Nicol, R.M. and Chapman, S.C. and Vertes, P.E. and Nathan, P.J. and Smith, Marie L. and Shtyrov, Y. and Bullmore, E.T. (2012) Fast reconfiguration of high-frequency brain networks in response to surprising changes in auditory input. Journal of Neurophysiology 107 (5), pp. 1421-1430. ISSN 0022-3077.
Abstract
How do human brain networks react to dynamic changes in the sensory environment? We measured rapid changes in brain network organization in response to brief, discrete, salient auditory stimuli. We estimated network topology and distance parameters in the immediate central response period, <1 s following auditory presentation of standard tones interspersed with occasional deviant tones in a mismatch-negativity (MMN) paradigm, using magnetoencephalography (MEG) to measure synchronization of high-frequency (gamma band; 33–64 Hz) oscillations in healthy volunteers. We found that global small-world parameters of the networks were conserved between the standard and deviant stimuli. However, surprising or unexpected auditory changes were associated with local changes in clustering of connections between temporal and frontal cortical areas and with increased interlobar, long-distance synchronization during the 120- to 250-ms epoch (coinciding with the MMN-evoked response). Network analysis of human MEG data can resolve fast local topological reconfiguration and more long-range synchronization of high-frequency networks as a systems-level representation of the brain's immediate response to salient stimuli in the dynamically changing sensory environment.
Metadata
Item Type: | Article |
---|---|
Keyword(s) / Subject(s): | graph theory, mismatch negativity (MMN), MEG, coherency, synchronization |
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Psychological Sciences |
Research Centres and Institutes: | Brain and Cognitive Development, Centre for (CBCD) |
Depositing User: | Administrator |
Date Deposited: | 29 May 2013 18:56 |
Last Modified: | 02 Aug 2023 17:04 |
URI: | https://eprints.bbk.ac.uk/id/eprint/7065 |
Statistics
Additional statistics are available via IRStats2.