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ABSTRACT

The contribution of this paper is two-fold. First we show how to estimate the volatility of
high frequency log-returns where the estimates are not affected by microstructure noise and
the presence of Lévy-type jumps in prices. The second contribution focuses on the relationship
between the number of jumps and the volatility of log-returns of the SPY, which is the fund
that tracks the S&P 500. We employ SPY high frequency data (minute-by-minute) to obtain
estimates of the volatility of the SPY log-returns to show that: (i) The number of jumps in the
SPY is an important variable in explaining the daily volatility of the SPY log-returns; (ii) The
number of jumps in the SPY prices has more explanatory power with respect to daily volatility
than other variables based on: volume, number of trades, open and close, and other jump
activity measures based on Bipower Variation; (iii) The number of jumps in the SPY prices
has a similar explanatory power to that of the VIX, and slightly less explanatory power than
measures based on high and low prices, when it comes to explaining volatility; (iv) Forecasts
of the average number of jumps are important variables when producing monthly volatility
forecasts and, furthermore, they contain information that is not impounded in the VIX.
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1. Introduction

Modeling and forecasting volatility of asset prices is a crucial task in finance. The recent financial

crisis has highlighted the importance that investors place on the returns and volatilities of assets.

During the crisis, the volatility of most financial assets almost doubled and, at the same time,

changes in volatility (known as the volatility of volatility) also increased, reflecting the “puzzled”

expectations and reactions of investors in the risky and uncertain environment. One example is the

hike in the VIX, a measure of the implied volatility of the S&P 500 index options, that rose from

an average value of 25% during 2007 to 70% towards the end of 2008.

Over the past years the literature on volatility estimation and forecasting has been very exten-

sive. The common feature of most of these new studies is that high frequency, instead of daily,

stock returns are employed.

Many methods have been proposed to estimate daily volatility using data at higher frequencies.

One of the best known approaches is known as ‘realized volatility’ where volatility is calculated at

a 5–minute sampling frequency, see Andersen and Bollerslev (1998). There are other more recent

developments that estimate volatility at even higher frequencies (improving the consistency of the

estimators relative to those based on the sparse sampling approach) some of which are also designed

to address the problems stemming from the microstructure noise when sampling at high frequencies,

see Zhang et al. (2005), Aı̈t-Sahalia et al. (2005), Barndorff-Nielsen et al. (2008).

Another generation of papers also focuses on how to make the best use of ultra high frequency

data to measure volatility of returns, but recognizes that discontinuities or jumps in the log-returns

process must be accounted for, otherwise the volatility estimators will be considerably upward

biased, see for example Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shephard

(2006), Andersen et al. (2007), Mancini (2007), and Corsi et al. (2008). The key point about

these estimators is that although they can handle rare big jumps they are not designed to deal

with microstructure noise. Therefore, one way to deal with the noise is to use the sparse sampling

approach.

More recent papers concentrate on the high frequency dynamics of prices and volatility of stock

prices. Todorov (2009) investigates the temporal variation in the variance risk premium paying

particular attention to jumps in stock prices as well as jumps in the volatility. Jacod and Todorov

(2009) derive tests to decide whether jumps in volatility and jumps in prices occur simultaneously.

The work of Todorov and Tauchen (2009) examines the path properties of the volatility where
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one of their empirical findings is that the S&P 500 and the VIX jump at the same time. And

Maheu and McCurdy (2009) examine the value that high frequency measures of volatility provide

in characterizing the forecast density returns.

The contribution of this paper is two-fold. First we show how to estimate the volatility of

log-returns where the estimates are not affected by the problems arising from microstructure noise

and the presence of jumps. Here, jumps refer to price revisions that are not produced by Brownian

motion or Gaussian shocks, but produced by either: large and rare Poisson-type events; or small

infinite activity jumps, both of which we consider to be Lévy-type jumps.

The second contribution of our paper focuses on the link between volatility and the jumps in

log-returns. We show that the number of jumps within a trading day helps to explain and forecast

future volatility. To the best of our knowledge this is the first time that the number of jumps has

been used as a measure of jump activity to explain and forecast the volatility of price innovations.

We show the empirical performance of our volatility estimator, and the link between the number

of jumps and volatility, by employing minute-by-minute observations of the SPY, the fund tracker

of the S&P 500, from January 2000 to December 2006. We highlight two of our empirical findings.

First, in addition to other well-documented variables such as: high, low, open, closing prices,

volume and the number of trades, we show that the number of jumps in the SPY is a crucial

variable in explaining the SPY volatility. We show that: a) the explanatory power of our proposed

jump activity measure, given by the number of jumps, is higher than the explanatory power of

previous jump activity measures when explaining the volatility component of log-price innovations.

b) We show that the number of jumps in the SPY prices has more explanatory power with respect

to daily volatility than other variables based on: volume, number of trades, and open and close.

And c) We show that the number of jumps in the SPY prices has a similar explanatory power to

that of the VIX, and slightly less explanatory power than measures based on high and low prices,

when it comes to explaining volatility.

Second, using the number of jumps as an explanatory variable increases the forecasting ability

of autoregressive volatility models. Results show that the incorporation of forecasts of the monthly

average number of jumps in our volatility models leads to better monthly volatility forecasts and

contain relevant information which is not impounded in the VIX. Hence, these models can be used

to produce better volatility forecasts (model based forecasts) in addition to the well known and

widely used market based forecasts such as the VIX.
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The rest of the paper is organized as follows. Section 2 reviews the recent literature on volatility

estimation using high frequency data. It also describes the estimators that have been proposed to

account for the existence of jumps. Section 3 reviews the methodology of Lee and Mykland (2008)

and Lee and Hannig (2009) to detect Lévy-type jumps in the SPY and discusses how we use these

tests to produce daily volatility estimates not affected by jumps or microstructure noise. Section

4 describes the data used in our empirical study. Section 5 looks at different models proposed in

the literature to explain and forecast volatility and presents the empirical results. Finally, Section

6 concludes.

2. Literature Review

In this section we review volatility estimators that use high frequency financial data. We focus on

the different methods that have been proposed to estimate the true volatility of financial assets and

deal with the problems arising in the presence of microstructure noise and jumps in the prices.

2.1. Volatility estimators when log-returns are described by Brownian motion

The initial approaches to volatility with high frequency data incorporate the concept of realized

variance. The idea is to use intra-day returns to get a better estimate of daily volatility, an estimate

that also captures the intraday variation of the financial asset.

We assume that the log-price of a security follows

Xt = σWt, (1)

where Wt is a standard Brownian motion. In equation (1) the drift is not included because at high

frequencies it is negligible relative to the diffusion.

The variance of (1) is defined as

RV
(all)
X,T = [X,X](all)T :=

N∑
i=1

(Xti −Xti−1)2, (2)

where RV (all)
X,T is known as the realized variance of the log-returns process and is equal to the sum of

the squared differences of Xt. The notation (all) means that we use all observations in the sample.
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We also assume that the observations are equally spaced, so the time interval between them is

constant and equal to ∆. The observations are recorded at times ti = i∆ with tN = N∆ = T for

i = 0, . . . , N , thus N denotes the number of observations between time 0 and T where, for practical

purposes, it represents one trading day.

One problem arising from high frequency financial data is the presence of market microstructure

noise. As a consequence, the true or efficient log-price, denoted by Xt, is contaminated by the

microstructure noise εt and what we observe is a noisy log-price:

Yt = Xt + εt. (3)

Zhang et al. (2005) show that, at high frequencies, using (2) to calculate the realized variance of

the log-price Xt is dominated by the variance of the noise term, hence we would obtain a biased

estimate of the volatility. To overcome this problem, a typical approach is to sparse sample the data

at frequencies that lessen the impact of microstructure noise on the volatility estimator. A common

approach is to use 5-minute intervals and compute the realized variance with 78 observations within

the day.

Zhang et al. (2005) show that arbitrary sparse sampling, such as always sampling at 5-minute

intervals, regardless of the individual characteristics of the asset under study, is not the optimal

way to proceed when plenty of data are available. They propose alternative non-parametric ways

to estimate volatility without arbitrarily excluding large amounts of data. The best estimator they

propose is the Two-Scale Realized Variance estimator TSRV . It is given by

TSRVY,T = RV
(avg)
Y,T − N̄

N
RV

(all)
Y,T , (4)

where N̄ = N−G+1
G , RV (avg)

Y = 1
G

∑G
g=1RV

G(g)

Y and RV G
(g)

Y is the realized variance for each grid

and G is the total number of grids.

An alternative way to estimate volatility at higher frequencies is the parametric method of

Aı̈t-Sahalia et al. (2005). This method is based on the idea that the noisy returns ri follow an

MA(1) process because ri is defined as ri = σ(Wti − Wti−1) + εti − εti−1 = ζi + ηζi−1. Thus,

they propose a maximum likelihood estimation method which produces fully efficient volatility

estimates (MLE, hereafter) as well as estimates for the variance of the microstructure noise, σ2
ε

(where εt ∼ N(0, σ2
ε)). The crucial point in this approach is that we should specify correctly the
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distribution of high frequency returns. If the price process is given by (3) then the MLE estimate

proposed by Aı̈t-Sahalia et al. (2005) is the most efficient estimate of volatility that we can get in

the presence of microstructure noise. However, if the process is not described by (3) the efficiency

of the estimator will be affected. In fact, stock price dynamics are poorly described by Brownian

motion or a Gaussian process because price revisions also exhibit large jumps and small movements

that cannot be attributed to a Gaussian process.

2.2. Volatility estimators when log-returns are described by Brownian motion

and Poisson jumps

In this section we extend the dynamics of the efficient price (1) to incorporate shocks to price

increments, in form of Poisson jumps, that better capture the price dynamics observed in the

markets. Empirical studies argue that price dynamics contain such discontinuities, see for example

Andersen et al. (2003), Barndorff-Nielsen and Shephard (2006), Lee and Mykland (2008) and many

others.

So far the literature has included Poisson-type jumps, in the sense that they are relatively large

and occur very seldom. Hence, we extend (1) in the following way:

Xt =
∫ t

0
σdWs +

∫ t

0
κdNs, (5)

where κ is the random jump size and Nt a Poisson counting process with an adapted stochastic

intensity parameter λt.

Using the definition of the RV in equation (2) it can be easily shown that in the presence of

jumps the RV is a biased estimate of the true volatility.

RV
(all)
X,T = [X,X]T + [J, J ]T = [X,X]T +

NT∑
i=1

κ2
τi , (6)

where the quantity
∑Nt

i=1 κ
2
τi is the contribution of the jumps process to the RV (all)

X,T .

To our knowledge, the first attempt to derive consistent estimates of the volatility σ of the

Brownian part of the process X, in the presence of Poisson-type jumps, was that of Power Variation,

introduced by Barndorff-Nielsen and Shephard (2004). The most widely used estimator that focuses
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on the continuous part of (6) is the well-known Bipower Variation, defined as

BPVt = µ−2
N∑
i=2

|ri−1| |ri| , (7)

where ri indicates the log-return, N is the total number of observations and µ ' 0.7979. Its more

general specification, given by the Multipower Variation is given by

MPVt = ∆1− 1
2

(γ1+...+γM )
N∑

j=M

M∏
k=1

|rj−k+1|γk , (8)

with γk, k = 1, . . . ,M , positive constants.

We denote the difference between the RV (all)
X,t and BPVt by Jt = RV

(all)
X,t −BPVt, first introduced

by Barndorff-Nielsen and Shephard (2004). This quantity may be considered as an estimate of the

jump activity during day t. The intuition behind this activity measure is that since the BPV

estimator is a consistent estimator of the quadratic variation of X ([X,X]t as defined in (6)), and

RV
(all)
X,t is an estimate for both the continuous and the discontinuous part of X, the difference

between RV
(all)
X,t and BPVt can be considered as an estimator of the component

∑Nt
i=1 κ

2
τi in (6).

Even though one expects the difference RV (all)
X,t −BPVt to be non-negative, one finds, in empirical

studies, that this is not the case, and the solution has been to truncate Jt at 0 (see Andersen et al.

(2007)); in other words

Jt = max(RV (all)
X,t −BPVt, 0). (9)

Finally, the Jt has been used in several studies in the literature to build jump detection tests and

examine the informational content of jumps in volatility forecasts, see for instance Corsi et al.

(2008) and Becker et al. (2009).

An alternative volatility estimator can be found in Mancini (2007). This estimator is based on

a threshold approach labeled the Threshold Realized Variance (TRV ) and defined by

TRVX,T =
N∑
i=1

r2
i 1[r2i≤Θ(∆)] , (10)

where Θ(∆) is the threshold function, N the number of observations, 1[·] the indicator function

and ri the log return.

Finally, the last estimator we review here is an extension of Multipower Variation which in-
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corporates the concept of the threshold approach. The estimator called TBPV , which stands for

Threshold Bipower Variation, proposed by Corsi et al. (2008) is given by

TBPVX,T = µ−2TMPVX,T = µ−2
N∑
i=2

|ri−1| |ri|1[|rj−1|2≤Θj−1]1[|rj |2≤Θj], (11)

where

TMPVX,T = ∆1− 1
2

(γ1+...+γM )
N∑

j=M

M∏
k=1

|rj−k+1|γk 1[
|rj−k+1|2≤Θj−k+1

] ,
ri is the log return, Θj the threshold function, 1[·] the indicator function, γk, k = 1, . . . ,M , are

positive constants and µ = 0.7979 as above.

The TBPV ’s advantage is that it gives unbiased estimates of volatility when consecutive jumps

appear in our price process. The simpler Multipower Variation is highly affected by the presence

of consecutive jumps and the bias of the volatility estimator could be extremely large.

Note that all estimators described in subsection 2.2 focus on the importance of discontinuities

in the log-price dynamics, but ignore the effects of market microstructure noise even though they

have been designed to use high frequency observations. Therefore, to mitigate the effects of mi-

crostructure noise on the volatility estimates, when employing these estimators capable of dealing

with jumps, the sparse sampling approach has been employed.

3. Jump detection tests: the MLE-F as an alternative volatility

estimator

From the review of volatility estimators presented in Section 2, it is clear that we can find ways

of estimating the volatility of the diffusion part of the price process when microstructure noise

or Poisson-type jumps are present. However, how can we estimate the volatility of the Brownian

component in log-returns when more general processes are assumed to drive the price dynamics?

How can we deal with the biases introduced into the volatility estimates by: (i) microstructure

noise and (ii) jumps in the log-prices? In this section we provide an answer to both these questions.

In the literature we can find abundant evidence to demonstrate that the discontinuities present

in the price innovations are better captured by a more general Lévy process where the arrival of

jumps is not exclusively of Poisson-type, see Carr and Madan (1999), Carr and Wu (2003), Carr

and Wu (2004), Carr and Wu (2007), Bakshi et al. (2008), and in portfolio management theory,
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see Aı̈t-Sahalia et al. (2009).

Considering only Poisson jumps ignores other Lévy-type jumps that are frequent and small.

Thus, if these small price deviations, which are not Gaussian, are confounded with the Gaussian

movements of the price, the estimator will produce incorrect volatility estimates.

Therefore, our aim is to propose a volatility estimator that is neither affected by Lévy-type

jumps (infinite activity and Poisson) nor microstructure noise. First we assume that we observe

the noisy log-prices

Yt = Xt + εt,

where εt ∼ N(0, σ2
ε) is the microstructure noise and the true price is given by

Xt =
∫ t

0
σsdWs +

∫ t

0
dLs, (12)

where σt is the volatility, dWt the increments of Brownian motion, and dLt are the increments of

a pure jump Lévy process.

Our goal is to produce consistent and unbiased estimates of the volatility parameter σt. We

use the high frequency data within every trading day to estimate the intraday volatility and we

assume that volatility can vary from day-to-day but that it is a constant within one trading day;

an assumption that is supported by the findings in Oomen (2006). It is also possible to relax this

assumption and allow for volatility to change within the day, see Christensen et al. (2009).

We deal with the two problems, jumps in returns and microstructure noise, in sequence. We

start with the high frequency observations Yt and:

1. Remove price revisions that come from Lévy shocks by:

• Employing the non-parametric tests proposed by Lee and Mykland (2008) and Lee

and Hannig (2009) to determine which price innovations come from a Gaussian process

and which come from Lévy jumps. (The jump detection tests are discussed below in

subsection 3.1).

• Removing the log-returns that are not Gaussian, i.e. removing the jump component∫ t
0 dLs from Xt in equation (12).

2. Once we have removed the jumps, our new series, which we denote Ỹt, is given by

Ỹt =
∫ t

0
σsdWs + εt (13)
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which is the Gaussian component of the true log-price plus the microstructure noise. This

allows us to employ the MLE proposed by Aı̈t-Sahalia et al. (2005) on the series Ỹt, which

produces the most efficient estimate of daily volatility σt that we can obtain in the presence

of microstructure noise.

3.1. Detecting jumps

Detecting Poisson-type jumps

Lee and Mykland (2008) propose a non-parametric test based on high frequency data to detect

jumps that are generated by a non-homogeneous Poisson-type jump process. The test-statistic is

based on the idea that if a jump occurred at time ti, the return would be much larger than with

usual innovations, while the instantaneous volatility, which in this case is an estimator not affected

by jumps, would remain at the usual level. The statistic is

L(i) :=
log
(

S(ti)
S(ti−1)

)
σ̂(ti)

, (14)

where the instantaneous volatility σ̂(ti) is given by

σ̂2(ti) :=
1

K − 2

i−1∑
j=i−K+2

∣∣∣∣log
(

S(tj)
S(tj−1)

)∣∣∣∣ ∣∣∣∣log
(
S(tj−1)
S(tj−2)

)∣∣∣∣
where S(ti) denotes the stock price at time ti.

Then, the ith observation is considered a jump if

max |L(i)| − Cn
Sn

> 4.6001

where

Cn =
(2 log n)1/2

c
− log π + log(log n)

2c(2 log n)1/2
, Sn =

1
c(2 log n)1/2

,

c = (2/π)1/2, n is the total number of observations and K is the time “window” used to calculate

the instantaneous volatility.

10



Detecting infinite activity jumps from a Lévy jump process

In a recent working paper, Lee and Hannig (2009) propose a similar non-parametric test to detect

Lévy-type jumps: jumps that are difficult to locate due to their infinite activity and their small

size which makes it difficult to differentiate them from price changes that are a result of a Gaussian

shock.

Being able to detect all Lévy-type jumps in log prices allows us to separate the contribution to

the noisy log-price Yt that comes from a Gaussian shock or a jump. This decomposition is crucial

because we can reduce the empirical problem of estimating the daily volatility σ to one that we

can solve by applying the MLE estimator to the noisy series Ỹt, as defined by (13).

3.2. The MLE-F as an alternative volatility estimator

Once we have filtered the jumps, by detecting and removing them from the price series, we are left

with the noisy log-price series Ỹt given by equation (13). It is clear that the log-price process Ỹt

only contains a combination of two Gaussian shocks: price innovations in the continuous part of

the true log-price process Xt and the microstructure noise εt.

Therefore, using Ỹt as the starting point significantly simplifies the problem of estimating daily

volatility because we can apply the MLE approach on the new vector of log-prices Ỹt. In discrete

time, the vector of log-prices is Ỹti where ti = i∆ with tN = N∆ = T for i = 0, . . . , N , and ∆ is

the time-step between observations. And since we measure daily volatility, T = 1, i.e. one trading

day, and N is the number of (Gaussian) observations in the trading day.

The efficient estimator for σ2, which we label MLE-F to underscore the fact that we employ

an MLE on a log-price series where jumps have been filtered, is calculated in the following way.

First, we note that the log-returns of Ỹt follows an MA(1):

Ỹti − Ỹti−1 = r̃i = ζi + ηζi−1 (15)

where the ζi’s are i.i.d. N(0, γ2) and

γ2(1 + η2) = σ2∆ + 2σ2
ε ,

γ2η = −σ2
ε .
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Then we estimate σ2 and the variance of the microstructure error σ2
ε by estimating γ2 and η which

result from maximizing the log-likelihood function

l(η, γ2) = − ln det(V )/2−N/2 ln(2πγ2)− 1
2γ2

r̃′V −1r̃, (16)

where γ2V is the covariance matrix of the returns:

V =



1 + η2 η 0 . . . 0

η 1 + η2 η
. . .

...

0 η 1 + η2 . . . 0
...

. . . . . . . . . η

0 · · · 0 η 1 + η2


,

and r̃ = (r̃1, . . . , r̃N )′ is the returns vector that does not contain jumps.

Another important feature of this approach is that the MLE is theoretically robust to misspec-

ification of the marginal distribution of the noise process. Furthermore, instead of assuming that

microstructure noise is i.i.d. we could introduce dependence in the noise process, for example that

the microstructure noise follows and MA(1), and adopt the extended MLE approach of Gatheral

and Oomen (2009).

4. Data

The data used in this paper are taken from the Trade and Quote (TAQ) and CRSP databases and

our analysis is based on S&P 500 index. Instead of using S&P 500 TAQ data, we proceed as in

Verardo and Patton (2009) and employ the exchange traded fund tracking the S&P 500 index; the

S&P 500 SPDR traded on Amex with ticker SPY and available on the TAQ database. As Verardo

and Patton point out “this fund is very actively traded and...the fund’s price does not deviate from

the fundamental value of the underlying index.”

The SPY transactions included here are trades from 9.30am to 4.00pm on a sample period that

runs from January 2000 to December 2006. The total period consists of 1, 759 trading days. The

first 12 days are used as an initial window (K, as defined above in (14)) to employ the test statistic

that detects the jumps in the SPY log-returns. Therefore the sample used to compute realized

variances and jump activity consists of 1, 747 days, i.e. 681, 330 high frequency (minute-by-minute)
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observations.

A practical problem we face when using the high frequency data is that data are irregularly

spaced and it is not possible to find a sequence of trades with exactly ∆ = 60 seconds between

them. To overcome this, we prepare the data by designating the last trade within the preceding 60

seconds as the observation for the minute in question. For example, if over the period 9:35:00am to

9:36:00am the last trade took place at 9:35:40 (40 seconds after 9:35am) we take that observation

and record it as the 9:36am observation. Moreover, although very seldom, in the event that there

was no trade the minute in question we use the last observation available. For example, if over the

period 9:35:00am to 9:36:00am there was no trade, we assume that there was a trade and take the

price of the trade used for the slot 9:33:00am to 9:34:00am.

Below, in the empirical section, we produce monthly volatility forecasts based on different

econometric models and we test their forecasting ability. In addition to model-based volatility

forecasts, we also use the VIX index over the same period, January 2000 to December 2006. VIX

is the implied volatility of the S&P 500 provided by the Chicago Board of Options Exchange

(CBOE). VIX is derived from call and put options on the S&P 500 index and can be used as a

market implied volatility forecast for the next 22 trading days. Several studies show that the VIX

conveys information about the future realized volatility, so it can be used to enhance econometric

forecasting volatility models, see, for instance, Fleming (1998), Jiang and Tian (2005), Szakmary

et al. (2003) and Blair et al. (2001). Other variables such as the volume, high and low prices, open

and close are taken from CRSP (The Center for Research in Security Prices).

Once we have prepared the data in a minute-by-minute format we apply both jump detection

tests, described above, to obtain both the position and total number of jumps within each trading

day. Here we denote the total number of jumps during day t by NJt. The total number of jumps

for the entire period examined here is 1, 899, thus implying a mean value of 1.087 jumps per day

t in the SPY. The maximum number of jumps in one day is 32, which represents 8.2% of the

minute-by-minute trades taking place on 28 August 2001. We also calculate the jump activity

measure defined above, Jt = max(RV (all)
t − BPVt, 0). Figure 1 presents the SPY return for the

above period, where red circles and black dots indicate big and small jumps respectively.

Figure 1 About Here

Finally, in Figure 2 we show the QQ Plots of the SPY returns before and after removing the

Lévy-type jumps. The blue circles depict the QQ Plot of the SPY returns and it is evident that
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they are not Normal. The light blue dots represent the QQ Plot of the filtered SPY returns where

it is clear that these filtered returns are very ‘close’ to being Normally distributed.

Figure 2 About Here

5. Empirical Results: Explaining and Forecasting Volatility

In this section we investigate the relation between alternative volatility estimators and two jump

activity measures, the one we propose (the actual number of jumps NJt) and the one proposed

previously by the literature Jt. We present the models used to explain the SPY volatility; the

models that are employed to obtain good volatility forecasts; and discuss the empirical results.

The volatility estimators used here are: (i) MLE, (ii) BPV , (iii) TBPV and (iv) MLE-F .

As discussed above the MLE approach assumes that there is i.i.d. microstructure noise in the

log-prices and, consequently, the returns follow an MA(1) process. We show that this is the case

in Figure 4 where it is clear that there is significant autocorrelation of the SPY returns at lag 1.

Figure 4 About Here

As a preliminary result we present the correlations between the daily volatility estimates that

are obtained from the four estimators in Table 1. Moreover, although below we only focus on

these four estimators, Table 1 also shows the correlation of the volatility estimates when |rt| and

GARCH are used as alternative volatility estimators, using daily data. The table also shows the

correlation of the VIX with the other volatility estimates. For clarity, in all tables results that are

in bold and italic denote parameters that are not significant at the 5% level and results that are in

bold are those that we highlight and discuss in the text.

From Table 1 we can observe that the two estimators that show the lowest correlations with the

other measurements of volatility are the ones based on daily data (for instance, Cor(|rt| , MLE −

F ) = 0.77, i.e. the smallest correlation value in the first MLE-F column), while the correlation

between them (|rt|, GARCH) is equal to 96% (in bold). We can also see that the highest correlation

between the daily volatility estimates obtained with the MLE-F and the other estimators is of

0.97, which results from the volatility estimates of the TBPV proposed by Corsi et al. (2008).

Table 1 About Here
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Figure 3 shows the time series of the daily volatility estimates using the MLE, BPV , TBPV

and MLE-F . It is interesting to observe that the MLE-F does not exhibit too many ‘spikes’

whereas the BPV volatility estimates exhibit large fluctuations which could result from the fact

that, in theory, the BPV volatility estimates are not affected by big and rare jumps, but are affected

by small jumps and by microstructure noise.

Figure 3 About Here

5.1. The informational content of the realized number of jumps

In this section we investigate whether the jump activity of the SPY has any explanatory power

on the volatility of its log-returns. To do so, we apply several time series models that have jump

activity measures as explanatory variables. We proceed in the following way: (i) We apply an

autoregressive model without any jump activity measure as an independent variable. (ii) We then

extend the autoregressive model by including the jump activity measure Jt , defined in (9), as a

further explanatory variable. (iii) Instead of including Jt as explanatory variable, we include the

number of jumps NJt as an alternative jump activity measure. (iv) And finally, we extend the

autoregressive model to include both jump activity measures: Jt and NJt. These four steps allow

us to compare the performance of the two jump activity measures, in terms of their explanatory

power, in the different volatility models where we use an autoregressive model as the benchmark.

All models in this section examine the relations between the logarithmic value of volatility and

the independent variables. The estimation is done using the four procedures: MLE, BPV , TBPV

and MLE-F . We use logarithmic values of volatility because they seem to be normally distributed

relative to the actual volatility values σt. The autoregressive model AR(1) for log-volatility is

log σt = c+ β1 log σt−1 + ut, (17)

where σt are the daily estimates provided by the four alternative volatility estimators and ut is the

noise term of the regression.

Table 2 shows that all AR(1) coefficients are significant and the parameter responsible for the

speed of mean reversion shows that volatility is a highly mean-reverting process. This fact has been

extensively documented in the volatility literature (see for instance Merville and Pieptea (1989),

Bali and Demirtas (2008)).
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Table 2 About Here

The adjusted R2 value for all regressions is very high, with values close to 75%. For all regres-

sions we use the Heteroscedasticity and Autocorrelation Consistent covariance estimates proposed

by Newey and West (1987).

At this point we incorporate into our analysis the effects of the jump activity as another ex-

planatory variable in the regressions of the SPY return volatility. We do this in the following set of

regressions where we extend the AR(1) process, see equation (17), by incorporating a jump activity

measure and its past value. The first jump activity measure we include is the Jt given above in

equation (9). The other jump activity measure is the one we propose here, and is examined for

the first time in this paper, which is given by the actual number of jumps occurring within each

trading day.

Therefore, in the case where we test the explanatory power of the jump activity measure Jt we

employ

log σt = c+ β1 log σt−1 + β2Jt + β3Jt−1 + ut, (18)

where σt are the daily estimates provided by the four alternative volatility estimators and ut is the

noise term of the regression. Similarly, by replacing Jt with NJt we test the explanatory power of

the actual number of jumps as a new measure to explain volatility by running the regression

log σt = c+ β1 log σt−1 + β2NJt + β3NJt−1 + ut, (19)

and finally, we run the regression that extends the AR(1) to include both jump activity measures

log σt = c+ β1 log σt−1 + β2Jt + β3Jt−1 + β4NJt + β5NJt−1 + ut. (20)

The estimates of the coefficients are presented in Table 3.

Table 3 About Here

The Jt variable is significant for the MLE, BPV , and TBPV volatility estimates while its

lagged value Jt−1 is only significant for the MLE and BPV , all at a 5% significance level. Jt

does not provide any informational content in the new MLE-F volatility estimator introduced

in this paper. By looking at the R2s of the AR(1) in Table 2 and the R2s in Table 3, we see
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that the incorporation of Jt and its lagged value increase the models’ explanatory power for the

MLE, BPV , and TBPV but not the MLE-F . Moreover, by looking at the information criteria

we see that they all have smaller values than in the previous pure AR(1) regressions, while the

log-likelihood maximum values (logL) are greater in this case.

Table 3 shows interesting results about the jump activity measure NJt. The coefficients for the

number of jumps NJt and NJt−1 are positive and negative respectively and highly significant in

all cases, even for the MLE-F volatility estimate. We see that for BPV , for instance, the adjusted

R2 value increases from 69.99%, in the AR(1) model (Table 2), to 80.9% with the inclusion of the

NJt and NJt−1 regressors. This R2 value is even higher than in the case where we only had the Jt

jump activity measure, where the adjusted R2 was 72.4%, as shown in the first column of logBPV

results in Table 3.

In the pure AR(1) the logL value for the BPV is −298.44, but when the NJ ’s are included,

see equation (19), the logL increases to 98.39 which implies that the extended AR(1) is a much

better model to explain the market’s variation. Moreover, in this extended model, the information

criteria values decrease when NJt and NJt−1 are included. This implies that the NJt, and its

lagged value, increase the explanatory power of the volatility models more than the Jt and Jt−1

variables do.

Similarly, for the other models, we observe that the adjusted R2s and information criteria show

that the extended model (19) performs better. For example, in the case of the MLE, the adjusted

R2 value increases from 72.4% in the AR(1) model to 77.7% in the model with NJt and NJt−1,

while the logL value for the pure AR(1) is −42.09, see Table 2, and for the extended AR(1) is

145.13 as shown in Table 3. And, furthermore, the adjusted R2 when daily volatility is calculated

using the TBPV , is 86.8% in the extended model whereas it is 84.7% in the pure AR(1) model.

Finally, when we use the MLE-F to calculate daily volatility, the logL and R2 in the pure AR(1)

case are 235.80 and 79.2% respectively, and in the extended case the logL and R2 are 304.38 and

80.8% respectively.

In general, including the number of jumps as an explanatory variable increases the R2 of the

four estimators. This increase is higher for the MLE and the BPV , while not as large as that for

the TBPV and the MLE-F . But for all estimators the increase of the explanatory power due to

the number of jumps NJt and its lagged value is much higher than that of the Jt and Jt−1 as jump

activity measures.

17



The last test that we require to show that NJt conveys more information than Jt to explain the

volatility of the SPY log-returns, is to run the regression (20) where both Jt and NJt, and their

lagged values, are used as independent variables at the same time. The result of this last set of

regressions is the last column of each of the four estimators in Table 3.

In most cases NJt and NJt−1 overlap the effect that Jt and Jt−1 have on volatility. Jt and its

lagged value become statistically insignificant for BPV , TBPV and MLE, while NJt and NJt−1

still have significant coefficients for all estimators. The explanatory power of the model, where both

Jt and NJt, and their lagged values, are taken into account, is close to the model where only NJt

was used to explain volatility.

5.2. Using alternative explanatory variables: VIX, high and lows and number of

trades

So far we have focused on two jump activity measures when extending the pure AR(1) log-volatility

process to identify which of these two competing measures has more power to explain the daily

volatility of the SPY returns. There are, however, many other well studied factors that have been

successfully employed to explain the behavior of the volatility of assets’ log-returns. Therefore, now

that we have established that the jump activity measure NJt is an important variable to consider

when studying the volatility of the SPY, we need to judge whether, in the presence of other

significant explanatory variables, the number of jumps in prices is still a variable with explanatory

power.

The other variables we consider here are: the VIX, the difference between (log) close and (log)

open, and the difference between (log) high and (log) lows (for previous studies that use such

variables as sources of volatility see, for instance, Alizadeh et al. (2002), Garman and Klass (1980),

Rogers and Satchell (1991) Yang and Zhang (2000)). Variables such as the volume and the number

of transactions within each day have been also used in the literature to explain assets’ volatility.

We shall also consider these two other variables in our analysis, but do it in subsection 5.3 below.

The regression we use is the following

log σt = c+ β1 log σt−1 + β2NJt + β3NJt−1 + β4 logHLt + β5OCt + β6 log V IXt + ut, (21)

where HLt := log(hight/lowt) and OCt := |closet/opent|. Table 4 below presents the results of
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equation (21).

Table 4 About Here

When comparing the results of running the regression (21) with those of the regression (19)

we find that all independent variables are statistically significant for the MLE estimator and the

adjusted R2 resulting from running (21) is 87.4% which is higher than the 77.7% obtained from

running regression (19).

Regarding the BPV estimator, the adjusted R2 also increases from 80.9%, in the case where we

had only the NJs as explanatory variables, to 86.3% with the incorporation of the extra variables

in (21). In addition, the variable OCt is insignificant at a 5% significance level.

The explanatory power of the model for the TBPV case becomes also higher with the extra

explanatory variables. The new R2 is 90.8%, which is higher than the 86.8% obtained in model

(19). The new logL value has nearly doubled, increasing from 487.47 to 802.09.

For the MLE-F volatility estimator the incorporation of the extra variables increases the ad-

justed R2 from 80.8% to 88.8%. Moreover, the coefficient of NJt−1 is insignificant.

Finally, information criteria for all four estimators become lower when the extra explanatory

variables are incorporated in the model described by (19), implying that this model better explains

the SPY volatility.

Therefore, it is interesting to see that our proposed jump activity measure, given by the number

of jumps within each day, is still statistically significant after the incorporation of the extra ex-

planatory variables in the model. Thus, in addition to the well documented explanatory variables

of volatility, the number of jumps in the underlying asset is also a driving source of volatility. The

coefficient of the NJt is positive while the coefficient of NJt−1 is negative.

5.3. Volume vs. number of trades

In this section we examine the relationship that the volume of trades and the number of trades have

with volatility. The seminal work of Clark (1973) argues that markets operate at different trading

rates over different periods of time. Therefore, in Clark’s work it is argued that the trading volume

is positively related to the number of intraday transactions and hence that the trading volume is

related to the variability of price change. This positive relationship between price changes and
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trading volume, without controlling for the number of transactions, is further investigated in Epps

and Epps (1976), Gallant et al. (1992), Tauchen and Pitts (1983) and Karpoff (1987).

However, in Jones et al. (1994) it is shown that the positive relationship between volume and

volatility, measured as absolute or squared price changes, actually reflects the positive relationship

between volatility and the number of transactions. In addition, Ross (1989) also documented that

the number of trades, rather than the volume, is the driving source of asset price volatility.

Here we run three different regressions to examine which jump activity measure, NJt or Jt, is

more important in explaining volatility when volume and/or number of trades are also included as

regressors. First, we run a regression that uses, in addition to the explanatory variables of equation

(21), volume as an independent variable to explain volatility. Second, we run the same model but

instead of volume we use the number of trades as an explanatory variable. Finally, we incorporate

both volume and number of trades in (21).

The three regressions are:

log σt = c+β1 log σt−1 +β2NJt+β3NJt−1 +β4 logHLt+β5OCt+β6 log V IXt+β7V OLt+ut, (22)

log σt = c+β1 log σt−1 +β2NJt+β3NJt−1 +β4 logHLt+β5OCt+β6 log V IXt+β7NTt+ut, (23)

and

log σt = c+β1 log σt−1+β2NJt+β3NJt−1+β4 logHLt+β5OCt+β6 log V IXt+β7V OLt+β8NTt+ut,

(24)

where V OLt is the volume traded throughout day t, NTt number of trades throughout day t (both

measures are between 9.30am and 4:00pm), and the other regressors are as described above in

equation (21).

Table 5 presents the results for all of the above models for the different volatility estimators:

MLE, BPV , TBPV and MLF − F

Table 5 About Here

The BPV estimator. For the model given by (22) the adjusted R2 value remains the same

as it was for (21). The coefficient of the volume regressor is significant but very small, thus not too

relevant to explain the SPY volatility. The explanatory power for the model (23) is again at the
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level of 86.3% with the coefficients of NTt and OCt being statistically insignificant. When both

volume and number of trades are included in the model as explanatory variables of volatility, they

are statistically significant and the adjusted R2 increases from 80.9% in the simple case without

the extra variables (see Table 3, 2nd column for BPV ) to 86.4%. V IXt exhibits a high coefficient,

close to the coefficient of the autoregressive term. The value of the HLt coefficient is also relatively

high, implying that a great deal of variation in the SPY log-returns is explained by the difference

between the maximum and the minimum SPY prices within each day.

The TBPV estimator. In the case of TBPV the volume is insignificant for models given by

(22) and (24), while the number of trades is significant in the latter model, something that also

increases the logL value to 803.97 from the 802.09 obtained in equation (21).

The MLE estimator. For the MLE estimator the volume is significant when running model

(22), and NTt is significant when (23) is implemented. But both are statistically insignificant when

both are included in the regression (24) as explanatory variables for volatility. The coefficient of

the autoregressive term becomes very small, with V IXt and HLts’ coefficients taking values close

to or even higher than the β1 estimate.

The MLE − F estimator. The crucial result regarding which of the variables, volume or

number of trades, is the driving source of volatility is given by the set of regressions applied to

our volatility estimator; the estimator that is neither affected by microstructure noise nor jumps.

When (22) is implemented, volume is statistically significant but its coefficient value is very small.

In the case where only number of trades are used in the model, the NTt’s coefficient is positive,

equal to 0.056, and statistically significant at 5% significance level. The interesting point occurs

when both volume and number of trades are used as independent variables in the model (24). In

this case, the coefficient of volume becomes statistically insignificant, while that of the number of

trades is still significant and its value increases from 0.056 to 0.06.

In general, NTt is statistically significant for most volatility estimators (except MLE) in model

(24). On the other hand, volume is insignificant for the MLE, TBPV and MLE-F . This implies

that the number of trades, instead of volume, is a better explanatory variable of volatility. Our

results agree with those of Jones et al. (1994) and Ross (1989), where it is documented that the

number of trades, rather than the volume, is the driving source of asset price volatility.

Regarding the number of jumps, we see that for all models (22), (23) and (24), NJt and NJt−1

are significant for the volatility estimators MLE, BPV and TBPV and only NJt is significant for
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the MLF − F . Hence, we see that the number of jumps is still relevant in the presence of other

variables that incorporate information such as high, low, volume, number of trades, open, close and

the VIX.

Finally, for comparative purposes, Table 7 shows adjusted R2s resulting from further tests on

the explanatory power of the different variables used to explain daily volatility. The first row of the

Table shows the regressions we run where daily log-volatility is explained by one of the following

variables: log σt−1, logHLt, OCt, log V IXt, NJt, NTt or V OLt . The results show that the number

of jumps NJt in the SPY prices has more explanatory power with respect to daily volatility than

other variables based on: volume, number of trades, open and close. Moreover, NJt has a similar

explanatory power to that of the VIX, and slightly less explanatory power than measures based on

high and low prices, when it comes to explaining volatility.

Table 7 About Here

5.4. Forecasting volatility

At this point we examine whether the number of jumps in the SPY improves the ability to forecast

the S&P 500 volatility. Previous studies show that jumps play an important role in both forecasting

and explaining volatility. For instance, Corsi et al. (2008) provide evidence that volatility forecasts

exhibit lower Root Mean Square Error (RMSE) when jump activity measures are included in the

autoregressive models of volatility. And Andersen et al. (2003) show that the jump measures based

on BPV help to explain realized volatility.

Here we follow a similar approach to those of Corsi et al. (2008) and Andersen et al. (2003),

but propose the use of the number of jumps as a key variable to explain and forecast volatility.

Furthermore, from this point onwards, we only use the MLE-F to produce volatility figures because

it is the only estimator that deals with both jumps and microstructure noise.

The goal is to obtain, at time t, a volatility forecast for the next 22 trading days. That is, obtain

a model-based forecast (MBF) of the volatility of log-returns of the S&P 500 for the next month.

Our notation for the monthly volatility forecast at time t is σ̂t→t+22. This means that at time t we

produce a forecast which is the square root of the average variance for the next 22 trading days.

In our study, the first day for which we produce a forecast is October 5 2006 and the last day is

November 9 2006. The forecast we obtain on October 5, σ̂Oct 5→Nov 9, is a forecast of the square

root of the average variance between October 5 and November 9 of 2006. And our last forecast for

22



November 9 2006, σ̂Nov 9→Dec 11, is a forecast of the square root of the average variance between

November 9 and December 11 of 2006.

In the literature we can find several MBFs together with market-based forecasts such as the

VIX (for more details see Becker et al. (2009)). Becker et al. present MBFs that incorporate the

BPV jump activity measure Jt as one of the variables in the models. The jump activity measure

we use here to forecast volatility is based on NJ t→t+22, which denotes the average of the number

of jumps for a period of 22 trading days starting at time t.

When forecasting volatility, the VIX is an important variable to consider because it is a measure

of the implied volatility of options on the S&P 500 index and therefore it conveys (risk-neutral)

forward looking information about what market participants expect the volatility of the S&P 500 to

be over the coming month. Therefore, although the VIX contains information about the volatility of

the risk-neutral log-returns of the S&P 500, and our objective is to obtain forecasts of the volatility

of the S&P 500 log-returns under the data generating measure, we expect the VIX to increase the

forecasting ability of MBFs of volatility.

To test whether the VIX can help to forecast realized volatility, we run the following regression:

log σt→t+22 = c+ β log V IXt + ut, (25)

where σt→t+22 are obtained using the MLE-F over the period from t to t+ 22. Note that when we

calculated daily volatility we used the minute-by-minute returns from 9.30am until 4.00pm for one

day and applied the MLE-F to that data set. Now, since we are interested in the square root of the

average variance from t to t+22, we proceed as with the daily estimates, but our minute-by-minute

data stretch from 9.30am of day t until 4.00pm of day t + 22. The estimate of β in equation (25)

is close to 1.07 and the adjusted R2 is 75.26%. We consider this to be a reasonable indication that

the VIX is as a good market forecast of the square root of the average variance over a month and

may be used to enhance our model-based volatility forecasts in the models below.

Another model that can be used to produce volatility forecasts is

log σt→t+22 = c+ β1 log σt−22→t + β2 log V IXt−1 + ut, (26)

which is an extension of (25) where σt−22→t denotes the square root of the average variance between

time t− 22 and t.
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For our purposes, we are interested in a further extension to model (26), where the average

number of jumps between time t and t+ 22 is used as an explanatory variable. However, at time t

we do not know the number of jumps that will occur between t and t+22. Instead, we need to use a

forecast of the average number of jumps. Before doing this, we first show that the realized average

number of jumps between t and t + 22, NJ t→t+22, is a relevant variable in explaining monthly

volatility. And, we run the following regression

log σt→t+22 = c+ β1 log σt−22→t + β2 log V IXt−1 + β3NJ t→t+22 + ut (27)

to show that NJ t→t+22 can explain σt→t+22.

Table 8 About Here

Table 8 presents the results from estimating models (26) and (27). Once again, the average

number of jumps plays an important role in explaining monthly volatility. The explanatory power

of the model that includes the VIX and the average number of jumps is 83.50%, whilst in the model

described by (26), where only the VIX is employed, the adjusted R2 is 78.30%. The high adjusted

R2 values indicate that model (26) can be used to forecast monthly SPY volatility. In the case of

model (27) it shows that the average number of jumps is an important variable to explain monthly

SPY volatility and, therefore, it provides an indication that forecasts of the expected number of

jumps may be an important variable to generate monthly volatility forecasts.

In the second column of the table, we present the model where instead of the VIX variable we

only use the average number of jumps to explain volatility. The interesting point in this regression

is that the adjusted R2 is equal to 80.60%, higher than the 78.30% for the model where only the

VIX is employed. This highlights the importance of incorporating the average number of jumps in

the model to explain monthly volatility.

We emphasize that model (27) employs the number of jumps between t and t + 22 to explain

monthly volatility at time t. However, as discussed above, if our intention is to forecast rather

than explain volatility at time t over the period t→ t+ 22 we must use a forecast of the NJ t→t+22

parameter.

Therefore, we obtain forecasts of the monthly average number of jumps by employing a moving

average process of order 5 (MA(5)) and denote these forecasts N̂J t→t+22. Table 6 shows the results

for the MA(5) model. The adjusted R2 of 90% indicates that the moving average specification can

24



explain most of the variability of the average jumps activity measure. The model gives us forecasts

for the period 05 October 2006 to 09 November, 2006.

Table 6 About Here

Finally, the model that we use to derive volatility forecasts is:

log σt→t+22 = c+ β1 log σt−22→t + β2 log V IXt−1 + β3N̂J t→t+22 + ut. (28)

The monthly volatility forecasts are for the period 5 October 2006 to 9 November 2006, i.e. 26

monthly volatility forecasts. Note that this model only differs from (27) in that we use the MA(5)

forecasts N̂J t→t+22 as the regressor .

We present four indicators of how good our forecasts are relative to the true values:

• Root Mean Squared Error (RMSE)

• Mean Absolute Error (MAE)

• Mean Absolute Percentage Error (MAPE)

• Theil Inequality index, defined as

TI =

√∑T+h
T+1(ŷt − yt)2/h√∑T+h

T+1 ŷt
2/h+

√∑T+h
T+1 y

2
t /h

,

where ŷt is the forecast, yt the observed value and h the total number of forecasts. The TI

lies between zero and one, with zero indicating a perfect fit.

The last column of Table 8 presents the estimates of model (28). We see that when using the

forecast of the average number of jumps, the adjusted R2 = 83.5% which incidentally is the same

adjusted R2 that we obtained when the actual average number of jumps was used as regressor in

model (27).

The last four rows of Table 8 present the four indicators for models (26) and (28) for the last

22 days of our sample. We see that the values of the RMSE, MAE and MAPE are smaller in the

case where the forecast of the average number of jumps is incorporated in the model to forecast

monthly volatility. Model (28) has a higher adjusted R2 = 83.5% than that of model (26) which is

78.30%. Furthermore, the TI coefficient of model (28) is 0.016 which indicates a very good fit and

it is also lower that the TI of model (26).
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Therefore, in this subsection we have shown that employing forecasts of the average number

of jumps provides crucial information that increases our ability to forecast the SPY one-month

volatility. Jumps are important when considering the forecasting problem and one should take

them into account in order to obtain better volatility forecasts. Information such as the expected

number of jumps should be used in addition to the market-based forecast VIX which does not seem

to include all the information relating to the jump activity.

5.5. Why is the realized number of jumps helpful in explaining volatility?

Our empirical results highlight how important the realized number of jumps in the SPY prices are

in explaining the volatility of the SPY log-returns. In all the models that we run we find that daily

volatility σt depends positively on the realized number of jumps NJt and negatively on the realized

number of jumps for the previous day NJt−1.

We provide the following intuitive explanation of the relationship between the number of jumps

in the price and its volatility. In the literature, the arrival of information is linked to trading

activity, number of trades, volume of trades, etc. and therefore information flows are a driving

source of volatility, see for example Clark (1973), Tauchen and Pitts (1983) and Ross (1989).

Jumps in stock prices can be attributed to the release of important pieces of information, Lee and

Mykland (2008). In addition, our results indicate that when there are jumps in stock prices, the

volatility also increases. Our interpretation is twofold: (i) that there is information that moves

stock prices; and (ii) that the way in which market participants interpret this new information,

can also affect the volatility of the price innovations. For instance, when market participants are

broadly in agreement, the volatility of price revisions, after the price jump, should remain close to

the current volatility levels. On the other hand, if most market participants do not agree on how

to interpret the arrival of news, the volatility will increase.

Although the objective of the recent work of Todorov (2009) is to study the temporal variation

in the market variance risk premium in the presence of jumps both in the volatility and the stock

price process, the author shows that there is a strong relationship between the jumps in the S&P 500

index futures contract and the jumps in its variance. The author also conjectures that situations

where jumps in volatility and prices occur at the same time, may be caused by arrival of information

that simultaneously impacts the price the volatility jumps due to the fact that market participants

cannot agree on the effect that this information will have in the market.
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6. Conclusions

The first contribution of the paper is to propose the MLE-F volatility estimator, an estimator that

is neither affected by jumps (Lévy-type that include infinite activity and Poisson) nor microstructure

noise. We propose a two-step procedure, that takes into account recent developments in jump

detection tests and high frequency volatility estimation, to obtain a fully efficient volatility estimator

in the presence of noise and price discontinuities.

The second contribution is to examine the relationship between the jump activity of the SPY,

the exchange traded fund tracking the S&P 500 index, and its volatility. We employ high frequency

data (minute-by-minute between 9:30am and 4:00pm from January 2000 to December 2006) and

deconstruct the SPY high frequency returns into its Lévy-type jumps and Gaussian components.

This deconstruction of the dynamics of log-prices allows us to propose for the first time the realized

number of jumps at time t, denoted by NJt, as a new jump activity measure to explain and to

forecast the volatility of the SPY.

We summarize our main empirical findings when the number of jumps in the SPY is employed

to explain and forecast the volatility of log-returns of the SPY.

The number of jumps in the SPY is an important variable in explaining the daily volatility of the

SPY log-returns. In our study, we obtain daily volatility estimates with four different estimators:

MLE, BPV , TBPV and our MLE − F . We find that the number of jumps in the SPY has more

explanatory power with respect to daily volatility than other widely used variables such as: the

volume of trades, the number of trades, and the ratio between open and close.

Furthermore, we show that our jump activity measure NJt has more explanatory power than

the well studied jump activity measure Jt, which is based on the difference between the quadratic

variation of the log-prices and the Bipower Variation estimator of Barndorff-Nielsen and Shephard

(2004).

Our results also show that the number of jumps NJt has a similar explanatory power than

that of the VIX, but slightly lower explanatory power than that of the high-low measure HLt =

log(hight/lowt), when explaining daily volatility.

We further examine the question of whether the volume or the number of trades is the driving

source of volatility. We show that the number of trades, and not the volume, is the significant

variable in explaining volatility. This result agrees with Jones et al. (1994) and Ross (1989), where
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it is documented that the number of trades, rather than the volume, is the driving source of asset

price volatility.

We emphasize that in our analysis the number of jumps NJt is statistically significant in all

models, even after the inclusion of combinations of all, or some, of the explanatory variables that we

have mentioned above: volume of trades, number of trades, ratio between open and close, log-high

minus log-low, VIX and the jump activity measure Jt.

Finally, we examine whether the number of jumps in the SPY log-returns help us to better

forecast SPY monthly volatility.

First, we obtain monthly volatility estimates with the MLE-F volatility estimator. Then, we

show that: the average number of jumps, for the month where volatility has been estimated explains

monthly volatility; and the explanatory power of the realized average number of jumps is on a par

with that of the VIX.

Second, since we do not know the average of the number of jumps over the period for which

we want to forecast monthly volatility, we predict this average using an MA(5). Next, we use

these predictions to forecast monthly volatility and show that a model that includes these MA(5)

predictions exhibits lower forecasting errors than the models without these predictions. Finally,

our results show that the expected jumps contain relevant information when forecasting monthly

volatility which is not impounded in the VIX.
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Tables and Figures

Table 1: Correlation matrix of volatility estimates from high and low frequency estimators and
VIX

MLE-F MLE BPV TBPV RV5min GARCH |rt| V IX

MLE-F 1 0.96 0.86 0.97 0.80 0.83 0.77 0.83
MLE 0.96 1 0.85 0.94 0.85 0.79 0.73 0.80
BPV 0.86 0.85 1 0.89 0.85 0.73 0.68 0.73
TBPV 0.97 0.94 0.89 1 0.84 0.84 0.77 0.83
RV5min 0.80 0.85 0.85 0.84 1 0.69 0.64 0.69
GARCH 0.83 0.79 0.73 0.84 0.69 1 0.96 0.89
|rt| 0.77 0.73 0.68 0.78 0.64 0.96 1 0.86
V IX 0.83 0.80 0.73 0.83 0.69 0.89 0.86 1

Table 2: AR(1) model for volatility estimators
Volatility estimator Coefficient Std. Error Prob adjusted R2 logL

logMLE c 0.376 0.033 0.000 0.724 -42.09
logMLE(−1) 0.851 0.013 0.000

logBPV c 0.430 0.041 0.000 0.699 -298.44
logBPV (−1) 0.837 0.015 0.000

log TBPV c 0.203 0.019 0.000 0.847 359.59
log TBPV (−1) 0.921 0.007 0.000

logMLE − F c 0.275 0.024 0.000 0.792 235.80
logMLE − F (−1) 0.890 0.009 0.000
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Table 4: The incremental information of VIX, Open-Close and High-Low
Independent Variables logMLE logBPV log TBPV logMLE − F

c 2.707 1.781 2.619 3.350

(0.496) (0.580) (0.381) (0.448)

log σt−1 0.384 0.497 0.609 0.458

(0.024) (0.037) (0.023) (0.022)

NJt 0.031 0.061 0.022 0.012

(0.003) (0.007) (0.002) (0.004)

NJt−1 -0.012 -0.029 -0.011 -0.005

(0.004) (0.006) (0.003) (0.003)

logHLt 0.537 0.354 0.357 0.489

(0.056) (0.049) (0.042) (0.053)

OCt -1.199 -0.973 -1.721 -1.968

(0.439) (0.546) (0.354) (0.394)

log V IXt 0.413 0.431 0.299 0.537

(0.043) (0.051) (0.035) (0.039)

adjusted R2 0.874 0.863 0.908 0.888

Akaike info -0.732 -0.435 -0.911 -0.883

Schwarz -0.710 -0.413 -0.888 -0.861

Hannan-Quinn -0.724 -0.426 -0.903 -0.875

logL 646.11 386.50 802.09 785.16
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Table 6: Forecasting average monthly number of jumps
NJt→t+22

Coefficient Std. Error Prob

c 1.091 0.032

MA(1) 1.056 0.032 0.000

MA(2) 0.963 0.040 0.000

MA(3) 0.919 0.041 0.000

MA(4) 0.832 0.038 0.000

MA(5) 0.466 0.030 0.000

Adjusted R2 0.900
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Figure 1. S&P 500 Lévy and Poisson-type jumps.
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Figure 2. QQ plot for raw (blue circles) and filtered (light blue dots) SPY returns
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Figure 3. SPY daily volatilities using the MLE, BPV , TBPV and MLE-F .
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