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Abstract Aluto volcano, situated in the central Main Ethiopian Rift (MER) within the northern part of the
East African Rift System (EARS) is seismically active, with indications of unrest detected by InSAR. It hosts
Ethiopia's first pilot project for geothermal energy. Despite extensive studies, uncertainties remain about the
mechanisms of unrest and the existence of a shallow magma chamber beneath Aluto which could drive the
hydrothermal system, and is crucial for understanding its geothermal potential. This study investigates Aluto's
magmatic and hydrothermal systems using observations of seismicity in the region. We analyze seismic data
from January 2012 to January 2014, locating 2,393 events, which lie predominantly along the Wonji Fault Belt
(WFB). Event depths reach up to 40 km beneath Aluto, suggesting the presence of a highly crystallized body at
shallow depth, consistent with previous magnetotelluric and gravity studies. Deep crustal seismicity likely
relates to fluid and/or magmatic processes. High b‐values of 1.97 ± 0.10 at Aluto indicates the presence of
fluids. Seismicity is negligible beneath Silti Debre Zeyt Fault Zone (SDFZ), previously identified as a highly
conductive, indicative of melt. Focal mechanisms show normal faulting in the direction of rift extension and
full‐moment tensor inversions suggest shear‐failure with fluids potentially activating existing faults. We suggest
that the magmatic and hydrothermal systems are connected through pre‐existing faults. Understanding this
interaction will enhance our knowledge of the geothermal system, volcanic risk, mechanisms of unrest, and
emplacement of geothermal brines.

Plain Language Summary Understanding the interaction between molten rock and hot water
beneath a volcano is crucial to forecasting eruptions, harnessing geothermal energy, and finding metal‐rich
brines. Molten rock drives the circulation of hot fluids below the surface, which can be sources of geothermal
energy and minerals. In this study, we use seismic data to assess the interaction between molten rock and hot
fluids at Aluto. Aluto, showing signs of unrest, hosts a significant geothermal field but uncertainties remain
about the cause of this unrest and the presence of molten rock at shallow depths. We located 2,393 earthquakes
from January 2012 to January 2014. Earthquake depths extend up to 40 km below Aluto. Deep earthquakes are
likely caused by fluids and/or molten rock movements. Earthquakes are negligible under Silti Debre Zeyt Fault
Zone (SDFZ), indicating the presence of molten rock. A high ratio of small to large earthquake magnitudes at
Aluto suggests the presence of fluids. Molten rock is connected to fluid circulation beneath Aluto through faults.
Understanding this interaction can enhance our understanding of the geothermal system, volcanic risk, and
metal‐rich fluids.

1. Introduction
Volcanic complexes frequently experience unrest and occasional eruptions, making them difficult to predict and
understand (Hutchison, Biggs, et al., 2016; Manley et al., 2021). Episodes of uplift and subsidence, marked by
unrest, can occur with or without eruptions. These fluctuations are influenced by intricate mechanisms that
encompass magma dynamics, geothermal systems, and tectonic stress (Acocella et al., 2015; Troise et al., 2019).
However, understanding the interactions between these mechanisms and magmatic and hydrothermal systems is
limited (Pritchard et al., 2019) due to their complexity, challenges in detailed crustal studies (Gauntlett
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et al., 2023), and the lack of comprehensive descriptions of volcanic edifices on large scales (Gresse et al., 2021).
Understanding this interplay is crucial for forecasting eruptions (Stix, 2018) and inferring unrest mechanisms
(Roman et al., 2019). Additionally, it is essential for the successful exploration and production of geothermal
energy (Heřmanská et al., 2019; Jolie et al., 2021; Okamoto et al., 2019; Reinsch et al., 2017; Samrock
et al., 2023) and for locating and understanding the characteristics of metal‐rich brine reservoirs (Blundy
et al., 2021; T. Hudson et al., 2023; Sanjuan et al., 2022) hosting metals such as lithium (Weinand et al., 2023) or
other hydrothermal deposits (Hedenquist & Lowenstern, 1994). Furthermore, understanding the location and
mechanism of melt storage in the crust and upper mantle provide insights into magmatic systems and the process
of rift evolution (Chambers et al., 2021).

Seismicity can provide insights into magma chambers and conduits (Segall, 2013) and the interaction between
magma bodies, hydrothermal systems and their surrounding rocks (Wilks et al., 2020). In this study, we assess the
interactions between hydrothermal and magmatic processes at Aluto volcano in the Main Ethiopian Rift (MER)
and compare it to other previous volcanotectonic studies of theMER. Aluto is ideal due to indications of unrest, as
identified through InSAR (Albino & Biggs, 2021; Biggs et al., 2011). Additionally, Aluto hosts a significant
geothermal field that has been and continues to be explored through drilling, enabling us to establish constraints
on the subsurface structure (Cherkose & Mizunaga, 2018; Gianelli & Teklemariam, 1993; Gizaw, 1993;
Hochstein et al., 2017; Hutchison, Biggs, et al., 2016; Mulugeta et al., 2021; Pürschel et al., 2013; Saibi
et al., 2012; Samrock et al., 2023; Teklemariam et al., 1996).

The MER is a volcanotectonic rift that signifies the center of continental stretching occurring between the Nubian
and Somalian plates (Calais et al., 2006; Greenfield et al., 2019a; Wilks, Ayele, et al., 2017; Wilks, Kendall,
et al., 2017). It is a volcanically active region in the northern part of the East African Rift System (EARS) (Bonini
et al., 2005; Lavayssière, Greenfield, et al., 2019), and is known for hosting silicic volcanic complexes (Fontijn
et al., 2018; Tadesse et al., 2023). The magmatic and tectonic history of the MER has traditionally been described
using polyphase rifting models (Boccaletti et al., 1998; Bonini et al., 1997; Corti et al., 2003). However, recent
studies indicate that the MER has experienced consistent oblique rifting over the past 11 Myr, which contradicts
the polyphase rifting models (Agostini, Marco, Giacomo, Federico, & Francesco, 2011; Corti, 2008, 2009;
Robertson et al., 2016). Rift evolution in the MER varies along the axis, with an early stage of evolution in the
south progressing toward incipient breakup in the north. Consequently, the distribution and style of Quaternary
volcanotectonic deformation is well known in the north compared to the south, where it is less constrained
(Agostini, Marco, Giacomo, Federico, & Piero, 2011). The central part of the MER plays a crucial role in
assessing the overall volcanic and tectonic development of the EARS (Woldegabriel et al., 1990). It comprises the
mid‐Miocene border faults and the recent Quaternary in‐rift faults named as the Wonji Fault Belt (WFB) (Keir
et al., 2015).

The Aluto volcanic complex is a silicic peralkaline volcano located in the central part of the MER, with few
details known about its eruptive history (Hutchison, Pyle, et al., 2016). Recent volcanism in Aluto covers an area
of approximately 8 km in diameter (Hutchison, Pyle, et al., 2016). The structure and volcanic evolution of the
Aluto volcanic complex is controlled by the influence of the NNE‐trending WFB (Le Turdu et al., 1999). Several
recent investigations have been conducted to assess the Aluto volcanic complex, including various geological,
eruptive history, geochemical (Hutchison, Fusillo, et al., 2016; Hutchison, Pyle, et al., 2016; McNamara
et al., 2018; Regenspurg et al., 2022; Woldegabriel et al., 1990), geophysical (Cherkose & Mizunaga, 2018;
Mulugeta et al., 2021; Nigussie et al., 2023; Nowacki et al., 2018; Samrock et al., 2015; Wilks, Kendall,
et al., 2017; Wilks et al., 2020), and geothermal development (Gizaw, 1993; Jolie et al., 2019; Teklemariam
et al., 1996) studies. The Aluto‐Langano geothermal field is the sole operational site for geothermal energy in
Ethiopia (Benti et al., 2023) with high enthalpy and salinity levels (Pürschel et al., 2013), and it is the most
extensively investigated prospects in the MER (Samrock et al., 2020). Despite Aluto being extensively studied,
uncertainties persist about mechanisms of unrest, fluid distribution in the subsurface and ascent along mapped
fault zones, crucial for understanding its geothermal system (Jolie et al., 2019). In addition, it is also unclear
whether there is a very shallow magma reservoir beneath Aluto volcano. Some studies suggest that, it is unlikely,
attributing the source of unrest to fluctuations in the hydrothermal system instead of a magmatic system (Samrock
et al., 2015, 2023). On the contrary, other observations indicate the presence of a shallow and frequently
replenished magma storage zone (Biggs et al., 2011; Gleeson et al., 2017; Wilks, Kendall, et al., 2017).
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Here we use seismicity to investigate the magmatic and hydrothermal systems of Aluto and interpret the results in
the context of previous geophysical and geological knowledge of the Aluto volcano. We reanalyze seismic data
sets from Aluto volcano recorded from January 2012 to January 2014. In the previous study, seismic events were
detected and located using primary (P‐) and secondary (S‐) wave picks at individual stations (Wilks, Kendall,
et al., 2017). In this study, we apply a back‐migration detection method that allows for the detection of events
closer to the noise threshold, theoretically enabling a more comprehensive study of seismicity. We also calculate
earthquake moment magnitudes, b‐values and source mechanisms to better understand the hydrothermal and
magmatic systems of Aluto.

2. Data and Methods
The data for this study are from a network of 12 Güralp CMG‐6TD 30 s three‐component seismometers located on
the volcanic edifice and its surrounding rift valley floor, covering 20 × 20 km area with station spacing ranging
from 2 to 10 km. The seismic network was deployed between 08 January 2012 and 31 January 2014 with the XM
Network (The ARGOS Project, 2012), shown by black inverted triangles in Figure 1. Data are sampled at 100 Hz.

2.1. Earthquake Detection and Locations

Data from the XM network were used to detect and locate seismic events in Aluto using QuakeMigrate, an al-
gorithm for microseismic detection (T. Hudson et al., 2019; Smith et al., 2020). This approach involves retro-
actively tracing the energy arriving at seismic stations, searching for the coalescence of energy from multiple
stations in both time and space. The raw seismic waveforms for each station is bandpass filtered with high and low
corners of 16 and 2 Hz. Short‐Term‐Average (STA) to Long‐Term‐Average (LTA) algorithm is then applied to

Figure 1. Aluto volcano, with its caldera rim indicated by a green dashed ellipse. The XM network stations from the ARGOS
experiment are represented by black inverted triangles. Hydrothermal features are depicted as diamond shapes, colored by
temperature. Geothermal wells are shown as circles, also colored by temperature and sized by well depth (Hutchison
et al., 2015). Resistivity and magnetotelluric surveys conducted for geothermal exploration are represented by black dashed
lines (Hochstein et al., 2017). The Bole fault and Artu Jawa Fault Zone are marked by blue dashed lines and active faults by
red solid lines (Styron & Pagani, 2020).
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generate the onset function. Onset functions for each seismic station were obtained using an STA (0.2s) to LTA
(1.0s). The primary wave onset function is determined from the vertical component, and the secondary wave onset
function is derived from the horizontal components. These onset functions from each station are then combined
and moved through time and space to look for a coalescence of energy from the combination of peaks seen in the
onset functions of individual stations. An event is triggered when the maximum coalescence energy value at a
particular point in 3D space at a given time is very high. The onset function can be estimated by a Gaussian
distribution (Drew et al., 2013). The estimated arrival time picks are the peak of the onset function and the
associated uncertainty is calculated as the standard deviation around this peak (Smith et al., 2020). The initial
locations of the earthquakes are detected using this method, resulting in 3,401 events.

We use the non‐linear location method (Lomax et al., 2000) to relocate the events detected using the traveltime
formulation for P‐ and S‐phases (Podvin & Lecomte, 1991). This method employs efficient global sampling
algorithms to estimate the 3D posterior Probability Density Function (PDF) for earthquake hypocenter locations
(Lomax, 2005). This PDF, following probabilistic earthquake location methods by Tarantola and Valette (1982),
Moser et al. (1992) and Wittlinger et al. (1993), provides a detailed representation of likely hypocenter locations
with comprehensive uncertainty information. The Oct‐tree method is used here to determine the location of PDFs
and likelihood hypocenters (Lomax & Curtis, 2001) and the velocity model used for this study is shown in
Figure 2. We relocated 2,393 events as shown in Figure 3 with phase numbers greater than four and reduced
spatial errors in the event locations.

2.2. Earthquake Magnitudes

2.2.1. Moment Magnitude (Mw)

Earthquakes are measured by their energy release, with magnitude indicating their size. Richter (1935) introduced
local magnitude (ML) as the first scale to numerically characterize an earthquake size. Most magnitude scales rely
on seismogram amplitudes, signal duration and frequency‐domain measurements (Ottemoller & Havskov, 2003)
which give empirical measures (T. Hudson et al., 2022). Moment magnitudes defined by Kanamori (1977), are
grounded in physical principles based on rupture models like Brune model (Brune, 1970). This allows moment
magnitude to quantify earthquakes of various types and magnitudes accurately (Deichmann, 2006; Uchide &
Imanishi, 2018). Here, to determine earthquake magnitudes, we use the moment magnitude scale, which is
calculated by fitting a Brune model (Brune, 1970) to the earthquake spectra. T. Hudson et al. (2022) and Stork
et al. (2014) have shown the robustness of using moment magnitude. We selected 1,262 events recorded by at
least four stations, each with a minimum of two P‐phase and two S‐phase picks.

2.2.2. B‐Values

The Gutenberg‐Richter distribution is represented as:

Figure 2. The input velocity model used for this study. (a) The input velocity model for P‐ and S‐waves from Wilks, Kendall, et al. (2017). (b) The density of the rocks
versus depth beneath Aluto (Cornwell et al., 2006; Wilks, Kendall, et al., 2017). (c) The inferred geology versus depth, color‐coded and labeled from A to G.
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Figure 3. Seismic activity at Aluto and around Aluto from January 2012 to January 2014. The depth profile along the white
dashed line from A to B is presented at the bottom. The distribution of events by longitude is shown on the top side, while
latitude distribution is displayed on the right side. Aluto caldera is marked by a red triangle within the circular dashed white
circle, while seismometers are indicated by green inverted triangles. Events are color‐coded according to their depth and
scaled by moment magnitude. Active faults are represented by black lines (Styron & Pagani, 2020). Additionally, the black
dashed lines at the bottom of the figure represent faults, and the depth distribution of events is detailed in the same panel.
Events occurring in Wendo Genet are enclosed within a blue dashed circle.
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log10N = a − bM, (1)

and characterizes the magnitude‐frequency distribution of earthquakes in a specific region (Gutenberg &
Richter, 1944), where N is the number of earthquakes equal to or exceeding magnitude M, while a and b denote
constants that describe the rate of seismic activity and the relationship between the rate of smaller and larger
earthquakes, respectively. The b‐value, observed to be varying in space and time (Shelly et al., 2016; Taroni
et al., 2021), reflects changes in crustal stress (El‐Isa & Eaton, 2014; Wyss, 1973). It also serves as an indicator of
conditions like faulting style (Petruccelli et al., 2019), strength heterogeneity (De Gori et al., 2012) and fluid
pressure (Bachmann et al., 2012; Shelly et al., 2016), contributing to a better understanding of seismicity
(Herrmann et al., 2022).

Here we compute the b‐values using the boundary‐value‐stability (Roberts et al., 2015), determining individual b‐
values through the maximum likelihood method. We used the same number of events as those used for the
moment magnitude in the b‐value calculations.

2.3. Moment Tensor Inversion

Seismic signals provide details about the earthquake moment tensor (J. Hudson et al., 1989) and the decompo-
sition of moment tensors into different components helps to classify and understand seismic source mechanisms
(Chapman & Leaney, 2012; Stich et al., 2003; Vavryčuk, 2015). These mechanisms are determined by analyzing
the initial motion directions of P‐waves and amplitude ratios recorded at nearby seismic stations (Hardebeck &
Shearer, 2002, 2003). These far‐field first arrival polarities are less affected by uncertainty in the velocity model
than absolute amplitudes used in full‐waveform source mechanism inversions (Pugh et al., 2016). Here we
compute full moment tensor and double‐couple constrained inversion using P polarity using a Bayesian method
approach, MTfit (Pugh et al., 2016; Pugh & White, 2018). The events selected for moment tensor inversions are
based on an azimuthal gap of less than 180°, at least six P‐wave arrivals, an RMS travel‐time residual (tRMS) of
less than 1 s, and a depth uncertainty of less than 3 km, as shown in Figure 6.

3. Results
Using the XM network at Aluto volcano and its surroundings, we identified 2,393 earthquakes using the nonlinear
location method. Figure 2 shows the model of P‐ and S‐wave velocities used in this study, which were obtained
from well‐log data and travel‐time inversions in the northern MER (Wilks, Kendall, et al., 2017). Figure 3 il-
lustrates the seismicity of Aluto volcano (2,393 events), with events extending up to 40 km beneath Aluto. The
profile from A to B is along the same line of the earlier magnetotelluric survey done by Hübert et al. (2018), were
they located melt below SDFZ, at 40–50 km northwest of Aluto at a depth of 10–12 km bsl. We show that this
region also has negligible seismicity, as indicated in Figure 3. The majority of events at Aluto are shallow depth
and are located at the center of the caldera and the seismic activity aligns parallel to the existing Artu Jawa Fault
Zone (AJFZ) and SDFZ faults.

Figure 4 shows the seismicity and daily average moment magnitude in Aluto, revealing temporal variations in
seismic behavior similar to the works of Birhanu et al. (2018) using seismicity and GPS station data. There are
more events in October and November in both 2012 and 2013. The peak of seismic activity occurs 2–3 months
following the rainy season, which lasts from July to September, and decreases during the dry seasons. Figure 4
also shows the frequency distribution of moment magnitude, for Aluto. The b‐value at Aluto is 1.97 ± 0.10 and
similar observations were reported by Wilks, Kendall, et al. (2017).

The event locations are consistent with those reported by Wilks, Kendall, et al. (2017), as shown in Figure 5.
However, we significantly improved the tRMS and azimuthal gap in this study. Most events in this study have a
tRMS of less than 1 s, as indicated by the vertical dashed black line in Figure 5e. Additionally, most events have an
azimuthal gap of less than 180°. We also considered a minimum of four phases per event, and the spatial errors for
most events are relatively acceptable. In the cross‐section of longitude and latitude versus depth (Figures 5c and
5d), there is an umbrella‐like structure at a greater depth.

The seismic activity at the Aluto caldera is shown in Figure 6, where events are selected based on a tRMS of less
than 1 s, an azimuthal gap of less than 180°, a minimum of four phases, and spatial errors with X (longitude) and Y
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Figure 4.
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(latitude) errors of less than 10 km and Z (depth) errors of less than 5 km as shown in Figures 5e–5h by black
dashed vertical lines. Most of the events are shallow and are located around the caldera. The distribution of events
appears to follow the NE‐SW trending faults (AJFZ) and areas with significant hydrothermal vent manifestations.
This is more evident in Figures 6b and 6c, which show the cross‐sections of depth versus latitude and longitude,
where most of the events follow the fault trend from a certain depth to near the surface. Hydrothermal vents are
prominent along fault lines and the rims of the caldera (Hutchison et al., 2015), where we have more events. The
temperature of hydrothermal features is also highest along these fault lines and caldera rims, where geothermal
wells have been drilled (Hochstein et al., 2017). These areas also exhibit elevated CO2 release along the faults
(Hunt et al., 2017). Lower crust seismicity is common in the MER, and Figure 7 shows the profile from C to D in
Figure 3 in which the seismicity extends up to 40 km bsl. The right panel (c and d) in Figure 7 shows similar lower
crust seismicity studies by Lapins et al. (2020) in Wendo Genet region to the south of Aluto.

We perform both full moment tensor and double‐couple constrained source mechanism inversions. Figure 8
displays lune plots (Tape & Tape, 2012), illustrating mechanisms that are near double‐couple. The focal
mechanisms shown in Figure 8 predominantly exhibit normal faults with small strike‐slip components that align
with the existing fault orientations. The focal mechanisms of the MER are dominated by normal faulting with a
small component of left‐lateral strike‐slip (Ayele, 2000).

The seismic events along the profile from A to B in Figure 3 are overlaid on previous magnetotelluric (Dambly
et al., 2023) and gravity (Cornwell et al., 2006) studies in Figure 9. This profile follows the same magnetotelluric
survey line as in Hübert et al. (2018), which identified a high conductor below the SDFZ at depths of 10–12 km
bsl, interpreted as melt. Additionally, they identified a highly resistive body beneath Aluto, interpreted as a mafic
gabbroic intrusion. The gravity survey reveals a high‐density gabbroic body below the rift axis with densities
similar to those calculated for cumulates using Rhyolite‐MELTS (Hutchison et al., 2018) and lower densities off
the rift axis, also interpreted as melt. In this study, the highly resistive and high‐density body beneath Aluto
corresponds to significant seismic activity, while the high conductor region with slightly lower density beneath
the SDFZ exhibits negligible seismicity.

Figure 10 illustrates the schematic 3D cross‐section along the profile from A to B in Figure 3 with the rock types
indicated. Pre‐existing faults and fracture systems that extend deeper are serving as pathways connecting the
magmatic and hydrothermal systems in Aluto, as depicted in the figure.

4. Discussion
4.1. Aluto Seismicity

The majority of the events beneath Aluto occur within the upper 2 km.Most of the events occur around the caldera
and align with the NE‐SW trending AJFZ, which cross‐cuts the caldera edifice and ring faults. These areas are
also characterized by hydrothermal vents and elevated CO2 flux, as fluid pathways are structurally controlled. The
highly fractured nature of the region enhances fluid saturation and permeability, facilitating the ascent of fluids
along these faults, which can, in turn, trigger seismicity. There is also a seasonal pattern in seismicity and peaks at
2–3 months after the main rainy season which is between July and September. This is the time when the lake level
of Ziway and Langano is high suggesting that precipitation has a role in replenishing the hydrothermal system.
The highly fractured hydrothermal system region (Wilks, Kendall, et al., 2017) may facilitate this process.
Therefore, the shallow events distributed around the caldera and along the fault trends are associated with hy-
drothermal activity in the shallow crust, as well as hydrological loading, as shown by Birhanu et al. (2018).

Seismicity is negligible to the northwest and northeast of Aluto. The network coverage in these areas is less
sensitive. However, we suggest a more stable, seismically inactive crust in the northeast (e.g., there is no indi-
cation of elevated CO2 flux (Hunt et al., 2017)) and the presence of melt in the northwest. Previous

Figure 4. Seismic activity from January 2012 to January 2014. (a) The average number of events per month and the corresponding moment magnitude. (b) The number of
events per day and the average moment magnitude of events per day from January 2012 to January 2014. The blue dashed line is the average number of events over the
entire period, while the yellow dashed line represents the average moment magnitude throughout the entire duration. (c) The number of earthquakes in each magnitude
range. (d) Cumulative number of events plotted against moment magnitude in the Gutenberg‐Richter plot. The moment magnitude (Mw) catalog is represented in black
dots. The red dashed vertical line indicates the magnitude of completeness (Mc). The green dots show the values of individual bins for Mw. BVS denotes the b‐value
stability method employed for calculating the b‐values. This figure provides values for Mc, as well as parameters a and b.
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Figure 5.
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magnetotelluric and gravity studies indicated that the melt lies approximately 40 km northwest of Aluto, beneath
the SDFZ, and an intrusive body beneath Aluto. The presence of melt beneath the SDFZ is supported by
negligible seismic activity in this study. However, seismicity is observed as a planar feature along the fault
structure to the west of the SDFZ as shown in Figure 3. Moreover, seismic activity extending up to 40 km beneath
Aluto supports the presence of an intrusive or highly crystallized mush with pockets of melt.

The depth of the events in Aluto extends up to 40 km bsl, that is into the lower crust and uppermost mantle.
Earthquakes in the lower crust are common in continental rifts (Déverchère et al., 2001; Zhao et al., 1997).
Nevertheless, the source of this activity is poorly understood (Chen &Molnar, 1983). In the MER, seismicity has
been detected in the deep crust and upper mantle (Albaric et al., 2014; Lavayssière, Drooff, et al., 2019; Lin-
denfeld & Rümpker, 2011; Nyblade & Langston, 1995). The deep crustal seismicity are likely due to fluid and/or
magmatic processes (Greenfield &White, 2015; T. Hudson et al., 2017; Lapins et al., 2020; Soosalu et al., 2010).

At these depths, the crust is typically ductile, so brittle failure requires a sufficiently high rate of strain release. We
propose that the primary mechanism causing such rapid changes in strain rate is the ascent of fluids. In the ductile
zone of the earth's crust, earthquakes occur when fluid moves through the rock rapidly enough to trigger brittle
failure (T. Hudson et al., 2017). Moment tensor inversions could offer further validation of this interpretation,
although we do not have such inversions for earthquakes occurring below 20 km. Moment tensor inversions at 5–
10 km depth support the interpretation of seismic energy release mainly through brittle failure, but the presence of
fluids (b‐value >1) may contribute to fault activation. The lithospheric mantle has temperatures adequate to
support partial melting (Hammond et al., 2014; Kendall et al., 2005) and this may not be caused by the slip of
border faults. The earthquakes in the lower crust are triggered by magmatic activities in warmer, mafic lower crust
(Keir et al., 2009). Based on limited observations, our preferred interpretation is that this deep seismicity is likely
linked to the ascent of fluids along, critically stressed, fluid‐rich faults.

4.2. Magmatic System

The seismicity beneath Aluto extends up to 40 km bsl, suggesting the absence of hot or too ductile body at shallow
depth. The umbrella‐like structure in Figures 5c and 5d is likely the top part of the magmatic mush beneath Aluto.
However, it is deeper than what was previously thought in earlier studies (Biggs et al., 2011; Wilks, Kendall,
et al., 2017). In an earlier seismicity study, deep crustal events were not observed and the seismicity beneath Aluto
decreases after 9 km, which was interpreted as the existence of a magma mush at shallower depths (Biggs
et al., 2011; Wilks, Kendall, et al., 2017). However, the current study observes seismicity beyond this depth. This
finding is interesting as it provides evidence for the presence of a highly crystallized intrusive body or a highly
crystallized mush with melt pockets at shallow depth.

The seismic activity directly beneath Aluto is consistent with imaging of Aluto from magnetotelluric imaging
(Dambly et al., 2023; Hübert et al., 2018; Samrock et al., 2015, 2021; Whaler & Hautot, 2006), gravity (Mickus
et al., 2007), resistivity (Hochstein et al., 2017), and velocity tomography (Daly et al., 2008; Mackenzie
et al., 2005). Magnetotelluric and resistivity results (Dambly et al., 2023; Hübert et al., 2018; Samrock
et al., 2015) show a high resistivity intrusive body beneath Aluto as shown in Figure 9. The magnetotelluric study
of Samrock et al. (2021) shows that Aluto's upper crustal reservoir is cooler and more crystalline, with a higher
magmatic volatile phase content at shallow depth. Moreover, the crustal magma beneath Aluto could have been
cooled as the estimated time required for the cooling of crustal magma bodies of similar volume is approximately
100 ka, a duration, well within the post‐caldera phase time frame of Aluto (Hübert et al., 2018). A gravity survey
(Mickus et al., 2007) also detected a high‐gravity anomaly in Aluto indicating a dense intrusion (Mulugeta
et al., 2021; Searle & Gouin, 1972) and similar results were found at the Boku volcanic complex (Wuletawu

Figure 5. Seismic events zoomed at Aluto: (a) this study and (b) Wilks, Kendall, et al. (2017). Event depths are color‐coded by depth, ranging from gray to black.
Geothermal wells and hydrothermal vents are also indicated in panels (a) and (b). Main Ethiopian Rift faults are represented by black solid lines. Cross‐sections of event
depth versus latitude at 38.78°E (c) and depth versus longitude (d) at 7.77°N for this study are shown. Black dashed lines in the cross‐sections represent inferred fault
planes, interpreted from the spatial clustering and alignment of seismicity in map view. They are not to scale, do not represent actual depths, and are not constrained by
focal mechanisms. Due to the N10°–20° fault orientations and the N–S or E–W orientation of the cross‐sections, not all faults are fully represented in each view.
(e) Shows the tRMS of both studies, where the tRMS in this study is significantly improved. (f) Illustrates the azimuthal gap for both studies, with the azimuthal gap in this
study also showing considerable improvement. (g) and (h) present the total number of phases and spatial errors of the event locations in this study. Events with a
minimum of four phases (that have two P‐ and S‐waves) are used to select events for moment magnitude and b‐value calculations.
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Figure 6. Seismic events at Aluto (a) filtered based on tRMS less than one second, an azimuthal gap of less than 180°, a number of phases greater than four, and spatial
errors of X (longitude) and Y (latitude) less than 10 km and Z (depth) less than 5 km, as indicated by black vertical lines in Figure 5. Earthquake events are colored by
depth. Seismic stations are represented by black inverted triangles, hydrothermal vents by diamond shapes colored by temperature, and geothermal wells by circular
markers, also colored by temperature. Black solid lines indicate Main Ethiopian Rift faults, while black dashed lines represent Artu Jawa Fault Zone (AJFZ) faults.
Panels (b) and (c) display cross‐sections along latitude at 38.78°E and longitude at 7.77°N, respectively. Red dashed lines indicate inferred fault planes based on
seismicity patterns in map view. These are schematic, not to scale or true depth, and may not represent all mapped faults due to projection limits. The earthquake events
align with the NE‐SW trending AJFZ faults.
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et al., 2024). Additionally, in the mid‐to‐upper crust, the velocity changes from 6.1 km/s on the rift flanks of the
Ethiopian plateau to 6.6 km/s under the Quaternary magmatic segments suggesting the existence of aligned
cooled gabbroic bodies along the rift axis (Maguire et al., 2006). Moreover, Daly et al. (2008) found a low Vp/Vs
ratio at Aluto and the axis of the rift, interpreted as cooled mafic intrusions (Keranen et al., 2004) and wells drilled
to a depth around 2 km bsl indicates no signs of melt (Gianelli & Teklemariam, 1993; Gizaw, 1993). Therefore,
based on the new seismicity and other geophysical studies in Aluto, it is unlikely that there is a magma chamber at
shallow depths. This finding contrasts with geological and geochemical studies (Hutchison, Biggs, et al., 2016).
However, we suggest that a highly crystallized body with pockets of melt could exist. If the melt proportions are
very low, such a body may be detected by magnetotelluric methods as a resistive structure (Hübert et al., 2018).

The absence of seismicity in the northwest of Aluto at SDFZ is consistent with earlier magnetotelluric and gravity
studies as well as anisotropy and shear velocity studies of theMER. This may be linked to a melt or magma (Yirgu
et al., 2006) reservoir at 10–12 km depth beneath SDFZ, as indicated by magnetotelluric results (Hübert
et al., 2018). Additionally, Stuart et al. (2006) found a high Vp/Vs ratio beneath SDFZ indicating the presence of
crustal melt which is consistent with the geochemical analysis of T. O. Rooney et al. (2005), T. Rooney
et al. (2007). Other studies of anisotropy also show evidence of melt beneath the Ethiopian plateau (Bastow
et al., 2010; Hammond et al., 2014; Keir et al., 2011; Kendall et al., 2006). The magmatic melt is located beneath
the SDFZ, despite higher seismic activity in Aluto, particularly along the WFB. Dambly et al. (2023) indicated
that magma moves at an angle toward the eastern WFB rather than rising vertically beneath the SDFZ and the
structural controls influence the formation of the magmatic pathways. Although, recent volcanism has occurred
near the western part of the rift along the SDFZ (Iddon & Edmonds, 2020; T. O. Rooney et al., 2005) and a
significant flux of CO2 is emitted in the Butajira region (Hunt et al., 2017). Additionally, there is a spatial cor-
relation between the fault system at Aluto and the magma ascent channel (Dambly et al., 2023). This may be also
attributed to the fact that 80% of the strain is in the WFB (Bilham et al., 1999; Ebinger & Casey, 2001) indicating
that the WFB is more active than the SDFZ. Moreover, the magmatic plumbing system within theWFB is mature,
allowing magma to quickly rise through existing conduits to fractionate at shallow depths while exhibiting
fractionation throughout the crust in the SDFZ (T. O. Rooney et al., 2005; T. Rooney et al., 2007).

4.3. Hydrothermal System

The b‐value at Aluto is 1.97 ± 0.10. The b‐values in a tectonic setting are typically around 1.0 (Frohlich &
Davis, 1993). However, higher b‐value have been observed in volcanic areas (Bridges & Gao, 2006; Greenfield
et al., 2020; McNutt, 2005; Wyss et al., 2001), often linked to a decrease in effective normal stress caused by the
presence of fluids (Greenfield et al., 2019b; T. Hudson et al., 2022; Vavryčuk, 2001, 2002). The high b‐value at
Aluto, therefore, suggests the presence of fluids, although temperature or other factors could play a role. These
fluids are mainly exsolved fluids of magmatic nature as there is high magmatic volatile phase content at shallow
depth (Samrock et al., 2021). Consequently, the magmatic reservoir is connected to the hydrothermal system at
Aluto as faults and fractures intersect shallow dikes or magma storage regions (T. Rooney et al., 2007). This is
illustrated in Figures 5c and 5d, which show an umbrella‐shaped structure of the magmatic body with faults
extending to its top part. In Tullu Moye, similar to Aluto, faults facilitate the ascent of fluids of magmatic origin to
the surface from depths of around 14 km (Samrock et al., 2018) and fault structures and hydrothermal activity
overlap with the sill's surface projection (Kebede et al., 2023). Faults serve as channels for magma and fluid
movement, while some extending to the upper mantle to facilitate the ascent of mafic melts, while others reached
magmatic reservoirs where differentiated magma was stored (Boccaletti et al., 1999), as observed at Gedemsa
(Peccerillo et al., 2007). Post‐caldera vents (Lloyd et al., 2018), basaltic scoria cones and their related lava flows
are also aligned along faults and extensional features (Hunt et al., 2020). Additionally, the distribution of
earthquake hypocenters, as well as volcanic vents, are clustered (see Figure 6), which is consistent with Mazzarini
et al. (2013), indicating that faults are pathways for fluid ascent. In rift systems characterized by high volcanic and
seismic activity, existing faults could govern magma ascent and eruption and influence the movement of hy-
drothermal fluids and gases (Hutchison et al., 2015). Both regional and caldera structures serve as pathways for
hydrothermal fluids, making them vital for geothermal exploration. Caldera faults in particular could enhance
permeability upon reactivation, potentially concentrating hydrothermal fluid flow and becoming prime areas for
intercepting fluids (Maestrelli et al., 2024).

Sampling CO2 emissions from fumaroles in Aluto has revealed that the magmatic and hydrothermal systems are
interconnected by faults and fractures (Hutchison, Biggs, et al., 2016). The temperature of the hydrothermal
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features is highest along the fault lines (Figure 1) and increases toward the center of Aluto, indicating that these
faults likely serve as pathways (e.g., AJFZ (Nowacki et al., 2018)) for the fluid movement. CO2 degassing is
primarily concerned along faults (Hunt et al., 2017). Enhanced degassing along fault and fracture systems show
deep permeable segments of active faults indicating significant areas for the movement of hydrothermal fluids
(Jolie et al., 2019). Therefore, the pre‐existing faults and fracture systems act as pathways that connect the
magmatic system with a shallow hydrothermal system (Wilks et al., 2020). The hydrothermal system in Aluto is
therefore driven by the ascent of magmatic fluids through a fault and fracture systems and precipitation.

4.4. Causes of Unrest

We observed a significant peak in seismicity 2–3 months after the main rainy season at Aluto, coinciding with
high lake levels of Ziway and Langano, indicating hydrological loading as the main cause of shallow seismicity.
Seasonal seismicity in Aluto is linked to changes in surface loading and reservoir pore pressure, with fluid
pathways controlled by structures like the AJFZ (Birhanu et al., 2018). Similar observations have been observed

Figure 7. Seismic activity along the profile from C to D in Figure 3. (a) Distribution of events along the white dashed line
extending from point C to D. (b) Depth profile along the same line, with events in Wendo Genet highlighted within the blue
dashed circle. (c) The seismic activity in the lower crust of Wendo Genet (Lapins et al., 2020), as indicated in part b. (d) The
depths of the events mentioned in part c.

Figure 8. Focal mechanisms and lune plots illustrating the source Probability Density Function (PDF) for selected
earthquakes around Aluto caldera. The events are located near the center of the network stations at a depth of around
5–10 km. (a) The focal mechanisms for six events numbered from 1 to 6. (b) The actual waveform and the spectrogram for
event 2 at one of the stations. (c) The source PDF corresponds to the full moment tensor solution for events 1, 2, 4, and 5.
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Figure 9. The 3D cross‐section along the profile from A to B in Figure 3 depicts seismicity overlaid on the magnetotelluric
survey conducted in a previous study by Dambly et al. (2023). The numbers in the figure indicate the subsurface density in
kg/m3 (Cornwell et al., 2006; Mickus et al., 2007) and vertical lines represent faults. High electrical resistivity and density is
observed below Aluto compared to the surrounding area, with significant seismicity in this study extending up to 40 km bsl.
A high conductivity body is detected beneath the SDFZ, consistent with results from other magnetotelluric and gravity
studies not shown here. The study by Hübert et al. (2018) also reveals an even shallower conductive body beneath the SDFZ.
The seismic activity is negligible beneath the SDFZ.

Figure 10. The schematic 3D cross‐section along the profile from A to B in Figure 3 depicts different lithologies and
structures. The rock types of the upper crust are vertically exaggerated (not to scale). The melt is situated at a shallow depth in
the northwest of Aluto below the Silti Debre Zeyt Fault Zone (SDFZ) as indicated by number 2 in the figure (Hübert
et al., 2018). The magmatic and hydrothermal systems are connected through faults and fracture systems that extend deeper.
Seismicity, magmatic intrusion below Aluto (indicated by number 1), rift and off‐rift volcanoes are also illustrated.
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in other volcanoes, such as Katla volcano under the Mýrdalsjökull glacier in South Iceland (Einarsson &
Brandsdóttir, 2000). The abundant seismicity, elevated b‐value, and high volatile phase content (Samrock
et al., 2021) of the geothermal reservoir suggests it is critically stressed and sensitive to minor seasonal hydro-
logical loading or stress changes. Our findings show that hydrological loading can induce seismicity, with seismic
activity varying seasonally and could contribute to the source of unrest.

The high b‐value at Aluto indicates the presence of fluids, and sampling CO2 emissions from fumaroles have
revealed a magmatic signature (Hutchison, Biggs, et al., 2016). This suggests repeated injections of magmatic
fluids to shallow depths through preexisting faults and fracture systems. Both magmatic and hydrothermal
processes could therefore be responsible for the unrest at Aluto. Differentiating between magmatic and hydro-
thermal processes based on deformation alone is not possible (Birhanu et al., 2018), although Hutchison, Biggs,
et al. (2016) explain that edifice‐wide inflation results from magmatic fluid injection and intrusion, followed by
deflation due to magmatic degassing and hydrothermal system depressurization. Wilks, Kendall, et al. (2017);
Wilks et al. (2020) attribute the source of deformation to deeper origins. According to Samrock et al. (2015),
significant changes in the hydrothermal regime, specifically involving the hydro‐mechanical behavior of clay
minerals and thermoelastic expansion of fractured rock induced by hot fluids contribute to unrest.

Fault plane solutions for selected events reveal approximately NNE‐SSW normal faults, consistent with the
current direction of extension. These events, caused by brittle failure, display double‐couple mechanisms, but
fluids may also play a role in fault activation. The brittle nature of these events suggests that the NNE‐SSW faults
and the caldera ring faults are still active, potentially contributing to the unrest. Caldera ring faults can be
reactivated during regional extension (Maestrelli et al., 2024). The NNE‐SSW faults are located in the narrow
zone of recent and intense faulting known as the WFB (Mohr, 1967). The structure and volcanic evolution of the
Aluto volcanic complex are controlled by the influence of these NNE‐trending faults (Le Turdu et al., 1999). All
Quaternary volcanic activity has been limited to this belt, with no significant volcanic occurrences (Abebe
et al., 1998) in the easternmost areas. The fault belt does not precisely align with the median axis of the rift and this
deviation is attributed to a clockwise rotation rather than subsidence or uplift (Mohr, 1967). Geodetic data show
that more than 80% of the strain within the rift is accommodated by magmatic segments, indicating that these
faults are active and the border faults are not the primary areas of extension (Ebinger & Casey, 2001). The
seismicity in these magmatic segments is of low magnitude and is prominent along Quaternary faults, fissures,
and chains of eruptive centers (Keir et al., 2006).

The source of Aluto's unrest appears to involve a complex interplay of different mechanisms as deformation is
influenced by various magmatic processes, including magma movement, crystallization, degassing and hydro-
thermal expansion (Caricchi et al., 2014; Kwoun et al., 2006; Mattia et al., 2007; Sigmundsson et al., 1997;
Sturkell & Sigmundsson, 2000). Gas release can cause inflation unrelated to magma injection, and degassing or
crystallization can lead to subsidence. At depths greater than 13 km mafic melts are saturated with H2O and CO2

and a considerable amount of volatiles are released from deep mafic melts through diffuse degassing (Iddon &
Edmonds, 2020). These melts could be saturated with an exsolved volatile phase that has lower conductivity
(Laumonier et al., 2017), but have high conductivity when mixed with groundwater (Aizawa et al., 2009), which
might be observed at Aluto (Iddon & Edmonds, 2020). We suggest that the primary causes of unrest at Aluto are
both magmatic and hydrothermal processes. These processes occur as faults and fracture systems channel fluids
and intersect with shallow dikes or magma storage chambers. Additionally, the reactivation of caldera ring faults
during regional extension and the impact of hydrological surface loading also play significant roles.

4.5. Wider Implications

Our observation of seismicity extending to greater depth beneath Aluto suggests a crystallized mush or body with
melt pockets, which could have broader implications. Traditionally, melt‐dominated magma chambers have been
central to volcanic and igneous models. However, recent evidence challenges this view, suggesting that forming
and maintaining such chambers is difficult. Geochemical studies reveal complex mineral scale processes and
long‐term near‐solidus magma storage (Bachmann & Bergantz, 2008; Cashman et al., 2017; Cooper &
Kent, 2014; Iddon et al., 2019). Large melt bodies are also frequently undetected by geophysical imaging beneath
active volcanoes, suggesting magma may be stored as melt‐poor mush with low conductivity and Vp/Vs ratio as
mentioned above. An emerging consensus is that transcrustal magmatic systems are primarily composed of
crystal mush, where crystals form a continuous framework interspersed with melt (Cashman et al., 2017; Jackson
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et al., 2018; Sparks et al., 2019). This mush dominated perspective on igneous systems is highly explanatory, but
it necessitates new conceptual models to address questions about magma evolution and volcanic system behavior.
Shallow magma chambers either erupt as volcanoes or solidify as intrusive magma bodies (Cashman et al., 2017).
Therefore, the intrusive body beneath Aluto is likely highly crystallized mush and could support the above
argument. The parental melt originate from intricate, vertically extensive mafic magmatic systems located both
on‐axis and off‐axis (Iddon & Edmonds, 2020). Additionally, the ascent of fluids along fault and fracture systems
could have implications related to volcanic risk, shallow mineral deposits, and geothermal systems.

5. Conclusion
We analyzed the seismicity of Aluto and its surrounding region using a local network of 12 seismic stations
operating from January 2012 to January 2014. A total of 2,393 events were located using a non‐linear location
method, with 1,262 events of sufficient quality to calculate moment magnitudes. The majority of the events
beneath Aluto occur within the upper 2 km.Most of the events occur around the caldera and align with the NE‐SW
trending AJFZ, which cross‐cuts the caldera edifice and ring faults. We observed temporal variations in seis-
micity. Seismic activity beneath Aluto extends up to 40 km bsl, and we observed low seismicity northwest of
Aluto beneath SDFZ consistent with previous magnetotelluric and gravity studies. The high b‐value suggest the
presence of fluids and, pre‐existing faults and fracture systems act as pathways connecting the magmatic system
with the shallow hydrothermal system in Aluto. Fault plane solutions reveal approximately NNE‐trending normal
faults, consistent with the current direction of extension. Earthquakes are caused by brittle failure and display
double‐couple mechanisms, with fluids potentially playing a role in fault activation. The unrest at Aluto involves
a complex interplay of different mechanisms, primarily driven by tectonic, magmatic and hydrothermal pro-
cesses. The fluid pathways may control volcanic eruptions and facilitate mineral transport from a magmatic
reservoir to the hydrothermal system, promoting mineral deposition at shallow depths.

Data Availability Statement
The XM seismic network and the waveforms that we used in this research are readily available for access and can
be obtained through IRIS Data Services (The ARGOS Project, 2012). Earthquake locations are determined using
QuakeMigrate (Bacon et al., 2025) and NonLinLoc (Lomax et al., 2023). The software used to calculate moment
magnitudes and b‐values, SeisSrcMoment (T. Hudson, 2020), is freely available. The algorithm used for moment
tensor source inversion (Pugh & White, 2018) is also freely available. Several of the figures were created using
Generic Mapping Tools (GMT) (Wessel et al., 2019), and the seismic data was analyzed using the ObsPy library
(Beyreuther et al., 2010). The magnetotelluric (MT) model used in Figure 9 is available for download from the
ETH research collection under Dambly et al. (2022), as a VTK file for visualization in ParaView. The event
catalog generated in this study and borehole data are archived and available through Zenodo (Yemane
et al., 2025).
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