Zhang, X. and Hu, W. and Maybank, Stephen J. and Li, X. and Zhu, M. (2008) Sequential particle swarm optimization for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008: CVPR 2008, 23-28 June 2008, Anchorage, U.S..
Abstract
Visual tracking usually involves an optimization process for estimating the motion of an object from measured images in a video sequence. In this paper, a new evolutionary approach, PSO (particle swarm optimization), is adopted for visual tracking. Since the tracking process is a dynamic optimization problem which is simultaneously influenced by the object state and the time, we propose a sequential particle swarm optimization framework by incorporating the temporal continuity information into the traditional PSO algorithm. In addition, the parameters in PSO are changed adaptively according to the fitness values of particles and the predicted motion of the tracked object, leading to a favourable performance in tracking applications. Furthermore, we show theoretically that, in a Bayesian inference view, the sequential PSO framework is in essence a multilayer importance sampling based particle filter. Experimental results demonstrate that, compared with the state-of-the-art particle filter and its variation - the unscented particle filter, the proposed tracking algorithm is more robust and effective, especially when the object has an arbitrary motion or undergoes large appearance changes.
Metadata
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Keyword(s) / Subject(s): | Bayesian methods, Inference algorithms, Monte Carlo methods, Motion estimation, Motion measurement, Nonhomogeneous media, Particle filters, Particle swarm optimization, Particle tracking, Video sequences |
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Depositing User: | Administrator |
Date Deposited: | 05 Nov 2012 10:49 |
Last Modified: | 09 Aug 2023 12:32 |
URI: | https://eprints.bbk.ac.uk/id/eprint/5558 |
Statistics
Additional statistics are available via IRStats2.