to specify it was ambiguous (the yellow lock 

looks like a button that can be pressed; Figure 1B). To fill a critical gap in the 

literature on motor exploration that focused on infants and grade-school children, we 

designed the game for preschoolers and tested 24- to 56-month-olds (Figure 1C).  

 

Figure 1. The “virtual cabinets” tablet game. (A) Children were encouraged to open a 
virtual “lock” to get an animal out of a cabinet. Inset shows the three cartoon animals used in 
the game. Each animal appeared 4 times in random order.  (B) Two lock types—sliders that 
opened to the right or the left. (C) Number of children tested by age and sex. (D) Tolerance 
limits for opening the locks. Green arrows and cartoon hands show the required movement 
and direction. Green circles indicate the permissible touch area to move the lock. Red areas 
indicate locations outside the permissible touch area. Green bars indicate where children 
needed to start and end their touches to open the lock. If the touch began or ended beyond 
the bars, the lock did not open. 



We first tested whether children could succeed in opening the virtual cabinets 

or failed to discover the hidden demands due to lack of haptic information. We 

expected that older children would open the cabinets more frequently, faster, and 

with fewer touches than younger children and that success would increase faster 

over trials with child age.  

Then, we asked how children attempted to open the virtual cabinets. We used 

a cognitive approach to motor exploration (Alison Gopnik, 2012; Ruggeri, Xu, & 

Lombrozo, 2019; L. Schulz, 2012), by assessing children’s “hypotheses” regarding 

where to explore (area hypothesis) and how (action hypothesis). If, as we expected, 

children show an age-related increase in successful openings and within-session 

learning across trials, then exploration cannot be random and must be guided by 

some factor. Therefore, we predicted more hypothesis-based exploration with age 

and across trials. Critical to our experimental hypothesis, we predicted that children 

would generate hypotheses about the critical area before generating hypotheses 

about the required action.  

Finally, we assessed whether children generalize their area and action 

exploration from one problem to another. Presumably, experience in exploring 

hidden area and action demands of one problem provides knowledge that can 

narrow down the search space for other hidden area and action demands. To test 

generalization, we compared how exploration changed from one trial to the next 

within the same problem (i.e., same lock) to changes across problems (i.e., after the 

lock switch). That is, if changes in area/action hypotheses between trial 6 (the last 

trial before the lock switch) and trial 7 (the first trial after the lock switch) are similar 

to changes in area/action hypotheses between the rest of the trials, we could 

conclude that children generalize area/action from their previous exploration. But if 

the number of area or action hypotheses drops from trial 6 to trial 7, and does so 

significantly more than the change in hypotheses between other trials, we would 

conclude that children do not generalize their knowledge from previous exploration. 

Method 

Data and Code Sharing 

Videos of participants’ sessions are publicly available in the Databrary web-

based library (databrary.org/volume/1415). With participants’ permission, third-



person videos of their behaviors and demographic data are also shared in Databrary 

with authorized researchers.  

Participants 

We tested 47 children from 2.05 to 4.83 years of age (M = 3.47 years; 26 girls; 

Figure 1B). Children were recruited from advertisements, referrals, and a pool of 

families who expressed interest in participating in research when their children were 

born. Children received a $40 gift card, robot toy, photo magnet, and tote bag as 

souvenirs of participation. All participants were typically developing with normal 

vision. One additional participant was excluded because he was not interested in the 

game. 

“Virtual Cabinets” 

We designed a problem-solving game on a digital tablet (iPad Air, iOS12.5.1, 

Apple Inc.) in which children were encouraged to open the door of a virtual cabinet to 

release a cartoon animal (duck, bear, or bunny) visible behind a glass window on the 

door of the cabinet (Figure 1C and databrary.org/volume/1415). The cabinet opened 

with two types of locks—a slider that opened to the left (Figure 1C, left panel) or to 

the right (Figure 1C, right panel). We set strict tolerance limits for opening the 

cabinets that required perfect slides—children had to touch the tablet at the center of 

the lock, make a short slide in the correct direction and then lift their finger after they 

brought the virtual knob to the edge of the lock (Figure 1D) 

Each child received 2 blocks of trials: (1) six trials with the left-sliding lock; and 

(2) six trials with the right-sliding lock, with block order counterbalanced across 

participants (24 in order 1). If the child did not open the lock within 20 seconds, the 

trial ended and the game continued to the next trial. Each animal appeared in 4 trials 

in random order. 

The game was programmed in C# programming language within the Unity 

Engine developing environment (https://unity.com, version: 2018.3.3f1) and was 

exported as an application to the iPad through Apple XCode. All 3D assets in the 

game were modeled using Maya (https://www.autodesk.com/products/maya, 2018). 

The cartoon animals (duck, bear, or bunny) were based on Line Friends 

(https://www.linefriends.com) characters. 



Procedure 

The virtual cabinet game was administered at the end of a larger study on 

children’s manual actions. The experimenter gave children the tablet and asked 

them: “Can you get the bunny/bear/duck out?” She repeated the sentence for each 

trial, sometimes several times per trial. We recorded children from a third-person 

camera view (30 fps) and from the tablet’s frontal camera (24 fps). The two camera 

views allowed validation of children’s attention and their level of engagement with the 

game (see videos of participants at databrary.org/volume/1415).  

Data Processing 

Touch Types. The iPad tracked children’s touches (finger position) at each 

moment, their success at opening the lock, and the duration of each trial. We 

focused on how and where children touched the screen during each trial. For each 

touch, we calculated (1) touch distance—number of pixels in the touch trajectory; (2) 

touch repeated area—ratio between the number of touched pixels overall and unique 

touched pixels; (3) touch on lock—proportion of touched pixels on the lock; and (4) 

touch on window—proportion of touched pixels that were part of the cabinet window. 

Based on these measures, we labeled the area and action of each touch 

(Table S1). We labeled touch area as either “lock” (touch-on-lock greater than 90% 

of the total fingertip area), “window” (touch-on-window greater than 90% of the total 

fingertip area), or “other” (both touch-on-lock and touch-on-window less than or 

equal to 90%). Based on the capabilities of the tablet, we labeled touch actions as 

either “press” (touch distance equals 1 fingertip area), “repetitive slide” (touch 

distance longer than 1 fingertip area and touch repeated area larger than the median 

across the entire dataset), “short slide” (touch distance longer than 1 fingertip area 

and less than or equal to the size of the lock, and touch repeated area smaller the 

median across the entire dataset), and “long slide” (touch distance larger than the 

size of the lock and touch repeated area smaller than the median ratio across the 

entire dataset).  

Area and Action Hypotheses. For each trial, we determined whether 

children generated hypotheses about the target area and target action by examining 

the distribution of touch types within the trial. For area hypotheses, we assessed 

whether the child touched one of the areas (lock, window, or other) on more than 

66.6% of the touches in the trial (such that the other areas were necessarily at 



chance levels). If there was no such area, we determined that the child had “no area 

hypothesis” for the trial because there was no single dominant touch area. Given a 

dominant area, we considered the child had a “true hypothesis” if that area was the 

lock (the target area) or a “false hypothesis” if that area was either the window or 

other (not-target areas). Figure 5 (left panel) shows an example for each area 

hypothesis. 

For action hypotheses, we assessed whether the child used one of the 

actions (press, repetitive slide, short slide, or long slide) on more than 75% of the 

touches in the trial (such that the other touch types were necessarily at chance 

levels). If not, there was no dominant action and we considered the trial to have “no 

action hypothesis.” Given a dominant action, we considered the trial to have a “true 

action hypothesis” if the dominant action was the short slide (the target action) and a 

“false action hypothesis” otherwise.  

Random and Directed Exploration. Inspired by cognitive research, we 

examined whether children used random or directed exploration (Meder, Wu, Schulz, 

& Ruggeri, 2021). Random exploration is characterized by high levels of randomness 

in the selection of where and how to explore. This means there is no guiding rule to 

what type of touch children choose at each moment. Directed exploration actively 

seeks out uncertainty. This means that children select where and how to explore 

based on their past behavior and prioritize actions and areas that were previously 

selected less often.  

We assessed children’s random exploration for each trial by running a 

randomness test (MATLAB’s runstest function) on the sequence of actions within the 

trial. We used the p-value from this test as REI—random exploration index that 

indicates the level of randomness in the trial. Thus, the value range for the REI is 0 

to 1. 

Directed exploration was assessed for each trial by calculating the DEI—the 

probability to select the “least-selected” action in each touch within the trial, 

according to the following: 

 

                    𝐷𝐸𝐼 =  
∑ 𝑓(𝑡𝑖,𝑖)𝑛

𝑖=2

𝑛−1
                                           (1) 

 

Where  



                    𝑓(𝑥, 𝑖) = {
1, 𝐶(𝑥, 𝑖) = min(𝐶(1, 𝑖) … 𝐶(4, 𝑖))

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   (2) 

 

 

                    𝐶(𝑥, 𝑖) = ∑ [𝑡𝑘 = 𝑥]𝑖−1
𝑘=1                                                     (3) 

 

where n is the number of touches in the trial, and 𝑡𝑖 is the type of touch i. 

Possible values for 𝑡𝑖 are 1 to 4, indicating the different actions. We used the DEI as 

an index for the level of directed exploration in the trial. Similar to the REI, the value 

range for the DEI is 0 to 1.  

Results 

Most children (87.23%) completed all 12 trials, M = 11.53 (SD = 1.70). 

Preliminary analyses showed no effect of gender, so it was collapsed in subsequent 

analyses. 

Success Rate and Trial Duration  

Children successfully opened the lock on M = 57.46% (SD = 40.37%) of trials. 

Figure 2A shows each child’s success on each trial. As we expected, success rates 

(top panel) increased with age, r(45) = .77; p < .00. Fitting a sigmoid function to the 

data (black line in Figure 2A top panel; slope = .09) shows that children become 

more successful after 38.52 months. Moreover, children succeeded faster with age 

(Figure 2B, top panel, r(45)=-0.55, p<.00).  

As we also anticipated, children became more successful (Figure 2A, right 

panel) and faster (Figure 2B, right panel) across trials. However, success rate 

dropped after we flipped the direction of the lock (see yellow box in Figure 2A 

showing a difference in performance between trials 6 and 7). However, when 

children did succeed, the lock change did not affect how quickly they succeeded 

(yellow box in Figure 2B).  

Overall, the number of touches per trial (M = 9.86, SD = 8.28) did not 

decrease with age, r(45) > -.23, p > .11. However, when we split the data into 

successful and unsuccessful trials, we found a significant developmental change. 

Fewer touches was associated with increasing age for successful trials, r(45) = -.38, 

p < .01 (Figure 3A), and more touches was associated with increasing age for 



unsuccessful trials, r(45) = .29, p < .05 (Figure 3B). These findings suggest that 

children changed their exploration with age and experience in the task.  

 

 

Figure 2. Task performance. (A) Success rates increased with age and experience (within 
session). Each square indicates one trial of one child and its color indicates success (green), 
failure (red) or missing data (empty). Scatter plot on the top shows success rate by age. 
Each grey dot is one participant. Sigmoid function (black line) fits the data and reveals that 
children become more successful in the task after 38.52 months. Scatter plot on the right 
shows success rate by trials. Yellow box indicates drop in success rate between the sixth 
and the seventh trial (switching the lock of the cabinet). (B) Trial duration decreased with 
age and experience. Because trials ended after 20 seconds in case of a failure, the analysis 
focused only on successful trials. Similar to A, each square indicates one trial of one child 
and its color indicates the duration for successful trials (going from light green for short trials 
to dark green for long trials), failed trials (empty square with red border), or missing data 
(empty with black border). Scatter plot on top summarizes data across trials and shows 
significant decrease with age. Scatter plot on the right summarizes data across children and 
shows decrease from one trial to the other. Yellow box indicates change in duration after 
lock switch. Unlike the drop in success rates, change in lock did not affect the time it took 
children to open the cabinet. 



 

Figure 3. Number of touches by age. (A) Number of touches decreased with age when 
children succeeded and (B) increased with age if they failed. Asterisks and yellow squares 
indicate significance correlation.  

 

Exploration of Area and Action  

The touch data generated detailed streams of how children explored the 

problem. We determined the area and action of each touch based on 4 measures 

reflecting how children interacted with the screen—touch distance, touch repeated 

area, touch on lock, and touch on window (Table S1). Figure S1 shows the 

distribution of each measure and how it changes with age and across trials. Then, 

we labeled the action of each touch as either press, repetitive slide, short slide, and 

long slide, and the area of each touch as either lock, window, or other. Figure S2 

shows how each touch area and touch action changed with age (panels A and C) 

and experience (panels B and D).  

The heat maps in Figure 4 show touch data for one trial for a child who 

exhibited every type of touch in every area; the large heat map in the left panel 

shows touches accumulated over the trial; the small heat maps in the right panel 

correspond to each touch type and area. As shown by the bar graphs corresponding 

to each touch type and area in Figure 4, children did not display a dominant touch 

action, but they did display a dominant touch area—they focused more on the lock 

compared to the other two areas. A 4 (action) × 3 (area) repeated-measures ANOVA 

on the frequency of touches showed only a main effect for area, F(2, 46) = 72.18, p < 

.00, and an interaction between area and action, F(6, 46) = 9.40, p < .00. Sidak-

corrected post hoc comparison tests showed that the lock was the most explored 

area, p < .05.  



 

Figure 4. Touch types. We identified the area and action of each touch. There were 3 areas 
(lock, window, other) and 4 actions (press, repetitive slide, short slide, and long slide). Large 
image on the left shows an exemplar trial and heat maps represent where and how children 
touched the screen. The small images show the different touch types in the specific trial, 
ordered by area (rows) and action (columns). Bars on the right show the percent of touches 
per area and bars on top show the percent of touches per action. (see Methods and Table 
S1 for how we determined the area and action labels).  

 

Area and Action Hypotheses  

For each trial, we determined whether children generated hypotheses about 

the target area and action. Figure 5 shows examples of trials with no-hypothesis, 

false hypotheses, and true hypotheses about area and action. For no-hypothesis 

trials, the child shifted frequently from one area/action to another. For false-

hypothesis trials, the child focused on one area/action that was not the target one. 

For true-hypothesis trials, the child focused on the target area/action. 

As we predicted, children generated more hypotheses about area than action. 

The true area hypothesis was more frequent (M = 71.19% SD = 29.49 of the trials) 

than the true action hypothesis (M = 18.87% SD = 18.64). Accordingly, the no-area 

hypothesis was less frequent (M = 15.06% SD = 16.31) than the no-action 

hypothesis (M = 62.06% SD = 26.34). A 2 (targets: area and action) × 3 (hypotheses: 

no, true, and false) ANOVA on the percent of trials confirmed an interaction between 

target and hypothesis, F(2, 46) = 90.21, p < .00. Post hoc comparison tests showed 

that children generated true hypotheses about the target area and no hypothesis 

about the target action, ps < .05. 



With age, children shifted from testing no hypothesis to testing true 

hypotheses about both the area (Figure 6, left panel) and action (Figure 6, right 

panel). Children also showed a similar shift from a no-area hypothesis to a true-area 

hypothesis with experience in the task (left panel, Figure 7; only children with all 12 

trials were included). Experience, however, did not affect children’s action 

hypotheses (right panel Figure 7). Taken together, these findings suggest that 

children generated area hypotheses before they generated action hypotheses, and 

area hypotheses were generated within the session (Figures S3 and S4 summarize 

children’s area and action hypotheses respectively). 

 

 

Figure 5. Area and action hypotheses. Example of six trials, representing no, false, and 
true hypotheses about area (left column) and no, false, and true hypotheses about action 
(right column). Hypotheses were determined based on the distribution and order of touch 
types within the trial (see Methods). Lines in the arrow diagram (grey boxes) represent the 
proportion of transitions from one area/action to another. Thicker lines represent higher 
proportions.  

 

Inspired by cognitive research (Meder et al., 2021), we performed an 

exploratory analysis to test whether children used random or directed exploration on 



trials with no area or action hypotheses. (In trials with true or false hypotheses, 

children selected the area or action based on what they believed to be the 

area/action with the highest probability to result in success. So our focus in this 

analysis was on no-hypothesis trials.) Moreover, because no-area-hypothesis trials 

were infrequent (see Figure 6), there were not sufficient data to analyze random and 

directed exploration of area, so we limited the analysis to no-action-hypothesis trials. 

Figure 8 shows that on average, children used more directed exploration (measured 

by DEI) than random exploration (measured by REI). Moreover, we found a 

significant correlation between directed exploration and age, r(45) = .39, p < .00; the 

negative correlation between random exploration and age was only a trend, r(45) = -

.27, p = .06.  

 

 

Figure 6. Change in hypotheses by age. For both area and action, children shifted from 
no-hypothesis trials to true-hypothesis trials. Yet, children had more true-area-hypothesis 
trials than true-action-hypothesis trials and in contrast, more no-action-hypothesis trials than 
no-area-hypothesis trials. Asterisks and yellow squares indicate significant correlations.  

 



 

Figure 7. Change in hypotheses by trial number. No- and false-area-hypotheses 
decreased across trials. In contrast, true-area-hypotheses increased across trials (left 
column). We did not find any effect of trial number on action hypotheses (right column). 
Asterisks and yellow squares indicate significant correlations. Unlike Figure 6 that includes 
all children, this analysis included only children who completed all 12 trials. 

 

 

Figure 8. Directed and random exploration in no-action-hypothesis trials. (A) Children’s 
directed exploration was measured by DEI (see Methods). We found that DEI increased with 
age when children did not have an action hypothesis. Asterisk and yellow square indicate 
significant correlation. (B) Children’s random exploration was measured by REI (see 
Methods). REI decreased with age on no-action-hypothesis trials. Correlation was near-
significant (p = .06). 



Hypothesis Generalization  

We examined how the number of no, false, and true hypotheses about area 

and action changed from one trial to another across the entire dataset. Specifically, 

we tested how children’s hypotheses changed after we switched the lock. Over the 

entire dataset, children generated M = 6.52% more no-area hypotheses, M = 6.42% 

more false-area hypotheses, M = 15.21% more no-action hypotheses, and M = 

2.17% more false-action hypothesis in in the first trial after switch compared to the 

last trial before switch (i.e., trial 6 compared to trial 6; Figure 9). Moreover, the 

number of true hypotheses decreased: Children had M = -13.04% fewer true-area 

hypotheses and M = -17.39% fewer true-action hypotheses after the lock switch 

(averaged across trial-transitions over the entire dataset). Figure 9 demonstrates that 

these changes in hypotheses across problems (after the lock switch) were 

significantly different from changes in hypotheses within each problem (same lock). 

When the lock was the same, children had fewer no-area and no-action hypotheses 

(M = -4.07% SD = 5.18, and M =- 2.26% SD = 9.70, respectively), fewer false-area 

and false-action hypotheses (M = -0.40% SD = 5.19, and M = -1.18% SD = 4.42, 

respectively), and more true-area and true-action hypotheses (M = 4.53% SD = 9.14, 

and M = 3.44% SD = 11.12, respectively).  

 

 

Figure 9. Hypothesis generalization. Bars show the mean change in hypotheses about 
area and action after the lock switch (“lock switch”—difference between trial 6 to trial 7 
averaged across children) and when the lock remained the same (“same lock”—difference 
between consecutive trials, averaged across children). Standard errors for “same lock” bars 
indicate range across pairs of trials.  
 



Discussion 

We used opening of virtual cabinets as a model system to understand how 

young children solve motor problems where the visual and haptic information for the 

solution is hidden. Such everyday problems require strategic exploration because 

randomly trying out all possible solutions is highly inefficient and unlikely to result in 

success. Uncertainty-based exploration is more strategic because it is systematic. 

But hypothesis testing (first area, then action) is most strategic because it narrows 

the possible search space and thereby leads to a faster solution.  

Children indeed were strategic explorers. Children improved with age by first 

focusing their exploration on the appropriate area (where to act) and then on the 

appropriate action (how to act). Moreover, when children did not “hypothesize” about 

where and how to solve the problem, they showed more directed, uncertainty-based 

exploration than random exploration, and directed exploration increased with age. 

However, children did not show significant generalization of hidden demands from 

one problem to another. 

Area Before Action: Narrowing Down the Search Space in Motor Exploration 

Prior research showed that adults use hypothesis-driven exploration when 

they solve motor problems (Newell & Simon, 1972; Schulz & Gershman, 2019). That 

is, adults generate and test hypotheses about specific solutions. If the hypothesis is 

correct, the problem is solved and if not, adults generate and test a new hypothesis, 

and so on. The heuristic is to generate hypotheses that narrow down the search 

space, reduce the amount of possible solutions, and thereby efficiently guide 

exploration to hone in on the right solution. 

Children do the same (Gopnik, Meltzoff, & Kuhl, 1999; Legare, 2012; Meder et 

al., 2021; Ruggeri, Lombrozo, Griffiths, & Xu, 2016). As children explore, they make 

predictions to guide their information search (Denison & Xu, 2014, 2019; Gweon, 

Tenenbaum, & Schulz, 2010; Kushnir & Gopnik, 2005). With development, their 

hypotheses narrow down the search space more and more, making their exploration 

more efficient. For example, in a traditional version of the 20-questions game 

(Ruggeri et al., 2016), younger children ask questions targeted toward a specific 

solution (e.g., “is it a dog?”), whereas older children ask questions about categories 

or features (e.g., “is it an animal?”) . Information about categories and features 

narrows down the search space, guiding children to find the correct answer with 



fewer questions. Thus, older children carefully select their questions and in doing, 

they greatly improve their odds of finding the answer.  

The current study revealed a motor version of this heuristic hypothesis-testing 

exploration in young children. Similar to a careful selection of questions that 

constrain possible answers in the 20-question game, careful selection of area 

constrains the possible actions to solve motor problems. Children hypothesized 

about where they should touch before generating a hypothesis about the particular 

touch action. Moreover, children generated more area hypotheses from one trial to 

another but did not show a similar trend in generating action hypotheses. This finding 

suggests that children quickly learn that they need to narrow down the search space, 

and only then do they focus on the correct action.  

In addition to narrowing down the search space, children became more 

efficient explorers by applying more directed exploration and less random exploration 

with age. This finding suggests that young children explore broadly whereas older 

children give more weight to the cost of exploration (e.g., the time to complete the 

task, energy, etc.). In other words, young children are more interested in learning 

what actions are possible and where, and older children are more directed toward 

solving the problem. These findings align with recent developmental work in a spatial 

grid-search game that combined behavioral data and computational modeling 

(Meder et al., 2021). Children showed a decrease in random exploration from 4 to 9 

years of age, but a high amount of directed exploration at every age. Our findings 

expand these developmental trends to an earlier age and to the motor domain.  

From a computational perspective, our findings contribute to understanding of 

the computational principles underlying the development of human exploration. The 

traditional computational approach defines exploration patterns in terms of the 

exploration-exploitation tradeoff—choosing a costly, unfamiliar option with an 

unknown outcome versus choosing a familiar option with a known outcome. In the 

“Bandit” task (participants repeatedly choose among alternatives that are 

characterized by different reward distributions; E. Schulz & Gershman, 2019), adults 

and children solve the trade-off differently. Children are biased toward exploration 

whereas adults are biased towards exploitation (Gopnik, 2020; Lucas, Bridgers, 

Griffiths, & Gopnik, 2014; E. Schulz, Wu, Ruggeri, & Meder, 2019; Seiver, Gopnik, & 

Goodman, 2013). Here, we show that during motor exploration, children solve the 



exploration-exploitation trade-off in a hierarchical manner—they first explore the area 

and then exploit the discovered area by exploring possible actions therein.  

Generalization of Exploration 

Another important aspect of the exploration-exploitation tradeoff is 

generalization—whether explorers generalize their experience exploring solutions in 

a specific problem to novel problems. Previous research showed that children 

generalize their exploration by using cognitive inference to predict outcomes of 

actions in a new problem based on action outcomes of a previously explored 

problem (Meder et al., 2021; Ruggeri et al., 2016). The notion is that children use 

previous knowledge gained during exploration to inform future actions in other 

situations. In the current study, however, children hypothesized less about both area 

and action when the problem was new (trials after lock switch). Although the area of 

the new problem was identical to the area of the previously explored problem (same 

lock area, different direction), children did not use their experience in previous trials 

to hypothesize about where to explore and to reduce the new problem space. Thus, 

at least when it comes to motor exploration of young children, generalization does 

not provide guidance for exploring area and action.  

Moreover, even after children succeeded, they did not use the knowledge 

they gained by repeating the successful action, but rather children persisted in 

exploring alternative solutions. Nevertheless, failure prompted more exploration with 

child age, suggesting that when older children explore, they account for knowledge 

they discovered in previous exploration. This finding aligns with previous work 

showing that older children explore more when presented with confounded evidence 

(L. E. Schulz & Bonawitz, 2007). Future research should directly test the effects of 

knowledge gained during exploration on subsequent exploration patterns and how 

these effects change over development.  

Implication for Real-World Robot Exploration 

Little research uses child behavior to guide work in artificial intelligence (AI) 

and robotics (but see Kosoy et al., 2021; Kosoy et al., 2020; Ossmy et al., 2018). 

Many computational models for motor problem solving are based on presupposed 

concepts and are not grounded in real-time behavioral data, which impedes real-

world applicability. Our findings are relevant to the embodied AI and robotics 

communities interested in building embodied agents that learn to solve real-world 



problems with hidden demands. Most algorithms of artificial embodied agents are 

based on reinforcement learning (Arulkumaran, Deisenroth, Brundage, & Bharath, 

2017; Mousavi, Schukat, & Howley, 2016; Sutton & Barto, 2018), in which agents 

learn by receiving positive rewards for doing target actions and negative rewards for 

doing non-target actions. We propose that imbuing artificial embodied agents with 

children’s “first where-then how” strategy will improve AI goal-directed exploration 

skills and lead to improved real-world problem solving. Thus, future embodied AI 

research should integrate experimental and computational approaches to children’s 

motor exploration (e.g. Gershman, 2018; Kosoy et al., 2020). AI agents need not 

replicate children’s motor skills to reveal new insights into the development of motor 

exploration.  

Finally, humans serve as a useful baseline for evaluating performance of 

artificial embodied agents (Dubey, Agrawal, Pathak, Griffiths, & Efros, 2018; Mnih et 

al., 2015). We propose our virtual cabinet task as a computational challenge for 

exploration in the service of a goal. The simplicity of the problem (e.g., no haptic 

information, limited visual scene), direct quantification of the human actions (using 

the tablet), and the relevance to real life (opening cabinets is a common problem 

with hidden demands) is ideal for comparing goal-directed exploration between 

children and machines.   

Conclusions 

We investigated developmental changes in goal-directed exploration when 

children solve motor problems with hidden demands. Using a novel virtual game, we 

showed that children’s motor exploration is strategic. Children first hypothesize about 

the area they should explore and then, after reducing the search space of possible 

actions, they hypothesize about which action they should use. Our findings provide a 

new perspective for cognitive-based research on human exploration and problem 

solving.  
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Supplementary Material 

 

 
Figure S1. Touch measures. We used 4 touch measures to label touch area (lock, 
window, other; see examples in Figure 4) and touch action (press, repetitive slide, 
short slide, long slide; see examples in Figure 4)—(A) touch distance, (B) repeated 
area, (C) % touch on lock, and (D) % touch on window. First row shows each 
measure by age, second row shows each measure by trial number, and third row 
shows the distribution of each measure over the entire dataset.  
 
 
 
 
 
 
 



 
Figure S2. Touch types by age and trial number. The percent of touches in each 
area (lock, window, other; see Figure 4) as a function of (A) age and (B) trial 
number. Similarly, the percent of touches for each action (press, repetitive slide, 
short slide, and long slide; see Figure 4) as a function of (C) age and (D) trial 
number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S3. Area hypotheses. Squares indicate no area hypothesis (blue), false 
area hypothesis (red), true area hypothesis (green), or no data (empty) for each child 
and each trial. See correlation of area hypotheses with age and experience in 
Figures 6 and 7 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S4. Action hypotheses. Squares indicate no action hypothesis (blue), false 
action hypothesis (red), true action hypothesis (green), or no data (empty) for each 
child and each trial. See correlation of action hypotheses with age and experience in 
Figures 6 and 7 respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. Definition of touch area and action according to touch measures.  

 Label distance repeated area on lock on window 

Area lock - - > 90 > 90 

 window - - <= 90 <= 90 

 other - - <= 90 <= 90 

Action press = 1 - - - 

 repetitive slide > 1 > 1.2 - - 

 short slide > 1 and < 256 < 1.2 - - 

 long slide > 256 < 1.2 - - 

*Note 256 = the length of the lock 


