BIROn - Birkbeck Institutional Research Online

    Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1

    Fernandez, D.I. and Sani, M.-A. and Miles, Andrew J. and Wallace, Bonnie A. and Separovic, F. (2013) Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1. Biochimica et Biophysica Acta (BBA) - Biomembranes 1828 (8), pp. 1863-1872. ISSN 0006-3002.

    [img]
    Preview
    Text
    6271.pdf - Published Version of Record
    Available under License Creative Commons Attribution.

    Download (967kB) | Preview

    Abstract

    The membrane interactions of the antimicrobial peptides aurein 1.2 and caerin 1.1 were observed by 31P and 2H solid-state NMR and circular dichroism spectroscopy. Both peptides were relatively unstructured in water. In the presence of dimyristoylphosphatidylcholine (DMPC) and mixed DMPC and dimyristoylphosphatidylglycerol (DMPG) vesicles, both peptides displayed a considerable increase in helical content with the shorter aurein peptide having a higher α-helix content in both lipid systems. In fluid phase DMPC vesicles, the peptides displayed differential interactions: aurein 1.2 interacted primarily with the bilayer surface, while the longer caerin 1.1 was able to penetrate into the bilayer interior. Both peptides displayed a preferential interaction with the DMPG component in DMPC/DMPG bilayers, with aurein 1.2 limited to interaction with the surface and caerin 1.1 able to penetrate into the bilayer and promote formation of a mixture of lipid phases or domains. In gel phase DMPC vesicles, aurein 1.2 disrupted the bilayer apparently through a carpet mechanism, while no additional interaction was seen with caerin 1.1. Although a lamellar bilayer was retained with the mixed DMPC/DMPG vesicles below the phase transition, both caerin 1.1 and aurein 1.2 promoted disruption of the bilayer and formation of an isotropic phase. The peptide interaction was enhanced relative to the fluid phase and was likely driven by co-existence of membrane defects. This study thus demonstrates that the effects of the lipid phase and domains need to be considered when studying membrane interactions of antimicrobial peptides.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): antimicrobial peptide, model membranes, peptide-lipid interaction, lipid domains, circular dichroism, solid-state NMR
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences
    Research Centres and Institutes: Bioinformatics, Bloomsbury Centre for (Closed), Structural Molecular Biology, Institute of (ISMB)
    Depositing User: Administrator
    Date Deposited: 18 Mar 2013 08:20
    Last Modified: 02 Aug 2023 17:02
    URI: https://eprints.bbk.ac.uk/id/eprint/6271

    Statistics

    Activity Overview
    6 month trend
    564Downloads
    6 month trend
    277Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item
    Edit/View Item