Jennings, Eleanor S. and Montgomery, W. and Lerch, Ph. (2010) Stability of Coronene at high temperature and pressure. The Journal of Physical Chemistry B 114 (48), pp. 15753-15758. ISSN 1520-6106.
Abstract
The infrared response of coronene (C24H12) under pressure and temperature conditions up to 10 GPa and 300 °C is examined in situ using a diamond anvil cell and synchrotron-source Fourier transform infrared (FTIR) spectroscopy. Coronene is a polycyclic aromatic hydrocarbon that is present in the interstellar medium and meteorites which may have contributed to the Earth’s primordial carbon budget. It appears to undergo a reversible phase transition between 2 and 3.2 GPa at ambient temperature; new intramolecular bonds in the region 840−880 cm−1 result from compression. We document the shift of spectral features to higher wavenumbers with increasing pressure but find this change suppressed by increased temperature. By investigating the stability of coronene over a range of naturally occurring conditions found in a range of environments, we assess the survival of the molecule through various terrestrial and extraterrestrial processes. Coronene has previously been shown to survive atmospheric entry during Earth accretion; this can now be extended to include survival through geological processes such as subduction and silicate melting of the rock cycle, opening the possibility of extraterrestrial coronene predating terrestrial accretion existing on Earth.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences |
Depositing User: | Administrator |
Date Deposited: | 21 Feb 2018 10:44 |
Last Modified: | 02 Aug 2023 17:39 |
URI: | https://eprints.bbk.ac.uk/id/eprint/21353 |
Statistics
Additional statistics are available via IRStats2.