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Abstract

This article presents a novel computational approach to solving models

with both uninsurable idiosyncratic and aggregate risk that uses projec-

tion methods, simulation and perturbation. The approach is shown to be

both as efficient and as accurate as existing methods on a model based on

Krusell and Smith (1998), for which prior solutions exist. The approach

has the advantage of extending straightforwardly, and with reasonable

computational cost, to models with a greater range of diversity between

agents, which is demonstrated by solving both a model with heterogeneity

in discount-rates and a lifecycle model with incomplete markets.
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1 Introduction

Any researcher interested in questions regarding the interaction of aggregate

and individual outcomes in the economy will, at some point, want to solve

models that include both aggregate and individual uncertainty. Though some

models of this type may have analytical solutions, in most cases they must

be solved computationally using numerical approaches. Such methods have

been available since at least the pioneering contribution of Krusell and Smith

(1998) (henceforth K & S). There have been many refinements to the available

algorithms since, but the solution of models with anything other than the most

rudimentary shock structures remains computationally expensive and slow.

This paper presents a novel algorithm that uses a combination of projection

methods, simulation and perturbation to solve the model. The algorithm is in

principle applicable to any model of incomplete markets with a clear relation-

ship between individual and aggregate states. To demonstrate the high level of

accuracy and low computational cost of the approach I use it to solve the model

described in Den Haan et al. (2010), for which it is shown to be comparable

to the explicit aggregation (XPA) algorithm of Den Haan and Rendahl (2010).

The latter was found to be one of the best in terms of accuracy and performance

in Den Haan (2010). I then demonstrate that the algorithm is easily extended

to both an economy in which individuals have differing preferences, and a life-

cycle economy with a large number of generations, whilst remaining reasonably

accurate and computationally feasible.

The remainder of this paper is structured as follows: section 2 presents

the benchmark model used, section 3 discusses existing solution approaches

and section 4 introduces the new algorithm that I propose. Section 5 presents

parameters and results from the baseline model, a model with added preference

heterogeneity and a lifecycle model, and section 6 concludes.
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2 The Benchmark Model

The benchmark model solved to illustrate the technique is that presented in

Den Haan et al. (2010).

2.1 The Production Technology

The economy is a production economy with competitive goods, labour and phys-

ical capital markets. Firms in the economy face the production function

Yt = atK
α
t (l̄Lt)1−α (1)

where at is aggregate productivity, Kt is aggregate capital, Lt is employment

and l̄ is the time endowment per employed person. at follows an exogenous

stochastic process, hence aggregate output is uncertain.

Firms hire capital and labour to maximise profits each period. The firms’

first order conditions yield a rental rate of capital, rt, and wage per unit of time

worked, wt, of

rt = αat

(
Kt

l̄Lt

)α−1

(2)

wt = (1− α)at

(
Kt

l̄Lt

)1−α

(3)

2.2 Households

The economy is populated by a continuum of infinitely-lived agents of measure

one, indexed on the unit interval. Each agent i may be employed or unemployed

in any period, but cannot choose which: the individual employment process is

exogenous. There is a government which pays unemployment benefits µl̄wt to
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each unemployed agent, so that µ is the replacement rate of unemployment

benefits. The government runs a balanced budget and finances the benefits by

levying a proportional income tax τt = µ(1−Lt)
Lt

.

Insurance markets are incomplete. Specifically, agents cannot insure against

loss of income due to unemployment. The only opportunity for partial risk mit-

igation is to invest in production capital. Agents have identical utility functions

and maximise expected lifetime utility subject to their budget constraint. Agent

i’s problem is thus

max
{ci

t,k
i
t+1}∞t=0

E

[ ∞∑
t=0

(
βt

(cit)
1−γ − 1

1− γ

)]
(4)

s.t. cit + kit+1 = (1 + rt − δ)kit + [(1− τt)l̄eit + µ(1− eit)]wt (5)

kit+1 ≥ 0 (6)

where cit is consumption, kit is individual capital holdings and eit ∈ {0, 1} is

1 for employed agents and 0 for the unemployed. β is the per-period discount

rate, γ is the coefficient of relative risk aversion and δ the depreciation rate of

physical capital.

Solving the individuals’ maximisation problem yields first-order condition

βE
[(
cit+1

)−γ
(1 + rt+1 − δ)

]
=
(
cit
)−γ − φit (7)

where φit ≥ 0 is the multiplier on the borrowing constraint.
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2.3 Effects of Incomplete Markets

Agents’ inability to fully insure against idiosyncratic income shocks, coupled

with their differing history of such shocks, imply that they will hold differing

amounts of capital when they reach time t. Aggregate capital is therefore the

mean of the non-degenerate capital distribution:

Kt =
∫ 1

i=0

kitdi (8)

In order to calculate the expectation in eq. (7), agents must form expecta-

tions over rt+1, which in turn depends on Kt+1. By eq. (8) the latter depends

on the individual capital distribution in t+ 1 and hence on the individual cap-

ital distribution in period t. This distribution is therefore part of the state

that determines individual choices. Since the distribution and, by implication,

the state are infinite dimensional, common methods for solving forward-looking

models do not apply.

3 Prior Solution Approaches

The contribution of Krusell and Smith (1998) was to show that restricting the

number of state variables that individuals consider to a finite (and small) num-

ber allows an approximate solution to be found numerically. Two key properties

of this solution stand out: First, individuals’ predictions are very accurate, im-

plying that they would be happy to stick with their prediction mechanism rather

than trying to find a better one. Second, one aggregate state variable, the mean

capital held, is sufficient, so that the economy behaves much like a representa-

tive agent one. This second property was termed approximate aggregation by

Krusell and Smith (1998).
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3.1 The Underlying Assumption

To state the assumption both ascribed to individuals and used to solve the

model more formally:

Let Ω = {[0, 1] → R+ × {0, 1}} be the set of all distributions of individuals

over capital holdings and employment levels. The economy is a transformation

T : Ω×R→ Ω that takes such a distribution and an exogenous shock in period

t and produces a new distribution in period t + 1. Further, for any vector St

of aggregate variables, let SΩ : Ω→ Rn be the function that calculates St from

ωt ∈ Ω.

Assumption 1 For the subset Ω? ⊆ Ω of mappings that are actually realised

there exists a threshold ε � 1, a probability threshold p � 0 and a forecasting

function Se : Rn × R 7→ Rn s.t. Pr(|S
e(SΩ(ω),a)
SΩ(T (ω,a)) − 1| < ε|ω ∈ Ω?) > p. In

other words, for any wealth distribution ω that might be realised the forecasting

function Se provides forecasts of t+1 period aggregates accurate to within relative

difference ε with probability p.

Note that, in the limit as ε → 0 and p → 1, Se(SΩ(ω), a) → SΩ(T (ω, a)),

so that the agents would be able to predict with perfect accuracy the value of

next period’s state variables.

3.2 The Individual Problem

Under this assumption, individuals consider a finite vector St1 of aggregate

variables when forming expectations over t + 1-period prices. They therefore

need to predict Kt+1 based on the current aggregate state. They need to find

Ke
t+1(St, at) (9)

1Kt must be one of the values in St since it is the aggregate variable required to calculate
t-period prices.
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Agents also expect to be alive in t+ 2, however, and therefore need to form

expectations over t+2 period prices. To use the function above to predict them

requires that they have expectations over all members of St+1. They must

therefore expand their forecasts to predict all members of S:

Set+1(St, at) (10)

Given these expectations over aggregate outcomes they can then solve their

individual problem to determine the individual capital transition rule

kt+1(kt, et, St, at;Set+1) (11)

3.3 The Modeller’s Problem

As presented above, individuals form expectations over aggregate outcomes and

can consequently solve their individual optimisation problem. The researcher

solving the model cannot follow this apparently two-stage approach, since ag-

gregate outcomes are aggregates of individual choices. The ‘first’ stage, solving

the aggregate problem, therefore depends on the ‘second’ stage as well. The two

functions must be solved for simultaneously.

The approach taken by K & S, and also followed in this paper, is to make

an initial guess regarding Set+1, say S0
t+1, and then to iterate over the following

two steps until successive iterations yield results within a given small margin of

error of each other over the whole range of the two functions:

1. Find kst+1 ≡ kt+1(kt, et, St, at;Sst+1)

2. Calculate the implied aggregate transition to get Ss+1
t+1 (St, at)

A number of solution methods follow this broad outline and differ only in

the choice of variables in St and the method for performing the two steps above.
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K & S allow the first two moments of the capital distribution in St, although

they found that the first is sufficient. They use value function iteration on a

grid in step 1, and solve step 2 by simulating an economy populated by a large

number of individuals for a large number of periods and then estimating log-

linear aggregate transition rules for Ss+1
t+1 .

Carroll (2006) replaces the value function iteration in step 1 with backward

iteration on the Euler equation. This approach is much less computationally

intensive because it does not require a numerical optimisation step. He calls

this approach the Method of Endogenous Gridpoints.

Young (2010) uses a discrete representation of the entire capital distribution,

rather than a large number of individuals, in step 2. This removes one of the

potential issues encountered in the K & S approach, namely that the individual

stochastic shock realisation used during simulation affect the solution.

Den Haan and Rendahl (2010) use Carroll’s approach in step 1, but replace

step 2 by approximating the individual transition rule with a (piecewise) linear

function, so that aggregation of the function equates to calculating the func-

tion value at the average capital holdings. This does away with the need for

simulation altogether, but requires the introduction of an additional aggregate

state variable so that the capital held by employed and unemployed agents can

be tracked separately, because the individual transition rules differ between the

two groups. Hence St = (Ke
t ,K

u
t ).

The approach of Reiter (2010) is conceptually close to the approach I propose

here in that he uses a discrete representation of the steady state distribution

from the model without aggregate uncertainty as a reference to perform the

aggregation step. St includes summary statistics of the distribution. He inde-

pendently adjusts the reference distribution to match each point on a grid over

(St, at) and then finds the St+1 at that point using fixed-point methods.
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An approach that does not follow the outline above but is also related to my

approach is Reiter (2009). He also first takes a discrete approximation of the

steady state distribution under the assumption of no aggregate uncertainty. He

then considers each of the points in this discrete approximation as a separate

variable, derives a system of equations that describes the economy as a function

of these variables and finds a first-order approximation of that solution using a

perturbation approach.

4 The Derivative Aggregation Approach

I propose to solve the model by setting St = (Kt) and taking a first-order approx-

imation2 of the aggregate transition rule by directly aggregating the derivatives

of the individuals’ transition rules.

In more detail, I define a grid of points over all individual and aggregate

states {kt, et,Kt, at}. Starting from some initial guess for K0
t+1 I iterate over

the following two steps3 until convergence of both Ks
t+1 and kst+1:

1. Solve for kst+1 ≡ kt+1(kt, et, St, at;Ks
t+1) using the method of endogenous

grids introduced by Carroll (2006). This involves reverse-time iteration

on the Euler eq. (7).

2. Under some assumptions, outlined below, on the distribution of agents

over wealth, I calculate the derivative dKs
t+1

dKt

∣∣∣
Kt=K̄s

by aggregating indi-

viduals’ ∂ks
t+1

∂Kt

∣∣∣
Kt=K̄s

at a point K̄s. I use this to calculate ∂ log(Ks
t+1)

∂ log(Kt) and

then set Ks+1
t+1 to be the implied log-linear approximation of the aggregate

transition rule around K̄s.

Step 2. above is the primary contribution that this paper makes.
2Theoretically higher order approximations are also possible. The additional overhead

would not be prohibitive.
3Here, t signifies the period of the economy, and s the iteration step
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The wealth distributions assumed in step 2) may give rise to the concern

that the results depend on the particular choices made. However, Assump-

tion 1 already states that the prices on which individual decisions depend can

be predicted to a high degree of accuracy using only a small set of moments of

the wealth distribution. The precise distribution of wealth, by implication, has

limited importance. The fact that approximate aggregation holds justifies this

assumption.

I next show that the derivative of the aggregate capital transition rule can

be determined from the individual transition function under the assumption

of a capital distribution and a scheme for adjusting that distribution as overall

wealth changes. I then discuss suitable choices for the two distributions. Results

from using this approach are presented in the next section.

4.1 Approximating the Aggregate Transition Rule

Proposition 1 Assume

1. an aggregate productivity level ā

2. a mapping ω ∈ Ω of individuals to capital holdings and employment status,

consistent with ā

3. a second mapping δ : [0, 1] 7→ [0, 1] that specifies what part of any change

in aggregate wealth each individual receives, where
∫ 1

0
δ(i)di = 1

4. an individual savings function kt+1(kt, et,Kt, at) that is continuous and

differentiable in both kt and Kt.

Then the rate of change of aggregate future capital with respect to aggregate cap-

ital, dKt+1
dKt

, as aggregate capital changes by adjusting individual wealth according
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to 3., is given by

dKt+1

dKt
=
∫ 1

0

[
∂kt+1(kit, e

i
t,Kt, ā)

∂kit
δ(i) +

∂kt+1(kit, e
i
t,Kt, ā)

∂Kt

]
di

Proof From eq. (8) we have

Kt =
∫ 1

0

kitdi (12)

⇒ Kt+1 =
∫ 1

0

kit+1di =
∫ 1

0

kt+1(kit, e
i
t,Kt, ā)di (13)

where the latter equation is obtained by iterating eq. (8) forward one period

and making the individual transition rule explicit.

By assumption (3), if Kt changes by a small amount ∆, kit changes by δ(i)∆.

Using the definition of the derivative, and conditional on at = ā,

dKt+1

dKt
= lim

∆→0

Kt+1(Kt + ∆)−Kt+1(Kt)
(Kt + ∆)−Kt

(14)

= lim
∆→0

∫ 1

0

[
kt+1(kit + δ(i)∆, eit,Kt + ∆, ā)

]
di−

∫ 1

0

[
kt+1(kit, e

i
t,Kt, ā)

]
di

∆

(15)

= lim
∆→0

∫ 1

0

[
kt+1(kit + δ(i)∆, eit,Kt + ∆, ā)− kt+1(kit, e

i
t,Kt, ā)

]
di

∆
(16)

Both numerator and denominator tend to 0 as ∆→ 0, hence by l’Hôpital’s rule:

dKt+1

dKt
= lim

∆→0

∫ 1

0

[
∂kt+1(ki

t+δ(i)∆,ei
t,Kt+∆,ā)

∂ki
t

δ(i) + ∂kt+1(ki
t+δ(i)∆,ei

t,Kt+∆,ā)
∂Kt

]
di

1

(17)

=
∫ 1

0

[
∂kt+1(kit, e

i
t,Kt, ā)

∂kit
δ(i) +

∂kt+1(kit, e
i
t,Kt, ā)

∂Kt

]
di (18)

�
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Note that the partial derivatives of individual future capital kt+1 w.r.t. current

aggregate capital Kt and current individual capital kt are not well defined at

any point where the borrowing constraint just ceases to bind: the left derivative

is 0 whereas the right derivative is positive. I always take the left derivative

for points where kt+1 = 04, and ipso facto arrive at the left derivative of the

aggregate transition rule. Since the set of points exactly on the boundary is

either of measure 0 (kt > 0), or δ(i) = 0 in the case that the boundary is at

kt = 0, the aggregate right derivative should only differ infinitesimally, justifying

the approximation.

4.2 Choosing Suitable Distributions

The natural initial guess for the wealth distribution ω is the steady-state dis-

tribution of the economy with no aggregate risk, but with the same structure

of idiosyncratic risk. The idiosyncratic variation in income for individuals is far

greater than the fluctuations caused by aggregate productivity changes. Thus,

the change in behaviour of individuals in reaction to the aggregate risk can

be expected to be quite small, and in consequence the steady-state distribu-

tion without aggregate risk might be quite close to realized distributions under

aggregate uncertainty.

For δ there are two choices that immediately stand out as satisfying the

adding-up constraint: δ(i) = 1 and δ(i) = ki/K. The former would mean

that, given an economy with a slightly higher level of aggregate capital, each

individual would have the same amount of extra wealth. The latter, on the

other hand, would distribute additional wealth in proportion to existing wealth.

In the model economy some individuals are liquidity constrained in any given

period, hence starting the next period with no capital. This is inconsistent with
4The algorithm uses a discrete approximation of the distribution, and it is not possible to

tell whether a point where kt+1 = 0 but where the next point has positive next-period wealth
is on or before the boundary, hence the only consistent choice is 0.
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the uniform distribution. My initial choice is therefore δ(i) = ki/K.

5 Derivative Aggregation in Practice

5.1 The Baseline Model

For the baseline model I use the parametrisation of Den Haan et al. (2010) so

that results may be compared. In this parametrisation aggregate productivity

follows a two-state Markov chain with values {1− ξ, 1 + ξ}. The unemployment

rate is determined by the aggregate productivity level and is 10% in the low-

productivity state and 4% in periods of high productivity. By implication,

individual state transition probabilities depend both on current and next period

aggregate productivity.

at+1 1− ξ 1 + ξ
eit+1 0 1 0 1

at eit

1− ξ 0 0.525 0.35 0.03125 0.09375
1 0.038889 0.836111 0.002083 0.122917

1 + ξ
0 0.09375 0.03125 0.291667 0.583333
1 0.009115 0.115885 0.024306 0.850694

Table 1: Transition Probabilities in the baseline case (Source: Den Haan et al.,
2010)

The joint transition matrix of individual and aggregate states is show in

Table 1. The values taken by other parameters are listed in Table 2.

Parameter β γ α δ l̄ µ ξ
Value 0.99 1 0.36 0.025 1/0.9 0.15 0.01

Table 2: Parameter values in the baseline case (Source: Den Haan et al., 2010)
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5.1.1 How the Solution Is Evaluated

After solving the model using the algorithm described above, I use the following

procedure to assess the results:

I first simulate the economy for 10000 periods, starting from the distribution

used to determine the aggregate derivative above, using the individual transition

rule obtained. I do this by using the simulation procedure introduced by Young

(2010), which uses the individual transition rules to move from one discrete

representation of the distribution to the next. I collect the aggregate capital

time series that results from this approach.

As a second step, I simulate the same series of shocks5 but under the assump-

tion that the aggregate transition rule obtained from the solution is correct. In

other words, in the second simulation the economy is treated as a representative

agent economy with the assumed aggregate transition rule, and the individual

transition rules are ignored. I again obtain a time series of aggregate capital

levels.

Finally, to compare the two time series I take the relative difference at each

point, thus obtaining 10000 error terms, which are in effect the errors the indi-

viduals would perceive (ex post) from forecasting the next 10000 periods when

the economy is in the initial state.

This is also the procedure used in Den Haan (2010).

5.1.2 Initial Results

The average relative error is .27503% (XPA: .105%), with a bias of .27%, and

the maximum error is .845% (XPA: .343%). One period ahead predictions have

an R2 of 0.99999, and the maximum one period ahead forecast error is .04%.

The 1-period-ahead results suggest that agents would not find their forecasts
5I use the sequence used in Den Haan and Rendahl (2010)
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unacceptable, but compared to XPA over the longer forecast period the accuracy

is not good.

5.1.3 Refining the Algorithm

I have made three assumptions in the approach outlined: that a log-linear ap-

proximation is a good fit, that the steady-state distribution from no-aggregate-

risk economy is a suitable distribution and that distributing additional wealth in

proportion to existing wealth is appropriate. The first assumption draws strong

support from prior research cited above. The third assumption is economically

attractive, and no other straightforward choices present themselves. The sec-

ond assumption is most questionable. Observation of the generated time-series

also shows that, though the aggregate capital level implied by this distribution

is within the range of those realised in the economy, the implied Kt+1 at that

point is on the margin of those actually realised during simulation.

I therefore modify the algorithm as follows: in each iteration of updating

the aggregate transition rule (i.e. step 2) I simulate the economy for 10 periods

in the good aggregate state, and calculate the implied aggregate transition rule

for the good state as above on the resulting distribution. Then I simulate the

economy for 10 periods in the bad aggregate state and do the same for the

implied aggregate transition rule in that state. Importantly, I keep the final

state of these simulations as the starting point for the next iteration. Finally,

I update the aggregate transition rule by taking the weighted average of the

previously assumed values and the newly calculated ones, where the weights

are {0.95, 0.05} respectively. This ‘damping’ of the updates to the aggregate

transition rule prevents wild swings and is a common procedure in recursive

methods (see, for example, Den Haan and Rendahl, 2010).

This introduces two significant changes: Firstly, the aggregate transition

rule thus derived is a weighted average of the transition rules implied by all

15



the past distributions used to calculate it, weighted towards more recent values.

Secondly, the distributions used in successive iterations of the calculation are

not the same. This may hinder convergence. It also means, however, that, as

more iterations are performed, the distribution moves closer to one that is likely

to occur under uncertainty, which should aid accuracy.

5.1.4 Refined Results

Re-running the simulations above, the average relative error is .119% (XPA:

.105%), and the maximum error is .551% (XPA: .343%). One period ahead

predictions have an R2 of 0.99999, and the maximum one period ahead forecast

error is .02%. The goodness-of-fit is now comparable to that of XPA.

The model was solved in 60 seconds6 (XPA: 195 seconds7).

5.2 Introducing Preference Heterogeneity

In the economy discussed so far, agents differ only in their income. Their pref-

erences are identical. In this section, I introduce preference heterogeneity to the

model, and demonstrate that the solution methodology introduced above is still

efficient and produces viable results.

5.2.1 Stochastic Rate of Time Discount

The preferences used are identical to the heterogeneous discount rate scenario

used by K & S: the rate at which agents discount future utility, β, can now

take one of three values: {0.9858, 0.9894, 0.9930}. Agents, being infinitely-lived,

are considered to represent ‘dynasties’, so that the rate of time discount of each

agent may vary as generations change. This is emulated by allowing each agents’
6Of this, 17s were used to solve the model with no aggregate risk and 11s to find the steady-

state distribution. The remaining 32 seconds were used to solve the model with aggregate risk
using the procedure outlined above.

7Note that the XPA algorithm was run on the same machine, implemented using the same
technology and using the same sequence of shocks as was used for derivative aggregation
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β to change between periods. The transition probabilities are the same as those

used in K & S, where they were chosen to satisfy three constraints:

• the average duration of the upper and lower values are 50 periods, approx-

imating the lifespan of a generation.

• at any time 80% of the population have the median value and 10% each

of the outer values

• agents never jump between extremes

The preferences are uncorrelated with the individual employment or aggre-

gate productivity states. The joint state transition probability matrix is given

in the appendix.

5.2.2 Results

Using the algorithm as described above, the solution converges in 448 seconds

8.

The solution is again evaluated as described in section 5.1.1. The mean

relative error between the two time series generated is 0.14%, the maximum

0.65% and the bias of the error is −0.05%. The one period ahead predictions

have a mean error of .007%, with a maximum discrepancy of .04%. The R2 is

0.99998.

5.2.3 Scalability

The model with heterogeneous discount rates increased the number of individual

states by a factor of 3 relative to the baseline specification. The time required to

solve the model increased by a factor of 7.5. The algorithm consists of a number

of steps, some of which are O(n) with respect to the number of individual states
8Of this, 82 seconds were required to solve the model with no aggregate risk and 33 seconds

find the steady-state distribution in that economy
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n, and some of which are O(n2)9. Further, the number of steps required to

converge to a solution may differ.

The baseline model’s solution converged in 228 iterations averaging 44ms

each. The heterogeneous beta model was solved in 509 iterations of 168ms each

- close to an O(n) increase per step.

By comparison, explicit aggregation without additional assumptions on the

functional form of the relationship between discount factor and individual tran-

sition function would require increasing the number of aggregate states by a

factor of 3 also10. Thus the time per step is at least O(n2) for that algorithm.

Thus the derivative aggregation approach is likely to be a better choice

when considering problems where individuals can experience a high number of

states, either because there are many values in one dimension - for instance, a

more complete description of the individual income process - or agents differ in

multiple dimensions.

5.3 A Life-Cycle Model

Another dimension of heterogeneity among economic agents is age. The poten-

tial for the age-related concerns to affect economic decisions has been formally

acknowledged at least since Modigliani and Brumberg (1954). The computa-

tional solution of macroeconomic models with relatively complete descriptions

of the life-cycle was pioneered by Auerbach and Kotlikoff (1987). Lifecyle ver-

sion of incomplete markets models have also been solved (see, for example, Heer

and Maussner, 2009).

From a theoretical perspective the solution methodology presented in this

paper lends itself to solving life-cycle models. Finding the initial distribution
9The transition from all possible current to all possible future states, for instance, includes

n in two dimensions
10This arises from the need to track the mean capital held by all agents in each individual

state separately.
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no longer requires discovery of the steady state without uncertainty: under the

assumption of no (or constant) initial endowments, the fixed point of aggregate

capital can be determined in each iteration simply by simulating one whole

generation under the assumption of a given level of capital, determining the

actual aggregate capital implied by that simulation, and finding the fixed point

of capital.

In this section I extend the baseline model to include a life-cycle dimension.

Agents now live for 55 periods, with no mortality in earlier years. They enter the

economy with no wealth. Their productivity remains constant over the first 40

years of life and then drops to 0, so that they retire. Thus the model provides a

rudimentary approximation of the economic life of agents entering the economy

at age 20, retiring at 60 and living to an age of 75.

Agents now maximise expected lifetime utility. Thus the problem of agent i

of age a can be expressed as

max
{ci

a+s,t+s,k
i
a+s,t+s+1}

55−a
s=0

E

[ ∞∑
t=0

(
βt

(cia,t)
1−γ − 1

1− γ

)]
(19)

s.t. cia,t + kia+1,t+1 = (1 + rt − δ)kia,t + [(1− τt)l̄εia,t + µ(1− εia,t)]wt (20)

kia+1,t+1 ≥ 0 (21)

k56,t = 0 (22)

All other aspects of the economy - employment, production, government -

remain as before. This is of course a grossly simplified depiction of the life-cycle,

ignoring in particular life-cycle variations in expected income and uncertainty

over the time of death. Thus it serves only to indicate whether the approach

presented here can feasibly solve such models.
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5.3.1 Results

The model converged to a solution in 122s.

The “aggregate only” and “individual” simulations described above were

performed with the identical shock sequence. The mean relative forecast error

is now 0.27%, with a maximum of 0.89%. For one-period-ahead forecasts, the

mean is 0.03% with a maximum error of 0.1%. The R2 in this case is 0.9998.

5.3.2 An Observation on the Life-Cycle Model

Two issues that arise in this specification of the life-cycle model are illustrated

in fig. 1 depicting the distribution of wealth within the age 40 cohort, which is

about to retire: the distribution is not smooth, and there is a clear maximum

level of wealth which is also the point of maximal density. Both issues arise from

the same two features of the model: there are only a finite number of stochastic

paths that agents’ idiosyncratic shocks can take over their lifetime (2 potential

states each period of working life, so there are 240 paths), so that the probability

mass of any particular path is non-zero. Since all agents initially have 0 wealth

the probability mass of their initial wealth level is also non-zero, namely 1. But

then any point along the path for a given realisation of aggregate shocks also

has non-zero mass, and the maximum level of wealth attained is shared by all

those who have the same, most favourable, sequence of income shocks.

These issues are straightforward to address, principally by allowing for non-

uniform bequests in the model, but also by providing a less parsimonious de-

scription of the income process with more states. These changes would add

to computation time, but neither renders the derivative aggregation approach

inapplicable. Since the effort required is principally on the construction of the

model and would not provide additional insight regarding the topic of this paper

it is left to future research.
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Figure 1: Distribution of Wealth Amongst Agents Aged 40

6 Conclusion

I have presented a new approach to solving incomplete market models with

aggregate uncertainty, and demonstrated that the solutions arrived at using

this approach are as accurate as existing methods. The solution to the baseline

model is found more quickly than, and as accurately as, using the Explicit

Aggregation approach presented in Den Haan and Rendahl (2010), previously

found to be among the fastest by Den Haan (2010).
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Importantly, I have also demonstrated that the approach extends to models

with more state variables and that it scales reasonably well to that scenario.

Explicit aggregation would require additional assumptions on functional form

or additional aggregate variables, making it less scalable. I finally went on to

solve a rudimentary lifecycle model exhibiting within-cohort heterogeneity and

incomplete markets. Once again the time required to find the solution was

reasonable, and the aggregate transition rules obtained provided good forecasts

of the actual economy, especially over short time horizons.

The approach as presented constructs a first-order approximation of the

aggregate transition rule. The procedure could be extended to higher order

approximations without great overhead should the first-order solution prove a

poor fit.
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