Diot, X. and El-Maarry, Mohamed Ramy and Schlunegger, F. and Norton, K.P. and Thomas, N. and Grindrod, Peter M. (2014) The geomorphology and morphometry of the banded terrain in Hellas basin, Mars. Planetary and Space Science 101 , pp. 118-134. ISSN 0032-0633.
Abstract
Hellas basin is a large impact basin situated in the southern highlands of Mars. The north-western part of the basin has the lowest elevation (−7.5 km) on the planet and contains a possibly unique terrain type, which we informally call “banded terrain”. The banded terrain is made up of smooth-looking banded deposits that display signs of viscous behavior and a paucity of superimposed impact craters. In this study, we use newly acquired high spatial resolution images from the High Resolution Imaging Science Experiment (HiRISE) in addition to existing datasets to characterize the geomorphology, the morphometry and the architecture of the banded terrain. The banded terrain is generally confined to the NW edge of the Alpheus Colles plateau. The individual bands are ∼3–15 km-long, ∼0.3 km-wide and are separated by narrow inter-band depressions, which are ∼65 m-wide and ∼10 m-deep. The bands display several morphologies that vary from linear to concentric forms. Morphometric analysis reveals that the slopes along a given linear or lobate band ranges from 0.5° to 15° (average ∼6°), whereas the concentric bands are located on flatter terrain (average slope ∼2–3°). Crater-size frequency analysis yields an Amazonian-Hesperian boundary crater retention age for the terrain (∼3 Gyr), which together, with the presence of very few degraded craters, either implies a recent emplacement, resurfacing, or intense erosion. The apparent sensitivity to local topography and preference for concentrating in localized depressions is compatible with deformation as a viscous fluid. In addition, the bands display clear signs of degradation and slumping at their margins along with a suite of other features that include fractured mounds, polygonal cracks at variable size-scales, and knobby/hummocky textures. Together, these features suggest an ice-rich composition for at least the upper layers of the terrain, which is currently being heavily modified through loss of ice and intense weathering, possibly by wind.
Metadata
Item Type: | Article |
---|---|
Keyword(s) / Subject(s): | Mars, Surface geology, Impact crater, Geomorphological processes, Flows |
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences |
Depositing User: | Administrator |
Date Deposited: | 21 Jul 2014 10:31 |
Last Modified: | 02 Aug 2023 17:11 |
URI: | https://eprints.bbk.ac.uk/id/eprint/10198 |
Statistics
Additional statistics are available via IRStats2.