BIROn - Birkbeck Institutional Research Online

    A genome-wide association study identifies multiple loci associated with mathematics ability and disability

    Docherty, S.J. and Davis, O.S.P. and Kovas, Y. and Meaburn, Emma L. and Dale, P.S. and Petrill, S.A. and Schalkwyk, L.C. and Plomin, R. (2010) A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes, Brain, and Behavior 9 (2), pp. 234-47. ISSN 1601-183X.

    Full text not available from this repository.

    Abstract

    Numeracy is as important as literacy and exhibits a similar frequency of disability. Although its etiology is relatively poorly understood, quantitative genetic research has demonstrated mathematical ability to be moderately heritable. In this first genome-wide association study (GWAS) of mathematical ability and disability, 10 out of 43 single nucleotide polymorphism (SNP) associations nominated from two high- vs. low-ability (n = 600 10-year-olds each) scans of pooled DNA were validated (P < 0.05) in an individually genotyped sample of (*)2356 individuals spanning the entire distribution of mathematical ability, as assessed by teacher reports and online tests. Although the effects are of the modest sizes now expected for complex traits and require further replication, interesting candidate genes are implicated such as NRCAM which encodes a neuronal cell adhesion molecule. When combined into a set, the 10 SNPs account for 2.9% (F = 56.85; df = 1 and 1881; P = 7.277e-14) of the phenotypic variance. The association is linear across the distribution consistent with a quantitative trait locus (QTL) hypothesis; the third of children in our sample who harbour 10 or more of the 20 risk alleles identified are nearly twice as likely (OR = 1.96; df = 1; P = 3.696e-07) to be in the lowest performing 15% of the distribution. Our results correspond with those of quantitative genetic research in indicating that mathematical ability and disability are influenced by many genes generating small effects across the entire spectrum of ability, implying that more highly powered studies will be needed to detect and replicate these QTL associations.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): DNA pooling, quantitative trait, allelic association, SNP microarrays, mathematical ability, cognitive traits
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Psychological Sciences
    Research Centres and Institutes: Educational Neuroscience, Centre for, Brain and Cognitive Development, Centre for (CBCD)
    Depositing User: Emma Meaburn
    Date Deposited: 15 May 2013 09:10
    Last Modified: 02 Aug 2023 17:03
    URI: https://eprints.bbk.ac.uk/id/eprint/6734

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    466Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item