BIROn - Birkbeck Institutional Research Online

    TRACX: a recognition-based connectionist framework for sequence segmentation and chunk extraction

    French, R.M. and Addyman, Caspar and Mareschal, Denis (2011) TRACX: a recognition-based connectionist framework for sequence segmentation and chunk extraction. Psychological Review 118 (4), pp. 614-636. ISSN 0033-295X.

    [img] Text
    French - Psychological Review 2011.pdf - Published Version of Record
    Restricted to Repository staff only

    Download (893kB) | Request a copy


    Individuals of all ages extract structure from the sequences of patterns they encounter in their environment, an ability that is at the very heart of cognition. Exactly what underlies this ability has been the subject of much debate over the years. A novel mechanism, implicit chunk recognition (ICR), is proposed for sequence segmentation and chunk extraction. The mechanism relies on the recognition of previously encountered subsequences (chunks) in the input rather than on the prediction of upcoming items in the input sequence. A connectionist autoassociator model of ICR, truncated recursive autoassociative chunk extractor (TRACX), is presented in which chunks are extracted by means of truncated recursion. The performance and robustness of the model is demonstrated in a series of 9 simulations of empirical data, covering a wide range of phenomena from the infant statistical learning and adult implicit learning literatures, as well as 2 simulations demonstrating the model’s ability to generalize to new input and to develop internal representations whose structure reflects that of the items in the input sequence. TRACX outperforms PARSER (Perruchet & Vintner, 1998) and the simple recurrent network (SRN, Cleeremans & McClelland, 1991) in matching human sequence segmentation on existing data. A new study is presented exploring 8-month-olds’ use of backward transitional probabilities to segment auditory sequences.


    Item Type: Article
    Keyword(s) / Subject(s): chunk extraction, statistical learning, implicit learning, recursive autoassociative memory, autoassociators
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Psychological Sciences
    Research Centres and Institutes: Educational Neuroscience, Centre for, Brain and Cognitive Development, Centre for (CBCD)
    Depositing User: Caspar Addyman
    Date Deposited: 14 Jan 2014 09:37
    Last Modified: 02 Aug 2023 17:08


    Activity Overview
    6 month trend
    6 month trend

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item