Cameron, P. and Fairbairn, Ben and Gadouleau, M. (2014) Computing in permutation groups without memory. Chicago Journal of Theoretical Computer Science 2014 (7), ISSN 1073-0486.
Text
BIRON_computing_symmetric_2012-09-19.pdf - First Submitted (AKA Pre-print) Restricted to Repository staff only Download (333kB) |
||
|
Text
5438(a).pdf - Published Version of Record Download (273kB) | Preview |
Abstract
Memoryless computation is a new technique to compute any function of a set of registers by updating one register at a time while using no memory. It aims at emulating how computations are performed in modern cores, since they typically involve updates of single registers. The memoryless computation model can be fully expressed in terms of transformation semigroups, or in the case of bijective functions, permutation groups. In this paper, we consider how efficiently permutations can be computed without memory. We determine the minimum number of basic updates required to compute any permutation, or any even permutation. The small number shows that very small instruction sets could be encoded on cores to perform memoryless computation. We then start looking at a possible compromise between the size of the instruction set and the length of the resulting programs. We consider updates only involving a limited number of registers. In particular, we show that binary instructions are not enough to compute all permutations without memory when the alphabet size is even. These results, though expressed as properties of special generating sets of the symmetric or alternating groups, provide guidelines on the implementation of memoryless computation.
Metadata
Item Type: | Article |
---|---|
Additional Information: | memoryless computation, permutation groups, symmetric group, alternating group, generating sets, Boolean networks, sequential updates |
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Depositing User: | Ben Fairbairn |
Date Deposited: | 03 Dec 2014 09:57 |
Last Modified: | 09 Aug 2023 12:32 |
URI: | https://eprints.bbk.ac.uk/id/eprint/5438 |
Statistics
Additional statistics are available via IRStats2.