BIROn - Birkbeck Institutional Research Online

    Joint modelling of multiple network wiews

    Gollini, Isabella and Murphy, T.B. (2016) Joint modelling of multiple network wiews. Journal of Computational and Graphical Statistics 25 (1), pp. 246-265. ISSN 1061-8600.

    [img]
    Preview
    Text
    1301.3759v3.pdf - Author's Accepted Manuscript

    Download (8MB) | Preview

    Abstract

    Latent space models (LSM) for network data were introduced by Hoff et al. (2002) under the basic assumption that each node of the network has an unknown position in a D-dimensional Euclidean latent space: generally the smaller the distance between two nodes in the latent space, the greater their probability of being connected. In this paper we propose a variational inference approach to estimate the intractable posterior of the LSM. In many cases, different network views on the same set of nodes are available. It can therefore be useful to build a model able to jointly summarise the information given by all the network views. For this purpose, we introduce the latent space joint model (LSJM) that merges the information given by multiple network views assuming that the probability of a node being connected with other nodes in each network view is explained by a unique latent variable. This model is demonstrated on the analysis of two datasets: an excerpt of 50 girls from 'Teenage Friends and Lifestyle Study' data at three time points and the Saccharomyces cerevisiae genetic and physical protein-protein interactions.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): latent space model, latent variable, multiplex networks, social network analysis, variational methods
    School: Birkbeck Faculties and Schools > Faculty of Business and Law > Birkbeck Business School
    Depositing User: Isabella Gollini
    Date Deposited: 04 Nov 2015 10:23
    Last Modified: 02 Aug 2023 17:19
    URI: https://eprints.bbk.ac.uk/id/eprint/13290

    Statistics

    Activity Overview
    6 month trend
    365Downloads
    6 month trend
    233Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item
    Edit/View Item