Parbery-Clark, A. and Tierney, Adam and Strait, D. and Kraus, N. (2012) Musicians have fine-tuned neural distinction of speech syllables. Neuroscience 219 (6), pp. 111-119. ISSN 0306-4522.
Abstract
One of the benefits musicians derive from their training is an increased ability to detect small differences between sounds. Here, we asked whether musicians’ experience discriminating sounds on the basis of small acoustic differences confers advantages in the subcortical differentiation of closely related speech sounds (e.g., /ba/ and /ga/), distinguishable only by their harmonic spectra (i.e., their second formant trajectories). Although the second formant is particularly important for distinguishing stop consonants, auditory brainstem neurons do not phase-lock to its frequency range (above 1000 Hz). Instead, brainstem neurons convert this high-frequency content into neural response timing differences. As such, speech tokens with higher formant frequencies elicit earlier brainstem responses than those with lower formant frequencies. By measuring the degree to which subcortical response timing differs to the speech syllables /ba/, /da/, and /ga/ in adult musicians and nonmusicians, we reveal that musicians demonstrate enhanced subcortical discrimination of closely related speech sounds. Furthermore, the extent of subcortical consonant discrimination correlates with speech-in-noise perception. Taken together, these findings show a musician enhancement for the neural processing of speech and reveal a biological mechanism contributing to musicians’ enhanced speech perception in noise.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Psychological Sciences |
Research Centres and Institutes: | Brain and Cognitive Development, Centre for (CBCD) |
Depositing User: | Sarah Hall |
Date Deposited: | 17 Dec 2015 10:37 |
Last Modified: | 02 Aug 2023 17:20 |
URI: | https://eprints.bbk.ac.uk/id/eprint/13799 |
Statistics
Additional statistics are available via IRStats2.