Cordeiro de Amorim, Renato and Mirkin, Boris (2012) Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering. Pattern Recognition 45 (3), pp. 1061-1075. ISSN 0031-3203.
Abstract
This paper represents another step in overcoming a drawback of K-Means, its lack of defense against noisy features, using feature weights in the criterion. The Weighted K-Means method by Huang et al. (2008, 2004, 2005) [5], [6] and [7] is extended to the corresponding Minkowski metric for measuring distances. Under Minkowski metric the feature weights become intuitively appealing feature rescaling factors in a conventional K-Means criterion. To see how this can be used in addressing another issue of K-Means, the initial setting, a method to initialize K-Means with anomalous clusters is adapted. The Minkowski metric based method is experimentally validated on datasets from the UCI Machine Learning Repository and generated sets of Gaussian clusters, both as they are and with additional uniform random noise features, and appears to be competitive in comparison with other K-Means based feature weighting algorithms.
Metadata
Item Type: | Article |
---|---|
Keyword(s) / Subject(s): | K-means, Minkowski metric, feature weights, noise features, anomalous cluster |
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Research Centres and Institutes: | Structural Molecular Biology, Institute of (ISMB) |
Depositing User: | Administrator |
Date Deposited: | 05 Sep 2011 09:43 |
Last Modified: | 09 Aug 2023 12:30 |
URI: | https://eprints.bbk.ac.uk/id/eprint/4102 |
Statistics
Additional statistics are available via IRStats2.