Trokter, Martina and Waksman, Gabriel (2018) Translocation through the conjugative Type 4 secretion system requires unfolding of its protein substrate. Journal of Bacteriology 200 (6), JB.00615-17. ISSN 0021-9193.
|
Text
21104.pdf - Author's Accepted Manuscript Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Bacterial conjugation, a mechanism of horizontal gene transfer, is the major means by which antibiotic resistance spreads among bacteria (1, 2). Conjugative plasmids are transferred from one bacterium to another through a type IV secretion system (T4SS) in a form of single-stranded DNA covalently attached to a protein called relaxase. The relaxase is fully functional both in a donor cell (prior to conjugation) and recipient cell (after conjugation). Here we demonstrate that the protein substrate has to unfold for efficient translocation through the conjugative T4SS. Furthermore, we present various relaxase modifications that preserve the function of the relaxase but block substrate translocation. This study brings us a step closer to deciphering the complete mechanism of T4SS substrate translocation, vital for development of new therapies against multidrug-resistant pathogenic bacteria. Importance Conjugation is the principal means by which antibiotic resistance genes spread from one bacterium to another (1, 2). During conjugation, a covalent complex of single-stranded DNA and a protein termed relaxase is transported by a type IV secretion system. To date, it is not known whether the relaxase requires unfolding prior to transport. In this report, we use functional assays to monitor the transport of relaxase wild-type and variants containing unfolding-resistant domains and show that these domains reduce conjugation and protein transport dramatically. Mutations that lower the free energy of unfolding in these domains do not block translocation and can even promote it. We thus conclude that the unfolding of the protein substrate is required during transport.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences |
Depositing User: | Administrator |
Date Deposited: | 13 Feb 2018 10:57 |
Last Modified: | 02 Aug 2023 17:39 |
URI: | https://eprints.bbk.ac.uk/id/eprint/21104 |
Statistics
Additional statistics are available via IRStats2.