
BIROn - Birkbeck Institutional Research Online

Collins-Jones, L.H. and Cooper, R.J. and Bulgarelli, Chiara and Blasi Ribera,
Anna and Katus, L. and McCann, S. and Mason, Luke and Mbye, E.
and Touray, E. and Ceesay, M. and Moore, S.E. and Lloyd-Fox, S. and
Elwell, Clare (2021) Longitudinal infant fNIRS channel-space analyses are
robust to variability parameters at the group-level: An image reconstruction
investigation. NeuroImage 237 , p. 118068. ISSN 1053-8119.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/55847/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/55847/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


NeuroImage 237 (2021) 118068 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Longitudinal infant fNIRS channel-space analyses are robust to variability 

parameters at the group-level: An image reconstruction investigation 

Liam H. Collins-Jones a , b , ∗ , Robert J. Cooper a , b , Chiara Bulgarelli a , Anna Blasi a , Laura Katus c , d , 
Samantha McCann 

e , Luke Mason 

f , Ebrima Mbye 

g , Ebou Touray 

g , Mohammed Ceesay 

g , 
Sophie E. Moore 

e , g , Sarah Lloyd-Fox 

c , Clare E. Elwell a , BRIGHT Study Team 

h 

a Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK 
b DOT-HUB, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK 
c Centre for Family Research, University of Cambridge, Cambridge, UK 
d Department of Psychology, University of Cambridge, Cambridge, UK 
e Department of Women and Children’s Health, Kings College London, London, UK 
f Centre for Brain and Cognitive Development, Birkbeck College, London, UK 
g MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, UK 

a r t i c l e i n f o 

Keywords: 

Functional near-infrared spectroscopy 
Image reconstruction 
Infant functional neuroimaging 
Infant cognitive development 
Neurodevelopment 
Longitudinal imaging 

a b s t r a c t 

The first 1000 days from conception to two-years of age are a critical period in brain development, and there 
is an increasing drive for developing technologies to help advance our understanding of neurodevelopmental 
processes during this time. Functional near-infrared spectroscopy (fNIRS) has enabled longitudinal infant brain 
function to be studied in a multitude of settings. Conventional fNIRS analyses tend to occur in the channel- 
space, where data from equivalent channels across individuals are combined, which implicitly assumes that head 
size and source-detector positions (i.e. array position) on the scalp are constant across individuals. The validity of 
such assumptions in longitudinal infant fNIRS analyses, where head growth is most rapid, has not previously been 
investigated. We employed an image reconstruction approach to analyse fNIRS data collected from a longitudinal 
cohort of infants in The Gambia aged 5- to 12-months. This enabled us to investigate the effect of variability in 
both head size and array position on the anatomical and statistical inferences drawn from the data at both the 
group- and the individual-level. We also sought to investigate the impact of group size on inferences drawn from 

the data. We found that variability in array position was the driving factor between differing inferences drawn 
from the data at both the individual- and group-level, but its effect was weakened as group size increased towards 
the full cohort size ( N = 53 at 5-months, N = 40 at 8-months and N = 45 at 12-months). We conclude that, at 
the group sizes in our dataset, group-level channel-space analysis of longitudinal infant fNIRS data is robust to 
assumptions about head size and array position given the variability in these parameters in our dataset. These 
findings support a more widespread use of image reconstruction techniques in longitudinal infant fNIRS studies. 

1. Introduction 

The period of the first thousand days of life – from conception to 
2 years of age – is a critical stage in the development of the brain and ner- 
vous system ( Bornstein, 2014 ; Cusick and Georgieff, 2012 ; Mendez and 
Adair, 1999 ; Powell et al., 1995 ). The past twenty years have seen the 
adoption and optimisation of neuroimaging methods to further our un- 
derstanding of development during this integral period of human life. 
However, while longitudinal studies of brain function play an important 
role in understanding development, less than a third of developmental 
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neuroimaging studies published between 2008 and 2019 employed this 
design ( Azhari et al., 2020 ). 

While there has been an overall decreasing trend in published neu- 
roimaging infant studies over the past decade ( Azhari et al., 2020 ), re- 
cently and conversely there has been an increase in the number of stud- 
ies employing functional near-infrared spectroscopy. This technique, ab- 
breviated to fNIRS, is a non-invasive optical neuroimaging technique 
measuring changes in cortical haemoglobin concentration as a marker of 
functional activation ( Lloyd-Fox et al., 2010 ; Pinti et al., 2020 ). Further- 
more, there has been an increase in the use of this method in longitudinal 
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studies of functional activation ( Ichikawa et al., 2019 ; McDonald et al., 
2019 ; Miguel et al., 2019 ) and functional connectivity ( Bulgarelli et al., 
2020b ). 

Longitudinal study designs are of particular importance when it 
comes to understanding the impact of early adversity on brain and cog- 
nitive development, and is a framework commonly adopted in global 
health projects. Most recently, fNIRS has found particular application 
in global health projects where the portability, low cost relative to func- 
tional magnetic resonance imaging (fMRI), and accessibility of the tech- 
nology has enabled studies to be undertaken in low-resource settings 
( Blasi et al., 2019 ). Recent examples include studies of visual working 
memory in rural India ( Wijeakumar et al., 2019 ); social selectivity in 
urban Bangladesh ( Perdue et al., 2019 ); social markers in rural Gambia 
( Blasi et al., 2014 ; Lloyd-Fox et al., 2017 ); and monitoring treatment 
of malnutrition in infants and children in Guinea-Bissau ( Roberts et al., 
2017 , 2020 ). 

However, given this recent increase in the number of longitudinal 
developmental studies, particularly within the new frontier of global 
health neuroimaging research, it is paramount that we utilise analytical 
approaches that are applicable across a range of contexts (such as age 
and changes in head size). In fNIRS, an array of sources and detectors 
are placed on the head. Each detector records the intensity of light arriv- 
ing from a subset of neighbouring sources, with each dual-wavelength 
source and detector pair referred to as a channel. Typically, the analysis 
of fNIRS data occurs in the channel-space, where data from each chan- 
nel is pre-processed and statistically examined on a channel-by-channel 
basis. Group-level channel-space analyses are then predicated on the no- 
tion that data acquired from the same channel of the same array can be 
compared between (and combined across) individuals. This approach 
makes two assumptions. The first is that differences in scalp positions 

of sources and detectors relative to cranial landmarks are negligi- 

ble across individuals . The second is that a given scalp location has 

the same spatial relation to underlying cortical anatomy across all 

individuals . This is particularly pertinent in longitudinal studies over 
the first year of life, where head circumference increases by almost a 
quarter from 1- to 12-months of age (World Health Organization, 2007 ). 
This issue concerns not only scalp-cortex correspondences, but 
also differences in cortical depth linked to variation in head 
size. 

To produce images from fNIRS data, an image reconstruction ap- 
proach can be used. Image reconstruction employs a structural prior of 
head anatomy to compute a forward model of the propagation of near- 
infrared light, describing how an attenuation change at a given point 
in the head will affect resulting fNIRS attenuation measurements. This 
model is then mathematically inverted, and optical density data derived 
from fNIRS attenuation measurements for each channel is combined 
with the inverted forward model to reconstruct an image that maps cor- 
tical haemoglobin concentration changes ( Arridge and Cooper, 2015 ). 

Channel-space analyses assume a constant head size and a constant 
array position across participants. Variability in either of these param- 
eters will influence the distribution of near-infrared light transmitted 
from source to detector, and will therefore influence measures of brain 
activation. Here, we aim to provide an analysis to isolate the effects 
of the variability in head size and array position on the analysis of 
longitudinally-acquired infant fNIRS data. Because these effects are fun- 
damentally related to the three-dimensional anatomy of the subject, 
such an analysis requires a light transport modelling and image recon- 
struction approach. Using such an approach, we can directly compare 
the effects of head size and array position in a consistent anatomical 
space. We therefore chose to implement an image reconstruction ap- 
proach to isolate the effects of variability in these parameters, which 
we can then use to infer the effects of variability in these parameters on 
conclusions about fNIRS data analysis drawn from channel-space anal- 
yses. 

In this work, we use image reconstruction as a tool to investigate 
the validity of assuming constant array position and constant head size 

in channel-space analysis of longitudinal infant fNIRS data. Specifically, 
this paper:- 

1 investigates whether the application of a best-practice image recon- 
struction approach can result in different statistical inferences com- 
pared to a standard channel-space analysis. 

2 uses image reconstruction approaches to investigate the effect of 
variation in array position and head size on the interpretation of 
fNIRS data. 

3 uses image reconstruction approaches to investigate whether group 
size has an impact on differing statistical and anatomical infer- 
ences between a best-practice image reconstruction approach and 
an image-space equivalent to channel-space analysis. 

To address these objectives, this paper utilises data from the Brain 
Imaging for Global Health (BRIGHT) project. This is a longitudinal study 
investigating early neurocognitive development during the first 2 years 
of life, following two cohorts of infants in parallel; one in The Gambia 
( N = 225) and the other in the UK ( N = 62). As part of the BRIGHT 

project, fNIRS data was collected at six age points: 1-, 5-, 8-, 12-, 18- and 
24-months of age. Data from this project has already been analysed to 
investigate age-related changes in the neural responses to tasks such as 
assessing working memory ( Begus et al., 2016 ), social cognition ( Lloyd- 
Fox et al., 2017 , 2014a ), and habituation and novelty detection ( Lloyd- 
Fox et al., 2019 ). Due to its large sample size and its inclusion of data 
acquired at three age points up to 12-months of age, the dataset from 

The Gambian cohort of the BRIGHT project is highly suited to address 
the objectives outlined above. 

2. Methods 

2.1. Participants 

Recruitment of participant families occurred at the Medical Research 
Council (MRC) Unit The Gambia at the London School of Hygiene and 
Tropical Medicine (MRCG@LSHTM) field station in Keneba, The Gam- 
bia, during antenatal clinic visits. In order to avoid confounds relating 
to language translation, only families of the Mandinka group, the ethnic 
majority in the region ( Hennig et al., 2017 ), were recruited. All infants 
included in the current study were required to have been born at term 

(37–42 weeks gestation). Datasets from 104 infants aged 5-months, 97 
infants aged 8-months, and 97 infants aged 12-months in the Gambian 
cohort of the BRIGHT study were available at the time of conducting this 
analysis. Only datasets from the Gambian cohort were included in this 
analysis. This was because the Gambian cohort had a particularly large 
sample size, particularly in the context of longitudinal infant studies. 
Furthermore, for this analysis we wanted to avoid the potential con- 
founds related to cohort demographics that would come by mixing data 
from the two cohorts. 

In the West Kiang District, where Keneba is situated, moderate to 
severe growth faltering is prevalent in infants from roughly 3 months 
of age, due to several factors which include prenatal growth retarda- 
tion, poor-quality (often contaminated) foods and a high incidence of 
infection ( Lunn et al., 1991 ; Lunn, 2000 ; van der Merwe et al., 2013 )). 
As part of the BRIGHT project, growth measurers were acquired at 
each age point, though an indication of severe growth faltering (i.e. 
weight ‐for ‐height z-score or head circumference z ‐score greater than 3 
below the median values stated in the World Health Organisation stan- 
dards (World Health Organization, 2007 )) was not a criteria for exclu- 
sion. 

Ethics approval for the BRIGHT study was obtained from the joint 
Gambia Government/MRC Unit The Gambia Ethics Committee (‘Devel- 
oping brain function for age curves from birth using novel biomarkers of 
neurocognitive function’, SCC number 1451v2). Full, informed consent 
was obtained from all participating families prior to recruitment. 
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Fig. 1. a) Representation of the BRIGHT array, outlining the po- 
sitions of sources and detectors (see legend). 
b) Anterior headgear placement of three infants included in the 
study. The horizontal dotted line denotes the level of the top of 
the eyebrows, and the vertical dotted line denotes the midline. A: 
vertical line denoting middle of the headband is uncentered rela- 
tive to the midline, but the bottom of the headband is not displaced 
relative to the top of the eyebrows. B: bottom of headband is dis- 
placed superiorly with respect to the top of the eyebrows, but is 
centred relative to the midline. C: headgear is centred relative to 
the midline and is in line with the top of the eyebrows. 
c) Lateral assessment of headgear placement. The displacement of 
a reference optode, highlighted by a dotted circled, in directions 
parallel to the x - and y -axes is measured (denoted by “x-disp. ”
and “y-disp. ”). Displacement in the anterior or superior directions 
were taken to be positive, while displacement in the posterior or 
inferior directions were taken to be negative. 

2.2. Procedure 

For fNIRS data acquisition, infants wore custom ‐built fNIRS head- 
gear consisting of two arrays, one over each of the left and right hemi- 
spheres, embedded within a custom-made soft silicone-based head band. 
The arrays contained a total of 6 sources and 7 detectors per hemisphere 
(source ‐detector separations 2 cm), constituting 17 channels per hemi- 
sphere ( Fig. 1 a). Data were acquired with the NTS fNIRS system (Gow- 
erlabs Ltd. London, UK) which uses two continuous wavelengths of light 
at 780 nm and 850 nm and has a sampling rate of 10 Hz ( Everdell et al., 
2005 ). The design of the fNIRS array enabled responses in lateral frontal 
to posterior temporal brain regions to be investigated, which included 
the inferior frontal gyrus; middle and superior temporal regions; and the 
temporo ‐parietal junction. 

Any displacement of the headband that could compromise the sta- 
bility of its fit were excluded from further analyses. To assess headgear 
placement, photographs of the array were taken on each participant’s 
head pre- and post-experiment. Over the anterior of the head, the in- 

tended placement of the headgear should align a vertical line denoting 
the centre of the band to the midline (in line with the participant’s na- 
sion landmark) and such that the silicone band lay just above and in line 
with the eyebrows. Infants where the headband was displaced both hor- 
izontally (with reference to the midline) and vertically (with reference 
to the eyebrows) were excluded from further analyses on the grounds 
of poor placement of headgear. Examples of three included infants with 
horizontal but no vertical displacement (A), vertical but no horizontal 
displacement (B), and no horizontal or vertical displacement (C) over 
the anterior of the head are shown in Fig. 1 b. 

The placement of the headgear was assessed laterally by overlay- 
ing a set of axes on the images of the head to quantify the displace- 
ment of a reference optode. This method was first demonstrated by 
Blasi et al. (2014) . The intended placement of the headgear was such 
that the third lower optode from the posterior, used as a reference op- 
tode (see Fig. 1 c), was over the tragus. The overlaid x -axis was defined 
as a line from the top of the eyebrows running along the superior-most 
point of the ear, while the y -axis was defined as a line passing through 
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the tragus and the anterior of the helix. Displacement in the directions of 
both x - and y -axes were measured; displacement towards the anterior or 
superior direction was noted as positive, while displacement towards the 
posterior or inferior direction was noted as negative. The x-displacement 
of the reference optode was measured, while the vertical displacement 
of the bottom headband at that x-displacement value was measured and 
then added to the value of the lower band thickness to obtain the y- 
displacement. The x- and y-displacement values for each hemisphere 
for each individual were used to register the array to a head model. If 
the x-displacement value was greater than or equal to 1.6 cm, chan- 
nels were re-indexed such that the array was shifted either forward or 
backward one full channel space. If the y-displacement was greater than 
1.6 cm, the infant was excluded from further analyses on the grounds 
of poor headgear placement. 

In addition, head circumference, tragus-to-tragus distance and 
nasion-to-inion distance were measured for each participating infant. 
Infants without a head circumference measurement were excluded. 

2.3. Experimental paradigm 

Participants were assessed using an auditory-visual social perception 
paradigm first described by Lloyd-Fox et al. (2014a ) and subsequently 
used in a number of other studies of infant brain function ( Frijia et al., 
2020 ; Lloyd-Fox et al., 2017 , 2013 , 2012 , 2018 ; Perdue et al., 2019 ). 

The paradigm included three experimental conditions and a baseline 
condition. During each condition, visual-social videos were presented, 
showing Gambian adults moving their eyes left or right, or perform- 
ing hand games. The duration of these videos ranged from 9 to 12 s. 
In the visual-social silent (VS) condition, visual-social videos were pre- 
sented in silence with no accompanying audio. At the onset of two in 
every three trials, auditory stimuli were presented, lasting a total dura- 
tion of 8 s (consisting of four different sounds). The auditory vocal (V) 
condition was where infants were presented with non-speech vocalisa- 
tions of two adult speakers (who were either coughing, crying, laughing 
or yawning) alongside the visual-social videos. The auditory non-vocal 

(NV) condition was where common environmental sounds familiar to 
the infants that were not human- or animal-generated were presented 
alongside the visual-social videos. 

Experimental conditions were altered one after the other, and the 
same order of conditions (VS, NV, V, VS, V, NV) was presented until 
the infant showed signs of fussiness or boredom or up to the point that 
5 presentations of each condition has been reached. During fNIRS data 
acquisition, videos of the infants were recorded to perform eye-tracking 
to monitor the time the infant was looking at the screen for each trial, 
which was used as an indication of the infant’s attention. A baseline con- 
dition was presented between experimental conditions, where images of 
types of transport (such as helicopters, cars, and trains) were displayed. 
A graphical representation of the paradigm is shown in Supplementary 

Material . 
In this work, we focused on the response to the auditory vocal stim- 

ulus. Usually, the response to this condition is studied in the context 
of its contrast with the response to the auditory non-vocal condition. 
However, here we aimed to investigate whether different data analy- 
sis approaches (in both image- and channel-space) can lead to different 
inferences drawn from the data rather than the contrast between the 
two conditions. As such, we chose to focus on the response to a single 
condition. 

2.4. fNIRS data pre-processing 

The fNIRS data were pre-processed using NirsPlot ( Hernandez and 
Pollonini, 2020 ) and Homer2 (MGH–Martinos Center for Biomedical 
Imaging, Boston, MA, USA) ( Huppert et al., 2009 ), which were both 
implemented in MATLAB. The specific pipeline and analysis have pre- 
viously been reported by Bulgarelli et al. (2020a) ) and Hernandez and 
Pollonini (2020) . 

The first step in the processing stream was channel pruning. Based on 
previous experience with the NTS fNIRS system, channels with intensity 
readings lower than a certain threshold were immediately excluded. The 
data were then subjected to a cardiac-signal and spectral analysis assess- 
ment based on a method first proposed by Pollonini et al. (2016) . This 
inspection was done within each channel in the array. Channels that did 
not pass these quality assessments were excluded from further analysis. 
If more than 40% of channels from a given dataset were deemed invalid, 
then the whole dataset was excluded from further analysis. 

For each of the four conditions, raw intensity data from surviving 
channels were processed in a pipeline in Homer2. The first step con- 
verted raw intensity data to optical density. Motion artifacts were cor- 
rected using a combination of spline interpolation and wavelet-based 
filtering in the method proposed by Di Lorenzo et al. (2019) . Follow- 
ing motion artifact correction, sections of the data still affected by noise 
were flagged: if such an artifact was detected, a time window wider than 
the extent of the flagged section was defined on either side of the artifact. 
Trials within this time window were excluded from the analysis, where 
trial exclusion was applied within each channel. The data were band- 
pass filtered with high- and low-pass frequencies of 0.02 and 0.06 Hz 
respectively in order to correct for slow baseline drifts in the data as 
well as to eliminate high-frequency noise. The modified Beer-Lambert 
law was employed to convert optical density data into concentration 
changes in oxy- and deoxy-haemoglobin ( Delpy and Cope, 1997 ). The 
differential pathlength factors were calculated for each wavelength and 
age using the formula proposed by Scholkmann and Wolf (2013) . 

Based on the looking time measures, trials where the infant was look- 
ing at the screen for less than 60% of the trial’s duration were excluded, 
and infants with less than a minimum of three valid trials for the audi- 
tory vocal condition were excluded. In Homer2, all the remaining trials 
(after exclusion for looking time and excessive noise due to motion) for 
each participant were block-averaged for each condition: the block du- 
ration was defined starting at t = − 2 s from stimulus onset and ending 
at t = 20 s from stimulus onset. The total duration of the block was 
therefore 22 s. 

As previously mentioned, though data was pre-processed for all four 
conditions, we only focus on the response to the auditory-vocal stimulus 
relative to baseline. 

2.5. Processing streams 

In this work, five data processing streams were used: channel-space 
analysis and four image reconstruction pipelines. In the channel-space 
analysis, the block-averaged values of concentration changes across in- 
fants during a response window were compared to baseline for the au- 
ditory vocal condition. For the image reconstruction processing stream, 
each individual’s block-averaged concentration changes were converted 
back to optical density values using the modified Beer-Lambert law. The 
optical density values were then used as an input in the image recon- 
struction step. 

The basic outline for each of the imaging processing streams was as 
follows: 

1 Warp a head model on the basis of certain head measurements. 
2 Register optode positions to the head model. 
3 Produce a forward model, which defines the sensitivity distribution 

associated with each channel. 
4 Invert the forward model, and use as an input alongside a given 

infant’s block-averaged optical density data into a reconstruction 
function to produce a time-course image of the distribution of 
haemoglobin concentration changes on the cortical surface. 

5 Repeat steps 1–4 for all participants. 
6 Perform group-level statistical analysis on a node-by-node basis, 

comparing the concentration change values across participants in 
a response window to baseline. 
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Fig. 2. Outline of the different processing streams compared in this study. 

For step 1, the head model could be warped on the basis of either 
(a) subject-specific head measurements, or (b) group-average head mea- 
surements. For Step 2, there were two options for registering the array 
to the head model: (a) register by subject-specific array positioning data, 
or (b) register by group-average array positioning data. Given these two 
steps in the processing pipeline, each with two options, there were a 
total of four possible image reconstruction processing streams. All four 
of these processing streams are outlined in Fig. 2 . 

For the purpose of this analysis, the first processing stream presented, 
where subject-specific head measurement data were used both to warp 
the head model and to register the array, is termed subject parameter re- 

construction . Given that this processing stream attempted to account for 
array position and head size on a subject-specific basis, this was effec- 
tively the best-practice image reconstruction pipeline that could feasibly 
be applied to this dataset. At the other end of the complexity scale, the 
second processing stream used group-average head measurement data to 
warp the head model and group-average array position data to register 
the array, and is termed constant parameter reconstruction . This process- 
ing stream employed the same assumptions as the channel-space anal- 
ysis, and is considered as an image-space equivalent to channel-space 
analysis. While some fNIRS analyses may make not attempt to account 
for head size, we believe a reasonable minimum step for research groups 
to take is to obtain a population average measure of head size and use 
that measurement to warp a head model for each age group. We use this 
approach to define our constant parameter pipeline, which provides a 
reasonable baseline against which to compare our subject parameter 
pipeline. 

Two other variations of the image reconstruction pipeline are com- 
pared, both attempting to isolate the effects of variability in head size 
and array position. Constant array position reconstruction (subject-specific 
head measurements, group-average array position) offered a method to 

isolate the effect of variability in array position, and constant head warp 

reconstruction (group-average head measurements, subject-specific array 
positioning) offered a method to isolate the effect of variability in head 
size. 

We acknowledge that some fNIRS pipelines may not account for head 
size at all. We therefore re-ran our constant parameter pipeline twice for 
the fNIRS data at each age, using the head measurements of the other 
ages, to mimic the case where a single-sized head model is used for all 
infants. 

2.6. Head modelling 

A four-layer mesh model of the infant head was used as part of 
the image reconstruction process, which was constructed using struc- 
tural MRI data from a cohort of 12-month-old infants presented by 
Shi et al. (2011) . A single head model was used across ages and spatially 
warped appropriately. Prior to choosing to employ a single head model, 
we conducted an extensive preliminary analysis to evaluate age-specific 
models for the age range investigated in this work using structural data 
presented by Sanchez et al. (2012) . This analysis demonstrated very lit- 
tle differences in sensitivity as a result of anatomical differences (i.e. 
spatial distribution of tissues but not model size) across these models, 
and is presented in Supplementary Material . Using a single model across 
ages also negated the need to register different head models to a com- 
mon space for comparison across ages, which would undoubtedly have 
incurred some level of error itself. 

Binary tissue masks for white matter, grey matter and cerebrospinal 
fluid were combined to produce a cerebral tissue mask. The outer bound- 
ary of the cerebral tissue mask was used to demarcate the inner skull 
border, and an outer scalp boundary was segmented from the average 
T1-weighted MRI template using Betsurf ( Jenkinson et al., 2005 ). All 
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Fig. 3. Top row: example sagittal, axial and coronal sections of the four-layer infant head model showing the distribution of white matter (WM), grey matter (GM), 
cerebrospinal fluid (CSF) and extra-cerebral tissue (ECT). Bottom row: the position of the cranial landmarks and 10-5 positions (in black) and cranial landmarks (in 
magenta) on the scalp surface. 

voxels between the outer scalp and inner skull boundaries were defined 
as extra-cerebral tissue, a combined layer for scalp and skull; given the 
difficulty involved in distinguishing the two tissues from each other in 
infant MRI data, the two tissues were combined as one label. The re- 
sulting four-layer tissue mask was used to create a tetrahedral volume 
mesh as well as a grey matter surface mesh using the iso2mesh package 
(( Fang and Boas, 2009 ), see iso2mesh.sourceforge.net). 

A parcellation atlas, the Automated Anatomical Labelling (AAL) at- 
las, consisting of 90 volumes of interest, was transformed to the space 
of the 12-month head model based on the affine transformation infor- 
mation in its file header. This allowed us to use the AAL atlas to assign 
an anatomical label to each node in the grey matter surface mesh. 

The coordinates of five cranial landmarks (the nasion (Nz), the 
inion (Iz), the left pre-auricular point (Al), the right pre-auricular 
point (Ar) and vertex (Cz)) were determined manually using ITK- 
SNAP ( Yushkevich and Gerig, 2017 ). Based on a curve-walk procedure 
(( Aasted et al., 2015 ), see Homer2: www.nitrc.org/projects/homer2 ), 
the 10-5 positions on the scalp surface of the head model were com- 
puted using the cranial landmarks coordinates (see Fig. 3 ). The mesh 
nodes were then transformed to a coordinate system where: 

• the position of Iz defines the origin 
• a line joining Iz to Nz defines the y-axis 
• the z-coordinates of Ar and Al are approximately equal following 

rotation of mesh nodes around the y-axis. 

2.7. Head model warping 

Data on head circumference, tragus-to-tragus via Cz (approximated 
to be the Ar-Cz-Al) distance, and nasion-to-inion via Cz (Nz-Cz-Iz) dis- 

tance were used to iteratively warp the head model. For the pipelines 
that required the use of subject-specific head measurements (subject pa- 
rameter and constant array position pipelines), these measures were 
used to warp the infant head model to each participant’s head di- 
mensions. For the pipelines that did not require subject-specific head 
measurements (constant head warp and constant parameter pipelines), 
the mean values of these measures were calculated at each age and 
used to iteratively warp the infant head volume mesh. At the 5- 
month assessment timepoint, measurement of the Nz-Cz-Iz distance 
was not taken, and so the head model was warped according to 
head circumference and Ar-Cz-Al distance. The grey matter surface 
mesh was also iteratively warped by the same values as the head 
model. 

For a given participant, the head model was initially scaled accord- 
ing to head circumference; a warp factor was calculated by dividing 
the subject-measured (or group mean) head circumference by the head 
model’s initial head circumference. Each node’s x-, y- and z-coordinates 
were multiplied by the warp factor. The warped model’s head circum- 
ference, Ar-Cz-Al distance and Nz-Cz-Iz distance were computed, and 
the measurement with the greatest difference between its correspond- 
ing subject-measured (or group mean) value was then used to re-warp. 
For whichever distance had the greatest difference, the warped model- 
measured value was divided by the subject-measured (or group mean) 
value to yield another warp factor which was then multiplied by the 
relevant node coordinates (x- and z-coordinates if Ar-Cz-Al; y- and z- 
coordinates if Nz-Cz-Iz; x-, y- and z-coordinates if head circumference). 
The process was repeated until the error for the Ar-Cz-Al distance was 
below 6 mm, the error for the Nz-Cz-Iz distance was below 6 mm, and 
the error for head circumference was below 3 mm. See Supplementary 
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Fig. 4. The array registration process for the 
subject parameter reconstruction pipeline. A) 
Photograph of the lateral placement of the ar- 
ray on an example infant, with the x - and y -axes 
overlaid. B) The x - and y -axes approximated on 
the head model warped on the basis of the in- 
fant’s head measurements. C) Curves (in green) 
parallel to the Iz-FPz curve which were used 
to register optodes in relation to the reference 
optode, shown as a red circle. D) All optodes 
registered to the head model, where detectors 
are represented by blue circles and sources are 
represented by red circles. 

Materials for details on accuracy of head model warping with respect 
to participant-measured values. Allowing a degree of tolerance with re- 
gards to head measurements (which themselves are prone to a degree 
of error) removes the potential for over-fitting the head warping proce- 
dure to head measurements, which can lead to anomalous and anatom- 
ically implausible head shapes. The parameters chosen were a balance 
between over-fitting, accuracy and computation time. In Supplementary 

Material , we provide data on the accuracy of our iterative warping pro- 
cedure in preserving participant-measured head measurements in the 
warped head models for each infant undergoing the subject parameter 
pipeline. This error rarely exceeded 2% for Nz-Cz-Iz and Ar-Cz-Al, and 
rarely exceeded 0.2% for head circumference. 

2.8. Array registration 

For each hemisphere the approximated x-axis on the warped head 
model was defined as a curve along the scalp surface from Iz to FPz 
along the lateral side of the head, and the y-axis was approximated by 
defining a curve from the preauricular point to CCPz on the midline 
of the head. The x- and y-displacement values of the reference optode 
extracted from photographs were used to register the reference optode 
to the head model. With the knowledge of a source-detector separation 
of 2 cm between nearest neighbours, the other optodes in the array were 
registered to the head model in relation to the reference optode along 
two curves parallel to the Iz-FPz curve. 

For the subject parameter and constant head warp pipelines, subject- 
specific values were used to register optodes to the head model. For con- 
stant parameter and constant array position pipelines, age-cohort mean 
x - and y -axis displacement values were used. An example of a registered 
array on the head model compared to the corresponding participant pho- 
tograph is provided in Fig. 4 . 

2.9. Light transport modelling and image reconstruction 

For each infant dataset in each processing stream, we used TOAST ++ 

(( Schweiger and Arridge, 2014 ), see http://toastplusplus.org ) to model 
near-infrared light transport to produce a forward model for each wave- 
length. Using a regularization hyperparameter of 0.1, a zeroth-order 
Tikhonov regularized reconstruction was performed. A requirement for 
depth discrimination in image reconstruction is that overlapping chan- 
nels are present in the array ( Lee et al., 2017 ); these are channels 
that exhibit sensitivity profiles that partially sample the same volume 
( Boas et al., 2004 ; White, 2010 ). No data from overlapping channels 
were used in this analysis, and so image reconstruction was constrained 
to the grey matter nodes of the volume mesh. This has been shown 
in previous topographic approaches to increase the accuracy of recon- 
structed images when data on cortical activation is being collected 
( Boas and Dale, 2005 ; Boas et al., 2004 ). In addition, we do not ex- 
pect to be sampling a substantial amount of white matter due to the 
source-detector separation in our array. 

For each individual, the forward model was thresholded at 1% of 
the maximum value to produce a binary image, which was mapped to 
the grey matter surface mesh to create an individual-level grey matter 
mask. A group-level grey matter mask for each age-cohort was produced, 
which consisted of nodes present in the individual-level grey matter 
masks of at least three quarters of participants, similar to the approach 
taken by Wijeakumar et al. (2019) . Data preparation, meshing, forward 
modelling and reconstruction were facilitated by the DOT-HUB Toolbox 
( www.github.com/DOT-HUB ). 

2.10. Statistical mapping of reconstructed images 

In this work, we produced T-statistic maps comparing the group-level 
response to the auditory vocal condition to baseline across participants 
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for a given age. Statistical mapping was conducted in the space of the 
grey mater surface mesh. A time window of 12–16 s post-stimulus on- 
set was used to signify the peak of the haemodynamic response in the 
image time-course. This choice of window was informed by previous 
data analysis approaches using the same paradigm in previous cohorts 
( Lloyd-Fox et al., 2017 , 2013 , 2012 ). 

Statistical mapping was performed for oxy-haemoglobin group-level 
images at each age and for each image reconstruction processing stream. 
We also present deoxy-haemoglobin group-level images for the subject 
parameter pipeline in the Results section. All concentration change val- 
ues within the response window across participants were concatenated 
to produce a single vector for each node present in the group-level grey 
matter mask; the same process was completed for values within a base- 
line window (2 s pre-stimulus onset). Equivalent response and baseline 
vectors were compared using a two-tailed two-sample t-test. To correct 
for multiple comparisons, the Bonferroni method was employed on the 
basis of the number of nodes in the grey matter surface mesh, as was 
performed in ( Frijia et al., 2020 ). 

2.11. Statistical mapping of channel-space analysis 

We conducted a channel-wise statistical analysis comparing the 
group-level response to the auditory vocal condition to baseline across 
all infants, in a method analogous to the statistical mapping approach 
for the imaging processing stream. Statistical analyses were performed 
separately for oxy- and deoxy-haemoglobin time-courses. To be included 
in the analysis for a given age cohort, the channel had to be present (i.e. 
not pruned) in at least three quarters of individuals. Using a 12–16 s 
time window to represent the peak of response and a 2 s pre-stimulus 
baseline, a concatenated vector of concentration change values in these 
periods in each channel across all infants were compared using a two- 
tailed two-sample t -test. To correct for multiple comparisons, the Bon- 
ferroni method was employed on the basis of the channels (34 in total). 

To enable the group-level channel-space analysis to be compared to 
reconstructed images, channel location positions on the scalp were pro- 
jected onto the cortical surface. It is commonly assumed in fNIRS work 
that the region of the brain to which a channel is maximally sensitive 
is halfway between the source and the detector, and at a depth from 

the scalp surface equal to approximately half the source-detector sepa- 
ration ( Fukui et al., 2003 ; Lloyd-Fox et al., 2014b ). Using this knowl- 
edge, previous work relating to fNIRS in infants has demonstrated cor- 
tical projection to determine the cortical label and position of channels 
( Lloyd-Fox et al., 2014b ; Tsuzuki et al., 2017 ). 

For each age, the head model was warped by the group-average head 
measurements and the group-average array positioning data was used 
to register optode positions. The midpoint on the scalp surface between 
source and detector for each channel was projected onto the cortex 
in a method analogous to that which was demonstrated in ( Collins- 
Jones et al., 2020 ) which employs the Möller-Trumbore algorithm 

( Möller and Trumbore, 1997 ; Mena-Chalco, 2019). 
The surface nodes of the volume mesh (i.e. the scalp surface) that 

were situated within a 5 mm radius of each source-detector midpoint 
were determined, and were used to fit a plane. Orthogonal to this plane, 
a vector was defined whose length was increased until it intersected with 
a face on the grey matter surface mesh. The position of this intersection 
was taken to be the cortical projection of the channel. 

2.12. Window-averaged images 

For each individual, the duration of the block-averaged pre- 
processed data for the auditory vocal condition for each channel is 22 s 
(consisting of a 2 s pre-stimulus onset baseline period plus a 20 s post- 
stimulus onset period), and so each infant’s reconstructed image is a 
time-course of 221 frames. To obtain a single image for a given indi- 
vidual at a given age point, the mean value of each grey matter surface 

mesh node in a 12–16 s window post-stimulus onset was computed, to 
yield what we term a window-averaged image . 

2.13. Metric extraction 

In order to compare images between processing streams, two metrics 
were used: peak node offset and cortical label of peak node , which were 
computed separately for both left and right hemispheres. For subject 
parameter and constant parameter images at the group-level, the peak 
node was defined as the node in the group-level image with the greatest 
positive and negative T-statistic value for oxy- and deoxy-haemoglobin 
concentration changes, respectively. In addition, the cortical label of the 
peak node was determined. This was completed for both hemispheres 
at each age. 

For channel-space analyses, the peak channel was defined as the 
channel with the greatest positive and negative T-statistic value for oxy- 
and deoxy-haemoglobin concentration changes, respectively. To enable 
comparison between channel-space analysis and subject parameter re- 
construction, the cortical label of the peak channel projection was de- 
termined and used as an analogous metric to the cortical label of peak 
node. This was completed for both hemispheres at each age. 

At the individual-level, the peak node was defined as the node 
in the window-averaged image with the greatest positive change in 
oxy-haemoglobin concentration. This was completed for both hemi- 
spheres for each infant at each age. We focus only on changes in 
oxy-haemoglobin concentration due its larger response than deoxy- 
haemoglobin, which was an important consideration given the lower 
signal-to-noise ratio in the individual-level images. 

At both the group- and the individual-level, we defined the peak 
node offset as the Euclidean separation between the peak node from a 
given processing stream and the peak node from the subject parameter 
reconstruction. This was calculated in the space of the relevant age- 
cohort constant head warp model. In addition, having determined the 
peak node, the cortical label of that node was identified using the par- 
cellation obtained using the methods presented in Section 2.6 “Head 
modelling ”. 

2.14. Effect of longitudinal growth measures 

As part of our investigation on the effect of head size, we sought to 
investigate whether there was any association between peak node offset 
and two other parameters: head circumference (as measured from the 
infants, not corrected for age and sex) and head growth trajectory (the 
change in head circumference z-score between two age points). The pur- 
pose of this comparison was to assess whether the use of subject-specific 
parameters was more impactful in infants whose head size deviated from 

the group mean at a given age or whose head growth trajectories di- 
verged from the expected trajectories outlined by the World Health Or- 
ganisation (WHO) growth charts ( World Health Organization, 2007 ). 
This is important to investigate as differences in head size and growth 
trajectory could potentially lead to notable differences in light transport 
through the head which may lead to artifactual statistical or anatomical 
inferences. 

For each individual, the difference in head circumference from the 
group mean was calculated. For each age and each hemisphere, using 
Pearson correlation we tested for associations between individual-level 
peak node offset and:- 

1 Difference in head circumference from group mean. 
2 The absolute value of difference in head circumference from group 

mean (which disregards whether the difference is positive or nega- 
tive). 

Head circumference values were converted to z-scores on the basis 
of WHO references curves ( World Health Organization, 2007 ). For in- 
fants who had data at two or more age points, a change in z-score was 

8 



L.H. Collins-Jones, R.J. Cooper, C. Bulgarelli et al. NeuroImage 237 (2021) 118068 

computed. We then used Pearson correlation to test for an association 
between individual-level peak node offset and:- 

1 Change in z-score. 
2 The absolute value of change in z-score (which disregards whether 

the change is positive or negative). 

2.15. Combinatorial analysis 

Subject parameter reconstruction represents the best-practice anal- 
ysis given the available data on head size and array position for this 
dataset, while we consider constant parameter reconstruction to be an 
imaging equivalent to channel-space analysis. We conducted a combi- 
natorial analysis to investigate the effect of group size on how the inter- 
pretations of subject parameter and constant parameter reconstructions 
may differ. 

For each age and each hemisphere, a combinatorial analysis was con- 
ducted. To begin with, 100 sub-cohorts of 10 randomly chosen infants 
were selected. The same statistical analysis as was performed on the full 
cohort was performed on each sub-cohort of 10 randomly-selected in- 
fants. The position and cortical label of the peak node was determined 
for both the subject parameter and constant parameter reconstructions 
for each of the 100 sub-cohorts of group size 10, and used to calculate: 

1 Mean peak node offset relative to subject parameter reconstructions 
for the group size. 

2 The proportion of mismatching cortical labels for the group size. 

This process was repeated for sub-cohort group sizes from 11 to the 
full cohort size. 

3. Results 

Of the datasets initially included in this study (N 5-months = 104, 
N 8-months = 97, N 12-months = 97), infants were excluded due to the fol- 
lowing criteria: 

• The infant was not tested 
○ The infant was withdrawn (N 5-months = 3, N 8-months = 8, 

N 12-months = 9) 
○ The infant missed the visit (N 5-months = 1, N 8-months = 2, 

N 12-months = 2) 
• NIRS data acquisition was not undertaken at visit (N 5-months = 7, 

N 8-months = 9, N 12-months = 11) 
• Task was not undertaken (no infants were excluded due to this cri- 

teria) 
• The infant became fussy (N 5-months = 6, N 8-months = 5, N 12-months = 9) 
• Experimental errors 

○ PPhotographs of headgear placement missing (N 5-months = 5, 
N 8-months = 4, N 12-months = 1) 

○ Video of infant during fNIRS data acquisition was missing 
(N 5-months = 8, N 8-months = 5, N 12-months = 3) 

○ Missing event markers in the task (N 5-months = 1, N 8-months = 0, 
N 12-months = 0) 

○ Other technical issues: data not saved due to a technical glitch or 
due to human error (N 5-months = 1, N 8-months = 1, N 12-months = 2) 

• Poor placement of headgear (N 5-months = 5, N 8-months = 12, 
N 12-months = 6) 

• Number of channels surviving channel pruning below minimum 

threshold (N 5-months = 5, N 8-months = 1, N 12-months = 1) 
• Not enough valid trials for the auditory vocal condition 

(N 5-months = 3, N 8-months = 3, N 12-months = 4) 
• Missing head circumference measurement (N 5-months = 6, 

N 8-months = 7, N 12-months = 4) 

In total, our final sample size consisted of 53 infants aged 5-months 
(27 female, mean age ± SD = 163.17 ± 12.15 days), 40 infants aged 8- 
months (19 female, 245.53 ± 8.36 days), and 45 infants aged 12-months 
(24 female, 376.16 ± 16.34 days). 

3.1. Directly comparing image reconstruction to channel-space 

Firstly, the pipeline that represents the best-available practice im- 
age reconstruction, subject parameter reconstruction, and the channel- 
space analysis pipeline were compared. Fig. 5 shows group-level cortical 
T-statistic maps for changes in oxy-haemoglobin concentration in a 12–
16 s post-stimulus window with respect to baseline for subject param- 
eter reconstructions. Also shown in Fig. 5 are the cortical projections 
of group-level channel-wise T-statistic values comparing the same time 
windows. 

The results appear very consistent between the two processing 
pipelines across all hemispheres at all ages in terms of spatial distri- 
bution, which is particularly true in the temporal lobe. In addition, at 
all age groups and across both hemispheres, the peak node and peak 
channel projection was observed in the middle temporal gyrus, demon- 
strating consistency in the results across the two processing streams at 
the group-level. 

However, there are some areas where inferences differ, particularly 
in the inferior frontal regions, as can be seen in Fig. 5 . In the left hemi- 
sphere at 5-months and the right hemisphere at 8-months, the group- 
level reconstructed images suggest larger changes in inferior frontal re- 
gions than can be inferred from channel-space, while in the right hemi- 
sphere at 12-months the group-level reconstructed image suggests more 
widespread concentration changes. 

Fig. 6 shows the same analysis repeated using the deoxy- 
haemoglobin signal, replicating the analysis seen in Fig. 5 . As can be 
seen in Fig. 6 , in general these results also appear broadly consistent 
with one another. The spatial distribution of activation suggested by the 
channel-space deoxy-haemoglobin T-statistic values appears to emulate 
what is seen in image-space. However, the T-statistic values themselves 
appear to be much lower lower in channel-space, which is particularly 
evident in the left hemisphere at all ages and the right hemisphere at 
12-months. 

In the deoxy-haemoglobin analysis, at all age groups and across both 
hemispheres, the peak node and peak channel projection was observed 
in the middle temporal gyrus, as was the case in the oxy-haemoglobin 
analysis. 

The cortical projections of channel-space positions showed that there 
were four cortical areas where significant changes in oxy-haemoglobin 
concentration occurred at the group-level: inferior frontal gyrus, supe- 
rior temporal gyrus, middle temporal gyrus and inferior temporal gyrus. 
The maximum absolute T-statistic value of a channel projected to each of 
these four areas in each hemisphere was noted for both the oxy- and the 
deoxy-haemoglobin analysis. The maximum absolute T-statistic value 
was also taken for each of these four cortical areas in the subject pa- 
rameter reconstruction. In Fig. 7 , we show the difference between the 
channel-space maximum values and the subject parameter maximum 

values. Consistently, we see that channel-space underestimates the ef- 
fect size relative to subject parameter reconstruction, and this is most 
evident at 12-months in the oxy-haemoglobin analysis and across ages 
in the deoxy-haemoglobin analysis. 

3.2. Effects of variability in head size and array position 

We also aimed to explore the effect that variability in head size and 
array position has on the analysis of fNIRS data. Comparisons were made 
at the group- and the individual-level between all of the four image 
reconstruction processing streams. 

3.2.1. Group-level 

Fig. 8 shows group-level oxy-haemoglobin T-statistic maps for the 
four different image reconstruction processing streams: subject param- 
eter, constant head warp, constant array position and constant parame- 
ter. Qualitatively, it can be seen that the subject parameter and constant 
head warp reconstructions appear similar, suggesting that within-cohort 
variability in head size does not have a large impact on the resulting 
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Fig. 5. Group-level T-statistic images of changes in oxy-haemoglobin concentration in response to the auditory vocal condition relative to baseline for two approaches 
to analysing fNIRS data. Top row: subject parameter reconstruction pipeline. Bottom row: channel-space analysis. The significance level of displayed T-statistic values 
is p < 0.05, Bonferroni corrected on the basis of number of nodes in the grey matter surface mesh. 

Fig. 6. Group-level T-statistic images of changes in deoxy-haemoglobin concentration in response to the auditory vocal condition relative to baseline for two 
approaches to analysing fNIRS data. Top row: subject parameter reconstruction pipeline. Bottom row: channel-space analysis. The significance level of displayed 
T-statistic values is p < 0.05, Bonferroni corrected on the basis of number of nodes in the grey matter surface mesh. 

Table 1 

Jaccard index quantifying overlap of the thresholded group-level image for each processing stream with the thresholded group- 
level subject parameter image. Group-level images from each processing stream were thresholded at 50% of their maximum value. 
A Jaccard index of 100% would indicate perfect overlap, while 0% would indicate no overlap at all. 

Age Number of 
infants 

Group-level thresholded nodal overlap with subject parameter images (Jaccard index) 

Left hemisphere Right hemisphere 

Constant 
head warp 

Constant array 
position 

Constant 
parameter 

Constant 
head warp 

Constant array 
position 

Constant 
parameter 

5-months 53 90.3% 71.9% 69.9% 83.0% 62.0% 58.2% 

8-months 40 57.7% 48.1% 46.9% 74.2% 48.4% 50.6% 

12-months 45 80.0% 61.9% 39.3% 78.8% 47.5% 39.7% 

group level images. It can also be observed that the group-level constant 
parameter reconstruction images are similar to the group-level constant 
array position reconstruction images. 

This qualitative observation is supported by the overlap between the 
images from the different processing streams where each group-level 
image is thresholded at 50% of its maximum value. Here, in both hemi- 
spheres at every age, we see greater levels of overlap between the thresh- 
olded constant head warp and subject parameter images than the other 
two processing streams (see Table 1 ). In each case, the 50% thresholded 
overlap is greatest between subject parameter images and constant head 
size images, though this is lowest (but still true) for the left hemisphere 

at 8-months. In this case, we see a less focal response across reconstruc- 
tion pipelines, which is potentially due to this cohort having the smallest 
group size. 

Despite the constant head warp pipeline appearing to most closely 
emulate the subject parameter pipeline, the group-level images across 
reconstruction pipelines are broadly consistent with one another. This 
suggests that group-level analyses are robust to variability in head size 
and array position. 

To compare focality and the spatial characteristics of activation be- 
tween the subject parameter and constant parameter pipelines, each 
group-level T-statistic images from both pipelines for each age was nor- 
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Fig. 7. Differences in absolute maximum T-statistic values of the channel-space analysis relative to the subject parameter reconstruction for (a) oxy-haemoglobin 
and (b) deoxy-haemoglobin concentration changes across four cortical areas where activation is consistently seen in the oxy-haemoglobin channel-space analysis. 
For each pair of bars grouped by colour, the left bar represents the difference in that region in the left hemisphere and the right bar (with a more faded colour) 
represents the difference in that region in the right hemisphere. Note: at 8-months in the right hemisphere, no activation was seen in the inferior frontal gyrus in 
either the channel-space analysis or subject parameter group-level image. The cortical areas are shown in (c). 

malised to its maximum value, and thresholded at values between 50% 

and 90% of that maximum value. This is shown in Fig. 9 . On visual 
inspection, the subject parameter images appear more focal, while the 
spatial distribution of T-statistic values in the constant parameter group- 
level images appears more dispersed. 

To better quantify this measure, we plot the cumulative area of acti- 
vation as a function of T-statistic value in Fig. 9 . Toward the maximum 

T-statistic values, the area covered in subject parameter group-level im- 
ages is consistently lower than is the case in the constant parameter 
group-level images. This demonstrates greater focality in the subject pa- 
rameter images. 

3.2.2. Individual-level 

Fig. 10 shows the peak node offset at the individual-level for the 
three processing streams relative to subject parameter reconstructions. 
This analysis was conducted using images of oxy-haemoglobin concen- 
tration changes. It can be observed that the constant head warp peak 
node offset is substantially lower at each age in each hemisphere than 
the other two processing streams. The difference between individual- 
level peak node offset in the constant head warp and constant parame- 
ter pipelines is statistically significant in all cases, and this is also true 
for the difference seen between constant head warp and constant array 
position pipelines in all cases except the left hemisphere at 12-months. 

We also quantified individual-level peak node offset between the 
subject parameter pipeline and the constant parameter pipeline mod- 
ified such that the size of the head model at each age was determined 
by the average head measurements at the other two age points. This 
was performed to assess the effect of using a single-sized head model 
across all age cohorts. No statistically significant difference was found 
between peak node offset obtained using group-level age-matched head 
measurements and using non-age-matched measurements. That is to say, 
using non-age-matched warped head models does not perform notice- 
ably worse than the constant parameter pipeline. This result is shown 
in Supplementary Material . 

3.3. Peak node offset association with head size and growth trajectory 

Though we see that array position is the dominant driver of differ- 
ences between the subject parameter and constant parameter group- 
level images, we aimed to investigate whether there was any associ- 
ation between individual-level peak node offset and the magnitude of 
difference in head size from the group mean. 

There were 24 individuals with data at both 5- and 8-months, 20 
with data at both 8- and 12-months, and 25 with data at both 5- and 12- 
months, enabling an analysis by trajectory of head size. No correlation 
was observed between individual-level peak node offset and change in 
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Fig. 8. Group-level T-statistic images of changes in oxy-haemoglobin concentration in response to the auditory vocal condition relative to baseline for the four 
processing streams. From top row to bottom row: subject parameter reconstruction, constant head warp reconstruction, constant array position reconstruction, 
constant parameter reconstruction. The significance level of displayed T-statistic values is p < 0.05, Bonferroni corrected on the basis of number of nodes in the grey 
matter surface mesh. 

Fig. 9. Top: normalised and thresholded group-level T-statistic images of changes in oxy-haemoglobin concentration in response to the auditory vocal condition 
relative to baseline for subject parameter (top row) and constant parameter (middle row) pipelines. Each image is thresholded at values between 50% and 90% of 
its maximum T-statistic value. Bottom row: cumulative area of activation as a function of T-statistic value. At larger T-statistic values, the area covered in subject 
parameter group-level images is consistently lower than is the case in the constant parameter group-level images, suggesting greater focality in images resulting from 

the subject parameter pipeline. 
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Fig. 10. Peak node offset at the individual-level for each processing stream relative to subject parameter reconstructions. Peak node offset values were calculated 
in the space of the constant head warp model for each age. Significance levels were computed using paired t-tests. ∗ represents p < 0.05 (corrected), ∗ ∗ represents 
p < 0.01 (corrected), ∗ ∗ ∗ represents p < 0.001 (corrected). 

Fig. 11. Group-level T-statistic images of changes in oxy-haemoglobin concentration in response to the auditory vocal condition relative to baseline for a sub- 
cohort of 10 randomly chosen infants at each age. Top row: subject parameter reconstruction pipeline. Bottom row: constant parameter reconstruction pipeline. The 
significance level of displayed T-statistic values is p < 0.05, Bonferroni corrected on the basis of number of nodes in the grey matter surface mesh. 

z-score or difference in head circumference from group mean at any age 
or for any of these age ranges. Further, for each comparison performed, 
no statistically significant correlations were found. As such, we have 
found no evidence to suggest inferences made from constant parameter 
reconstructions are systematically biased by either head size deviation 
from group mean or head growth trajectory. The full results for each 
comparison can be found in Supplementary Material . 

3.4. Effect of group size 

In Fig. 11 , we show group-level T-statistic response maps for a sub- 
cohort of 10 randomly selected infants at ages 5-, 8- and 12-months. 
On visual inspection, differences between the two processing streams at 

equivalent ages and for equivalent hemispheres are more apparent than 
was the case for the full-sized cohort in Fig. 8 . 

In Fig. 12 , we plot mean peak node offset from groups of randomly 
assorted participants as a function of group size. In this context, we de- 
fine peak node offset as the Euclidean offset between the position of the 
peak node in the group-level T-statistic images from subject parameter 
and constant parameter pipelines for each randomly assembled group. 
As group size increases, in general there is a decrease in the mean peak 
node offset. 

There is also decrease in the proportion of mismatched peak node 
cortical labels between the two processing streams as group size in- 
creases (see Fig. 13 ), except for the left hemisphere at 12-months. 
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Fig. 12. Peak node offset as a function of group size. Mean ± standard error is shown by the red shaded area. An increase in group size leads to a decrease in peak 
node offset and, by extension, a decrease in the likelihood of different inferences being drawn from the results at the group-level. Note: this effect is less evident at 
12-months in the left hemisphere, but this likely relates to the fact that the constant parameter approach appears to yield two disparate peaks (one in the temporal 
lobe and one in the inferior frontal gyrus, see Fig. 8 ). 

4. Discussion 

We have demonstrated an image reconstruction approach using 
fNIRS data acquired from a cohort of Gambian infants. Using image 
reconstruction to quantify and isolate the effects of variability in head 
size and array position, we find that inferences drawn from group-level 
channel-space fNIRS analyses are unlikely to be significantly affected 
by these assumptions given the variability of these parameters in our 
dataset, though their effect is much more influential at the individual- 
level. We find that variability in array position is the dominant factor 
that drives differences between channel-space analysis and best-practice 
image reconstruction at the individual- and group-level. Our combina- 
torial analysis shows that the influence of variability in array position 
and head size on statistical and anatomical inferences is weakened as 
group size increases. 

4.1. Inferences from channel-space and image reconstruction 

This analysis sought to directly compare group-level analyses of our 
data in channel-space to subject parameter reconstruction, which repre- 
sents a best-practice image reconstruction pipeline given the available 
data on head size and array position. As was shown in Figs. 5 and 6 , 
group-level subject parameter reconstructions and channel space projec- 
tions are notably consistent across the two processing streams. For both 
the oxy- and deoxy-haemoglobin analysis at the group-level, areas where 
we see activation in the channel space projections are also where we see 
activation in subject parameter reconstructions, especially in the tem- 
poral lobe, demonstrating consistency between both processing streams 
at the group-level. In addition, the cortical labels of the peak node and 
peak channel were consistent between the two processing streams for 
each age, hemisphere and chromophore, which further demonstrates 
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Fig. 13. Cortical label mismatch between subject parameter and constant parameter reconstruction pipelines as a function of group size. 

consistency. This direct qualitative comparison of channel-space and 
best-practice image reconstruction included in this analysis provides ev- 
idence that the influence of variability in head size and array position 
on statistical and anatomical inferences is weakened at the group-level. 

For large effect sizes and large group sizes, it is unlikely that 
analysing data in channel-space will lead to substantially different in- 
ferences about activation; however, for smaller effect sizes, an analysis 
using subject parameter image reconstruction will likely better resolve 
the effect. In our data, the channel-space analysis consistently underesti- 
mates the effect size seen in image space (see Fig. 7 ). This likely pertains 
to the fact that image reconstruction uses models of light transport to 
account for differences in channel sensitivity across subjects, and thus 
when an average is taken, it is more likely that the signals contributing 
to that average are derived from the same cortical regions across sub- 
jects. Though we are using functional data where a large effect size is 
expected, the fact that image reconstruction still results in greater signif- 
icance suggests that investigations of smaller differences (for example, 
age-related differences within a longitudinal cohort, investigations of 
the deoxy-haemoglobin response and studies with smaller group sizes) 
may benefit from an image-based analysis. 

4.2. Effect of head size and array position 

The analyses presented aimed to isolate the effects of variability 
in head size and array position seen in our dataset on the analysis of 
fNIRS data. The constant parameter reconstruction pipeline represents 
an imaging approach that is conceptually equivalent to a channel-space 
analysis, insofar as it assumes a fixed array that is consistent across par- 
ticipants, as well as assuming a fixed model of the cerebral anatomy. 
In addition, the effect of variability in head size and array position can 
be isolated using subject-specific values for one parameter and group- 
average values for the other. 

At the individual-level, our results show that differences between 
subject parameter and constant parameter reconstructions are driven by 
variability in array position. It can be seen in Fig. 10 that constant head 
warp reconstruction leads to the lowest level of peak node offset, while 
not accounting for array position (whether or not accounting for head 
size) leads to a much greater degree of peak node offset. In addition, 

we found no statistically significant differences between individual-level 
peak node offset obtained using group-level age-matched head mea- 
surements and using non-age-matched measurements (see Supplemen- 

tary Material ). Our results show that using any single head model for all 
infants (warped to a size within the 5-12 month range) does not result in 
significantly worse performance than our constant parameter pipeline 
that uses group-level age-matched warping. This conclusion is antici- 
pated given the dominance of variability in array position in driving 
different inferences. 

The images obtained via constant head warp and subject parameter 
approaches at the individual- and the group-level are notably more sim- 
ilar than the other two pipelines are in comparison to subject parameter 
(see Figs. 8 and 10 ). Our results show that the difference between the 
subject parameter and constant parameter pipelines is primarily driven 
by variability in array position and not in head size. We therefore con- 
clude that collecting data on array positioning from each infant and 
employing an image reconstruction approach is essential to increase the 
reliability of fNIRS data analysis at the individual-level. Subject param- 
eter reconstruction produces images with greater focality (see Fig. 9 ); 
as such, accounting for subject-specific parameters can increase confi- 
dence in the spatial localisation of activation, and is likely able to better 
resolve features of activation particularly for smaller group sizes than is 
the case in channel-space analysis or constant parameter reconstruction. 

One of the biggest differences between subject parameter and con- 
stant parameter images at the group-level is in the inferior frontal gyrus; 
this is particularly evident at 12-months in the left hemisphere where 
we see a larger peak T-statistic value in the inferior frontal gyrus in the 
constant parameter image. The differences seen in frontal regions may 
well be due to their slightly greater depth underneath the scalp, and so 
size and shape of the head model will have a greater impact on mod- 
elling photon transport in frontal areas than is the case for shallower 
cortical regions. Brain activation at a greater depth will influence fewer 
measured photons than activation at a shallower depth, and so activa- 
tion occurring deeper will have a reduced signal-to-noise ratio. 

We sought to investigate whether within-cohort head size variation 
and growth trajectory were associated with peak node offset in constant 
parameter reconstructions, a surrogate of whether there is a system- 
atic bias in channel-space analysis linked to these factors. We found no 
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evidence that such a link exists; the correlation between head circum- 
ference deviation from group mean or change in z-score and peak node 
offset was not significant for any correlation tested. In addition, there is 
also no clear pattern of peak node offset being larger at the extremes of 
either of these metrics (see Supplementary Material ). This signifies that 
there is no systematic error linked to these factors in channel-space anal- 
ysis. 

Fundamentally, combining data from equivalent channels across in- 
dividuals implicitly assumes that equivalent channels probe equivalent 
anatomical volumes of the cortex. One possible explanation for why 
variability in array position has a substantially larger influence than 
variability in head size is due to correspondences between scalp posi- 
tions and underlying anatomy. Tsuzuki et al. (2017) demonstrated us- 
ing a cortical projection method that the 10-10 system is sufficient to 
predict underlying macroanatomical cortical structures in infants from 

birth to 2 years. This suggests that an array positioned on two differ- 
ent sized heads (within a plausible anatomical range for a given age) 
is likely to be overlying the same cortical area. In contrast, if an array 
position deviates from the group-average position, it is very likely to be 
overlying (and, by implication, sampling) different regions of the cortex 
to what the average array position would suggest. 

The effect of variability in array position appears to have a substan- 
tial influence on peak node offset at the individual-level but its influence 
is diminished at the group level. This exhibits the robustness of assum- 
ing constant head size and array position (a fundamental assumption 
implied in channel-space analysis) at the group-level in fNIRS analyses. 
This finding is consistent with findings reported by Blasi et al. (2014) , 
who found high test-retest reliability of group-level oxy-haemoglobin 
response in infants aged 4- to 12-months, but much lower reliability at 
the individual-level. 

4.3. Combinatorial analysis and the effect of group size 

In the combinatorial analysis, for each age and hemisphere, peak 
node offset decreases as group size increases; in other words, the con- 
stant parameter results converge towards (but never meet) the subject- 
parameter results as group size increases. We conclude that this decrease 
shows that the effect of the variability in head size and array position be- 
comes less evident as more individuals are included in each group. This 
has significant implications for channel-space analyses, where head size 
and array position are also generally assumed constant. Subject parame- 
ter reconstruction approaches are likely the superior analysis approach, 
but their benefit is particularly evident for smaller group sizes. 

In all cases except for the left hemisphere at 12-months, the propor- 
tion of mismatched cortical labels between the two processing streams 
decreases as group size increases. At 12-months in the left hemisphere, 
there appears to be a broad focus that straddles the superior and mid- 
dle temporal gyri, which helps to explain how a mismatch in peak node 
cortical label could have occurred at the full cohort size. 

Our results demonstrate that there is a weakening of the effect 
of variability in head size and array position as group size increases. 
Though our results suggest that assuming these parameters constant is 
questionable at the individual-level, the influence of variability in these 
parameters (to the extent seen in our dataset) is weakened as group size 
increases. This further supports our claim that channel-space fNIRS anal- 
yses are robust to variability in these parameters in longitudinal infant 
studies at the group-level. Our analysis does not allow us to address the 
broader question as to what number of participants is an appropriate co- 
hort size for field-based fNIRS studies; this question is highly dependent 
on the expected size of activation and other parameters of the experi- 
ment in question. 

As we have been using infant-specific data, we cannot state whether 
similar results would be observed across different cohorts (e.g. adults 
with varying head sizes). However, given that the fundamental char- 
acteristics of the problem (optodes manually coupled to a head) are 
consistent across all ages, it does seem likely that an increasing group 

size will increase the robustness of the channel-space analysis, and that 
this robustness would be further increased (particularly when the cohort 
size is small) when a subject parameter image reconstruction approach 
is employed. In addition, this conclusion should be independent of the 
statistical analysis used; for example, a generalised linear model analysis 
should also benefit from employing subject parameter reconstruction. 

4.4. The benefit of an image reconstruction approach 

Image reconstruction techniques are better suited to high-density ar- 
rays that contain overlapping channels ( Boas et al., 2004 ; White, 2010 ), 
particularly if they also include a range of source-detector separations, 
which allow depth discrimination: this form of image reconstruction is 
known as diffuse optical tomography (DOT) ( Lee et al., 2017 ). A re- 
cent example of high-density DOT being applied in a field-based con- 
text is a study by Fishell et al. (2020) of Colombian children. A no- 
table example of a high-density DOT study in infants was conducted by 
Frijia et al. (2020) using the same paradigm as was used in this present 
study. 

An image reconstruction approach produces images inherently reg- 
istered to the head model, allowing concentration changes to be visu- 
alised on a model of cortical anatomy ( Yücel et al., 2017 ). Parcellation 
atlases can be incorporated into the analysis of reconstructed images in 
a similar fashion to how the AAL atlas was used in in this work, permit- 
ting cortical labels to be attributed to nodes or voxels in the head model 
which enables the response in equivalent cortical areas to be compared 
across populations. 

In addition, using anatomical information present in the head 
model, reconstructed images can be registered to a common space to 
be compared with data acquired from several complimentary func- 
tional imaging modalities such as electroencephalography (EEG), mag- 
netoencephalography (MEG), and fMRI. This can enable longitudinally- 
acquired fNIRS data to be compared directly to fMRI data collected 
from child and adult populations, helping to bridge gaps in our under- 
standing of functional development. Our work represents a significant 
step towards enabling such comparisons for longitudinal infant popu- 
lations, particularly those in field-based studies. Such comparisons be- 
tween fMRI and fNIRS data collected with high-density arrays have been 
conducted in adults (for example, ( Eggebrecht et al., 2014 )). 

Image reconstruction incorporates models of light transport in the 
analysis of fNIRS data ( Arridge and Cooper, 2015 ). Models of light trans- 
port have also been employed to infer a cortical label of activation with- 
out taking an image reconstruction approach, such as was performed by 
Perdue et al. (2019) . However, such an approach still confines statisti- 
cal inferences about functional activation to a discretised and arbitrary 
channel-space. 

The reconstruction of spatially-continuous images of concentration 
changes on the cortex removes the need to assume a given channel and 
scalp location is associated with a single cortical position. Constraining 
analysis to a discretised channel-space does not enable the intricacies of 
the spatial characteristics of activation on the cortex itself to be inves- 
tigated. Image reconstruction approaches can enable the development 
of longitudinal changes in the spatial distribution and focality of func- 
tional responses to be studied, which we have begun to investigate in 
this work. 

To our knowledge, Wijeakumar et al. conducted the only previous 
longitudinal image reconstruction study in a field-based setting with in- 
fants in this age range that has been published ( Wijeakumar et al., 2019 ), 
though this study does not explicitly investigate longitudinal imaging of 
infants aged 12-months and under, and has far fewer participants than 
the cohorts in our analysis. Our work therefore forms the foundation of 
field-based longitudinal image reconstruction in infants up to 12-months 
of age. Improvements in infant image reconstruction approaches, build- 
ing on the demonstration in this work, can help improve the localisation 
error and resolution of infant image reconstruction, but must also focus 
on doing so in the context of a low-resource setting where acquiring 
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subject-specific MRI data, digitised optode positioning data and using 
high-density arrays may not be feasible. 

4.5. Head modelling 

A model of head anatomy is required for image reconstruction. A 

head model would ideally be obtained from an individual’s own MRI 
scan so as to be subject-specific; however, this approach was not fea- 
sible for the BRIGHT project. In the age range here, there are sev- 
eral sources of age-appropriate MRI data. In this work, we have used 
a head model built from structural data acquired and pre-processed 
by Shi et al. (2011) which we aim to include in our group’s tool- 
box on Github ( www.github.com/DOT-HUB ). An MRI atlas for infants 
aged 6-months was constructed by Akiyama et al. (2013) . For struc- 
tural head models at several age points in the range in this work, 
there exists data published in the Neurodevelopmental MRI Database 
( Richards et al., 2016 ; Richards and Xie, 2015 ; Sanchez et al., 2012 ). 
Our group has also published several models that are available via our 
website ( www.ucl.ac.uk/dot-hub ). 

In this work, we do not use age-specific head models. We conducted 
a preliminary sensitivity analysis on forward modelling using array po- 
sition data from five arbitrarily chosen infants at 5-months, and used 
age-appropriate models (from the Neurodevelopmental MRI Database) 
to investigate the effect of longitudinal changes in anatomy as well as 
array position, head size, and cranial landmark positions on light trans- 
port. We found that the median variation in channel centre of mass as 
a result of longitudinal anatomical changes for each array position was 
3.0 mm (median absolute deviation 1.1 mm), substantially smaller than 
the effect of variability in array position (median 7.4 mm, median ab- 
solute deviation 3.8 mm) and statistically significant ( p < 0.0001). The 
full results are shown in Supplementary Material . 

The level of influence of longitudinal anatomical changes on light 
transport must also be placed in the context of our array registration 
method. Qualitatively, it can be seen in Fig. 4 that our method is a rea- 
sonable approximation of array position, and the data used to register 
the array was extracted specifically from participants. However, given 
that we did not collect data using a digitised positioning system or em- 
ploy sophisticated photogrammetry methods, we have not been able to 
conduct a quantitative assessment of our array registration method. The 
error in the sensitivity distribution resulting from the array registration 
process is likely to be larger than the effect of longitudinal anatomical 
changes. 

Another benefit of using the same model across ages is that there 
is an explicit one-to-one nodal correspondence regardless of how the 
model has been warped. This removes the need to register different head 
models to a common space, which itself would be liable to a degree of 
error. This one-to-one nodal correspondence was used to display group- 
level images in a common space across ages, as is shown in Figs. 5 , 6 , 
8 , 9 and 11 . 

In addition, given that we employed a cortically-constrained recon- 
struction method, we desired a cortical surface clearly displaying the 
principal gyri and sulci, which was another factor affecting our choice 
of head model. A more well-defined cortical surface could be extracted 
using the Shi et al. averaged data, which was accompanied by the reg- 
istered AAL atlas, than was the case with the Sanchez et al. averaged 
data. 

No MRI data was available from a cohort of West African infants 
to build a head model. It is unclear how the head model in this work, 
derived from infants living in a high-income country, may bias our re- 
sults when used to represent head structure of Gambian infants. This 
is impossible to ascertain given the current lack of structural MRI data 
from this population, which may be difficult to obtain given the lack 
of MRI units in West Africa, in particular high-field imaging systems 
( Ogbole et al., 2018 ). In addition, we had no access to any individual- 
level data from infants at the ages under investigation. This underlines 
the need for more publicly-available high-quality MRI data from infants 

in this age range, similar to the database of individual-level structural 
priors presented by Collins-Jones et al. (2020) . 

4.6. Future work 

This study validates channel-space fNIRS inferences drawn at the 
group-level, and helps bolster confidence in conclusions drawn from 

previous fNIRS studies in longitudinal cohorts. However, as has been 
outlined, an image reconstruction approach to analysing fNIRS data in 
its own right can be beneficial. While image reconstruction analyses are 
still relatively rare in fNIRS, they are not excessively complex and are 
likely to become ubiquitous in the coming years. Several packages are 
now available that can undertake image reconstruction-based process- 
ing (e.g. Homer3 ( https://openfnirs.org/software/homer/ ), NeuroDOT 

( Eggebrecht and Culver, 2019 )). The tools we used in this work are 
part of the DOT-HUB toolbox and are already available open-source 
( www.github.com/DOT-HUB ). 

The image reconstruction pipeline demonstrated in this work incor- 
porates models of light transport, enables anatomical and functional 
data to be related to one another, and enables the spatial characteristics 
of activation to be investigated and understood. As such, we envisage 
widespread use of image reconstruction in future publications of longi- 
tudinal infant fNIRS studies. 

5. Conclusion 

Using an image reconstruction approach to analyse longitudinally- 
acquired infant fNIRS data, we have found that inferences drawn from 

group-level channel-space fNIRS analyses are robust to the implicit as- 
sumptions of constant head size and array position. We found that vari- 
ability in array position, not head size, is the dominant factor that 
drives differences between channel-space and image-space analyses at 
the group- and the individual-level. In addition, we have shown that the 
influence of array position variability diminishes as group size increases. 
We envisage that the use of image reconstruction in longitudinal infant 
fNIRS studies will become widespread to permit the incorporation of 
anatomical information in data analysis and has the potential to enable 
the combination of functional data across modalities. 
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