BIROn - Birkbeck Institutional Research Online

    Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry

    Jones, M.T. and Gislason, S.R. and Burton, K.W. and Pearce, C.R. and Mavromatis, V. and Pogge von Strandmann, Philip A.E. and Oelkers, E.H. (2014) Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry. Earth and Planetary Science Letters 395 , pp. 91-100. ISSN 0012-821X.

    Full text not available from this repository.

    Abstract

    The quantification of the sources and sinks of elements to the oceans forms the basis of our understanding of global geochemical cycles and the chemical evolution of the Earth's surface. There is, however, a large imbalance in the current best estimates of the global fluxes to the oceans for many elements. In the case of strontium (Sr), balancing the input from rivers would require a much greater mantle-derived component than is possible from hydrothermal water flux estimates at mid-ocean ridges. Current estimates of riverine fluxes are based entirely on measurements of dissolved metal concentrations, and neglect the impact of riverine particulate dissolution in seawater. Here we present 87Sr/86Sr isotope data from an Icelandic estuary, which demonstrate rapid Sr release from the riverine particulates. We calculate that this Sr release is 1.1–7.5 times greater than the corresponding dissolved riverine flux. If such behaviour is typical of volcanic particulates worldwide, this release could account for 6–45% of the perceived marine Sr budget imbalance, with continued element release over longer timescales further reducing the deficit. Similar release from particulate material will greatly affect the marine budgets of many other elements, changing our understanding of coastal productivity, and anthropogenic effects such as soil erosion and the damming of rivers.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): global element cycles, strontium, suspended particles, dissolution, estuaries, fluxes
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences
    Depositing User: Administrator
    Date Deposited: 07 Apr 2014 08:08
    Last Modified: 02 Aug 2023 17:10
    URI: https://eprints.bbk.ac.uk/id/eprint/9545

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    246Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item