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Abstract

In a fuzzy regression discontinuity (RD) design, the probability of treatment jumps when a running
variable (R) passes a threshold (R0). Fuzzy RD estimates are obtained via a procedure analogous
to two-stage least squares (2SLS), where an indicator I(R > R0) plays the role of the instrument.
Recently, Keane and Neal (2023, 2024) showed that 2SLS t-tests suffer from a “power asymmetry”:
2SLS standard errors are spuriously small (large) when the 2SLS estimate is close to (far from) the
OLS estimate. Here, we show that a similar problem arises in Fuzzy RD. Hence, if the endogeneity
bias is positive, the Fuzzy RD t-test has little power to detect true negative effects, and inflated
power to find false positives. The problem persists even if the instrument is very strong. To avoid
this problem one should rely exclusively on the intent-to-treat (ITT) regression to assess significance
of the treatment effect.
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1. Introduction

Recently, Keane and Neal (2023, 2024) showed that two stage least squares (2SLS) suffers from

a “power asymmetry” problem: The 2SLS standard error estimate is artificially small (large) when

the 2SLS parameter estimate is near (far from) OLS. In contrast to the well-known weak instrument

problem (Bound et al., 1995; Stock et al., 2002), the power asymmetry exists even if instruments are

very strong by conventional standards. In this paper we show that an analogous power asymmetry

problem also arises in fuzzy regression discontinuity designs (Fuzzy RDs). We explore implications

for estimation and inference in Fuzzy RDs, and show how inference based on the intent-to-treat

(ITT) regression can avoid the power asymmetry problem.

⋆Kaliski: d.kaliski@bbk.ac.uk, Keane: mkeane14@jhu.edu, Neal: timothy.neal@unsw.edu.au. We thank Vadim
Marmer and Josh Catalano for sharing R and MATLAB code to produce AR confidence sets as in Feir et al. (2016). We
also thank Tim Armstrong, Josh Catalano, Michal Kolesar, Vadim Marmer and Claudia Noack for helpful comments.
This research was supported by Australian Research Council (ARC) grants DP210103319 and CE170100005.



The 2SLS power asymmetry creates two serious inferential problems: First, if the true β = 0, a

one-tailed 2SLS t-test of H0:β ≤ (≥)0 will reject at an inflated (deflated) rate if the OLS endogeneity

bias is positive.1 The converse is true if the OLS bias is negative. Hence, an estimate β̂2SLS is more

likely to be judged significant by a one- or two-tailed t-test if that estimate departs from zero in

the same direction as the OLS endogeneity bias. Second, 2SLS has very poor power to detect true

negative (positive) effects when the OLS bias is positive (negative).

For example, in a typical application of IV, one cares if a treatment like a training program has

a positive effect on an outcome like wages. But one is concerned that selection into the program is

positive – e.g., more motivated people are more likely to participate, and they have have high wages

anyway. Hence, one instruments using an exogenous variable that encourages participation. The

2SLS t-test is biased in favor of finding positive results: It has poor power to detect a true negative

treatment effect; And, if the true treatment effect is zero, it has inflated power to find false positives.

Here, we show Fuzzy RD suffers from a similar power asymmetry problem. This follows from

the close analogy between Fuzzy RD and 2SLS noted by Hahn et al. (2001). As a result, Fuzzy RD

estimates shifted in the direction of the endogeneity bias (that motivates use of RD in the first place)

have artificially small standard errors, rendering the t-test unreliable. Furthermore, this problem

exists even if the “first stage” regression of treatment on the instrument I(R > R0) is strong.

The solution to the power asymmetry in 2SLS is inference via the reduced form; see Anderson

and Rubin (1949). Due to the non-parametric nature of Fuzzy RD, there is no exact reduced form.

However, the ITT regression, a sharp RD of the outcome on I(R > R0) is a “quasi-reduced form.”

Feir, Lemieux, and Marmer (2016) and Noack and Rothe (2024) have proposed an “AR approach”

to inference via the ITT regression if identification is weak. We argue the AR approach has the

added benefit of avoiding the power asymmetry, and should be used even if identification is strong.

Next, in Section 2, we explain the relation between Fuzzy RD and 2SLS. Section 3 describes two

modern approaches to RD: The robust bias correction (RBC) approach of Calonico, Cattaneo, and

Titiunik (2014b) and the bounded second derivative (BSD) approach of Kolesár and Rothe (2018).

Then, in Sections 4-5, we assess the power asymmetry in Fuzzy RD quantitatively, and show it can

be avoided by using the AR approach. Finally, Section 6 illustrates the importance of these issues

by revisiting the Ambrus et al. (2020) study of the impact of cholera deaths on rents. Their Fuzzy

RD estimate, which is far from OLS, is insignificant according to the t-test, but significant according

1For example, in a context where a two-tailed t-test has correct size of 5%, and the OLS bias is positive, the power
asymmetry may cause a one-tailed t-test of H0:β ≤ 0 to have inflated size of 5%, while a test of H0:β ≥ 0 has size 0.
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to the ITT regression, at least if using the RBC approach. Our analysis shows that, in their context,

an AR-type test based on the ITT regression test has at least 5 times the power of the t-test.

2. Problems with 2SLS t-tests and their Relevance to Fuzzy RDDs

2.1. Fuzzy RDs as a Special Case of 2SLS

Let Y be the outcome of interest, X the endogenous explanatory variable (or “treatment”) of

interest. Let R be an ordered running variable. In a “sharp” RD design all units with R ≥ R0

are assigned to treatment, while no units with R < R0 are treated. The object of interest is the

difference between the left- and right- limits of the expected outcome at the point R = R0,

ξ1 = lim
r→R+

0

E[Y |R = r ≥ R0]− lim
r→R−

0

E[Y |R = r < R0], (1)

which can be written compactly as ξ1 = Y + − Y −. This identifies the effect of treatment β1.
2

The fuzzy RD design relaxes the assumption of deterministic assignment, allowing the probability

of treatment conditional on R to jump discontinuously at R0. We may express the jump as:

π1 = lim
r→R+

0

E[X|R = r ≥ R0]− lim
r→R−

0

E[X|R = r < R0], (2)

which can be written compactly as π1 = X+ −X−. In the case where X is a continuous treatment,

equation (2) is the jump in the expected level of treatment at R0.

The fuzzy RD has as its object of interest the ratio of the intent to treat (ITT) effect Y + − Y −

to the jump in treatment probability X+−X−. This ratio β1 = ξ1
π1

= Y +−Y −

X+−X− identifies the effect of

treatment itself. In principle, a consistent estimator of the effect of treatment may be obtained using

kernel estimators of Y +, Y −, X+, X− based on observations near R0, and constructing β̂1 = Ŷ +−Ŷ −

X̂+−X̂− ,

provided the bandwidth shrinks with sample size. However, Hahn et al. (2001) pointed out that

such an approach has poor finite-sample properties when estimating the discontinuities of interest.

Hence, local linear regression estimators are preferred – see Fan (1992).

As Hahn et al. (2001) and Imbens and Lemieux (2008) point out, once a bandwidth is chosen,

a local linear regression based on a uniform kernel is equivalent to 2SLS. Specifically, using only

observations within a window [R0 − h,R0 + h], a regression of Y on X, instrumenting X by the

treatment indicator D = 1[R ≥ R0], while including the local linear terms R and D×R as controls,

2With the usual caveat that if treatment effects are heterogeneous this estimates the local average treatment effect
(LATE) for subjects in the vicinity of R0. Identification also requires an assumption that selection into treatment is
not based on gains from treatment, referred to as “non-manipulation” in the the RD literature.
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is numerically equivalent to obtaining the local linear estimates of Y +, Y −, X+, X− individually,

using that same window and a uniform kernel, and then constructing β̂1 = Ŷ +−Ŷ −

X̂+−X̂− . Thus, fuzzy

RDs can be estimated via the system of equations:

Yi = β0 + β1Xi + β2Ri + β3RiDi + ui, ∀i s.t. R0 − h ≤ Ri ≤ R0 + h, (3)

Xi = π0 + π1Di + π2R+ π3RiDi + ei, ∀i s.t. R0 − h ≤ Ri ≤ R0 + h, (4)

Analogous to 2SLS, equation (3) is the outcome equation that contains the endogenous variable X,

and (4) is the “first stage” that contains D = 1[R ≥ R0] as the excluded instrument. As with 2SLS,

one can estimate β1 via a two-step procedure: Take fitted values X̂ from the first stage, which can

be estimated as a sharp RD, and plug them in for X in the outcome equation, which can then be

estimated by OLS using data on the interval [R0 − h,R0 + h]. The difference with 2SLS is that the

“instrument” D = 1[R ≥ R0] is not exogenous, as Cov(u,D) is not in general zero. The exogeneity

assumption is replaced with an assumption that E[u|R] is continuous at R0.

Fuzzy RD estimates are biased in finite samples because E[u|R] and E[e|R] may vary as one

moves away from R0, generating bias in the estimates Y +, Y −, X+, X−. One may think of the R

and RD terms as serving to “sop up” some of that bias. In fact, they do so perfectly if E[u|R]

and E[e|R] are linear in R in the region [R0 − h,R0 + h]. However, a researcher never knows the

true relationship between Y or X and R, so the local linear terms R and DR may be insufficient to

eliminate bias. This motivates more recent methods that use bias correction or bias-aware inference

(Calonico et al., 2014b; Kolesár and Rothe, 2018; Noack and Rothe, 2024).3 We discuss these in

Section 3. Our results show that the power asymmetry problem affects fuzzy RD regardless of

whether one uses simple 2SLS or these more sophisticated approaches.

A large literature (Ludwig and Miller, 2007; Imbens and Kalyanaraman, 2012; Calonico et al.,

2014b) discusses how to choose the bandwidth h. We find that the power asymmetry arises no

matter which bandwidth selection method is used. As for the choice of kernel, we first consider the

uniform kernel case, as this gives the close analogy to 2SLS noted above. But the default in most RD

software is the triangular kernel, which produces weighted two-stage least squares estimates, with

observations closer to the cutoff being given more weight. Cattaneo and Titiunik (2022) point out

that each kernel has advantages, with no consensus in the literature as to which is to be preferred.

We will show that the power asymmetry arises in either case.

3An alternative is to control for higher order terms in R. But Gelman and Imbens (2019) argue this places too
much weight on observations far from the cutoff. We show it has also makes the power asymmetry problem worse.
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2.2. The “Reduced Form” or Intent-to-Treat (ITT) Regression

We can substitute the first stage equation (4) into the outcome or second stage equation (3) to

obtain the “reduced form” or Intent-to-Treat (ITT) regression:

Yi = ξ0 + (β1π1)Di + ξ2Ri + ξ3RiDi + vi, ∀i s.t. R0 − h ≤ Ri ≤ R0 + h (5)

where v = (u+βe), ξ1 = (β1π1), ξk = (αk +β1θk) for k = 0, 2, 3. This takes the form of a sharp RD

where the outcome Y is regressed on treatment assignment D = 1[R ≥ R0], rather than treatment

itself. This estimates the Intent-to-Treat (ITT) effect ξ1 = β1π1. Lee and Lemieux (2010) refer to

(5) as the “reduced form,” but we prefer to call it a “quasi-reduced form,” as (i) in a non-parametric

setting the true model is not specified, and (ii) the “instrument” here is not exogenous.

The effect of treatment β1 = Y +−Y −

X+−X− may be estimated by the ratio β̂1 = ξ̂1/π̂1. This is

equivalent to the two-step procedure described in the previous section. The delta-method is used to

form the standard error se(β̂1) of this ratio, which may be used to form the t-test t = β̂1/se(β̂1) to

test H0:β1 = 0. Feir, Lemieux, and Marmer (2016) and Noack and Rothe (2024) both note that the

Fuzzy RD t-test suffers from size distortion when the first stage is weak.

Hence, they propose an alternative that is analogous to the Anderson and Rubin (1949) approach

in 2SLS. This AR approach is based on the ITT regression: The idea is to form a t-test for significance

of D in the reduced form ITT regression (5), and use it to assess whether there is a significant effect

of treatment. That is, unless we see a significant effect of treatment assignment on the outcome, we

conclude there is no effect of treatment itself. Below we call this a tAR test.

Our main contribution is to show that the Fuzzy RD t-test suffers from the power asymmetry

problem even when the first stage is strong. But the AR approach, based on the tAR test from the

ITT regression, avoids the power asymmetry problem. Hence, we advocate that the tAR test be

used in lieu of the Fuzzy RD t-test even when the first stage is strong.

2.3. The “Infeasible Fuzzy RD” Estimator and the “OLS” Estimator

An important point is that if π were known a priori, we could estimate β1 directly via a sharp

RD regression of Y on πD, controlling for R and R · D. We call this the “Infeasible Fuzzy RD”

regression. It provides an important benchmark, as it defines the upper bound of the power curve for

feasible fuzzy RD regression where π must be estimated; i.e., one cannot gain efficiency by discarding

information on true π1. It is also important for us to define what we call the “OLS” estimate of β1.

In the RD context this as what one obtains by estimating the sharp RD regression (3) treating X

as exogenous (conditional on the controls for R and R ·D).
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As we show below, the delta-method standard errors se(β̂1) of the ratio β̂1 = ξ̂1/π̂1 tend to be

far below the Infeasible Fuzzy RD standard errors when β̂1 is near the OLS estimate of β1. This is

the sense in which the delta method standard errors are too small when β̂1 is near the OLS estimate.

This, in turn, generates the power asymmetry problem that afflicts the Fuzzy RD t-test.

In contrast, a remarkable fact is that the tAR test from the ITT regression is numerically equiv-

alent to the t-test on β1 from the Infeasible Fuzzy RD regression. This is a good way to understand

why tAR has desirable properties, as it is the test one could form if the first stage were known!

2.4. The Power Asymmetry Problem in 2SLS

Here we explain the point in Keane and Neal (2024, 2023) that 2SLS estimates have relatively

small (large) standard errors when β̂2SLS is close to (far from) β̂OLS . Consider the triangular system:

Y = βX + u (6)

X = πZ + e (7)

where Y is the outcome, X is an endogenous variable whose effect on Y is of interest, and Z is

a valid instrument for X. The correlation ρ between the errors u and e is non-zero, creating the

endogeneity problem. But Z satisfies Cov(Z, u) = 0 and π ̸= 0. We may obtain the 2SLS estimator

of β by taking the fitted values X̂ = π̂Z from the first stage (7), and then running an OLS regression

of Y on X̂. We also define β̂OLS as the estimate obtained via OLS regression of Y on X, ignoring

the endogeneity problem. The 2SLS standard errors are obtained from the formula:√
N−1

∑
(Yi −Xiβ̂2SLS)2/TSSX,Z (8)

where TSSX,Z is the total sum of squares ofX explained by the instrument Z. From this formula, we

can see there are two reasons the 2SLS estimates have relatively small (large) standard errors when

β̂2SLS is close to (far from) β̂OLS . First, the numerator, which is the standard error of regression, is

minimized when β̂2SLS = β̂OLS . This follows immediately from the definition of β̂OLS as minimizing

the sum of squared residuals. Hence, the 2SLS estimated standard error of regression is mechanically

smaller for realizations of β̂2SLS that happen to be close to β̂OLS . Second, a positive finite-sample

realization of ĉov(Z, u) when ρ > 0 both increases TSSX,Z , and shifts β̂2SLS towards OLS, which

also contributes to smaller standard errors when 2SLS is shifted in the direction of the OLS bias.

2.5. The Power Asymmetry Problem in Fuzzy RD

In the Fuzzy RD context, an analogous problem arises: the Fuzzy RD standard error on β̂1 tends

to be too small (large) when the Fuzzy RD estimate is close to (far from) the OLS estimate, defined

as in Section 2.3. In Section 4 we present simulations showing this power asymmetry renders the
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Fuzzy RD t-test unreliable, even when the first stage is strong. Then in Section 5 we show how the

tRA test avoids the problem. But first, we discuss two modern approached to RD inference.

3. Modern Approaches to RD Inference: Bias Aware and Bias-Corrected

As we mentioned in Section 2.1, methods have recently been developed that try to deal with bias

in estimating the discontinuities Y + − Y − and X+ −X− arising if the controls for R and R ·D are

inadequate to fully capture variation in E[u|R] and E[e|R] as one moves away from R0. Here, we

describe the two main methods that we focus on in our Monte Carlo experiments:

3.1. Robust Bias-Corrected (RBC) approach of Calonico, Cattaneo, and Titiunik (2014b)

RBC inference is implemented in the popular “rdrobust” package for R and Stata – see Calonico

et al. (2015) and Calonico et al. (2014a). In the sharp RD case, if we estimate ξ̂1 = Y + − Y − using

an MSE optimal bandwidth, and f(R) is the true E(u|R) function, then the leading term in a Taylor

expansion of the nonparametric asymptotic bias of a local linear estimator is:

b = h2(f ′′(R|R ≥ R0)B+
K(h)− f ′′(R|R < R0)B−

K(h))(1 + op(1)), (9)

where B+,B− are weights that depend on the bandwidth and kernel used to weight observations.4

Obviously the bias depends on the second derivative of f(R) near R0. This is unknown to the

researcher, but can be estimated. Calonico et al. (2014b) propose a multi-step procedure for choos-

ing an initial “wide” bandwidth for estimating the bias correction b̂, and then an MSE-optimal

bandwidth to form the bias-corrected estimator ξ̂1 − b̂.5

In the fuzzy RD case, they show that the bias of the ratio estimator ratio β̂1 = ξ̂1/π̂1 can be

written as a linear function of the biases in estimating the sharp RD parameters ξ̂1 and π̂1, plus

higher order terms. Estimates of these two bias terms may be constructed as described above.

Second, Calonico et al. (2014b) also adjust the variance of the estimator to account for the extra

variability introduced by the bias correction term. The resulting confidence intervals can be written

β̂1 − b̂± 1.96×
√
V̂ + Ŵ where V̂ denotes the variance of the uncorrected estimator, and Ŵ is the

extra variance induced by bias correction (the “robust” part of “robust bias-corrected” inference).

4The MSE is the squared bias of the estimator, which is proportional to h4, plus the variance, which proportional
to 1/Nh. Hence, the MSE minimizing bandwidth is h ∝ N−1/5. This is shrinking too slowly with N to eliminate
asymptotic bias – hence the need for bias correction. An alternative is to promise to have h shrink more quickly with
N , which is known as “under-smoothing.”

5The MSE optimal bandwidth has the form h = (V/(4B2 +R))1/5N−1/5, where B is a bias term that depends on
f ′′(R) near the boundary, R > 0 is a regularization term, and V depends on the variance of the estimated intercepts
of the local linear regression. A key difference between Calonico et al. (2014b) and Imbens and Kalyanaraman (2012)
is that CCT estimate V in this formula using the estimated variance of the intercepts in the local linear regression,
while IK use estimates of V (Y ) and the density of R near R0 (on which the variance of the intercepts depend). The
CCT bandwidth shrinks at a slightly faster rate, and we find it tends to be smaller in practice, see Appendix B.

7



3.2. The Bounded Second Derivative (BSD) approach of Kolesár and Rothe (2018)

Kolesár and Rothe (2018) introduced bounded second derivative (BSD) confidence intervals (CIs),

implemented in the RDHonest package for R and Stata. This “bias aware” approach does not correct

for bias in local linear estimators. Rather, it seeks to bound the bias, by bounding |f ′′(R)|. The

basic idea of an “honest” confidence interval is to expand the conventional t-test CI in an attempt to

insure that the adjusted CI covers the true value at the correct nominal rate α, despite the existence

of bias. The necessary CI expansion is increasing in the magnitude of |f ′′(R)|. Given an assumed

bound max |f ′′(R)| < M , the honest BSD confidence interval can be written:

β̂1 ± cv1−α(ψ(M,h))× se(β̂1) (10)

where ψ(M,h) is maximum bias (normalized by the standard error), and the critical value cv1−α(·)

is the 1−α quantile of the absolute value of a standard normal |N(ψ(M,h), 1)|, which is increasing

in M and bandwidth h.6 Kolesár and Rothe (2018) recommend use of judgement to choose M , but

the RDHonest default is the Armstrong and Kolesár (2020) approach, where a global fourth-order

polynomial fit either side of the cutoff is used to estimate M = max|f ′′(R)|. The bandwidth is

chosen to minimize “worst-case MSE,” defined as MSEwc = Bias2max + se(β̂1)
2, where Biasmax =

ψ(M,h) · se(β̂1) depends on M and h. See Appendix A for more details.

As BSD accommodates bias, rather than relying on a shrinking bandwidth to eliminate bias

asymptotically, its CIs are valid regardless of whether the running variable is continuous or discrete,

unlike RBC confidence intervals, which assume the running variable is continuous.7 Of course, it is

rare for a running variable to be truly continuous, but if R takes on many discrete values near the

cutoff it can reasonably be treated as continuous – see Cattaneo et al. 2024.

There is currently controversy over whether the RBC or BSD method is preferred. Hence, we

consider both approaches in our analysis.8 We also consider what Calonico et al. (2014a) refer to as

the “conventional” approaches – with no bias correction or CI adjustment – in Appendix B.

6Note that ψ(0, h)=0, so when M = 0 we get the usual critical value of 1.96. See Appendix A for details.
7Note that the RBC approach relies on a shrinking bandwidth as N approaches infinity, so that asymptotically

one limits the analysis to observations within epsilon of the cutoff. The RBC bias correction relies on an asymptotic
formula. But with a discrete running variable this apparatus doesn’t work, as there will never be observations within
epsilon of the cutoff, regardless of how large is N , due to the discrete nature of R – see Cattaneo et al. 2024.

8Simulation studies in Calonico et al. (2018) and Ganong and Jäger (2018) find RBC exhibits good finite-sample
properties. But Armstrong and Kolesár (2020) show it can undercover the parameter of interest in some circumstances,
that are hard for an applied researcher to assess. Noack and Rothe (2024) find BSD confidence intervals cover the
true parameter more reliably than RBC, even if true M is double the assumed value. This is because BSD CIs are
conservative; see Beckert and Kaliski (2024). But Cattaneo and Titiunik (2022) criticize BSD inference on the grounds
that (i) manually choosing M amounts to manually choosing the bandwidth, as the former largely determines the
latter, while (ii) estimating M from data sacrifices the uniform validity property that motivates use of BSD CIs.

8



4. The Power Asymmetry in Fuzzy Regression-Discontinuity Designs

In this section we present four Monte Carlo examples to illustrate the power asymmetry problem

in fuzzy RDs. The data generating processes (DGPs) we consider are all simple cases that satisfy the

assumptions for valid fuzzy RD inference. We focus on these simple cases to emphasize the problems

we uncover are fundamental – i.e., they do not only emerge in complex or pathological cases. They

are: (i) A randomized controlled trial with perfect compliance, (ii) a randomized controlled trial

with imperfect compliance, (iii) a case with a near-linear relationship between the running variable

and Y , and (iv) a case with quadratic relationship between the running variable and Y .

4.1. Case 1: RD Inference in an RCT With Perfect Compliance

Say a researcher is interested in the effect of a continuous variable X on the outcome Y . Units

are assigned to a treatment that exogenously shifts up the level of X if and only if 1[R ≥ 0], where

the running variable R is uniformly distributed on [−A,A]. Thus, treatment assignment is akin to

drawing a lottery number, or a coin flip, with an equal probability of being assigned to either the

treatment or control group. The DGP for this case, of an RCT with perfect compliance, is as follows:

Yi = βXi + ui,

Di = 1[Ri ≥ 0],

Xi = πDi + ei,

ei = ρui +
√

1− ρ2ηi,

R ∽ Unif(−
√
3,
√
3), (u, η) ∼ iidN(0, 1)

We assume the stochastic terms η and u are iid standard normal random variables, and we

construct e so it is also standard normal, with ρ the correlation between u and e. These variance

normalizations are without loss of generality, as Y and X can always be normalized so this is true.

The support of R is set at (−
√
3,
√
3) so that σ2

R = 1, but this is also innocuous.

We set ρ = 0.8 so the endogeneity problem is rather severe – although, we argue, large values of

ρ are not uncommon in the literature.9 Because ρ > 0 the OLS bias from naive regression of Y on

X is positive. We set the true effect of interest to be β = 0, so E(β̂OLS) = Cov(Y,X)/V ar(X) =

0.80/1.25 = .64, increasing to .75 if we control for R and RD. We also set the sample size to

N = 2, 000. This allows us to maintain a reasonable effective sample size after bandwidth selection.

9For example, in Section 6 we present an empirical application from Ambrus et al. (2020) where we find ρ̂=.859.
Similarly, in the well-known Oreopoulos (2006) paper on return to schooling we find −.715, and in the recent Goodman
et al. (2019) paper on how availability of online courses affects educational attainment we find −.815.
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Finally, we set π = 1, so that assignment to treatment causes a one standard deviation increase

in X. Given the sample size in our runs (N=2000) this insures the first stage regression of X on

D is “strong” in the sense that first-stage F s are well above the conventional threshold of F = 10,

even if the majority of observations are discarded due to bandwidth selection. Figure 1 displays a

representative first-stage RD plot for the above process.

Figure 1: Representative First Stage, DGP 1: RCT with Perfect Compliance
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Notes: Binned averages of the explanatory variable of interest X in intervals of the running variable R for the 10,000th

of 10,000 replications with 2,000 observations each.

We generate 10,000 artificial data sets from this DGP, and then apply rdrobust and RDHonest to

each one. In this simple case treatment D is exogenous (i.e., Cov(D,u) = 0) so RD is not necessary.

One could run 2SLS on the full sample using D as an instrument for X. However, the rdrobust and

RDHonest algorithms do not know this a priori, so they choose bandwidths, bias corrections and

CI corrections based on sample estimates of the CEF function E(u|R) and its derivatives.

Figure 2 presents the results from the 10,000 runs, with RBC results (from rdrobust) on the left,

and BSD results (from RDHonest) on the right. In both cases we use a uniform kernel. The figure

plots the standard error from each run on the y-axis, and the β̂ on the x-axis. Estimates that are

significant according to the t-test are shaded in red. The RBC and BSD estimates and standard

errors in left/right panels are different for two reasons: (i) RBC implements bias correction, and (ii)

RBC inflates the standard error (In contrast BSD inflates the t-test critical values). For BSD we

plot the conventional standard errors, but we shade in red only cases that are significant according

to the inflated t-test critical values in equation 10.

The key thing to notice in Figure 2 is the strong negative association between the estimates and

their standard errors. Estimates that are positive (in the direction of the OLS bias) have spuriously

small standard errors. As a result, positive estimates β̂ are much more likely to be judged significant

by the t-test than negative estimates. This pattern emerges for both RBC and BSD.
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Figure 2: DGP 1: An RCT with Perfect Compliance
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Note: Based on 10,000 replications with 2000 observations each. Left: Robust bias-corrected (RBC) inference via
the rdrobust R package. Right: Bounded second derivative (BSD) inference via the RDHonest R package. Both use

a uniform kernel. We plot β̂1 against se(β̂1). Runs with a standard error > 1 excluded. Red dots indicate H0:β = 0
rejected at 5% level. The dashed line indicates the lower bound standard error of .141 obtained assuming first-stage
π is known, as we explain in Section 4.2.

As we see in Table 1, row 1, RBC inference rejects the true null that β = 0 at almost exactly

the correct 5% nominal rate (5.1%). But 98% of rejections occur when β̂ is positive. BSD rejects

H0:β = 0 at an inflated rate of 9.8%, and 100% of these rejections occur when β̂ is positive. So for

both procedures, the power asymmetry problem is severe.

Table 1: RBC and BSD Inference with Uniform Kernel on DGPs 1 to 4

RBC BSD

DGP Reject % > 0 Median: β̂ SE F Ne Reject % > 0 Median: β̂ SE F Ne

1 5.1% 97.7% -.003 .207 32.04 508 9.8% 100% .094 .185 24.40 334

2 4.5% 76.1% -.005 .417 63.17 498 3.3% 99.7% .139 .413 44.93 341

3 4.5% 79.7% .004 .442 49.59 451 3.2% 99.7% .157 .438 36.92 303

4 4.7% 84.0% .012 .456 40.00 357 5.3% 100% .284 .451 33.41 289

Notes: Summary results for 10,000 artificial datasets of size N = 2000 each. The 4 rows report results for the 4 DGPs
discussed in Sections 4.1 to 4.5. RBC and BSD indicate results from the rdrobust and RDHonest packages, respectively.
Both use a uniform kernel. We report the rate of rejecting H0:β = 0, the fraction of these rejections that occur when
β̂ > 0, and the medians of the estimate, estimated standard error, first stage F, and effective observations Ne.

As we see in Table 1, row 1, RBC generates essentially no median bias, while the median bias

of BSD is 0.094. It is important to understand that Fuzzy RD suffers from no inherent bias due to

mis-specification of the local linear regression in this case, as f(R) = 0, M = 0. This is reflected in

the fact that the RBC bias correction terms are very small, and ignoring them has almost no impact

on the RBC results. Thus, it is interesting to ask why BSD exhibits median bias.

The median bias in BSD is due to the power asymmetry. As we noted in Section 3.2, the BSD
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bandwidth is chosen to minimize MSEwc = Bias2max + se(β̂1)
2, which depends on the estimated

standard error of the fuzzy RD estimate se(β̂1). As we have explained, fuzzy RD estimates close to

β̂OLS tend to have small standard errors. Hence, BSD has a tendency to choose bandwidths that

generate estimates close to β̂OLS .
10 In DGP 1, this positive bias compounds the power asymmetry

problem to generate a highly inflated rate (9.8% vs. 2.5%) of rejecting H0:β ≤ 0, combined with a

zero rate of rejecting H0:β ≥ 0. (In Section 4.7 we show the bias problem with BSD is much less if

one uses a triangular kernel instead of the uniform.)

Figure 3 illustrates what occurs if we take DGP 1 and flip the sign of ρ, from 0.80 to -0.80, so

that the OLS bias is now negative. Then we run BSD on 10,000 artificial data sets from this process.

Note how the association between the BSD estimates and their standard errors flips from negative

to positive. As the OLS bias is negative, standard errors tend to be smaller for negative estimates.

Furthermore, the power asymmetry also induces negative median bias in the BSD estimator. Here

the median estimate is −.099, compared to .094 when ρ is positive.

Figure 3: BSD Inference: DGP 1 with ρ = −0.80
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Notes: Based on 10,000 replications with 2000 observations each. We plot β̂1 against se(β̂1). BSD inference is
implemented via the RDHonest R package. Red dots indicate H0:β = 0 rejected at 5% level.

Finally, it is important to emphasize that the power asymmetry problem is not due to a weak

first stage. As we see in Table 1, in DGP 1, the median first stage F is 32 for the RBC runs and

24 for the BSD runs. These differ as the two approaches choose different bandwidths. But in each

case the first-stage F statistics are typically well above conventional levels used to reject the null of

weak identification in just-identified IV.

10RBC does not suffer from this problem, as it chooses the bandwidth to minimize the MSE of the fuzzy RD
estimator based on an analytical formula: The bias depends on f ′′(R), while the variance is proportional to 1/Nh.
The power asymmetry does not affect this variance calculation, but, in contrast, it does affect CI length.
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4.2. Comparison with Infeasible Fuzzy RD

We claim RD estimated standard errors are spuriously small when β̂ is near OLS. To illustrate

this point, we compare them to the best-case standard errors of the “Infeasible Fuzzy RD” estimator

that we could construct if the first-stage coefficient π was known: If π were known a priori, we could

estimate β directly via a sharp RD regression of Y on πD, controlling for R and R ·D. Here we apply

this estimator to the same 10,000 artificial data sets we just analyzed in Section 4.1. Furthermore,

to drive down the standard errors even further, we chose a fixed bandwidth of 0.4 ×
√
3, so the

median number of observations used in the runs is 800 (i.e., 40% of N = 2000). This exceeds the

maximum (median) sample size of 799 (508) used by rdrobust, and is greater than 99.9% of the

samples selected by RDHonest, which uses a median sample size of only 334.

The left panel of Figure 4 displays the infeasible fuzzy RD results. Notice the estimated standard

errors are tightly clustered around 0.141, and they are unrelated to the β̂ estimates. The true V ar(β̂)

is σu/
√
800 · V ar(πD|D,RD) = 1/

√
800 · 0.0625 = 1/

√
50 = 0.141.11 Thus, the estimated standard

errors are an accurate reflection of the true parameter uncertainty. This is not surprising, as the

infeasible fuzzy RD estimator is based on an OLS regression. We reject H0:β = 0 at almost exactly

the correct 5% rate, and rejections on the positive and negative side are almost perfectly balanced.12

Figure 4: Infeasible Fuzzy RD, and Feasible Fuzzy RD with a Fixed Bandwidth
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Note: Based on 10,000 replications with 2000 observations each. We plot β̂1 against se(β̂1). Left: Infeasible Fuzzy
RD regression of Y on πD. Right: Feasible Fuzzy RD regression of Y on X using D as an instrument. R and D×R
are controls in both cases. Both cases use the DGP and parameter values from Case 1 in Section 4, and a fixed
bandwidth of 0.4 ×

√
3, for a median number of observations of 800. Red dots indicate H0 : β = 0 rejected at 5%

level. Runs with standard error > 1 excluded. The dashed line indicates the true infeasible fuzzy RD standard error
of .141, which assumes first-stage π is known.

11Of course V ar(πD) = .25 because π = 1 and D is a dummy variable equal to 1 with probability 0.50. But what

is relevant for the standard error of β̂ is the conditional variance V ar(πD|D,RD) = 0.252 = 0.0625.
12The median infeasible fuzzy RD estimate is -0.002 (i.e., extremely close to zero). The true null that β = 0 is

rejected in 5.12% of runs. Of those, 2.51% occur when β̂ > 0 and 2.61% when β̂ ≤ 0, so we have near perfect balance.
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Returning to Figure 2, we see that the RBC and BSD standard error estimates are often far

below the theoretical lower bound of 0.141, despite using fewer than 800 observations. Even more

importantly, this typically occurs when the estimates are shifted towards OLS. That is why almost

all significant RBC and BSD estimates occur when β̂ > 0, the direction of the OLS bias.

Are the RBC and BSD standard errors too small when β̂ is shifted in the direction of the OLS

bias because of some problem with the RBC and BSD approaches? (i.e., how they choose the

bandwidth or implement bias correction?) Or is this a fundamental problem with fuzzy RD itself?

To address this question, the right panel of Figure 4 shows what happens if we apply “vanilla”

fuzzy RD to the same 10,000 datasets, using a fixed bandwidth of 0.4 ×
√
3, a uniform kernel, and

with no bias correction or standard error adjustment.13 As we see, the results look very similar to

the RBC and BSD results in Figure 2. There is a strong negative association between the Fuzzy

RD estimates and their standard errors. As a result, only estimates that are heavily shifted in the

direction of the OLS bias are likely to be judged significant by the t-test.

To be precise, the median vanilla fuzzy RD estimate is -0.002, with the null β = 0 rejected in

4.83% of runs, which is close to the correct 5% rate. However, 4.70% of those rejections when β̂ > 0

and only 0.13% occur when β̂ ≤ 0. Thus, a one-tailed 2.5% level t-test of H0 : β ≤ 0 rejects at almost

twice the nominal rate, while a one-tailed t-test of H0 : β ≥ 0 has almost no power whatsoever.

These results illustrate that the problem with Fuzzy RD standard errors is fundamental, and not

caused by – or solved by – any of the current most popular methods for estimating Fuzzy RDs.

4.3. Case 2: RD Inference in an RCT With Imperfect Compliance

Next we consider a DGP where treatment X is discrete and there is imperfect compliance:

Yi = βXi + ui,

Di = 1[Ri ≥ 0],

Xi =

0 if Di = 0,

1[π − 1 + ei ≥ 0] if Di = 1,

ei = ρui +
√
1− ρ2ηi,

R ∽ Unif(−
√
3,
√
3), (u, η) ∼ iidN(0, 1)

13This is simply a 2SLS regression of Y on X with D and R ·D as controls, using data on the (−0.4×
√
3 < R <

0.4×
√
3) interval. So we implement Fuzzy RD via 2SLS just as in equations (3)-(4).
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Here individuals with R above a threshold R0 = 0 are accepted into a treatment program, but only

a fraction of them chose to participate. We set π = 1, so the condition for participation (X = 1)

is ei ≥ 0, which is satisfied for approximately half of observations, given that e is N(0, 1). In other

words, setting D = 1 increases the probability of participation from 0 to 1/2. In this example R is

like a lottery number, so again D = I(R > 0) is exogenous.

As in DGP 1, we set the true β = 0, and ρ = 0.8, so the OLS bias from naive regression of Y on

X is positive. Here E(β̂OLS) = .85, increasing to 1.13 if one controls for R and R ·D. We also set

the sample size to N = 2, 000. Figure 5 displays a representative first-stage RD plot for this process:

Figure 5: Representative First Stage when X is Discrete with F = 54
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Notes: Binned averages of the explanatory variable X in intervals of the running variable R for the 10,000th of 10,000
replications with N=2,000 each. Created via the “rdplot” function from the R package rdrobust. Only one bin is
plotted left of the cutoff since by design Xi = 0 when Ri < 0, so all observations fit in a single bin with mean zero.

Figure 6 shows the results of applying RBC and BSD, both with a uniform kernel, to 10,000

artificial data sets from this process. A strong negative association between the estimates and their

standard errors is again evident: Positive estimates β̂ are much more likely to be judged significant

by the t-test than negative estimate. As we see in Table 1, row 2, RBC inference rejects the true

null that β = 0 at close to the correct 5% nominal rate (4.5%). But 76% of rejections occur when

β̂ is positive, again illustrating the power asymmetry problem. Note that the power asymmetry is

less severe here than in DGP 1, presumably because here the median first stage F is higher at 63.

The power asymmetry for BSD is more severe: In the right panel we see it rejects at a 3.2% rate,

and 99.7% of these occur when β̂ > 0. RBC and BSD reject on the positive side at about the same

rate, but only RBC generates non-negligible rejections on the negative side. As we see in Table 1

the median bias of RBC is essentially zero, while that of RBC is .139. (As we explained in Section

4.1, the power asymmetry generates this bias in BSD.) The positive bias of BSD interacts with the

power asymmetry to generate excessive positive rejections, and almost no negative rejections.
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Figure 6: DGP 2: RCT with Imperfect Compliance
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Notes: Based on 10,000 replications with 2000 observations each. Left: Robust bias-corrected (RBC) inference via
the rdrobust R package. Right: Bounded second derivative (BSD) inference via the RDHonest R package. Both use

a uniform kernel. We plot β̂1 against se(β̂1). Runs with a standard error > 1 excluded. Red dots indicate H0:β = 0
rejected at 5% level.

4.4. Case 3: RD Inference for a Case with E[Y |R] Linear in R

In many regression-discontinuity designs, the object of interest is the impact of admission, X, to

a school or an educational program, on subsequent test scores or log earnings Y , where admission

is based on a test score, R. The DGP for Case 3 mimics this situation:

Yi = βXi +Ri + ui,

Di = 1[Ri ≥ 0],

Xi =

0 if Di = 0,

1[π − 1 + .645Ri + ei ≥ 0] if Di = 1,

ei = ρui +
√
1− ρ2ηi,

R ∽ N(−1, 1),

In this context the test score measures ability, so it affects the outcome Y directly, as well as

indirectly through its impact on admission. This violates the IV exclusion restriction, so in contrast

to our first two cases, conventional 2SLS would not work in this case. Also, in contrast to the first

two examples, here we assume R is normally distributed, as that is typical for distributions of test

scores. The test score cutoff is set to R0 = 0, and we set the mean of R to −1, so that only students

who are at least 1 standard deviation above the mean are admitted. We set π = 1, so students who

are admitted participate in the program if e+ .645R ≥ 0. Thus, students with higher ability R are

also more likely to accept if admitted.
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In this example, the error terms u and e capture “motivation.” We set ρ = 0.8, so more motivated

students are both more likely to participate in the program and tend to have better outcomes Y

regardless. As in the first two DGPs, we set β = 0. In this setup, E(β̂OLS) = 2.29, falling to 0.94 if

one controls for R and RD. We again set the sample size to N = 2, 000.

Figure 7: DGP 3: Effect of Admission to Education Program on Wages, E[Y |R] Linear in R.
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Notes: Based on 10,000 replications with 2000 observations each. Left: Robust bias-corrected (RBC) inference via
the rdrobust R package. Right: Bounded second derivative (BSD) inference via the RDHonest R package. Both use

a uniform kernel. We plot β̂1 against se(β̂1). Runs with a standard error > 1 excluded. Red dots indicate H0:β = 0
rejected at 5% level.

Figure 7 shows results of applying RBC and BSD, both with a uniform kernel, to 10,000 artificial

data sets from this process. The power asymmetry is again evident. Median first stage F is 50 for

RBC and 37 for BSD, again illustrating this is not a weak instrument phenomenon. As we see in

Table 1, row 3, RBC rejects H0:β = 0 at at 4.5% rate, and 80% of these rejections occur when β̂ > 0.

The power asymmetry for BSD is more severe: It rejects the null at a 3.2% rate, and 99.7% of these

rejections occur when β̂ > 0.

Again, the median bias of RBC is essentially zero, but that of BSD is .157. The BSD bandwidth

algorithm interacts the power asymmetry to generate this bias, even if the local linear model is correct

(so there is no inherent bias in RD). Furthermore, the power asymmetry also causes smaller standard

errors on positive β̂, generating excessive positive rejections and almost no negative rejections.

4.5. Case 4: RD Inference for a Case with E[Y |R] Quadratic in R

Our fourth and final DGP mimics admission to a remedial education program. Here R is the

negative of an ability score, and students with sufficiently high R (hence, low ability) are admitted

to the program. We modify DGP 3 so that test score R has a non-linear effect on the outcome Y .

We assume the effect is quadratic, and that the slope shifts at R0:
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Yi = βXi + 2R2
i − 4DiR

2
i + ui,

Di = 1[Ri ≥ 0],

Xi =

0 if Di = 0,

1[π − 1 + 0.645Ri + ei ≥ 0] if Di = 1,

ei = ρui +
√
1− ρ2ηi,

R ∽ N(−1, 1),

Figure 8 illustrates the shape of the conditional expectation function E[Y |R] in this case. Because it

is nonlinear, controls for R and R ·D will not completely control for variation in E[Y |R] as we move

away from R0. However, this case is ideal for RBC inference: If the true conditional expectation

function is quadratic, all higher-order bias terms are zero, and so bias correction should on average

correct for the bias exactly. Similarly, BSD inference should perform well due as the quadratic form

of the true CEF guarantees the boundedness of the second derivative.

Figure 8: Representative Quadratic Outcome CEF
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Note: Binned averages of the outcome Y in intervals of the running variable R, for the 10,000th of 10,000 replications
with 2,000 observations each.

We set π = 1, so students who are admitted participate in the program if e+ .645R ≥ 0. Thus,

students with higher R (lower ability) are more likely to accept remediation. The error terms u

and e capture “motivation.” We set ρ = 0.8, so more motivated students are both more likely to

participate and tend to have better outcomes Y regardless. We again set the true effect β = 0. In

this setup, a naive OLS regression of Y on X gives E(β̂OLS) = −4.88, as lower ability students are

more likely to have X = 1 and also have worse outcomes Y . However, if one controls for R and

R ·D, we get E(β̂OLS) = 3.13. This positive OLS bias is driven by ρ > 0. As we will see, it is this

positive OLS bias that drives the power asymmetry. We again set the sample size to N = 2, 000.
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Figure 9: DGP 4: Effect of Admission to Education Program on Wages, E[Y |R] Quadratic in R.
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Notes: Based on 10,000 replications with 2000 observations each. Left: Robust bias-corrected inference (RBC) via
the rdrobust R package. Right: Bounded second derivative (BSD) inference via the RDHonest R package. Both use

a uniform kernel. We plot β̂1 against se(β̂1). Runs with a standard error > 1 excluded. Red dots indicate H0:β = 0
rejected at 5% level.

Figure 9 shows results of applying RBC and BSD, both with uniform kernel, to 10,000 artificial

data sets from this process. A strong negative association between the estimates and their standard

errors is again evident. As we see in Table 1, row 4, RBC rejects H0:β = 0 at at 4.7% rate, and

84% of these rejections occur when β̂ > 0. The power asymmetry for BSD is more severe: It

rejects at a 5.3% rate, and 100% of these rejections occur when β̂ > 0. The median bias of RBC is

essentially zero, but that of BSD is a substantial .284. This positive bias again interacts with the

power asymmetry to generate excessive positive rejections.

4.6. Changing the Sign of ρ

In this section we briefly report what happens if we change ρ from 0.80 to -0.80, so the OLS bias

is now negative. At the end of Section 4.1 we already showed that this flips the median bias of the

BSD estimator from positive to negative in DGP 1. Table 2 gives complete results for all four cases.

We see the results are the mirror image of those in Table 1. When the OLS bias is negative, the

large majority of rejections of H0:β = 0 occur when β̂ < 0, due to the power asymmetry problem.

Note that the bias of BSD now turns negative in all four cases. As we explained in Section 4.1,

choosing the bandwidth by numerically searching over the space of standard errors, when combined

with the power asymmetry, causes BSD to choose bandwidths that generate estimates shifted toward

OLS, because these estimates have relatively small standard errors.

The one notable difference between the results in Tables 1 and 2 is that in DGP 4 the bias in the

BSD estimator shifts from .284 to -.067. So it not only flips sign but also gets smaller in magnitude.

The reason is that in DGP 4 the BSD estimator has two sources of bias: (i) the bias towards OLS
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induced by the power asymmetry, and (ii) the bias that arises from the mis-specification of the

local-linear model, arising because E[Y |R] is quadratic in R in DGP 4. In DGP 4 this second source

of bias is positive.14 Thus, (i) and (ii) reinforce each other when the OLS bias is positive, while

partially canceling each other when the OLS bias is negative. Of course there will be fortuitous

cases where the two sources of bias happen to cancel, but of greater concern is that the bias may be

severe when the two sources of bias reinforce each other – as we see in DGP 4 when ρ > 0.

Table 2: RBC and BSD Inference with Uniform Kernel, DGPs 1 to 4 with ρ = −0.8

RBC BSD

DGP Reject % < 0 Median: β̂ SE F Ne Reject % < 0 Median: β̂ SE F Ne

1 5.4% 98.5% -.005 .205 32.25 508 10.1% 100% -.099 .185 24.53 334

2 4.8% 76.7% -.006 .416 62.88 498 3.6% 99.4% -.149 .414 45.08 340

3 4.8% 78.9% .002 .443 49.66 451 3.1% 99.7% -.155 .437 37.27 302

4 4.3% 83.6% .013 .487 40.12 357 2.3% 98.3% -.067 .469 33.72 281

Notes: Summary results for 10,000 artificial datasets of size N = 2000 each. The 4 rows report results for the 4 DGPs
discussed in Sections 4.1 to 4.5. RBC and BSD indicate results from the rdrobust and RDHonest packages, respectively.
Both use a uniform kernel. We report the rate of rejecting H0:β = 0, the fraction of these rejections that occur when
β̂ > 0, and the medians of the estimate, estimated standard error, first stage F, and effective observations Ne.

4.7. Using a Triangular Kernel

As Hahn et al. (2001) pointed out, once a bandwidth is chosen, a local linear regression based

on a uniform kernel is equivalent to 2SLS. However, many RD applications instead use a triangular

kernel, so this equivalence breaks down. In this section, we show that the power asymmetry problem

that affects the fuzzy RD t-test is equally important if one uses a triangular kernel.

Table 3 shows results of using a triangular kernel for DGPs 1-4. The RBC results are almost

identical to the uniform kernel results in Tables 1 and 2. The number of observations that are used in

estimation (shown in the column labeled N) increases by about 20 to 25%, as we would expect with

a triangular kernel. But the median estimate, standard error and first stage F are little changed.

When ρ = .80 we see that 75% to 97% of the rejections of the true null β = 0 occur when β̂ > 0,

very close to the figures in Table 1. So the power asymmetry is very similar. The direction of the

power asymmetry is reversed when ρ is negative, just as we saw in Table 2.

In contrast, the BSD results are very different: The median bias of the BSD estimates – which

was evident when using a uniform kernel – is almost eliminated in cases 1 to 3, and greatly reduced

14If we consider the RBC estimates without bias correction (i.e., the uncorrected local-linear estimates produced
using the RBC MSE-optimal bandwidth), the median estimate is near zero in DGPs 1 to 3, but it is .185 in case 4.
So the bias of the local linear estimator in DGP 4 is roughly .185.
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in case 4. In Section 4.1 we explained how the power asymmetry interacts with the BSD bandwidth

selection algorithm to generate bias. BSD tends to choose bandwidths that generate estimates

close to β̂OLS , as these have smaller standard errors. However, as we explain in Appendix C, this

tendency is much weaker when using a triangular kernel, simply because the standard error of the

RD estimate varies much less with bandwidth.

On the other hand, the power asymmetry is still very evident for BSD. For all four DGPs over

90% of rejections occur when β̂ deviates from β = 0 in the direction of the OLS bias.

Table 3: RBC and BSD Inference with Triangular Kernel, DGPs 1 to 4

ρ = 0.8 RBC BSD

DGP Reject % > 0 Median: β̂ SE F Ne Reject % > 0 Median: β̂ SE F Ne

1 5.2% 96.8% -.002 .208 32.61 626 4.8% 100% .018 .202 28.64 441

2 5.2% 74.7% -.005 .419 63.56 607 2.2% 96.4% .009 .414 55.79 438

3 5.2% 79.0% -.001 .451 48.50 538 2.1% 97.7% .018 .439 44.96 390

4 5.1% 81.1% -.002 .461 40.49 446 3.6% 99.7% .139 .452 41.00 373

ρ = −0.8 RBC BSD

Case Reject % < 0 Median: β̂ SE F Ne Reject % < 0 Median β̂ SE F Ne

1 5.4% 97.1% -.004 .206 32.92 624 5.0% 100% -.021 .200 28.86 441

2 5.2% 75.7% -.006 .419 63.69 607 2.1% 97.6% -.019 .414 55.75 437

3 5.0% 81.7% -.002 .451 48.50 538 2.1% 98.5% -.015 .439 44.90 390

4 4.8% 82.4% -.002 .486 40.92 446 1.7% 90.1% .091 .475 41.00 365

Notes: See notes to Table 1 and Table 2. The only change is the use of a triangular kernel.

4.8. Summary of Results

Each of the four DGPs we considered is favorable to RBC and BSD inference, as the assumptions

of these methods are satisfied. Yet for both methods, the power asymmetry causes one-tailed t-test

size to be distorted, so estimates shifted in the direction of the OLS bias are much more likely to be

judged significant by the t-test than estimates shifted in the opposite direction. Hence, the estimates

for which a two-tailed t-test rejects the true null β = 0 are heavily skewed in the direction of the

OLS bias that motivates using RD in the first place.

BSD suffers from an additional problem: The power asymmetry interacts with its bandwidth

selection algorithm to induce median bias towards OLS. The problem is severe for the uniform kernel,

but minor for the triangular kernel. Hence, it is preferable to use a triangular kernel with BSD.15

15The RDHonest package also has a minimum MSE bandwidth selection option, that one may choose in lieu of the
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5. Reduced Form Anderson-Rubin Inference in Fuzzy Regression-Discontinuity Designs

As we explained in Section 2.2 the analogue to the reduced form in RD analysis is a sharp RD

regression of the outcome Y on treatment assignment D = 1[R ≥ R0], along with controls for R and

R ·D. This estimates the Intent-to-Treat (ITT) effect ξ1 = β1π1 rather than the effect of treatment

β1. The Anderson-Rubin approach to inference in the RD context is to use the t-test on ξ̂1 in the

ITT regression to assess whether the β̂1 is significant in the fuzzy RD regression. We denote this the

tAR test. A remarkable fact is that this generates numerically the exact same test that we could form

if we knew the first stage coefficient π1 a priori and could run the “infeasible fuzzy RD regression”

of Y on ξ1D — see Section 2.3. That is why the tAR has desirable properties.16 Here we show how

this AR-type test performs in the same four cases we examined in Section 4.

Feir et al. (2016) first proposed adopting this AR approach to inference when the first stage of

Fuzzy RD is weak. They applied under-smoothing to the ITT regression, and so did not consider

bias. Noack and Rothe (2024) proposed to apply the bias aware BSD approach to the ITT regression,

using inflated critical values as in equation (10). As in Section 4, we will consider both the BSD

approach and the robust bias corrected (RBC) approach. We are not aware of previous Fuzzy RD

inference that adopts an AR approach where RBC inference is applied to the ITT regression.

5.1. Cases 1 and 2: RCTs with Perfect and Imperfect Compliance

The true reduced from for case 1 is Y = βπD + (βe+ u), which, when we set β = 0 and π = 1

is simply y = u. The true reduced from for case 2 is Y = βD + u, which, when we set β = 0 is

simply y = u. Hence the reduced forms are identical. We use the same draws for (u, η,R) in both

simulations, so the data for Y and D are identical. Hence each case generates identical reduced form

results when we run sharp RD regressions of Y on D along with controls for R and R ·D.

Reduced form results for DGPs 1 and 2 are shown in Figure 10, which reports results of applying

RBC (via rdrobust) and BSD (via RDHonest), both with a uniform kernel, to 10,000 datasets from

minimum CI option. But it defines the variance term in the MSE as the square of the estimated standard error of β̂.
Due to the power asymmetry, this variance, and hence the MSE as a whole, tends to be minimized for bandwidths
that generate estimates near OLS. In contrast, RDrobust chooses bandwidth to minimize MSE where the variance is
defined as V/nh, where V is a function of (i) the variance of Y |R near the cutoff and (ii) the density of R near the
cutoff. Crucially, these quantities do not vary with the estimated standard error, so the power asymmetry does not
induce median bias when bandwidth is chosen to minimize this definition of MSE.

16Note that if we run a sharp RD regression of Y on D along with R and R · D as controls we get numerically
the same t-statistic as if we could run the infeasible regression of Y on πD along with R and R ·D as controls. The
multiplication of D by the scalar π does not change the result. Interestingly, one would also get exactly the same
result by running a sharp RD regression of Y on π̂D along with D and R ·D as controls, where π̂ is the first stage
estimate of π. That is, by running the 2nd stage of fuzzy RD (which is just 2SLS) “by hand” and simply reporting

the t-test on the estimated coefficient on X̂ = π̂D. All three regressions generate the same t-test.
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Figure 10: Reduced Form Inference in RCT DGPs (Cases 1 & 2)
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Notes: Based on 10,000 replications with N=2000 each. Left: RBC inference via the rdrobust R package. Right:
BSD inference via the RDHonest R package. Both use a uniform kernel. We plot ξ̂ against se(ξ̂). Red dots indicate

H0:β = 0 rejected at 5% level. For AR inference this corresponds to cases where ξ̂ is significant at the 5% level.

this process. We plot the estimated ITT effect ξ̂ = β̂π against its estimated standard error. Clearly,

there is almost no association between estimates and standard errors in these ITT regressions, in

sharp contrast to the Fuzzy RD regressions in Figures 2 and 6. RBC rejects H0:β = 0 at a 5.47%

rate, and 48.3% of these occur when β̂ > 0. BSD rejects at a 3.26% rate, and 50.3% of these occur

when β̂ > 0.17 (Note that, as π = 1, positive ξ̂ correspond exactly to positive β̂). Thus, rejections

are well balanced on the positive and negative side, so the power asymmetry problem is resolved.

5.2. Case 3: Reduced Form Inference For a Case with E[Y |R] Linear in R

The true reduced form in this case is Y = βD + R + u, so a sharp RD of Y on D = 1[R ≥ R0]

with controls for R and R ·D is properly specified. Figure 11 reports the reduced form RD results for

this case. Here, RBC inference rejects the false null β = 0 at a 5.25% rate, and 50.1% of rejections

occur when β̂ > 0. Bias-aware inference via RDHonest rejects at a 3.32% rate, and 48.5% of these

occur when β̂ > 0. So again, the power asymmetry problem is resolved.18

5.3. Case 4: Reduced Form Inference for a Case with E[Y |R] Quadratic in R

For DGP 4 the true reduced form is Y = βD+2R2 − 4DR2 +u, so a sharp RD that controls for

R and R ·D will exhibit bias. However, RBC inference should correct for the bias quite accurately,

as higher order bias terms are zero. And BSD should perform well as M = 4. Figure 12 shows the

results for this case. For RBC the true null β = 0 is rejected at a 5.28% rate, and 49% of these

rejections occur when the estimate is positive. So again the power asymmetry problem is resolved.

17Note that the BSD confidence intervals are conservative, so it rejects at less than the nominal 5% rate. This
occurs despite the fact that true M = 0, as the estimates of |M | are positive due to sampling variation.

18Again, the BSD confidence intervals are conservative.

23



Figure 11: Reduced Form Inference: DGP 3, E[Y |R] Linear in R
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Notes: Based on 10,000 replications with N=2000 each. Left: RBC inference via the rdrobust R package. Right:
BSD inference via the RDHonest R package. Both use a uniform kernel. We plot ξ̂ against se(ξ̂). Red dots indicate

H0:β = 0 rejected at 5% level. For AR inference this corresponds to cases where ξ̂1 is significant at the 5% level.

In contrast, BSD rejects β = 0 at a 4.14% rate, which is less than 5% because the BSD confidence

intervals are conservative. However, 76.6% of these rejections occur when β̂1 > 0. This imbalance is

not due to a power asymmetry: As we can see in the right panel of Figure 12, there is no negative

association between estimates and standard errors.

Figure 12: Reduced Form Inference: DGP 4, E[Y |R] Quadratic in R
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Notes: Based on 10,000 replications with N=2000 each. Left: RBC inference via the rdrobust R package. Right:
BSD inference via the RDHonest R package. Both use a uniform kernel. We plot ξ̂ against se(ξ̂). Red dots indicate

H0:β = 0 rejected at 5% level. For AR inference this corresponds to cases where ξ̂1 is significant at the 5% level.

Instead, the source of the imbalance is the bias in the bias-aware estimator. The median bias

of the BSD estimates is .062, compared to only .006 for the RBC procedure. Because of this bias,

the rate of rejecting β = 0 on the positive side is 3.2%, which exceeds the nominal 2.5% test of a

one-sided test using the same critical values. This illustrates that symmetrically widening confidence

intervals, as BSD inference does, does not in general result in a test with symmetric power.
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5.4. Why Does Inference Via the Reduced Form Avoid the Power Asymmetry?

Fuzzy RD is a ratio estimator, and the delta-method standard errors se(β̂1) of the Fuzzy RD

estimate β̂1 = ξ̂1/π̂1 suffer from a power asymmetry (i.e., they tend to be too small when β̂1 is near

to OLS), because the standard error of the Fuzzy RD regression is minimized at the OLS estimate

– see Section 2.4. In contrast, the ITT estimate ξ̂1 and its standard error can be obtained directly

from a sharp RD regression, so no ratio is involved. The standard error of the sharp RD regression

is minimized at the sharp RD estimate, thus avoiding the key source of the power asymmetry. And

fortunately, the p-value for the ITT estimate is also the correct p-value for Fuzzy RD estimate β̂1,

so long as the key assumption that π1 ̸= 0 is satisfied (since then β1π1 = 0 if and only if β1 = 0).19

5.5. AR Confidence Intervals in Fuzzy RDs

Valid confidence intervals for the Fuzzy RD estimator β̂1 cannot be constructed using the usual

formula β̂1±cv1−α×se(β̂1), where se(β̂1) is the Fuzzy RD standard error, as the t-stat does not have

a symmetric N(0, 1) distribution under the null (due to the power asymmetry). Instead, one should

obtain a non-symmetric confidence interval by “inverting” the AR test to find the set of values that

cannot be rejected. It is straightforward to do this manually. For any hypothesized βh, we run the

sharp RD regression of Y −βhX on D, controlling for R and R ·D. If D is significant (insignificant)

we can (cannot) reject that βh is in the confidence set. Running such regressions on a grid of βh

values, one seeks the values βU and βL that form the upper and lower bounds of the set.

Feir et al. (2016) and Noack and Rothe (2024) show how AR confidence intervals can also be

formed analytically by finding the set of hypothesized values βh that satisfy the quadratic inequality:

(ξ̂1 − βhπ̂1)
2 − cv21−α × (σ̂2

RF + β2
hσ̂

2
FS − 2βhσ̂RF,FS) ≤ 0 (11)

where σ̂RF and σ̂FS denote the standard errors of the sharp RD estimators of ξ1 = β1π1 and π1,

respectively, and σ̂RF,FS denotes their covariance. If βh = 0 this reduces to checking if the ITT

estimate ξ̂1 is significantly different from 0 in the reduced form, using the tAR test.

The difference between the AR confidence intervals in Noack and Rothe (2024) and Feir et al.

(2016) is that Noack and Rothe (2024) use the BSD approach, so they input BSD estimates and

the inflated critical values from (10) into (11). One may also use the RBC estimates of the ITT

regression to form the CI interval in (11), by plugging in RBC estimates and standard errors.

19Apart from avoiding the power asymmetry, Anderson-Rubin p-values are preferable to 2SLS t-test p-values for two
further reasons. First, they are robust to weak instruments, since they don’t depend on the the first-stage F -statistic
(Feir et al., 2016; Keane and Neal, 2024, 2023). Second, among unbiased tests, the AR test is optimal (i.e., it is the
uniformly most powerful test; see Moreira 2009 and our discussion at start of Section 5).
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6. Example: Long Run Impact of the 1854 Broad Street Cholera Outbreak on Rents

Here we revisit an interesting RD application to illustrate the empirical relevance of the issues we

have discussed. Ambrus, Field, and Gonzalez (2020) study the long-term impact of the 1854 Broad

Street cholera outbreak in Soho, London, on local real estate values, as measured by rents. They

find evidence that rents were still depressed 10 years later. The treatment effect is identified by

the discontinuous change in rents at the boundary of the catchment area of the Broad Street water

pump (‘BSP’), which drew water from a contaminated well, and was responsible for transmitting

cholera throughout the catchment. They estimate the ITT effect of being inside the BSP catchment

area on rents in 1864 by estimating the sharp RD regression:

ln yi = ξ0 + ξ1BSPi + ξ2Ri + ξ3BSPi ·Ri +W
′

itξ4 + ϵi for − h < Ri < h (12)

where ln yi is the log rent of property i in 1864, BSPi is 1 if the property falls within the catchment

area, the running variable Ri is the distance in meters to the boundary, W
′

it is a vector of control

variables, and h is the bandwidth. They estimate this local linear regression using the Calonico

et al. (2014b) algorithm to determine h, along with a triangular kernel.

Ambrus et al. (2020) also report Fuzzy RD estimates of the effect of having at least one cholera

death in property i during the outbreak, which we denote by CDi, on rent in 1864. In these

regressions BSPi is the instrument for CDi. [Hence, in our earlier notation, D = BSP while

X = CD.] Out goal here is to assess (i) how these Fuzzy RD results are affected by the power

asymmetry issue, and (ii) if the ITT results are more reliable.

Ambrus et al. (2020) report the Fuzzy RD result in Table B2 column 1 of their article, and the

ITT result in Table 3, panel B column 2. We can replicate these results exactly. Notably, Ambrus

et al. (2020) use a larger set of controlsW in the ITT regression than in the Fuzzy RD regression. We

call these the ‘Basic’ and ‘Full’ control sets.20 Furthermore, they do not implement bias correction.

We present ITT and Fuzzy RD estimates in Table 4, with and without bias correction, using only

the Full set of controls. We also report what we call the ‘OLS’ local linear regression of y on CD

for |R| < h, along with controls for R, R · BSP and W . This OLS regression ignores potential

endogeneity of CD that Fuzzy RD using BSP as an instrument is meant to correct.

The ‘OLS’ regression of ln y on CD implies that a death in a property in 1854 is associated with

a 5% drop in rent in 1864, but the estimate is not significant. In contrast, the Fuzzy RD results

20The Basic set includes: distance (m/100) to the nearest water pump, urinal, Soho centroid, and access to the
old/existing sewer. The Full set also adds: distance (m/100) to the public square, fire station, theater, police station,
pub, church, bank, presumed plague pit, sewer vent, and whether the property has no access to the sewer.
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imply much larger negative effects. For example, the bias corrected estimate is -.829, implying that

a death in a property leads to a 56% drop in rent. But the standard error on the estimate is .612,

leading to a t-stat of 1.35 (p=.176), so it is not significant at conventional levels.21 However,our

analysis in Section 4 indicates this is exactly the type of situation where the fuzzy RD standard error

is inflated. The OLS bias is positive and substantial (we estimate ρ̂ = .859), so the t-test has little

power to detect a true negative effect due to the power asymmetry.22

Table 4: Impact of Cholera Death in a Property in 1854 on the Rent in 1864

BC Coefficient Std. Err. p-value h (m) Ne F-stat

‘OLS’ – y on CD -.046 .046 0.32 29.1 466

1st Stage: CD on BSP .206 .068 .002 28.2 455 9.19

1st Stage: CD on BSP Yes .232 .082 .005 28.2 455 8.04

Fuzzy RD -.964 .531 .070 29.1 466

Fuzzy RD Yes -.829 .612 .176 29.1 466

ITT -.199 .089 .025 31.5 496

ITT Yes -.221 .110 .044 31.5 496
Note: Sample size is N=1325 in all regressions. This is the sample Ambrus et al. (2020) use to obtain
their Fuzzy RD estimate of -.964. ‘BC’ indicates bias corrected estimates. All regressions use the Full set
of controls, a triangular kernel, and clustered (by street) nearest neighbor standard errors. Ne is effective
sample size within the bandwidth.

As we argued in Section 5, an AR approach to inference based on the reduced-form ITT regression

is preferable, as it avoids the power asymmetry. The AR approach uses the t-test from the ITT

regression, rather than the Fuzzy RD t-test, to assess significance of the Fuzzy RD estimate. We call

this the tAR test. Our ITT estimate without bias correction is -0.199, with a standard error of .089,

giving a tAR-test value of -2.24 (p=.025). If we implement bias correction, the ITT point estimate

increases slightly to -.221, and the standard error, which factors in extra variability introduced by

bias correction, increases to .110. This gives a tAR-test value of -2.01 (p=.044).23 If we invert the

AR test using the grid search method and RBC results, we obtain a 95% CI of [-3.123, -0.025] for

β1, which excludes zero. If we instead use the analytic formula in (11) we obtain [-2.750, -0.016].

21In their paper, Ambrus et al. (2020) only report Fuzzy RD using the much smaller ‘Basic’ set of controls and no
bias correction. The estimate is -.799 with a standard error of .483 (p=.10).

22Ambrus et al. (2020) do not discuss why deaths are endogenous. But there are two likely reasons: First, larger
properties would have higher rent, and be more likely to have a death, as they house more residents. The control W
does not include property size. Using BSP as an instrument for CD removes any influence of individual property size
on the Fuzzy RD estimate, eliminating this source of endogeneity. Second, Figures 2A and 3A of their article reveal
that both rents and the probability of a death rise as one gets closer to the BSP, so houses in the hardest hit areas
were more valuable. Focusing on properties near the boundary avoids the problem created by the price gradient.

23Ambrus et al. (2020) use a slightly larger sample of N=1,357 to estimate the ITT regression. In Table 3, panel B
column 2 they report an ITT estimate without bias correction of -.186 with a standard error of .089, giving a tAR-test
value of -2.09 (p=.036). We run all regressions (Fuzzy RD, ITT, first stage and OLS) on the exact same sample size
of N=1,325 that Ambrus et al. (2020) use to estimate their Fuzzy RD regression.
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Thus, the tAR test implies the Fuzzy RD estimate is significant at conventionally accepted levels,

while the Fuzzy RD t-test implies it is not. What are we to conclude about the impact of cholera

deaths on rents? It depends on whether the AR or Fuzzy RD t-test is more reliable in this data

environment.24 Our analysis in Sections 4 and 5 already suggests the AR test is more reliable.

But to investigate this question further in the specific context of the Ambrus et al. (2020) data, we

conduct the following Monte Carlo experiment:

Starting from their full sample of N=1,325 observations, we “bootstrap” a new artificial dataset

by sampling 1,325 observations with replacement. We repeat this process 10,000 times to obtain

10,000 artificial datasets. As our artificial datasets are sampled with replacement from the original

Ambrus et al. (2020) data, that data is the “population” from which the artificial datasets are drawn.

Then for each artificial dataset, we construct the bias corrected Fuzzy RD and ITT estimates (using

a triangular kernel as in the paper). Table 5 summarizes the results.

Table 5: RBC Results from Monte Carlo Bootstrap Samples

Fuzzy RD (BC) ITT (BC) First Stage

Coefficient S.E. h (m) Coefficient S.E. h (m) F Statistic

‘Population’ -.829 .612 29.1 -.221 .110 31.4 8.04

Median -.699 .574 27.0 -.199 .103 27.5 6.525

Mean 95.873 709.28 27.5 -.197 .104 27.9 9.200

Std. Dev. 6,947 50,593 5.6 .110 .019 5.1 10.4
Note: N = 1, 325 for each of the 10, 000 samples used to form the results. All regressions use the ‘Full’ set of
controls and robust bias correction. The RD estimator calculates a new optimal bandwidth in each artificial
dataset. The column labeled ‘h’ reports features of the distribution of bandwidths (in meters).

The mean ITT estimate is -.197, which is close to the ITT estimate on the population data

reported in Table 4 (-.221). Some deviation is expected, as the sharp RD estimator used to obtain

the ITT estimate is consistent, but not unbiased in finite samples. This follows from the fact that

the local-linear estimators of Y + and Y − are consistent but not unbiased in finite samples. The

empirical standard deviation of the ITT estimates across the 10k datasets is .110. This is identical to

the estimated standard error on the ‘population’ data, and very similar to the mean of the estimated

standard errors across the 10k runs (.104). Thus, the estimated standard errors of the ITT estimates

provide a good guide to the actual variability of the ITT estimates.

24In the IV literature it is common to use first-stage F statistic to assess the reliability of 2SLS t-test results: In
fuzzy RD the first stage is a sharp RD regression of CD on BSP , which we also report in Table 4. The first-stage F
statistic is 8.04. Conventional wisdom suggests this should be sufficient for size distortion in the fuzzy RD t-test to
be modest. But size distortion is not the only issue one should be concerned about. As as we saw in Section 4, the
power asymmetry can be a serious problem even when F is over 60.
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Turning to the Fuzzy RD estimates, we begin by noting that the mean and variance of the

estimator do not exist, just as they do not exist for 2SLS with a single instrument. The problem is

that the estimate of π1 = X+ −X− can be arbitrarily close to zero in a finite sample, causing the

ratio estimator β̂1 = Ŷ +−Ŷ −

X̂+−X̂− to explode. We see this pathology illustrated by the very large mean

(95.9) and empirical standard deviation (6,947) of the Fuzzy RD estimates shown in Table 5.

The median Fuzzy RD estimate is -0.699, which is fairly close to the ‘population’ value of -0.829.

Again, some deviation is expected, as the Fuzzy RD estimator is consistent, but not median unbiased

in finite samples. We also note that the median estimated standard error (0.574) greatly understates

the observed variability of the Fuzzy RD estimates across the runs (as expected).

Next, we use the simulation results to assess whether the Fuzzy RD t-test or the tAR test based

on the reduced form ITT regression is a better guide to inference in this context. Figure 13 plots

the bias-corrected Fuzzy RD estimate of the effect of a cholera death on rent against the estimated

standard error, across the 10,000 bootstrapped samples, using the triangular kernel as in the paper.

The plot clearly illustrates the power asymmetry phenomenon – i.e., the strong negative association

between the estimates and their standard errors (that arises because the OLS bias is positive).

Figure 13: Standard Error of β̂2SLS plotted against β̂2SLS itself (RBC Inference)
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Note: Runs with standard error > 1.6 are not shown. In the left panel, red dots indicate H0:β = 0 is rejected at the
5% level in the Fuzzy RD regression using RBC inference. In the right panel red dots indicate H0:β = 0 is rejected
at the 5% level by RBC inference on the ITT. In both cases, the bias corrected estimator is used.

In the left panel of Figure 13 we shade in red cases where the Fuzzy RD t-test rejects the false null

that deaths have no effect. Due to the power asymmetry, negative estimates have inflated standard

errors, and so the t-test has little power to reject the false null hypothesis. The rejection rate is only

10.1%. In contrast, in the right panel of Figure 13 we shade in red cases where the AR test rejects

the null. Here the rejection rate is 47.9%. Thus, the AR test has almost 5 times the power of the
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t-test in this data environment. Thus, we conclude the AR test is a better guide to inference in this

context than the t-test. This strengthens the conclusion of the original Ambrus et al. (2020) article.

Finally, we repeat the same analysis using BSD inference via the RDHonest package for R, again

with a triangular kernel. Recall BSD uses conventional point estimates (no bias correction), but it

inflates the t-test critical values as shown in (10). BSD generates a Fuzzy RD estimate of -.674 with

standard error of .507 (t=1.33). Furthermore it inflates the critical value to 2.191, so the p-value is

.239. For the ITT regression, BSD gives -.183, with a standard error of .099, so the tAR-stat is 1.844.

The critical value is inflated to 2.254, giving a p-value of .112. The reason BSD is so conservative is

that it estimates M to be very large at 8.55, as the CEF is quite “wavy,” as we see in Figure 14:

Figure 14: Curvature of the Conditional Expectation Function Near the Cutoff
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Notes: Binned averages of log(rent) in intervals of the running variable (distance from BSP catchment area, in km).
Created via rdplot function in rdrobust for R. A 4th order polynomial fit is shown either side of the cutoff.

Returning to our Monte Carlo experiment, we find the Fuzzy RD t-test using BSD’s inflated

critical values rejects the false null of a zero effect in only 1.85% of the 10,000 artificial datasets. So

power does not approach the nominal 5% level of the test. In contrast, applying BSD inference to

the ITT sharp RD regression rejects the false null in 37.1% of datasets. Thus, the power of the tAR

test is just over 20 times the power of the Fuzzy RD t-test when using BSD critical values.

7. Conclusion

Fuzzy RD estimates are obtained via a procedure closely analogous to two-stage least squares

(2SLS) regression, where an indicator I(R > R0) plays the role of the instrument. Recently, Keane

and Neal (2023, 2024) showed that 2SLS t-tests suffer from a “power asymmetry” problem: 2SLS

standard errors are spuriously small (large) when the 2SLS estimate is close to (far from) the OLS

estimate. Hence, 2SLS t-tests are more likely to judge a result significant if it aligns with the

direction of OLS bias. And they have low power to detect effects that go against the direction of
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OLS bias. Here we have shown that the same problem arises in Fuzzy RD designs:

In the Fuzzy RD context, the analog of OLS is a local linear regression of the outcome on the

endogenous treatment, ignoring the endogeneity problem that the instrument I(R > R0) is meant

to correct. We have shown that, similar to 2SLS, Fuzzy RD t-tests are more likely to judge a result

significant if it aligns with the direction of OLS bias. If the OLS bias is positive, then the Fuzzy RD

t-test has little power to detect true negative effects. And, if the OLS bias is positive and the true

effect is zero, then the Fuzzy RD t-test has inflated power to find false positive effects. This power

asymmetry problem persists even if the instrument (first stage) is very strong.

Fortunately, a simple way to avoid this problem is to instead rely on the intent to treat (ITT)

regression to assess significance of the treatment effect, where the ITT regression is simply a sharp

RD of the outcome on I(R > R0). This is analogous to the AR approach in 2SLS. The construction

of AR confidence sets for Fuzzy RD is discussed in Feir et al. (2016) and Noack and Rothe (2024),

who advocate using an AR approach when the first stage is weak. In contrast, we advocate an AR

approach even when the first stage is strong, so as to avoid the power asymmetry problem.

We illustrate the importance of these issues by revisiting the Ambrus et al. (2020) study of the

impact of the Broad Street cholera outbreak on rents. They find a large Fuzzy RD estimate of the

impact of a death in a property on its rent 10 years later. However, the OLS estimate is close to

zero, so Fuzzy RD and OLS are very far apart. The Fuzzy RD t-stat indicates the effect of death

on rent is statistically insignificant, but this is precisely the context where the Fuzzy RD standard

error is inflated. We find the AR test has about 5 times the power of the t-test, and it indicates the

Fuzzy RD estimate is significant. Thus, our analysis strengthens the result in the original paper.

In future work, we recommend that all Fuzzy RD papers should report not just the Fuzzy RD

estimate and t-test, but also the first stage, OLS and ITT estimates, and the AR test results. Without

seeing the OLS results, it is not possible to assess the likely direction of the power asymmetry in

the t-test. We also suggest that researchers not use under-smoothing or local quadratic regressions,

as these weaken the first stage and make the power asymmetry and size distortions worse. Robust

bias correction (RBC) and/or bias aware inference (BSD) should be used instead.

We also argue that BSD inference should rely solely on the triangular kernel. The BSD bandwidth

selection algorithm interacts with the power asymmetry to generate median bias toward OLS, even if

the local linear model is correct. This problem is severe with a uniform kernel but is largely avoided

with a triangular kernel. The triangular kernel also smooths the objective function used to search

for the optimal bandwidth, making the optimization far more reliable.
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Appendix A. Details on BSD Confidence Intervals

The standardized bias function ψ(M,h) in equation (10) in the main text takes the form:

ψ(M,h) = (M/2)g(h)/se(β̂1), (A.1)

where g(h) =
∑Nh

i=1[−wisgn(Ri)] · R2
i , and where [−wisgn(Ri)] is a positive weight – see Kolesár

and Rothe (2018) for details. The function g(h) is positive and increasing in bandwidth h, as the

sum of squares of the running variable is increasing in Nh. Then the confidence interval is:

C1−α = (β̂1 ± cv1−α(ψ(M,h))× se(β̂1)), (A.2)

where β̂1 and se(β̂1) are the “conventional” local-linear estimate and nearest-neighbor standard

error. Note that se(β̂1) tends to decrease with
√
h, while cv1−α(ψ(M,h)) increases with h2, causing

their product to have a U-shape. Thus one can search for the h that minimizes CI length.
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Appendix B. The Power Asymmetry in Conventional Fuzzy RD Estimates

Here we consider “Conventional” Fuzzy RD inference, meaning we do not implement any bias

correction or CI adjustment. We consider two local linear estimators, using the MSE-optimal band-

width algorithms proposed in Imbens and Kalyanaraman (2012) and Calonico et al. (2014b). We

refer to these as the IK and CCT approaches, respectively. (Results using the CCT bandwidth

and no bias correction are labeled “Conventional” in rdrobust output, which is why we adopt that

terminology.) Table B1 presents the results for the same four DGPs we considered in Section 4, in

all cases using a uniform kernel and nearest-neighbor standard errors.

Table B1: Conventional Inference using CCT & IK Bandwidths, DGPs 1 to 4

ρ = 0.8 CCT IK

DGP Reject % > 0 Median: β̂ SE F N Reject % > 0 Median: β̂ SE F N

1 5.5% 99.8% -0.003 0.177 32.04 508 6.0% 96.5% -0.002 0.132 55.98 868

2 5.0% 76.5% -0.004 0.356 63.17 498 6.0% 69.3% -0.004 0.268 110.58 868

3 4.8% 83.6% 0.005 0.380 49.59 451 5.4% 77.2% 0.007 0.299 76.15 722

4 10.2% 97.9% 0.185 0.415 40.00 357 11.3% 98.0% 0.201 0.404 42.02 377

ρ = −0.8 CCT IK

DGP Reject % < 0 Median: β̂ SE F N Reject % < 0 Median: β̂ SE F N

1 6.0% 99.7% -0.003 0.175 32.25 508 6.2% 97.3% -0.002 0.131 56.45 868

2 4.9% 79.4% -0.003 0.356 62.88 498 6.5% 70.7% -0.004 0.268 110.34 868

3 5.0% 83.1% 0.005 0.380 49.66 451 5.1% 75.7% 0.007 0.301 75.82 722

4 4.9% 43.6% 0.185 0.443 40.12 357 5.0% 30.4% 0.202 0.433 42.34 377

Notes: Summary results from 10,000 artificial datasets of size N = 2000 each. CCT indicates results from the rdrobust
package, using “Conventional” estimates and standard errors. IK indicates results from 2SLS estimation using the Imbens-
Kalyanaraman bandwidth. The 4 rows reports results for the 4 DGPs discussed in Sections 4.1 to 4.5. We report the rate
of rejecting H0:β = 0, the fraction of these rejections that occur when β̂ > 0, and the medians of the estimate, estimated
standard error, first-stage F , and effective observations.

For DGPs 1 to 3 the CCT results are very similar to the RBC results in Tables 1 and 2. This

is because the local linear model is correctly specified in these cases, so there is no bias. The power

asymmetry we see here is very similar to what we saw in the main text: The large majority of

rejections of the true null β = 0 occur when β̂ is shifted in the direction of the OLS bias, which is

positive in the top panel (ρ > 0) and negative in the bottom panel (ρ < 0).

In DGP 4 the true CEF is quadratic, so the local linear estimator suffers from substantial positive

bias. When the OLS bias is positive (top panel) the bias and power asymmetry reinforce each other,
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so almost all rejections occur when β̂ > 0. When the OLS bias is negative (bottom panel) the bias

and the power asymmetry counteract each other, so rejections are fairly evenly balanced. Of course

this is a fortuitous coincidence – one should be more concerned with the worst case in the top panel.

In terms of the power asymmetry, results using the IK bandwidth algorithm are similar to the

CCT results. But the IK results differ in one notable way: In DGPs 1 to 3, where the local linear

estimator is correctly specified, the IK algorithm chooses substantially wider bandwidths than the

CCP algorithm, leading to more effective observations and smaller standard errors. Interestingly, in

DGP 4, where bias is present, the IK bandwidths shrink so they are only slightly larger than the

CCT bandwidths, as the algorithm seeks to reduce bias.25

Appendix B.1. Undersmoothing to Reduce Bias

Undersmoothing is a method that is often used in an attempt to reduce bias in conventional (i.e.,

not bias corrected) RD. The idea is to choose a bandwidth that is narrower than is MSE-optimal,

as the bias of local linear estimators is increasing in bandwidth. Here, we examine the impact of

undersmoothing on the power asymmetry. We consider the same CCT and IK bandwidths as in

Table B1, except now we divide the bandwidth by 2. Table B2 presents the results.

The key message of Table B2 is that undersmoothing makes the power asymmetry problem

worse. The vast majority of rejections of H0:β = 0 occur when β̂ is shifted in the direction of the

OLS bias. In DGPs 1 to 3 this asymmetry in rejections is even more severe than in Table B1. The

reason that undersmoothing makes the power asymmetry problem worse is simply that it reduces

25The reason the CCT bandwidths tend to be smaller than the IK bandwidths is as follows: Note that the CCT

bandwidths hCCT satisfy the condition Nh5CCT → 0, whereas Nh5IK → C > 0. Both bandwidths can be written

in the form ĥ = Ĉ1/5N−1/5, where Ĉ = V̂ /(B̂ + R̂), where V̂ , B̂, R̂ are estimators of the variance and bias of the

estimator and a regularization term, respectively (with the latter included so that the bandwidth is well-behaved when

B̂ is near-zero). If we set B̂ = 0, then the reason that the IK bandwidth is larger in finite samples can be explained

with reference to the variance estimators V̂ . V̂IK = νK · (σ̂2
+ + σ̂2

−)/d̂, where νK is a constant that depends on the

kernel, σ̂2
+ = V ar(Y |0 ≥ R < hpilot), σ̂

2
− = V ar(Y |0 > R ≥ −hpilot), d̂ is an estimator of the density of R within the

pilot bandwidth, and the pilot bandwidth hpilot is given by the Silverman rule of thumb, which is 1.84sd(R)N−1/5 for

the Uniform kernel. From this expression it is clear that since each of the components of ĈIK = V̂IK/R̂IK converge

to a positive constant as h→ 0, Nh5IK → C > 0. By contrast, the variance estimator for the CCT bandwidth, V̂CCT ,

is designed to converge to zero as h→ 0: it is the sum of the estimated variances of the intercepts from separate local

linear regressions either side of the cutoff, again using a pilot bandwidth (in the CCT case with a Uniform kernel, of

1.84min{sd(R), IQR(R)/1.349}N−1/5, which will coincide exactly with the IK pilot bandwidth when R is uniformly

distributed). It follows that Nh5CCT → 0, as claimed in Calonico et al. (2014b). This difference in limiting behavior

translates into CCT bandwidths that are smaller than IK bandwidths, as is apparent in Table B1.
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effective sample size, which mechanically reduces the first stage F . We have emphasized that the

power asymmetry is a problem even when the first stage is quite strong, but it is also true that a

weaker first stage makes the power asymmetry problem worse.

Table B2: Conventional Inference with Undersmoothing, DGPs 1 to 4, ρ = 0.8

CCT IK

DGP Reject % > 0 Median: β̂ SE F N Reject % > 0 Median: β̂ SE F N

1 6.4% 100% -.004 .252 15.78 254 5.4% 100% -.001 .186 28.32 434

2 4.2% 89.5% -.005 .504 31.43 250 4.5% 81.3% -.002 .378 55.44 434

3 4.2% 94.3% -.004 .535 26.27 226 4.4% 88.2% -.001 .415 42.26 363

4 5.2% 96.9% .045 .604 20.46 179 5.2% 96.9% .048 .586 21.69 189

Notes: Summary results from 10,000 artificial datasets of size N = 2000 each. CCT and IK runs are identical
to those in Table B1 except here we divide the bandwidth by 2. The degree of endogeneity, ρ, is set to 0.8
throughout. We report the rate of rejecting H0:β = 0, the fraction of these rejections that occur when β̂ > 0,
and the medians of the estimate, estimated standard error, first-stage F , and effective observations.

In DGP 4 the true CEF is quadratic, and, as we saw in Table B1, the local linear estimator

suffers from substantial positive bias. In Table B2, row 4, we see that undersmoothing reduces this

bias substantially (i.e., by about 3/4). But comparing these results to Table 1 in the main text

(left panel), we see that undersmoothing is not as effective at removing bias as RBC. Furthermore,

Undersmoothing comes at the cost of reducing effective sample size and reducing first-stage F . As

we saw in Table 1, for RBC in DGP 4, 84% of rejections of H0:β = 0 occur when β̂ > 0, and here it

is 96.9%. So again undesrsmoothing makes the power asymmetry worse.

Appendix B.2. Local Quadratic Estimation

The use of local quadratic regression (rather than local linear) is another attempt to reduce bias.

A local quadratic regression adds controls for R2 and R2 · D to both the first-stage and outcome

equations. We present results for conventional inference using local quadratic regression combined

with either CCT or IK bandwidths in Table B3.

The key message of Table B3 is that local quadratic regression also tends to worsen the power

asymmetry problem. We start by comparing the local linear results for DGPs 1 to 3 in Table B1

with the local quadratic results in Table B3. The reason the power asymmetry worsens in these

cases is that the median first-stage F statistics are about 40% smaller when we use local quadratic

regression. The first-stage F falls despite the fact that bandwidth and effective sample sizes increase
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substantially. The reason the partial F on the instrument D falls is the collinearity between D and

R2 in the first-stage regression.26 These results provide an additional reason to avoid higher-order

polynomials in Fuzzy RD regression, beyond the reason given by Gelman and Imbens (2019), who

point out that more weight is placed on observations further from the cutoff the higher the degree

of the estimating polynomial.

Table B3: Conventional Inference with Local Quadratic Estimator, DGPs 1 to 4, ρ = 0.8

CCT IK

DGP Reject % > 0 Median: β̂ SE F N Reject % > 0 Median: β̂ SE F N

1 6.2% 100% -.003 .230 18.93 680 5.5% 99.8% -.004 .176 32.18 1131

2 5.1% 85.8% -.005 .460 37.53 681 4.8% 74.4% -.007 .352 64.27 1131

3 4.7% 90.3% .000 .485 30.71 623 4.7% 84.3% .004 .409 42.03 872

4 4.6% 90.7% -.004 .489 30.34 618 4.1% 82.7% -.005 .419 40.08 824

Notes: Summary results from 10,000 artificial datasets of size N = 2000 each. CCT and IK runs are identical to
those in Table B1 except here we use local quadratic regression, adding controls for R2 and R2 ·D. The degree of
endogeneity, ρ, is set to 0.8 throughout. We report the rate of rejecting H0:β = 0, the fraction of these rejections
that occur when β̂ > 0, and the medians of the estimate, estimated standard error, first-stage F , and effective
observations.

The results for DGP 4 in the fourth row of Table B3 show how median bias vanishes when we

use local quadratic regression. Of course, this is because the quadratic model is correctly specified.

But the power asymmetry is severe, as 90.7% (82.7%) of rejections occur when β̂ > 0 for the CCT

(IK) bandwidth. It is interesting to compare this to the RBC results in In Table B2, row 4, left

panel, in the main text, where 84% of rejections occur when β̂ > 0.

26In the local quadratic case the first stage becomes X = π0 + π1D + π2R + π3RD + π4R2 + π5R2D + e. The
first-stage F can be written as F = Nπ2

1/[σ
2
e/(σ

2
D(1 − R2

D))], where σ2
e is the variance of the first-stage error term,

and σ2
D is the variance of the instrument, and R2

D is the R-squared we would obtain if we regressed D on all the other
variables on the right-hand side. Clearly, R2

D is expected to be large in the case of regression-discontinuity designs,
as D is a mechanical function of R by construction. Adding terms in R can be expected to raise R2

D and reduce F .
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Appendix C. Why the Triangular Kernel Should be Used for BSD Inference

In Section 4.1, we showed how the BSD bandwidth selection algorithm interacts with the power

asymmetry to generate median bias in the BSD estimator towards OLS.27 We noted this problem

is rather severe when using a uniform kernel, but minor when using a triangular kernel. Here we

present additional detail on how the bandwidth algorithm works.

Originally, Kolesár and Rothe (2018) proposed choosing bandwidth to minimize CI length, which

depends on se(β̂1) via cv1−α(ψ(M,h))× se(β̂1). This is an option in RDHonest, but in the R code

of Kolesár (2024) the default objective is worst-case MSE, MSEwc = Bias2max + se(β̂1)
2. So both

of these objective functions depend on se(β̂1). By minimizing either objective, BSD tends to choose

bandwidths that generate estimates close to β̂OLS . (In fact, in results not reported, we find median

bias is worse if one uses the minimize CI length objective instead of the MSEwc criterion.)

The top panel of Figure C1 plots the MSEwc objective function for artificial data set #1 (out

of 10,000) from our Monte Carlo for DGP 4. The solid and dotted lines plot MSEwc against the

bandwidth for the uniform and triangular kernels, respectively. Notice that the objective function is

very jagged for the uniform kernel, while it is smooth for the triangular. This because both Biasmax

and the se(β̂1) are continuous in h if the kernel is triangular, but not when it is uniform.28 Thus,

when using the uniform kernel, the MSEwc will have many local minima, making it very difficult

to optimize. This is a second reason, in addition to the median bias problem, that the BSD method

should be used in conjunction with the triangular rather than the uniform kernel.

The bottom panel of Figure C1 plots Biasmax and se(β̂1) separately. While neither is smooth

in the uniform case, we see that se(β̂1) is much more volatile as we vary h. That volatility causes

a search algorithm to place relatively more emphasis on minimizing the se(β̂1) component of the

objective, which explains why the median bias problem is worse in the uniform kernel case.

Examining the R code for RDHonest (Kolesár, 2024), we see the optimization method is “golden

[section] search,” which requires a unimodal objective function. As we see in Figure C1, this may be

27This is in addition to the bias due to misspecification of the local linear approximation.
28The uniform kernel weights all observations inside the bandwidth equally, and so newly included observations can

change the standard error and maximum bias a great deal - hence the large swings in the Uniform kernel objective
function in Figure C1. By contrast, the marginal contribution of observations far from the cutoff is close to zero when
using the triangular kernel, so the standard error and maximum bias change slowly and smoothly.
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a decent approximation for the triangular kernel, but not the uniform. To check if a “brute-force”

optimization method improves on the default in the uniform case, we perform a grid search over a

range that includes 99% of the bandwidths chosen by the RDHonest package for our Cases 1 and

4, with a very fine grid step of .0005. In neither case do the resulting estimates improve relative

to the originals: Median bias increases for DGP 1, and is essentially unchanged for DGP 4, while

false positive rates worsen in both cases. Thus, the power asymmetry combined with an attempt

to minimize (a function of) se(β̂1) still generates median bias in the uniform kernel case, even if we

improve the search algorithm.

Figure C1: Worst-Case MSE Objective Functions: Triangular vs Uniform Kernel
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Notes: Based on the first draw of 10,000 with 2000 observations and the parameters set as in Case 4, with ρ = −0.8.
Solid black line: Value of the worst-case MSE objective function (top), maximum bias (bottom left), and standard error
(bottom right), evaluated on a grid of 10,000 bandwidths between 0.01 and maxR, using the uniform kernel. Dashed
black line: Same, except using the triangular kernel. Red and blue vertical lines indicate the bandwidths actually
selected using the default settings for the RDHonest package and the uniform and triangular kernels, respectively.
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