Magoulas, George and Plagianakos, V.P. and Vrahatis, M.N. (2000) Development and convergence analysis of training algorithms with local learning rate adaptation. In: UNSPECIFIED (ed.) Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IEEE Computer Society, pp. 21-26. ISBN 0769506194.
Abstract
A new theorem for the development and convergence analysis of supervised training algorithms with an adaptive learning rate for each weight is presented. Based on this theoretical result, a strategy is proposed to automatically adapt the search direction, as well as the step-size length along the resultant search direction. This strategy is applied to some well known local learning algorithms to investigate its effectiveness.
Metadata
Item Type: | Book Section |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Depositing User: | Sarah Hall |
Date Deposited: | 06 Jul 2021 11:07 |
Last Modified: | 09 Aug 2023 12:51 |
URI: | https://eprints.bbk.ac.uk/id/eprint/44996 |
Statistics
Additional statistics are available via IRStats2.