Gao, X. and Zhang, K. and Tao, D. and Li, Xuelong (2012) Joint learning for single-image super-resolution via a coupled constraint. IEEE Transactions on Image Processing 21 (2), pp. 469-480. ISSN 1057-7149.
Abstract
The neighbor-embedding (NE) algorithm for single-image super-resolution (SR) reconstruction assumes that the feature spaces of low-resolution (LR) and high-resolution (HR) patches are locally isometric. However, this is not true for SR because of one-to-many mappings between LR and HR patches. To overcome or at least to reduce the problem for NE-based SR reconstruction, we apply a joint learning technique to train two projection matrices simultaneously and to map the original LR and HR feature spaces onto a unified feature subspace. Subsequently, the k -nearest neighbor selection of the input LR image patches is conducted in the unified feature subspace to estimate the reconstruction weights. To handle a large number of samples, joint learning locally exploits a coupled constraint by linking the LR-HR counterparts together with the K-nearest grouping patch pairs. In order to refine further the initial SR estimate, we impose a global reconstruction constraint on the SR outcome based on the maximum a posteriori framework. Preliminary experiments suggest that the proposed algorithm outperforms NE-related baselines.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Depositing User: | Sarah Hall |
Date Deposited: | 06 Jun 2013 16:18 |
Last Modified: | 09 Aug 2023 12:33 |
URI: | https://eprints.bbk.ac.uk/id/eprint/7340 |
Statistics
Additional statistics are available via IRStats2.