Vincent, J.-B. and A'Hearn, M.F. and Lin, Z.-Y. and El-Maarry, Mohamed Ramy and Pajola, M. and Sierks, H. and Barbieri, C. and Lamy, P.L. and Rodrigo, R. and Koschny, D. and Rickman, H. and Keller, H.U. and Agarwal, J. and Barucci, M.A. and Bertaux, J.-L. and Bertini, I. and Besse, S. and Bodewits, D. and Cremonese, G. and Da Deppo, V. and Davidsson, B. and Debei, S. and De Cecco, M. and Deller, J. and Fornasier, S. and Fulle, M. and Gicquel, A. and Groussin, O. and Gutiérrez, P.J. and Gutiérrez-Marquez, P. and Güttler, C. and Höfner, S. and Hofmann, M. and Hviid, S.F. and Ip, W.-H. and Jorda, L. and Knollenberg, J. and Kovacs, G. and Kramm, J.-R. and Kührt, E. and Küppers, M. and Lara, L.M. and Lazzarin, M. and Lopez Moreno, J.J. and Marzari, F. and Massironi, M. and Mottola, S. and Naletto, G. and Oklay, N. and Preusker, F. and Scholten, F. and Shi, X. and Thomas, N. and Toth, I. and Tubiana, C. (2016) Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society 462 (Suppl), S184-S194. ISSN 0035-8711.
Abstract
During its 2 yr mission around comet 67P/Churyumov–Gerasimenko, ESA's Rosetta spacecraft had the unique opportunity to follow closely a comet in the most active part of its orbit. Many studies have presented the typical features associated with the activity of the nucleus, such as localized dust and gas jets. Here, we report on series of more energetic transient events observed during the 3 months surrounding the comet's perihelion passage in 2015 August. We detected and characterized 34 outbursts with the Rosetta cameras, one every 2.4 nucleus rotations. We identified three main dust plume morphologies associated with these events: a narrow jet, a broad fan, and more complex plumes featuring both previous types together. These plumes are comparable in scale and temporal variation to what has been observed on other comets. We present a map of the outbursts’ source locations, and discuss the associated topography. We find that the spatial distribution sources on the nucleus correlate well with morphological region boundaries, especially in areas marked by steep scarps or cliffs. Outbursts occur either in the early morning or shortly after the local noon, indicating two potential processes: morning outbursts may be triggered by thermal stresses linked to the rapid change of temperature; afternoon events are most likely related to the diurnal or seasonal heat wave reaching volatiles buried under the first surface layer. In addition, we propose that some events can be the result of a completely different mechanism, in which most of the dust is released upon the collapse of a cliff.
Metadata
Item Type: | Article |
---|---|
Keyword(s) / Subject(s): | comets: individual, 67P/Churyumov, Gerasimenko |
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences |
Depositing User: | Administrator |
Date Deposited: | 26 Oct 2018 11:36 |
Last Modified: | 02 Aug 2023 17:45 |
URI: | https://eprints.bbk.ac.uk/id/eprint/24833 |
Statistics
Additional statistics are available via IRStats2.