Torlopp, A. and Khan, M.A.F. and Oliveira, N.M.M. and Lekk, I. and Soto-Jimenez, L.M. and Sosinsky, Alona and Stern, C.D. (2014) The transcription factor Pitx2 positions the embryonic axis and regulates twinning. eLife 3 , ISSN 2050-084X.
|
Text
11315.pdf - Published Version of Record Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Embryonic polarity of invertebrates, amphibians and fish is specified largely by maternal determinants, which fixes cell fates early in development. In contrast, amniote embryos remain plastic and can form multiple individuals until gastrulation. How is their polarity determined? In the chick embryo, the earliest known factor is cVg1 (homologous to mammalian growth differentiation factor 1, GDF1), a transforming growth factor beta (TGFβ) signal expressed posteriorly before gastrulation. A molecular screen to find upstream regulators of cVg1 in normal embryos and in embryos manipulated to form twins now uncovers the transcription factor Pitx2 as a candidate. We show that Pitx2 is essential for axis formation, and that it acts as a direct regulator of cVg1 expression by binding to enhancers within neighbouring genes. Pitx2, Vg1/GDF1 and Nodal are also key actors in left–right asymmetry, suggesting that the same ancient polarity determination mechanism has been co-opted to different functions during evolution.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences |
Depositing User: | Administrator |
Date Deposited: | 17 Dec 2014 15:26 |
Last Modified: | 02 Aug 2023 17:14 |
URI: | https://eprints.bbk.ac.uk/id/eprint/11315 |
Statistics
Additional statistics are available via IRStats2.