Lachish, Oded and Raz, R. (2001) Explicit lower bound of 4.5n - o(n) for boolena circuits. In: Vitter, J.S. and Spirakis, P. and Yannakakis, M. (eds.) STOC '01: Proceedings of the thirty-third annual ACM symposium on Theory of computing. Association for Computing Machinery, pp. 399-408. ISBN 9781581133493.
Abstract
We prove a lower bound of 4.5n - o(n) for the circuit complexity of an explicit Boolean function (that is, a function constructible in deterministic polynomial time), over the basis U_2. That is, we obtain a lower bound of 4.5n - o(n) for the number of {and,or} gates needed to compute a certain Boolean function, over the basis {and,or,not} (where the not gates are not counted). Our proof is based on a new combinatorial property of Boolean functions, called Strongly-Two-Dependence, a notion that may be interesting in its own right. Our lower bound applies to any Strongly-Two-Dependent Boolean function.
Metadata
Item Type: | Book Section |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Depositing User: | Sarah Hall |
Date Deposited: | 25 May 2021 14:05 |
Last Modified: | 09 Aug 2023 12:50 |
URI: | https://eprints.bbk.ac.uk/id/eprint/44415 |
Statistics
Additional statistics are available via IRStats2.