Jasmin, Kyle and Gotts, S. and Xu, Y. and Liu, S. and Riddell, C. and Wallace, G. and Kenworthy, L. and Ingeholm, J. and Braun, A. and Martin, A. (2019) Overt social interaction and resting state in young adult males with autism: core and contextual neural features. Brain 142 (3), pp. 808-822. ISSN 0006-8950.
|
Text
332213.full (1).pdf - Author's Accepted Manuscript Download (1MB) | Preview |
Abstract
Conversation is an important and ubiquitous social behavior. Individuals with Autism Spectrum Disorder (autism) without intellectual disability often have normal structural language abilities but deficits in social aspects of communication like pragmatics, prosody, and eye contact. Previous studies of resting state activity suggest that intrinsic connections among neural circuits involved with social processing are disrupted in autism, but to date no neuroimaging study has examined neural activity during the most commonplace yet challenging social task: spontaneous conversation. Here we used functional MRI to scan autistic males (N=19) without intellectual disability and age- and IQ-matched typically developing controls (N=20) while they engaged in a total of 193 face-to-face interactions. Participants completed two kinds of tasks: Conversation, which had high social demand, and Repetition, which had low social demand. Autistic individuals showed abnormally increased task-driven inter-regional temporal correlation relative to controls, especially among social processing regions and during high social demand. Furthermore, these increased correlations were associated with parent ratings of participants’ social impairments. These results were then compared with previously-acquired resting-state data (56 Autism, 62 Control participants). While some inter-regional correlation levels varied by task or rest context, others were strikingly similar across both task and rest, namely increased correlation among the thalamus, dorsal and ventral striatum, somatomotor, temporal and prefrontal cortex in the autistic individuals, relative to the control groups. These results suggest a basic distinction. Autistic cortico-cortical interactions vary by context, tending to increase relative to controls during Task and decrease during Rest. In contrast, striato- and thalamocortical relationships with socially engaged brain regions are increased in both Task and Rest, and may be core to the condition of autism.
Metadata
Item Type: | Article |
---|---|
Keyword(s) / Subject(s): | autism, conversation, fMRI, language, resting state |
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Psychological Sciences |
Depositing User: | Kyle Jasmin |
Date Deposited: | 14 Dec 2018 09:47 |
Last Modified: | 02 Aug 2023 17:47 |
URI: | https://eprints.bbk.ac.uk/id/eprint/25498 |
Statistics
Additional statistics are available via IRStats2.