BIROn - Birkbeck Institutional Research Online

    Chemically striking regions on Mars and Stealth revisited

    Karunatillake, S. and Wray, J.J. and Squyres, S.W. and Taylor, G.J. and Gasnault, O. and McLennan, S.M. and Boynton, W. and El-Maarry, Mohamed Ramy and Dohm, J.M. (2009) Chemically striking regions on Mars and Stealth revisited. Journal of Geophysical Research: Planets 114 (E12), ISSN 2169-9097.

    Full text not available from this repository.

    Abstract

    [1] The Mars Odyssey Gamma Ray Spectrometer Suite has yielded global chemical information for Mars. In this work, we establish regions of unusual chemical composition relative to average Mars primarily on the basis of Ca, Cl, Fe, H, K, Si, and Th. Using data from Mars Odyssey; the Mars Exploration Rovers; the Mars Reconnaissance Orbiter Imaging; and 3.5 cm and 1.35 cm radar observations from Earth, we examine a chemically striking ≈2.E6 km2 region and find it to overlap significantly with a radar Stealth region on Mars. It is remarkably enriched in Cl and depleted in Fe and Si (along with minor variations in H, K, and Th) relative to average Mars. Surface dust observed at the two rover sites mixed with and indurated by Ca/Mg‐bearing sulfate salts would be a reasonable chemical and physical analog to meter‐scale depths. We describe potential scenarios that may have contributed to the unique properties of this region. The bulk dust component may be an air fall deposit of compositionally uniform dust as observed in situ. Hydrothermal acid fog reactions on the flanks of nearby volcanoes may have generated sulfates with subsequent deflation and transport. Alternatively, sulfates may have been produced by low‐temperature, regional‐scale activity of ground ice–driven brine and/or regional‐scale deposition of acidified H2O snowfall.

    Metadata

    Item Type: Article
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences
    Depositing User: Administrator
    Date Deposited: 07 Dec 2018 14:13
    Last Modified: 02 Aug 2023 17:46
    URI: https://eprints.bbk.ac.uk/id/eprint/25399

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    114Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item