BIROn - Birkbeck Institutional Research Online

    Browse by Staff

    Up a level
    Export as [feed] Atom [feed] RSS
    Group by: Item Type | No Grouping
    Number of items: 24.

    Article

    Lozin, V. and Razgon, Igor and Zamaraev, V. and Zamaraeva, E. and Zolotykh, N. (2018) Linear read-once and related Boolean functions. Discrete Applied Mathematics 250 (11), pp. 16-27. ISSN 0166-218X.

    Lozin, V. and Razgon, Igor and Zamaraev, V. (2018) Well-quasi-ordering versus clique-width. Journal of Combinatorial Theory Series B 130 , pp. 1-18. ISSN 0095-8956.

    Razgon, Igor (2015) On the read-once property of branching programs and CNFs of bounded treewidth. Algorithmica 75 (2), pp. 277-294. ISSN 0178-4617.

    Marx, D. and Razgon, Igor (2014) Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM Journal on Computing 43 (2), pp. 355-388. ISSN 0097-5397.

    Razgon, Igor (2007) A 2O(k)poly(n) algorithm for the parameterized convex recoloring problem. Information Processing Letters 104 (2), pp. 53-58. ISSN 0020-0190.

    Razgon, Igor and Meisels, A. (2007) A CSP search algorithm with responsibility sets and kernels. Constraints: An International Journal 12 , pp. 151-177. ISSN 1383-7133.

    Book Section

    Lozin, V.V. and Razgon, Igor and Zamaraev, V. (2016) Well-quasi-ordering does not imply bounded cliquewidth. In: Mayr, E.W. (ed.) Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science 9224. New York, U.S.: Springer, pp. 351-359. ISBN 9783662531730.

    Razgon, Igor (2015) Quasipolynomial simulation of DNNF by a non-determinstic read-once branching program. In: Pesant, G. (ed.) Principles and Practice of Constraint Programming. Lecture Notes in Computer Science 9255. New York, U.S.: Springer, pp. 367-375. ISBN 9783319232188.

    Razgon, Igor (2014) No small nondeterministic read-once branching programs for CNFs of bounded treewidth. In: Cygan, M. and Heggernes, P. (eds.) Parameterized and Exact Computation. Lecture Notes in Computer Science 8894. New York, U.S.: Springer, pp. 319-331. ISBN 9783319135236.

    Razgon, Igor (2014) On OBDDs for CNFs of bounded treewidth. In: Baral, C. and De Giacomo, G. and Eiter, T. (eds.) Fourteenth International Conference on the Principles of Knowledge Representation and Reasoning. Palo Alto, U.S.: AAAI Press. ISBN 9781577356578.

    Razgon, Igor and Petke, J. (2013) Cliquewidth and knowledge compilation. In: Järvisalo, M. and Van Gelder, A. (eds.) Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science 7962. Berlin, Germany: Springer Verlag, pp. 335-350. ISBN 9783642390715.

    Razgon, Igor (2007) Computing minimum directed feedback vertex set in O(1.9977n). In: Italiano, G.F. and Moggi, E. and Luigi, L. (eds.) ICTCS 2007: Theoretical Computer Science. World Scientific, pp. 70-81.

    Chor, B. and Fellows, M.R. and Ragan, M.A. and Razgon, Igor and Rosamond, F.A. and Snir, S. (2007) Connected coloring completion for general graphs: algorithms and complexity. In: Snir, G. (ed.) COCOON 2007: Computing and Combinatorics. Lecture Notes in Computer Science 4598. Springer, pp. 75-85. ISBN 9783540735441.

    Razgon, Igor and O'Sullivan, B. (2007) Directed feedback vertex set is fixed-parameter tractable. In: Demaine, E.D. and Gutin, G.Z. and Marx, D. and Stege, U. (eds.) Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs. Dagstuhl Seminar Proceedings 07281. Internationales Begegnungs- und Forschungszentrum fuer Informatik.

    Razgon, Igor and O'Sullivan, B. (2006) Efficient recognition of acyclic clustered constraint satisfaction problems. In: Azevedo, F. and Barahona, P. and Fages, F. and Rossi, F. (eds.) CSCLP 2006: Recent Advances in Constraints. Lecture Notes in Computer Science 4651. Springer, pp. 154-168. ISBN 9783540738169.

    Razgon, Igor (2006) Exact computation of maximum induced forest. In: Arge, L. and Freivalds, R. (eds.) SWAT 2006: Algorithm Theory. Lecture Notes in Computer Science 4059. Springer, pp. 160-171. ISBN 9783540357537.

    Razgon, Igor (2006) A faster solving of the maximum independent set problem for graphs with maximal degree 3. In: Broersma, H. and Dantchev, S.S,. and Johnson, M. and Szeider, S. (eds.) Algorithms and Complexity 2006: Proceedings of the Second ACiD Workshop. Texts in Algorithmics 7. King's College, London, UK, pp. 131-142.

    Razgon, Igor and Meisels, A. (2005) A CSP search algorithm with reduced branching factor. In: Hnich, B. and Carlsson, M. and Fages, F. and Rossi, F. (eds.) CSCLP 2005: Recent Advances in Constraints. Lecture Notes in Computer Science 3978. Springer, pp. 59-72. ISBN 9783540342151.

    Razgon, Igor and Meisels, A. (2005) CSP search with responsibility sets and kernels. In: Pack Kaelbling, L. and Saffiotti, A. (eds.) IJCAI-05: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence. Professional Book Center, pp. 1533-1534.

    Razgon, Igor (2005) Complexity analysis of heuristic CSP search algorithms. In: Hnich, B. and Carlsson, M. and Fages, F. and Rossi, F. (eds.) Recent Advances in Constraints: CSCLP 2005. Lecture Notes in Computer Science 3978. Springer, pp. 88-99. ISBN 9783540342151.

    Razgon, Igor and Meisels, A. (2004) Pruning by equally constrained variables. In: Faltings, B. and Petcu, A. and Fages, F. and Rossi, F. (eds.) Recent Advances in Constraints: CSCLP 2004. Lecture Notes in Computer Science 3419. Springer, pp. 26-40.

    Razgon, Igor and Meisels, A. (2003) Maintaining dominance consistency. In: Rossi, F. (ed.) CP 2003: Principles and Practice of Constraint Programming. Lecture Notes in Computer Science 2833. Springer, pp. 945-949. ISBN 9783540202028.

    Razgon, Igor and O'Sullivan, B. and Provan, G.M. Generalizing global constraints based on network flows. In: Fages, F. and Rossi, F. and Soliman, S. (eds.) CSCLP 2007: Recent Advances in Constraints. Lecture Notes in Computer Science 5129. Springer, pp. 127-141. ISBN 978-3-540-89811-5.

    Conference or Workshop Item

    Gottlob, G. and Lanzinger, M. and Pichler, R. and Razgon, Igor (2020) Fractional covers of Hypergraphs with bounded multi-intersection. In: 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020), 24-28 Oct 2020, Prague, Czech Republic.

    This list was generated on Fri Nov 22 07:30:26 2024 GMT.