Chun, C. and Moffatt, I. and Noble, Steven and Rueckriemen, R. (2018) On the interplay between embedded graphs and delta-matroids. Proceedings of the London Mathematical Society 118 (3), pp. 675-700. ISSN 0024-6115.
|
Text
interplay_final_v1.pdf - Author's Accepted Manuscript Download (1MB) | Preview |
Abstract
The mutually enriching relationship between graphs and matroids has motivated discoveries in both fields. In this paper, we exploit the similar relationship between embedded graphs and delta-matroids. There are well-known connections between geometric duals of plane graphs and duals of matroids. We obtain analogous connections for various types of duality in the literature for graphs in surfaces of higher genus and delta-matroids. Using this interplay, we establish a rough structure theorem for delta-matroids that are twists of matroids, we translate Petrie duality on ribbon graphs to loop complementation on delta-matroids, and we prove that ribbon graph polynomials, such as the Penrose polynomial, the characteristic polynomial, and the transition polynomial, are in fact delta-matroidal. We also express the Penrose polynomial as a sum of characteristic polynomials.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Depositing User: | Steven Noble |
Date Deposited: | 03 Sep 2018 08:34 |
Last Modified: | 09 Aug 2023 12:44 |
URI: | https://eprints.bbk.ac.uk/id/eprint/23754 |
Statistics
Additional statistics are available via IRStats2.